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Abstract. Precipitation data with high resolution and high
accuracy are significantly important in numerous hydrolog-
ical applications. To enhance the spatial resolution and ac-
curacy of satellite-based precipitation products, an easy-to-
use downscaling-calibration method based on a spatial ran-
dom forest (SRF-DC) is proposed in this study, where the
spatial autocorrelation of precipitation measurements be-
tween neighboring locations is considered. SRF-DC consists
of two main stages. First, the satellite-based precipitation
is downscaled by the SRF with the incorporation of high-
resolution variables including latitude, longitude, normalized
difference vegetation index (NDVI), digital elevation model
(DEM), terrain slope, aspect, relief and land surface tem-
peratures. Then, the downscaled precipitation is calibrated
by the SRF with rain gauge observations and the afore-
mentioned high-resolution variables. The monthly Integrated
MultisatellitE Retrievals for Global Precipitation Measure-
ment (IMERG) over Sichuan Province, China, from 2015
to 2019 was processed using SRF-DC, and its results were
compared with those of classical methods including geo-
graphically weighted regression (GWR), artificial neural net-
work (ANN), random forest (RF), kriging interpolation only
on gauge measurements, bilinear interpolation-based down-
scaling and then SRF-based calibration (Bi-SRF), and SRF-
based downscaling and then geographical difference analysis
(GDA)-based calibration (SRF-GDA). Comparative analyses
with respect to root mean square error (RMSE), mean ab-
solute error (MAE) and correlation coefficient (CC) demon-
strate that (1) SRF-DC outperforms the classical methods as

well as the original IMERG; (2) the monthly based SRF esti-
mation is slightly more accurate than the annually based SRF
fraction disaggregation method; (3) SRF-based downscaling
and calibration perform better than bilinear downscaling (Bi-
SRF) and GDA-based calibration (SRF-GDA); (4) kriging is
more accurate than GWR and ANN, whereas its precipita-
tion map loses detailed spatial precipitation patterns; and (5)
based on the variable-importance rank of the RF, the precip-
itation interpolated by kriging on the rain gauge measure-
ments is the most important variable, indicating the signifi-
cance of incorporating spatial autocorrelation for precipita-
tion estimation.

1 Introduction

Precipitation is an important variable for promoting our un-
derstanding of hydrological cycle and water resource man-
agement (Chen et al., 2010; Yue, 2011). Previous studies
have shown that about 70 %–80 % of hydrological modeling
errors are caused by precipitation uncertainties (Gebregior-
gis and Hossain, 2013). However, precipitation is also one
of the most difficult meteorological factors to estimate due
to its high spatial and temporal heterogeneity (Beck et al.,
2019). Although point-based rain gauge observations are re-
liable and accurate, it is difficult to reflect the spatial precip-
itation pattern because of the sparse and uneven distribution
of meteorological stations, especially in remote and moun-
tainous areas (Ullah et al., 2020).
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During the past decades, diverse satellite-based precip-
itation datasets have been produced, such as the Climate
Hazards Group Infrared Precipitation with Station data
(CHIRPS; 0.05◦) (Funk et al., 2015), the Precipitation Es-
timation from Remotely Sensed Information using Artificial
Neural Networks-Climate Data Record (PERSIANN-CDR;
0.25◦) (Ashouri et al., 2015), the Climate Prediction Cen-
ter (CPC) morphing technique (CMORPH; 0.25◦) (Haile et
al., 2013), the Multi-Source Weighted-Ensemble Precipita-
tion (MSWEP; 0.1◦) (Beck et al., 2017), the Tropical Rain-
fall Measuring Mission (TRMM) Multi-satellite Precipita-
tion Analysis (TMPA; 0.25◦) (Huffman et al., 2007) and the
Integrated MultisatellitE Retrievals for Global Precipitation
Measurement (GPM) mission (IMERG; 0.1◦) (Hou et al.,
2014). Nevertheless, these products are characterized by con-
siderable systematic biases due to the shortcomings of re-
trieval algorithms, sensor capability and spatiotemporal col-
lection frequency (Chen et al., 2018; Wu et al., 2018; Yang et
al., 2017). Moreover, their resolutions (from 0.05 to 2.5◦) are
too coarse for hydrological modeling when applied to local
and basin regions (Immerzeel et al., 2009).

As a result, downscaling techniques have been widely
adopted to derive high-resolution precipitation products. This
is generally achieved by firstly modeling the relationship be-
tween precipitation and land surface variables at a coarse
scale and then putting the high-resolution variables into
the constructed model to downscale the precipitation data
(Immerzeel et al., 2009; Chen et al., 2010). Immerzeel et
al. (2009) employed an exponential regression (ER) to de-
scribe the relationship between TRMM and normalized dif-
ference vegetation index (NDVI). Jia et al. (2011) used a
multiple linear regression model (MLR) to establish the re-
lationship between TRMM, digital elevation model (DEM)
and NDVI. Duan and Bastiaanssen (2013) proposed a down-
scaling model based on the second-order polynomial rela-
tionship between TRMM and NDVI. Considering the hetero-
geneous relationships between precipitation and land surface
variables across the study area, geographically weighted re-
gression (GWR) was widely used (Chen et al., 2014, 2015;
Xu et al., 2015; Li et al., 2019; S. Chen et al., 2020; Lu et
al., 2020; Zhao et al., 2018). In the recent decade, some data-
driven machine learning (ML) methods were employed to
downscale satellite-based precipitation products, such as ran-
dom forest (RF) (Shi et al., 2015; Zhang et al., 2021), support
vector machine (SVM) (Jing et al., 2016; Chen et al., 2010)
and artificial neural network (ANN) (Elnashar et al., 2020),
and showed more accurate results than the statistical meth-
ods. However, the downscaled precipitation products inher-
ently contain large systematic biases.

To alleviate the inherent biases, many calibration meth-
ods have been proposed to merge gauge observations and
satellite-based precipitation, such as the nonparametric ker-
nel smoothing method (Li and Shao, 2010), geographical dif-
ference analysis (GDA) (Cheema and Bastiaanssen, 2012),
geographical ratio analysis (GRA) (Duan and Bastiaanssen,

2013), conditional merging (CM) (Berndt et al., 2014), quan-
tile mapping (Chen et al., 2013; Zhang and Tang, 2015), op-
timal interpolation (Xie and Xiong, 2011; Lu et al., 2020;
Wu et al., 2018), GWR (Chen et al., 2018; Lu et al., 2019;
Chao et al., 2018) and geostatistical interpolation (Park et al.,
2017). Nevertheless, these methods are based on some strict
assumptions, which might not be satisfied in reality (Zhang
et al., 2021; Wu et al., 2020). To this end, ML-based calibra-
tion methods have been widely used, such as quantile regres-
sion forest (QRF) (Bhuiyan et al., 2018), ANN (Yang and
Luo, 2014; Pham et al., 2020), deep neural network (Tao et
al., 2016), RF (Baez-Villanueva et al., 2020), convolutional
neural network (CNN) (Wu et al., 2020), SVM and extreme
learning machine (Zhang et al., 2021).

Compared to the statistical methods, the merits of the ML-
based methods are as follows (Zhang et al., 2021; Hengl et
al., 2018): (i) they require no strict statistical assumption;
(ii) they can capture the complex and nonlinear relation-
ship between precipitation and its influence factors; (iii) they
generally outperform the statistical methods. However, ML-
based methods were simply taken as statistical tools with-
out considering the spatial autocorrelation of precipitation
measurements between adjacent locations. Moreover, they
were adopted in either downscaling or calibration of pre-
cipitation. Specifically, some (Karbalaye Ghorbanpour et al.,
2021; Yan et al., 2021; Jing et al., 2016) attempted to use
the ML methods for downscaling and then use the classical
method (e.g., GDA) for calibration, while some (Zhang et al.,
2021) employed the classical interpolation methods (e.g., bi-
linear interpolation) for downscaling and then used the ML
methods for calibration. However, we believe that the use of
ML methods in both downscaling and calibration could im-
prove the accuracy of precipitation. To the best of our knowl-
edge, no previous studies have used the ML technique in both
downscaling and calibration (Karbalaye Ghorbanpour et al.,
2021; Yan et al., 2021).

Based on the aforementioned discussion, the objectives of
this study are twofold: (i) to develop an easy-to-use spa-
tial RF (SRF) by incorporating spatial autocorrelation for
precipitation estimation and (ii) to propose a downscaling-
calibration method based on an SRF (SRF-DC) for produc-
ing high-resolution and high-accuracy precipitation products.
The RF is taken as the basic model in this study owing to
its high interpolation accuracy and low computational cost
(Mohsenzadeh Karimi et al., 2020; Belgiu et al., 2016).

SRF-DC consists of two main steps. First, the precipita-
tion data are downscaled by the SRF with the incorporation
of high-resolution environmental variables, including DEM,
NDVI, land surface temperatures (LSTs), terrain parameters,
latitude and longitude, as recommended in previous studies
(Jing et al., 2016; Li et al., 2019). Second, the SRF and the
environmental variables are further used to merge the down-
scaled precipitation data and gauge observations to boost the
accuracy of the precipitation data. The merit of SRF-DC
lies in the use of the SRF for both downscaling and cali-
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bration of precipitation products, with the incorporation of
high-resolution environmental variables and spatial autocor-
relation between neighboring precipitation data.

2 Study area and dataset

2.1 Study area

Sichuan Province between 26◦03′–34◦19′ N and 97◦21′–
108◦31′ E (Fig. 1) is situated between the Qinghai–Tibet
Plateau and the plain of the middle and lower reaches of
Yangtze River, with an area of 486 000 km2. Its topography
is very complex, including mountains, hills, plain basins and
plateaus, and the elevations range from approximately 180 m
in the east to 7100 m in the west. Such a variety of com-
plex topography results in different climates across the study
region. Specifically, the east basin has subtropical monsoon
climate. The weather is generally warm, humid and foggy
with much cloud, fog and rain but less sunshine. While in
the west plateau, the weather is relatively cool or cold. The
climate is characterized by a long cold winter, a very short
summer and rich sunshine but less rainfall. Annual precipi-
tation shows significant spatial heterogeneity, varying from
about 400 mm in the west to 1800 mm in the east. Moreover,
more than 80 % of the precipitation occurs between July and
September. The high spatial and temporal variability in pre-
cipitation makes the study site ideal for evaluating satellite-
based precipitation estimates (Zhang et al., 2021; Karbalaye
Ghorbanpour et al., 2021).

2.2 Dataset

2.2.1 Rain gauge observations

The study region has 156 rain gauge stations, which shows an
uneven distribution with high density in the east and low den-
sity in the west (Fig. 1). The average cover area of one rain
gauge observation is about 3115 km2. Daily precipitation of
all the stations for the period 2015–2019 was collected from
the China Meteorological Data Service Center (CMDSC,
2021). The data quality was guaranteed based on some strict
quality controls, such as manual inspection, outlier check and
spatiotemporal consistency verification (Zhao and Yatagai,
2014). After that, the monthly precipitation was produced by
aggregating the daily precipitation of rain gauges for each
month.

2.2.2 Integrated MultisatellitE Retrievals for Global
Precipitation Measurement (IMERG)

As the successor of TRMM, the National Aeronautics and
Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA) initiated the next-generation
global precipitation observation mission (Hou et al., 2014).
The IMERG products were generated by assimilating all mi-

crowave and infrared (IR) estimates, together with gauge ob-
servations (Huffman et al., 2019). It has the spatial resolution
of 0.1◦ × 0.1◦ with the coverage from 60◦ S–60◦ N. IMERG
provides three different products, including Early Run, Late
Run and Final Run, which were estimated about 4 h, 14 h
and 3.5 months after the observation time, respectively. Due
to the incorporation of the Global Precipitation Climatology
Centre (GPCC) rain gauge data, IMERG Final Run is more
accurate than the others (Lu et al., 2019). Thus, the monthly
IMERG V06B Final Run product was adopted in the study.
It was downloaded from NASA (2021).

The average monthly precipitation of all rain gauges and
that of IMERG at the corresponding grid cells from 2015–
2019 over Sichuan Province are shown in Fig. 2. Obvi-
ously, IMERG has an overestimation in most months, and
the wettest month is July 2018.

2.2.3 Environmental variables

Vegetation types have a significant impact on fluxes of sen-
sible and latent heat into the atmosphere, apparently influ-
encing the humidity of the lower atmosphere and further af-
fecting moist convection (Spracklen et al., 2012). Therefore,
as an indicator of vegetation activity, NDVI has been widely
adopted to estimate precipitation (Wu et al., 2019; Immerzeel
et al., 2009). In this study, the Moderate Resolution Imaging
Spectroradiometer (MODIS) monthly NDVI with the resolu-
tion of 1 km (MOD13A3) from 2015 to 2019, NASA Earth
Data (2021a) was used.

Precipitation can influence LST both in the daytime and
at night; rain leads to cool temperatures, and droughts of-
ten couple with heat waves (Trenberth and Shea, 2005;
Jing et al., 2016). Thus, the daytime LST (LSTD), night-
time LST (LSTN), and the difference between daytime and
nighttime LSTs (LSTD−N) at a monthly scale were used
in this study. Here, MODIS 8 d LST with a resolution of
1 km (MOD11A2) from 2015 to 2019 was downloaded from
NASA Earth Data (2021b) and then temporally averaged into
the monthly LST products.

Topography could affect the regional atmospheric circula-
tion and the spatial pattern of precipitation through its ther-
mal and dynamic forcing mechanisms (Jing et al., 2016; Jia
et al., 2011). With the increase in elevations, the relative hu-
midity of the air masses increases through expansion and
cooling of the rising air masses, which brings precipitation
(Jing et al., 2016). Thus, the precipitation–DEM relationship
has been widely employed to downscale the satellite precip-
itation dataset. Here, the Shuttle Radar Topography Mission
(SRTM) DEM (Shortridge and Messina, 2011) was used. The
SRTM DEM with a spatial resolution of 90 m was down-
loaded from CGIAR (2021). and then resampled to 1 km by
the pixel-averaging method. Since precipitation tends to be
influenced by terrain variability and terrain orientation, DEM
derivatives including slope, aspect and terrain relief (C. Chen
et al., 2020; Yue et al., 2007) were also used in the study.
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Figure 1. Topography, rain gauges and geographic location of Sichuan Province in China.

Figure 2. Average monthly precipitation of all rain gauges and that
of IMERG at the corresponding grid cells from 2015–2019 over
Sichuan Province.

These derivatives were extracted from the SRTM DEM us-
ing ArcGIS 10.3.

The detailed information of all the datasets used in the
study is shown in Table 1.

3 Methodology

The flowchart of SRF-DC is illustrated in Fig. 3, which
includes three stages: data processing, IMERG downscal-
ing and downscaled IMERG calibration. It is noted that
each IMERG pixel represents the areal average precipitation
within it, whereas rain gauge measurements are point-based.
Therefore, downscaling before calibration can decrease scale
mismatch between pixel-based areal precipitation and gauge-
based point measurements.

3.1 Random forest (RF)

The RF is an ensemble of several tree predictors such that
each tree relies on a random and independent selection of
some samples and features but with the same distribution
(Breiman, 2001). The general framework of the RF is shown
in Fig. 4. Specifically, each decision tree is constructed by
randomly collecting some training data with a replacement,
while the others are used to assess the tree performance (sam-
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Table 1. Datasets used in the study.

Data type Product Spatial resolution Temporal resolution Source

Meteorological data
IMERG 10 km Monthly https://doi.org/10.5067/GPM/IMERG/3B-MONTH/06

(NASA, 2021)

Rain gauge observations – Daily http://data.cma.cn/data/detail/dataCode/
(CMDSC, 2021)

Land surface data

SRTM DEM 30 m – https://doi.org/10.5066/F7PR7TFT (CGIAR, 2021)
Slope, aspect, terrain relief 30 m – Derived from SRTM DEM

NDVI 1 km Monthly https://doi.org/10.5067/MODIS/mod13a3.006
(NASA Earth Data, 2021a)

LST 1 km 8 d https://doi.org/10.5067/MODIS/MOD11A2.006
(NASA Earth Data, 2021b)

Figure 3. Flowchart of SRF-DC in this study.
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ple bagging). When constructing each tree, only a random
subset of features is selected at each decision node (feature
bagging). In the end, the majority vote for classification or
the average prediction of all trees for regression is used to
obtain the final output. Overall, the RF includes three param-
eters to set: number of trees, depth of the tree and number of
features.

Meanwhile, the RF can evaluate the relative importance
of each predictor by means of the out-of-bag (OOB) obser-
vations, i.e., the samples without being used for model con-
struction (Breiman, 2001). Specifically, to measure the im-
portance of the ith predictor, its values are permuted, while
the values of the other predictors remain unchanged. Then,
the OOB error based on the permuted samples is computed.
Next, the importance score of the ith predictor is computed
by averaging the difference between the OOB errors before
and after the permutation. With the estimated scores, the im-
portance of each variable is ranked.

In this study, the RF regression model was performed
with the freely available codes, downloaded from the web-
site https://code.google.com/archive/p/randomforest-matlab/
downloads (last access: 10 March 2021).

3.2 Spatial random forest (SRF)

In essence, the classical RF is a non-spatial statistical tech-
nique for spatial prediction as it neglects sampling locations
and general sampling pattern (Hengl et al., 2018). This can
potentially cause sub-optimal estimations, especially when
the spatial autocorrelation between dependent variables is
high. To this end, a spatial RF (SRF) is proposed in this study.
The general formulation of the SRF is as follows:

p(s0)= f (Xs,Xns)+ e, (1)

where p(s0) is the estimated precipitation at location s0; e
is the fitting residual; f (·) is the function constructed by the
SRF; and Xs and Xns are the spatial and non-spatial covari-
ates, respectively.

In addition to spatial coordinates, one spatial covariate
(Xs) is computed to account for the spatial autocorrelation of
precipitation measurements between neighboring locations:

Xs (s0)=

n∑
i=1

wiz(si) , (2)

where si is the ith neighbor of s0, z(si) is the precipitation
data of si , wi is its weight, and n is the number of neighbors.

In previous studies (Zhang et al., 2021; Li et al., 2017), the
inverse distance weights (IDWs) were widely used. However,
the IDW method only resorts to the spatial distance between
the estimated location and its neighbor locations and does
not consider the spatial autocorrelation between the neigh-
bor locations. To overcome this limitation, an ordinary krig-
ing (OK)-based variogram is adopted to estimate the inter-

polation weights in this study by solving the following linear
system:


γ (x1− x1) . . . γ (x1− xn) 1
...

. . .
...

...

γ (xn− x1) · · · γ (xn− xn) 1
1 · · · 1 0



w1
...

wn
µ

=

γ (x1− x0)
...

γ (xn− x0)

1

 ,
(3)

where µ is Lagrange parameter, and γ (·) is the semivari-
ogram.

It can be concluded that the variogram-based weights con-
sider the spatial autocorrelation not only between the known
locations but also between the known locations and the inter-
polated location (Berndt and Haberlandt, 2018). In practice,
the experimental semivariogram can be estimated from sam-
ple data as follows (Goovaerts, 2000):

γ (h)=
1

2n

n∑
i=1
(z(si)− z(si +h))

2, (4)

where n is the number of data pairs with the attribute z sepa-
rated by distance h.

To obtain the semivariogram at any h, a theoretical semi-
variogram model should be fitted to the experimental values.
There are four commonly used theoretical semivariogram
models: the spherical, Gaussian, exponential and power mod-
els. The best one with the best-fitting R2 was used in the
study.

3.3 Working procedure of the proposed method

The detailed steps of SRF-DC are as follows (Fig. 3):

1. Each pixel value of the 10 km IMERG was re-estimated
by OK interpolation with its k nearest neighbors
(e.g., k = 8) to obtain the interpolated IMERG (termed
as I 10 km

s ), the 10 km IMERG was interpolated by OK
to obtain the interpolated 1 km IMERG (I 1 km

s ), and the
gauge observations were interpolated by OK to pro-
duce the 1 km precipitation map (P 1 km

s ). This step aims
to provide spatial variables for the SRF, i.e., Xs in
Eq. (1). Since the semivariogram model cannot be accu-
rately estimated from the sparse gauge measurements,
the satellite-based precipitation was used to derive the
model, as suggested by S. Chen et al. (2020). To esti-
mate I 10 km

s and I 1 km
s , the raster-based 10 km IMERG

was first transformed into the point-based form with
spatial coordinates and precipitation values, and then
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Figure 4. General framework of the RF.

the scattered points were interpolated by OK to produce
raster-based maps.

2. The negative NDVI values were excluded from the orig-
inal data, which mainly belong to snow and water bod-
ies in the study site. The removed values were interpo-
lated by OK with their neighbors to avoid information
loss.

3. The 1 km environmental variables X1 km
ns (i.e., NDVI,

LSTD, LSTN, LSTD−N, DEM, slope, aspect, terrain re-
lief, latitude and longitude) were resampled to 10 km
resolution X10 km

ns by the pixel-averaging method be-
cause the average value reflects the overall trend within
each 10 km pixel and reduces the influence of outliers
in the 1 km pixels.

4. The relationship between X10 km
ns , I 10 km

s and the original
10 km IMERG (D10 km) was constructed by the SRF:

D10 km(s0)=

fdownscale

(
I 10 km
s (s0),X

10 km
ns (s0)

)
+ e10 km(s0), (5)

where e is the fitting residual.

5. The 10 km IMERG (D10 km) was downscaled to 1 km
(D1 km) by applying the constructed model in step (4) to
X1 km

ns and I 1 km
s :

D1 km
= fdownscale

(
I 1 km
s ,X1 km

ns

)
. (6)

6. The relationship between the 1 km predictors and the
gauge observations (G) was constructed by the SRF:

G(s0)=

fcalibrate

(
P 1 km
s (s0),D

1 km(s0),X
1 km
ns (s0)

)
+ e1 km(s0).

(7)

7. The 1 km precipitation data (C1 km) were produced
based on the constructed relationship in step (6):

C1 km
= fcalibrate

(
P 1 km
s ,D1 km,X1 km

ns

)
. (8)

In this study, residual correction was ignored during down-
scaling and calibration as many previous studies (Karbalaye
Ghorbanpour et al., 2021; Lu et al., 2019) demonstrated that
residual correction on the ML-based technique could de-
crease prediction accuracy.

3.4 Comparative methods

In the study, the performance of SRF-DC was comparatively
assessed in three ways. Firstly, we compared the results of
SRF-DC with those of the classical methods including GWR,
RF and a back propagation neural network (BPNN). Sec-
ondly, SRF-DC was compared with two frameworks: (i) the
IMERG was first downscaled by the bilinear interpolation
and then calibrated by the SRF (termed as Bi-SRF), and (ii)
the IMERG was first downscaled by the SRF and then cali-
brated by GDA (termed as SRF-GDA). This could assess the
significance of the SRF in both downscaling and calibration.
Thirdly, SRF-DC at a monthly scale was compared with the
annually based SRF fraction disaggregation method (termed
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as SRFdis). Specifically, the IMERG was first downscaled
and calibrated by the SRF on an annual scale, and then the es-
timated annual precipitation was disaggregated into monthly
precipitation using monthly fractions, as proposed by Duan
and Bastiaanssen (2013). Finally, SRF-DC was compared
with OK interpolation only on gauge measurements (termed
as kriging). Overall, SRF-DC was compared with seven clas-
sical methods in this study including GWR, RF, BPNN, Bi-
SRF, SRF-GDA, SRFdis and kriging.

To quantitatively analyze the performance of all the meth-
ods, all rain gauge observations were randomly divided into
l folds (e.g., l = 10), where the l− 1 folds (i.e., training or
validating data) were used to construct the model, while the
remaining fold (i.e., testing data) was used to assess the per-
formance of the model (Xu and Goodacre, 2018). During
model construction, the l− 1 folds were randomly divided
into training and validating datasets with proportions of 80 %
and 20 %, respectively, where the former was used to train
the model and the latter to validate the model. Then, the per-
formance of the model with the optimized parameters was
assessed using the testing data. The aforementioned process
was repeated l times until all folds were taken as the testing
data.

3.5 Accuracy measures

We comparatively analyzed the performance of all methods
with four accuracy measures including root mean square er-
ror (RMSE), mean error (ME), mean absolute error (MAE)
and correlation coefficient (CC) (Jing et al., 2016; Sharifi et
al., 2019). They are respectively expressed as follows:

RMSE=

√√√√1
n

n∑
i=1
(Ei −Oi)

2 (9)

ME=

n∑
i=1
(Ei −Oi)

n
(10)

MAE=

n∑
i=1
|Ei −Oi |

n
(11)

CC=

n∑
i=1

(
Ei −E

)(
Oi −O

)
√

n∑
i=1

(
Ei −E

)2
×

√
n∑
i=1

(
Oi −O

)2 , (12)

where n is the number of testing points, and Ei andOi are
the estimated and observed precipitation at location i, respec-
tively.

4 Results and analysis

Figure 5 illustrates the scatterplots between the predicted and
observed precipitation on a monthly scale from 2015 to 2019.

Table 2. Accuracy measures of all methods for estimating high pre-
cipitation (i.e., values greater than 400 mm).

Method ME (mm) RMSE (mm) MAE (mm) CC

SRF-DC −105.54 149.80 124.82 0.64
Bi-SRF −110.96 156.81 130.67 0.60
SRF-GDA −74.21 150.10 126.02 0.55
SRFdis −117.31 160.11 137.29 0.61
Kriging −86.25 146.94 119.53 0.58
RF −141.53 177.71 150.83 0.61
BPNN −118.88 171.23 142.00 0.57
GWR −139.02 178.85 145.19 0.57
IMERG −136.22 173.24 143.69 0.55

Results show that the original IMERG is heavily biased, with
an ME value of 8.01 mm. In contrast, except for kriging, all
the other models greatly reduce the bias, with ME values ap-
proximate to zero. In other words, the models with the incor-
poration of high-resolution variables become unbiased. With
respect to RMSE, MAE and CC, BPNN produces worse re-
sults than the original IMERG. The performance of GWR is
also unsatisfactory. This is mainly attributed to the complex
relationship between precipitation and predictors, which can-
not be properly described by the two models. The RF and
kriging perform better than IMERG. The four SRF-based
methods including SRF-DC, Bi-SRF, SRF-GDA and SRFdis
outperform the other methods. This indicates the importance
of spatial autocorrelation for precipitation estimation. More-
over, among the four versions of the SRF, SRF-GDA has
the lowest accuracy, indicating that the SRF is more impor-
tant for calibration than downscaling. SRF-DC with RMSE,
MAE and CC values of 32.20 mm, 18.77 mm and 0.937 pro-
duces the best result. Thus, it can be concluded that (i) SRF-
based downscaling and calibration are more effective than
bilinear downscaling (Bi-SRF) and GDA-based calibration
(SRF-GDA), and (ii) there is no obvious time latency for veg-
etation response to precipitation in the study site as SRF-DC
on a monthly scale is slightly more accurate than SRFdis on
an annual scale.

However, as shown in Fig. 5, all the methods significantly
underestimate precipitation when the values are greater than
400 mm. To quantitatively analyze the performance of all
methods on the high precipitation, their accuracy measures
are shown in Table 2. Results show that all methods have
poor results for these observations. A possible reason is that
high precipitation is often caused by complicated environ-
mental factors, which cannot be sufficiently explained by the
constructed predictors–precipitation relationships. In terms
of ME, SRF-GDA ranks the first, which is followed by krig-
ing and SRF-DC. However, their ME values are less than
−70 mm. With respect to RMSE and MAE, kriging performs
the best, which is closely followed by SRF-DC, while with
respect to CC, SRF-DC with a value of 0.64 outperforms the
others.
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Figure 5. Scatterplots between the estimated and observed precipitation on a monthly scale from 2015 to 2019. Fitting line with the red color
models the relationship between the observed and estimated precipitation.

Figure 6 shows the boxplots of the four accuracy mea-
sures. Obviously, BPNN obtains the lowest accuracy. It is
followed by GWR and IMERG. The RF and kriging show
better results than BPNN, GWR and IMERG. The four meth-
ods based on the SRF seem more accurate than the classical
methods. Moreover, SRF-DC slightly outperforms the other
SRF-based methods, which highlights the benefit of includ-
ing spatial autocorrelation for downscaling and calibration of
satellite-based precipitation.

Figure 7 shows the RMSE spatial distributions of SRF-
DC, SRFdis, RF, BPNN, kriging and GWR on all gauge sta-
tions. Overall, the RMSEs tend to be larger in the middle area
since it has higher precipitation than the other areas (Fig. 1).
BPNN (Fig. 7d) yields the poorest result, where many sta-
tions have RMSE values greater than 60 mm. It is followed
by GWR (Fig. 7f). The RF (Fig. 7c) and kriging (Fig. 7e)

are better than GWR and BPNN at most stations. SRF-DC
(Fig. 7a) and SRFdis (Fig. 7b) are more accurate than the
classical methods, especially at the stations in the middle
area.

Since the wettest month is July 2018 (Fig. 2), it is taken
as an example to show the precipitation maps of SRF-DC
and some classical methods. Moreover, the semivariogram
of kriging derived from the original IMERG and its predic-
tion error map are shown since they play an important role
in the performance of kriging and SRF-based methods. Re-
sults (Fig. 8) indicate that precipitation produced by all the
methods have spatial distribution patterns similar to IMERG,
with much high precipitation in the middle and low precipi-
tation in the east. The ML-based methods have more spatial
details of precipitation than IMERG due to the inclusion of
high-resolution predictors for precipitation estimation. The
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Figure 6. Boxplots of RMSE, MAE and CC values of all the meth-
ods on a monthly scale during 2015–2019.

kriging map is so smooth that many details and variations in
precipitation pattern are lost. This is expected as it only uses
ground measurements for the interpolation. The RF shows
obvious unnatural discontinuities at the bottom. GWR suffers
from systematic anomalies, with values clearly greater than
their neighbors. In comparison, SRF-DC produces a good
precipitation map.

The semivariogram and prediction error map of OK are
shown in Fig. 9. Obviously, OK has a spherical model with a
nugget variance (C0) of 10.0 m2, sill (C0+C) of 10 560 m2,
residual sum of squares (Rss) of 8 800 611 m2, range (A0)
of 321,000 m and fitting R2 of 0.962, respectively (Fig. 9a).
The prediction error map (Fig. 9b) illustrates that the errors
in the west are larger than in the east and in the boundary are
larger than in the interior. It can be inferred that large errors
are mainly located in the areas with a sparse distribution of
rain gauges. Moreover, the error magnitudes are not related to
RMSE distribution (Fig. 7) and precipitation pattern (Fig. 8).

5 Discussion

For downscaling and calibration of satellite-based precip-
itation, the three most important factors for constructing
predictors–precipitation relationships are model, predictor
and temporal scale (F. Chen et al., 2020). Thus, they should
be carefully selected to produce accurate precipitation data.

Figure 7. RMSE distributions of SRF-DC and some representative
methods for all gauge stations on a monthly scale during 2015–
2019.

5.1 Model

In previous studies, the most commonly adopted model was
GWR (Xu et al., 2015; Chen et al., 2015; Zhao et al., 2018)
since it considers the spatial variation between the predictors
and precipitation. However, we found that due to the sparse
distribution of rain gauge stations (Lu et al., 2019), GWR
produced worse results than the original IMERG in the study
region. The RF and kriging outperformed GWR. Neverthe-
less, the two methods have some shortcomings. For example,
the precipitation map of kriging was so smooth that many
details were lost, and the RF did not consider the spatial au-
tocorrelation of precipitation measurements. In comparison,
SRF-based methods with the consideration of spatial auto-
correlation information demonstrated higher accuracy than
the classical methods. Moreover, SRF-DC yielded slightly
better results than Bi-SRF, SRF-GDA and SRFdis.

5.2 Environmental predictors

NDVI, latitude, longitude and DEM-based parameters were
commonly adopted as predictors to estimate precipitation
(Shi et al., 2015). However, satellite-based precipitation
across regions with no relationship with NDVI could not be
estimated, such as in barren or snow areas (Xu et al., 2015).
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Figure 8. Downscaled and calibrated precipitation maps of SRF-
DC and some representative methods in the wettest month (July
2018).

Jing et al. (2016) indicated that the downscaled models in-
cluding LST features (LSTs) performed better than those
without LSTs. Thus, in addition to NDVI and DEM-related
parameters, daytime LST (LSTD), nighttime LST (LSTN),
and difference-between-day-and-night LSTs (LSTD−N) were
used in this study.

Based on the RF, the relative importance of each predictor
(i.e., predictor importance estimate) is shown in Fig. 10. Ob-
viously, precipitation from kriging interpolation has the most
importance. This is because the interpolated value is directly
related to precipitation. Kriging estimation is followed by the
downscaled precipitation. Longitude is the third most impor-
tant variable, which is followed by latitude. This result is
consistent with that of Karbalaye Ghorbanpour et al. (2021).
They indicated that compared to NDVI, LST and DEM, lon-
gitude ranks first with respect to importance score.

The three LSTs also have a great impact on the precipi-
tation estimation, where LSTD seems slightly more impor-
tant than LSTN and LSTD−N. NDVI has a slight effect on
the precipitation, which ranks second to last. This might be
due to the fact that NDVI is influenced by both precipitation
and temperature at the study site, and the low temperature
above certain elevations hinders the vegetation growth. It is
less likely that the response of vegetation to precipitation has
the delay since SRF-DC on a monthly scale is more accurate
than SRFdis on an annual scale.

Among the 12 predictors, aspect has the least importance.
This conclusion was also obtained by Ma et al. (2017) for
downscaling TMPA 3B43 V7 data over the Tibet Plateau.
DEM, terrain relief and slope seem more important than as-
pect since precipitation is closely related to topography (Jing
et al., 2016). The results are consistent with previous studies
(Immerzeel et al., 2009; Jing et al., 2016).

5.3 Temporal scale

Temporal scale has a great effect on the selection of pre-
dictors for precipitation estimation. There is a debate on
whether NDVI should be taken as a predictor for downscal-
ing and calibration of monthly precipitation. Some (Duan
and Bastiaanssen, 2013; Immerzeel et al., 2009) argued that
NDVI could not be used for monthly precipitation estima-
tion since the response of NDVI to precipitation was usu-
ally delayed by 2 or 3 months. However, some (Brunsell,
2006; Xu et al., 2015; Lu et al., 2019; S. Chen et al., 2020)
stated that the precipitation–NDVI relationship was hardly
time-delayed since vegetation could influence precipitation
by adjusting temperature and air moisture during the grow-
ing seasons. Thus, it was possible to estimate precipitation
with NDVI at a monthly scale. In this study, it was found that
SRF-DC on a monthly scale was slightly more accurate than
that on an annual scale (i.e., SRFdis). This indicates that the
response of vegetation to precipitation has no obvious time
delay, and NDVI can be used for monthly precipitation esti-
mates.

5.4 Easy-to-use feature

Since the classical RF did not consider the spatial informa-
tion in the modeling process, Hengl et al. (2018) proposed
an improved RF for spatial estimation, where the buffer dis-
tances between the estimated location and measured loca-
tions were taken as the predictors. Motivated by this idea,
Baez-Villanueva et al. (2020) presented an RF-based method
(RF-MEP) for merging satellite precipitation products and
rain gauge measurements, where the spatial distances from
all rain gauges to the grid cells in the study site were used
as the variables. However, as stated by Baez-Villanueva et
al. (2020), RF-MEP has a huge computational cost since the
number of extra input features equals that of gauge measure-
ments. Moreover, RF-MEP ignores the spatial autocorrela-
tion of precipitation between neighboring locations. In com-
parison, the SRF only requires one extra feature that is es-
timated by kriging interpolation on the precipitation mea-
surements. Thus, compared to the buffer distance layers-
based RF, the SRF is highly effective. Moreover, with the
variogram-based kriging interpolation, the spatial autocorre-
lation of precipitation not only between the gauge locations
but also between the estimated location and gauge locations
is taken into account. Thus, the SRF has the merits of accu-
racy, effectivity and ease of use.
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Figure 9. (a) Semivariogram, (b) prediction error. Semivariogram and prediction error map of kriging in the wettest month (July 2018).

Figure 10. Predictor importance estimates (lat: latitude; long: lon-
gitude; DS: downscaled precipitation).

5.5 Limitations and further research

Although SRF-DC shows more promising results than the
classical methods, it still suffers from some limitations,
which should be solved in our further research. Firstly, SRF-
DC is more complex than Bi-SRF and SRF-GDA since the
SRF is used in both downscaling and calibration. Yet, apply-
ing the SRF to downscale IMERG might not be prerequisite
since SRF-DC is only slightly better than Bi-SRF. However,
the SRF should be used to calibrate IMERG due to the much
higher accuracy of SRF-DC than SRF-GDA. Secondly, SRF-
DC has low accuracy on high precipitation (e.g., >400 mm)
since extreme precipitation is often caused by unpredictable
factors. Thus, other available variables such as soil mois-
ture (Fan et al., 2019; Brocca et al., 2019) and meteorologi-

cal conditions such as cloud properties (Sharifi et al., 2019)
could be adopted to further improve IMERG quality. Thirdly,
the correction of satellite-based precipitation on higher tem-
poral scales (e.g., daily or hourly) is challenging (Wu et al.,
2020; F. Chen et al., 2020; Lima et al., 2021; Sun and Lan,
2021; Yan et al., 2021) since the relationships between en-
vironmental variables and precipitation on these scales are
far less evident and difficult to capture. Although SRF-DC
is general, its performance on these scales should be fur-
ther assessed. Finally, numerous satellite-based precipitation
products have been available, and each one has its shortcom-
ings and advantages for the capture of spatial precipitation
patterns (S. Chen et al., 2020; Baez-Villanueva et al., 2020).
Thus, the fusion of multiple precipitation products based on
SRF-DC is an alternative to improve the quality of precipita-
tion data.

6 Conclusions

To enhance the resolution (from 0.1◦ to 1 km) and accuracy
of the monthly IMERG V06B Final Run product, a spatial
RF (SRF)-based downscaling and calibration method (SRF-
DC) was proposed in this study. The performance of SRF-
DC was compared with those of seven methods including
GWR, RF, BPNN, Bi-SRF, SRF-GDA, SRFdis and krig-
ing on monthly IMERG from 2015 to 2019 over Sichuan
Province, China. The main findings and conclusions can be
summarized as follows:

1. The SRF-based methods including SRF-DC, Bi-SRF,
SRF-GDA and SRFdis were more accurate than
the classical methods. Moreover, SRF-DC performed
slightly better than Bi-SRF and SRF-GDA.

2. The comparison between the monthly based and annu-
ally based estimation demonstrated that there was no
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statistically significant difference between them, indi-
cating that NDVI could be used for monthly precipita-
tion estimation at the study site.

3. Kriging outperformed the original IMERG, BPNN and
GWR in terms of RMSE, MAE and CC. However, its
interpolation map suffered from the serious loss of spa-
tial precipitation patterns.

4. Based on the variable-importance assessment of the RF,
the precipitation interpolated by kriging on the gauge
measurements was the most important variable, while
terrain aspect was the least important. This indicated
that considering spatial autocorrelation was beneficial
for precipitation estimation.

Overall, SRF-DC is general, robust, accurate and easy to use
as it shows promising results in the study area with heteroge-
neous terrain morphology and precipitation. Thus, it can be
easily applied to other regions, where precipitation data with
high resolution and high accuracy are urgently required.
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