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Abstract. Many recent studies have sought to characterize
variations of the annual maximum flood discharge series over
time and across space in Europe, including some that have
elucidated different process controls on different statistical
properties of these series. To further support these studies,
we conduct a pan-European assessment of process controls
on key properties of this series, including the mean annual
flood (MAF) and coefficients of variation (CV) and skew-
ness (CS) of flood discharges. These annual maximum flood
discharge series consist of instantaneous peaks and daily
means observed in 2370 catchments in Europe without strong
human modifications covering the period 1960–2010. We ex-
plore how the estimated moments MAF, CV and CS vary due
to catchment size, climate and other controls across Europe,
where their averages are 0.17 m3 s−1 km−2, 0.52 and 1.28,
respectively.

The results indicate that MAF is largest along the Atlantic
coast, in the high-rainfall areas of the Mediterranean coast
and in mountainous regions, while it is smallest in the shel-
tered parts of the East European Plain. The CV is largest in
southern and eastern Europe, while it is smallest in the re-
gions subject to strong Atlantic influence. The pattern of the
CS is similar, albeit more erratic, in line with the greater sam-
pling variability of CS. In the Mediterranean, MAF, CV and
CS decrease strongly with catchment area, suggesting that
floods in small catchments are relatively very large, while in
eastern Europe this dependence is much weaker, mainly due
to more synchronized timing of snowmelt over large areas.

The process controls on the flood moments in five prede-
termined hydroclimatic regions are identified through corre-
lation and multiple linear regression analyses with a range
of covariates, and the interpretation is aided by a seasonal-
ity analysis. Precipitation-related covariates are found to be
the main controls of the spatial patterns of MAF in most of
Europe except for regions in which snowmelt contributes to
MAF, where air temperature is more important. The Arid-
ity Index is, by far, the most important control on the spatial
pattern of CV in all of Europe. Overall, the findings suggest
that, at the continental scale, climate variables dominate over
land surface characteristics, such as land use and soil type, in
controlling the spatial patterns of flood moments.

Finally, to provide a performance baseline for more local
studies, we assess the estimation accuracy of regional multi-
ple linear regression models for estimating flood moments in
ungauged basins.

1 Introduction

Understanding the spatial distribution of statistical flood
characteristics is important from both practical and scientific
perspectives, assisting in estimating design floods in gauged
and ungauged catchments and shedding light on the regional
processes of flood generation from a probabilistic perspec-
tive (Rosbjerg et al., 2013).

Much research has been conducted on identifying pro-
cess variables and mechanisms controlling the magnitudes
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of flood characteristics. Catchment area is usually the main
control on the specific mean annual flood (MAF) as smaller
basins tend to have larger specific MAFs than larger ones
(Rosbjerg et al., 2013) because a large basin is less likely to
be fully covered by a storm than a small basin. This tends
to reduce the variance of extreme catchment-average pre-
cipitation and thus the MAF (Viglione et al., 2010). Ad-
ditionally, there is an important space–time effect that ex-
plains the attenuation of specific floods as catchment areas
increase. Event-scale catchment response times tend to in-
crease with area (Gaál et al., 2012), which leads to a greater
attenuation of the flood peaks. Convective events, limited in
duration and spatial extent, are most relevant for producing
floods in small catchments with fast response times (Gaál et
al., 2015), whereas long-duration stratiform precipitation be-
comes more relevant as catchment size increases (Merz and
Blöschl, 2009). Meanwhile, the effect of catchment area on
the coefficient of variation (CV) (the ratio of standard de-
viation and annual means) tends to be more complex. For
example, Smith (1992), based on data in the Appalachian
region, found an increase in CV with catchment area up to
about 100 km2, and subsequently a decrease, which he at-
tributed to the spatial organization of precipitation and down-
stream changes in the floodplain system. Blöschl and Siva-
palan (1997) suggested that space–time-scale interactions
may be the main reason for this scale dependence, while
Merz and Blöschl (2003) noted that the strength of the de-
pendence of CV on area will differ between regions with dif-
ferent prevailing flood-generation mechanisms such as floods
from synoptic-scale precipitation events (e.g. frontal weather
systems) and snowmelt-driven floods. Based on an analy-
sis of flood data in Slovakia, Austria and Italy, Salinas et
al. (2014) found both correlations of CV and skewness (CS)
to decrease with catchment area, which they interpreted as
the result of aggregation effects of the spatial heterogeneity
of rainfall and the interaction between the spatial and tempo-
ral scales of rainfall and catchment size.

Runoff generation and thus flood moments are also con-
trolled by soil characteristics, geology and land use. While
USGS regional flood frequency studies based on observed
data have revealed non-climatic controls (Parrett et al., 2011;
Paretti et al., 2014; England et al., 2019), most knowledge
on these effects comes from process-based simulation stud-
ies. For example, Gioia et al. (2012) demonstrated that in-
filtration and soil storage strongly affect the flood moments,
and Brath et al. (2006) performed a similar analysis on land
use. The role of these variables can to some extent be in-
ferred from their use as covariates in flood frequency region-
alization models (see e.g. Zaman et al., 2012; Rosbjerg et
al., 2013; Miller and Brewer, 2018), including nonstationary
ones. However, the types of soil, geology and land use data
available at the regional scale are often not consistent with
the level of detail required for attributing runoff-generation
processes, and therefore correlations with flood characteris-
tics tend to be low (Weingartner et al., 2003).

Another important control is climate. Mechanistically, one
would expect extreme precipitation over timescales (e.g. 1 d)
to represent flood characteristics as it is usually the main
driver at the event scale (Viglione et al., 2009). How-
ever, many studies have shown that mean annual precipi-
tation (MAP) is a better predictor of MAF (e.g. Merz and
Blöschl, 2009), for which a number of reasons have been
suggested: MAP is an important control of antecedent soil
moisture on a seasonal scale (e.g. Grillakis et al., 2016) and
is usually highly correlated with event precipitation. More-
over, climate, vegetation, soils and land forms may co-evolve
with MAP, thus exerting a longer-term influence which may
increase or decrease floods (Gaál et al., 2012; Perdigão and
Blöschl, 2014). Based on data from around the world, Far-
quharson et al. (1992) found CV of annual peak flows (vari-
ability between years) to increase with the Aridity Index (the
ratio of potential evaporation and MAP). This dependency
may be the result of at least two processes. On the one hand,
the lower and more variable runoff coefficients of arid re-
gions tend to increase the flood CV far beyond that of rainfall
(Viglione et al., 2009). On the other hand, the CV of rain-
fall is also sometimes larger in arid regions than in more hu-
mid regions (Fatichi et al., 2012). Merz and Blöschl (2009)
found potential evaporation to be an excellent predictor of
both MAF and CV in the lowlands of Austria (the greater
the PET, the higher the CV), which they interpreted in terms
of the increasing non-linearity of the rainfall-runoff process
with aridity. Iacobellis et al. (2002) found that CV behaviour
is controlled mainly by the long-term climate and the infil-
tration characteristics at the catchment scale.

Climate controls, including rainfall, soil moisture and
snowmelt, are usually subject to strong seasonality. An anal-
ysis of the seasonality of floods (Bayliss and Jones, 1993;
Merz and Blöschl, 2003) has therefore been an efficient way
to shed light on the interaction of these processes. For exam-
ple, based on the seasonality of 4262 catchments in Europe,
Blöschl et al. (2017) identified extreme winter precipitation
in north-western Europe, snowmelt in north-eastern and east-
ern Europe and summer precipitation and snowmelt in the
Alpine regions of Europe to be important flood drivers. Using
their dataset, Berghuijs et al. (2019) found that soil moisture
excess explained flood seasonality better than other hydrocli-
matic variables, such as extreme precipitation, particularly in
the western part of Europe, in line with a similar study in the
United States (Berghuijs et al., 2016).

While substantial understanding of regional flood controls
has been achieved in the past, few studies have analysed
large, consistent datasets of flood discharges in terms of their
statistical moments. Large datasets provide the opportunity
to obtain more robust and generalizable findings than stud-
ies containing a smaller number of catchments. The aim of
this paper is therefore to identify patterns of flood moments
and their controls across Europe. We use a dataset of flood
discharges of 2370 catchments across Europe for the period
1960–2010 and apply correlation and regression analyses to
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identify climatic and catchment process controls on the mo-
ments.

2 Data and methodology

2.1 Data

This study uses a subset of the dataset of European flood
discharges of Blöschl et al. (2019), for which stricter selec-
tion criteria were applied than for their entire dataset (see
their section on datasets and their Supplement for the data).
It consists of 2370 annual maximum discharge series from
33 countries derived from instantaneous peak flows and daily
mean flows for each calender year. Catchment areas range
from 5 to 100 000 km2, with a median of 383 km2. The obser-
vation period is 1960 to 2010, and record lengths range from
30 to 51 years, with a median of 51 years. The time series
were manually checked for strong human modifications such
as reservoirs (Blöschl et al., 2019; Hall et al., 2015) and in-
clude both rainfall-generated floods and snowmelt-generated
floods (Kemter et al., 2020).

To analyse process controls, a range of catchment at-
tributes and climatic indicators are used. In addition to catch-
ment area (A), we used catchment-averaged climate indica-
tors, including long-term mean annual precipitation (MAP),
and long-term mean potential evaporation (PET) and the
Aridity Index (AI), PET/MAP. Extreme precipitation is
quantified by the daily rainfall rate that is not exceeded in
95 % of the days of the year (P95), and the long-term mean
of the maximum 2 d precipitation of each year (Pmax). While
the duration of event precipitation to examine varies with
catchment size and characteristics due to differences in re-
sponse times (Gaál et al., 2012), we chose a constant value
of 2 d here for consistency. As a proxy for snowmelt we used
the mean air temperature in spring (Tspr) and winter (Twin).
Soil moisture (SM) was taken from the CPC Soil moisture
database, which contains model-calculated soil moisture val-
ues. Fan and Van Den Dool (2004) discuss some biases of the
soil moisture dataset, which may distort some of the findings
here. We used the mean of the annual maximum monthly
values over the observation period. Topographical indicators
include the mean catchment elevation (Elev) and the mean
topographical slope (Slope) of each catchment. Land use
was quantified as a percentage of total catchment area and
includes forest areas (LUF) and water bodies (LUW). Soil
characteristics were quantified in terms of five soil-texture
categories (Stex). The data used are summarized in Table 1.

2.2 Hydroclimatic regions

For the statistical analyses, Europe was subdivided into
5 regions based on the 11 biogeographic regions of
Roekaerts (2002) and guided by the flood seasonalities of
Blöschl et al. (2017). The aim of the partitioning was to rep-
resent a small number of contiguous regions that are to some

extent hydro-climatologically homogeneous, without consid-
ering their effect on predicting flood moments. In the north-
eastern region, floods are mainly due to snowmelt during
the spring and early summer. The Atlantic region is char-
acterized by mild, wet winters and cool, humid summers,
floods mainly occurring in winter following rain events. The
central–eastern region has a continental climate, with cold
winters and warm summers and floods mainly occurring in
spring with snowmelt contributions (resulting in a mixture
of rainfall and snowmelt). The Alpine region comprises the
Alps and the Carpathians, where floods mainly occur in sum-
mer due to summer storms and/or snowmelt. The Mediter-
ranean region is characterized by hot, dry summers and mild,
wet winters; floods occur in autumn and winter. For sim-
plicity, each catchment was allocated to one of the regions
according to the location of its stream gauge. The latter is
usually representative of the entire catchment, as only for
65 catchments do the difference between stream gauge eleva-
tion and mean catchment elevation reach more than 1000 m.

2.3 Analysis method

The statistical flood moments, the specific MAF, the CV and
the CS were estimated from the annual maximum peak dis-
charges series by

MAF=
1
n

n∑
i=1

Qi, (1)

S2
=

1
n− 1

n∑
i=1

(Qi −MAF)2, (2)

CV=
S

MAF
, (3)

CS=
n

n∑
i=1
(Qi −MAF)3

(n− 1)(n− 2)S3 , (4)

where Qi is the annual maximum peak discharge (m3 s−1)
of a record in year i, divided by the catchment area (km2).
While in some cases log-transformed variables are used in
flood frequency analysis (Griffis and Stedinger, 2009), here
we analyse real space moments of flood series, in line with
European practice (e.g. Merz and Blöschl, 2009). Estima-
tion uncertainty of the statistical flood moments decreases
with record length and increases with the moment order.
While the estimation uncertainty of the mean is small, the
uncertainty and bias of the estimators of CV and CS (Eqs. 3
and 4) can be substantial. Ye et al. (2021) illustrate the un-
certainty and bias in the estimation of CV. The bias in the
estimation of CV is relatively small for ranges of CV and
CS as in this study (using their Eq. 2: the bias is at most
0.065 in absolute value, in the case of CV ranging from 0.25
to 0.97 and CS ranging from 0.09 to 3.18, which encom-
passes 90 % of the observed values in this study), making
it reasonable to use the common product moment estima-
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Table 1. Data used in this study, including quantiles of the variables and source information.

Variable Symbol Data description Units 25 % 50 % 75 % Source
group quantile quantile quantile

Flood MAF Mean annual specific flood m3 s−1 km−2 0.06 0.11 0.22 Data Base on
moments European floods1

MAFα Mean annual specific flood m3 s−1 km−2 0.08 0.16 0.28 Data Base on
normalized to catchment European floods1

area of α = 100 km2

CV Coefficient of variation of – 0.36 0.46 0.61 Data Base on
annual maximum flood European floods1

peaks

CS Coefficient of skewness of – 0.62 1.09 1.69 Data Base on
annual maximum flood European floods1

peaks

Catchment A Catchment area km2 135.90 382.80 1264.80 CCM River and
area Catchment

Database2

Precipitation MAP Long-term mean annual mm yr−1 621.28 798.69 1057.76 EOBS3

precipitation

P95 Daily precipitation rate, mm d−1 8.40 10.54 13.45 EOBS3

that is higher than what is
observed on 95 % of days
in the observed period

Pmax Mean of maximum of 2 d mm d−1 18.00 22.45 28.51 EOBS3

precipitation of each year

Air Tspr Mean daily temperature in ◦C 5.03 7.15 8.42 EOBS3

temperature MAM (Celsius)

Twin Mean daily temperature in ◦C −3.35 −1.16 1.05 EOBS3

DJF (Celsius)

Soil SM Mean of annual maximum mm 368.38 424.93 507.20 CPC Soil Moisture
moisture monthly soil moisture (V2)5

Evaporation PET Long-term mean potential mm yr−1 749.02 817.73 897.98 Global Aridity Index
evapotranspiration and Potential Evapo-

Transpiration (ET0)
Climate Database
V24

Aridity AI Aridity index (PET/MAP) unitless 0.72 1.00 1.25 Global Aridity Index
and Potential Evapo-
Transpiration (ET0)
Climate Database
V24

Topography Elev Mean catchment elevations m a.s.l. 199.04 472.58 833.12 GMTED20106

Slope Mean topographic slope unitless 0.03 0.08 0.18 GMTED20106

(mean of tangent of angle
of slope)
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Table 1. Continued.

Variable Symbol Data description Units 25 % 50 % 75 % Source
group quantile quantile quantile

Land use LUF Fraction of catchment area % 31.66 54.59 79.62 CORINE7

covered by forest and
seminatural areas

LUW Fraction of catchment area % 0 0.05 0.57 CORINE7

covered by water bodies

Soils Stex Dominant surface textural class 1.77 2.00 2.25 ESDB8

class of the STU (Soil
Typological unit), mean
value of categories
(1= coarse, 5=fine)

Sources: 1 database on European Floods: https://github.com/tuwhydro/europe_floods (last access: 6 October 2021). 2 CCM River and
Catchment Database. Vogt et al. (2007). https://data.europa.eu/ (last access: 6 October 2021). 3 E-OBS gridded dataset (v18.0e), 0.1◦. Cornes
at al. (2018). https://www.ecad.eu/ (last access: 6 October 2021). 4 Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate
Database V2. Trabucco and Zomer (2018).
https://figshare.com/articles/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448/3 (last access:
6 October 2021). 5 CPC Soil Moisture (V2), NOAA Climate Prediction Center. Fan and Van Den Dool (2004).
https://www.cpc.ncep.noaa.gov/ (last access: 6 October 2021). 6 Global Multi-resolution Terrain Elevation Data GMTED2010, 7.5 arcsec,
https://www.usgs.gov/ (last access: 6 October 2021). 7 Corine Land Cover (CLC) 2000, Version 20b2, https://land.copernicus.eu/ (last access:
6 October 2021). 8 European Soil DataBase (ESDB), Soil Geographical DataBase (SGDB), TEXT_SRF_DOM, 10× 10 km. Panagos et
al. (2012). https://esdac.jrc.ec.europa.eu (last access: 6 October 2021).

tor of the CV. Meanwhile, the standard error and bias of
the CS estimate are about 0.56 and 0.22 (based on a simula-
tion study), respectively, for a record length of 50 years and
a series with the average estimated moments of the entire
dataset (MAF= 0.17 m3 s−1 km−2, CV= 0.52, CS= 1.28),
which is about one-half and one-sixth of the underlying pop-
ulation moment (assuming a GEV distribution to be the data-
generating process). The bias and uncertainty for the estima-
tion of skewness are well documented in Wallis et al. (1974),
Bobee and Robitaile (1975) and Carney (2016), for exam-
ple. The estimation uncertainties need to be accounted for
when interpreting the process controls on the flood moments.
Additionally, combining regional with local information can
help reduce the estimation uncertainty of statistical moments
of flood series, as demonstrated by the weighted skewness
approaches of Griffis and Stedinger (2009) and the flood fre-
quency hydrology approach of Viglione et al. (2013), but this
is beyond the scope of this paper. In interpreting the results,
we do not account for any non-stationarities of the flood mo-
ments, as the focus is on the aggregated behaviour during the
observation period. Any autocorrelation that may be present
will increase the uncertainty of the estimates, although they
are usually small in annual flood data and are therefore rarely
considered in flood frequency estimation (Hosking and Wal-
lis, 2005).

Since the specific mean annual flood is often strongly
controlled by catchment area, which may mask other con-
trols that vary regionally, we also considered the specific
mean annual flood, MAFα , normalized to a catchment area
of α = 100 km2:

MAFα =MAF ·A−βMAF ·αβMAF . (5)

MAFα and βMAF were found by ordinary least squares re-
gression in the logarithmic space.

Our analysis encompasses the following steps.

1. We estimated what fraction of the spatial variability of
the estimated flood moments can be explained by sub-
dividing Europe into five regions (Fig. 1), using a sim-
ple one-way analysis of variance (ANOVA). This can
be interpreted as a simple regression model, where the
dependent variables are the estimated flood moments
and the only explanatory variables are indicators cor-
responding to the regional partition. The coefficient of
determination of this model corresponds to the fraction
of variance explained by the partition over the total vari-
ance in estimates of the flood moments.

2. We evaluated the role of catchment area, since it is al-
most always the main control on the mean annual flood
when examining a sample of catchments varying by or-
ders of magnitude, and it reflects the aggregation be-
haviour of the floods and their climatic and catchment
controls. Specifically, we estimated the dependence of
MAF, CV and CS on catchment area from Eq. (5) and
analogous equations for CV and CS, transforming all
variables logarithmically.

3. We conducted a seasonality analysis to assist in the pro-
cess interpretations. We represented the date of occur-
rence, D, of the maximum annual flood as a number
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Figure 1. Location of the 2370 hydrometric stations analysed. Colours of dots indicate five hydro-climatic regions (north-eastern, Atlantic,
central–eastern, Alpine, Mediterranean). Background colour is elevation (m a.s.l.).

from 1 to 365 (Julian dates) in polar coordinates on a
unit circle with angle θ =D 2π

365 . For a flood series, the
direction θ of the average vector from the origin indi-
cates the mean date of occurrence of the flood events
around the year. The length of the vector from the ori-
gin k is a measure of the variability of the date of occur-
rence, ranging from 0 (uniformly distributed across the
year) to 1 (all events on the same day). It is calculated as
the Euclidean distance between the origin and the mean
flood date (mean of the sine and cosine of flood dates in
polar coordinates); see e.g. Burn (1997). In the spirit of
Blöschl et al. (2017) we used the seasonality of floods
to identify dominant flood-generating mechanisms, e.g.
spring snowmelt vs. winter storms, which to some ex-
tent explain variations in the flood moments (Merz and
Blöschl, 2003).

4. We analysed the effects of individual hydro-climatic
controls (see Table 1) on the spatial distribution of
the flood moments. To assist in the interpretation, we
first evaluated the Spearman rank correlation coeffi-

cients between the attributes, followed by an analysis of
the Spearman rank correlation coefficients between the
flood moments and the attributes. We used Spearman’s
rank correlation coefficients, as non-linear associations
between variables are possible. The corresponding sig-
nificance tests for the estimates of Spearman’s rho
are employed with the assumption of an asymptotic
t distribution under the null hypotheses (Gibbons and
Chakraborti, 2010). The correlations were evaluated for
all of Europe and the five regions separately.

5. We evaluated the effect of multiple controls on the flood
moments. Multiple linear regression models were fitted
to the estimated moments. Since the emphasis was on
obtaining parsimonious models, the number of selected
explanatory variables for a regression equation was lim-
ited to four. Both predictor and response variables were
log-transformed when they had skewed distributions.
MAF, CV, A and P95 were log-transformed, as their
distributions were skewed. We use the logarithm of the
real-space moments for the regression models. The at-
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tributes were selected using a stepwise selection proce-
dure (Weisberg, 2005). The criterion for model compar-
ison was Mallow’s Cp:

Cp =
RSSp
σ̂ 2 + 2p− n, (6)

where p refers to the number of coefficients in the cur-
rent model, including the intercept and n the number
of observations. RSSp is the residual sum of squares of
the model being considered with p covariates and σ̂ 2 is
the residual error variance of the model including all
possible covariates. For the comparisons of information
criteria such as Cp, a complete set of observations of
explanatory variables is required; therefore, 22 catch-
ments, where some observations of covariates were not
available, were excluded from this part of the analysis
(see Table S1 in the Supplement).

In order to assess which of the covariates in each regres-
sion provided the most explanatory power, a dominance
analysis was conducted (Azen and Budescu, 2003). We
used the measure for general dominance, which summa-
rizes the average increase in the measure for the good-
ness of fit, when a given covariate is included in a re-
gression model, for all possible model subsets for a
fixed set of predictors. The sum of all measures for gen-
eral dominance of each variable results in the R2 of the
full regression. The general dominance measure (aver-
age contributions) provides a ranking of the variables in
terms of their contributions to the fit of the models (R2).
However, this is only valid in the context of the model
and the selected variables. These contributions can and
most likely will change when variables are added to or
subtracted from the regressions. To facilitate the inter-
pretation of results, in Sect. 3.5 we present the general
dominance measure of individual covariates, divided by
the R2 of the regression, and refer to this as the normal-
ized general dominance measure. This does not affect
the ranking of the variables.

6. The predictive accuracy of the fitted regression models
was assessed in a leave-one-out cross-validation. The
errors are evaluated on the scale of the data, instead of
the scale of the regression models (i.e. log scale), and
normalized, e.g. in the case of the MAF:

ANEMAF =

∣∣∣∣∣M̂AF−MAF
MAF

∣∣∣∣∣ . (7)

ANE stands for absolute normalized error. M̂AF are the
predictions of the regression models and MAF are the
at-site estimates. The ANE for CV are computed in the
same way.

In addition, ordinary kriging was used for interpolating
the at-site estimates of flood moments (Cressie, 1993),

and the interpolated values were contrasted with the pre-
dictions of regional regression models.

3 Results

3.1 Characteristics of flood moments

Table 2 shows the characteristics of the estimated flood
moments for the five hydroclimatic regions and the en-
tire dataset. On average, over the entire dataset, the mean
specific annual flood is 0.17 m3 s−1 km−2, while the mean
specific annual flood normalized to a catchment area of
100 km2 (MAFα) is 0.21 m3 s−1 km−2. The latter is some-
what larger, as 100 km2 is smaller than the median catch-
ment size of 383 km2. On average over the entire dataset,
the CV and CS are 0.52 and 1.28, respectively. The re-
gions differ in terms of the moments. The largest aver-
age MAFα occurs in the Alpine region and in the Mediter-
ranean (0.30 m3 s−1 km−2). The smallest average MAFα
(0.05 m3 s−1 km−2) occurs in the central–eastern region, but
this is also the region where the average CV and CS are
largest (0.69 and 1.59, respectively). On the other hand, the
north-eastern region has the smallest average CV and CS
and below-average MAF (0.39, 0.82 and 0.13, respectively).
The regional coefficients of variation in Table 2 (every other
column) reflect the within-region variability of the observed
flood moments. They are generally higher for MAF and
MAFα than for CV, both within individual regions and for
all of Europe.

The coefficient of determination R2 of the one-way
ANOVA is an indicator of how much of the spatial variability
is explained by the partitioning into the five regions. The par-
titioning explains 17 % of the spatial variance of MAFα but
only 9 % and 5 % of the spatial variance of CV and CS, re-
spectively. This means that the spatial variability of CV and
CS within each region is almost as great as the spatial vari-
ability over all of Europe. While some of that variability may
arise from sampling uncertainty, Fig. 2 indicates that, at least
for MAFα and CV, there are clear spatial patterns that are
not aligned with the regions; i.e. much of the variability lies
within the regions and not between them. As the regions have
not been chosen to reflect flood magnitudes but rather a range
of hydro-climatic processes, this is not surprising.

The largest MAFα occur in wet, mountainous regions, in-
cluding the Alps, the Apennines (Italy), the Carpathian Fly-
sch Belt, adjacent to the Ligurian and Adriatic seas, the
Languedoc, and the western coasts of Great Britain and Nor-
way. The lowest MAFα occurs in much flatter regions, such
as the North and East European plains, Dnieper Lowland,
Finnish Lakeland and southern Sweden and south-eastern
England (Fig. 2c). MAFα exhibits slightly more homoge-
neous spatial patterns across Europe than MAF, as the ef-
fect of catchment size has been removed. The spatial dis-
tribution of CV is, to some degree, a mirror image of that
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Table 2. Regional mean (m) and regional CV of the mean annual specific flood (MAF, m3 s−1 km−2), mean annual specific flood normalized
to a catchment area of 100 km2 (MAFα , m3 s−1 km−2), CV, and coefficient of skewness (CS) for the entire dataset and the five regions. n is
the number of stations per region. R2 is the fraction of the spatial variance explained by the partitioning into the five regions.

Europe North-eastern Atlantic Central–eastern Alpine Mediterranean R2

(n= 2370) (n= 288) (n= 875) (n= 236) (n= 622) (n= 349)

m CV m CV m CV m CV m CV m CV

MAF 0.171 1.114 0.126 0.939 0.137 0.981 0.037 1.095 0.264 0.816 0.222 1.223 0.140
MAFα 0.211 0.961 0.176 0.655 0.166 0.875 0.047 0.942 0.304 0.728 0.304 0.938 0.173
CV 0.518 0.492 0.386 0.347 0.494 0.435 0.695 0.583 0.516 0.381 0.571 0.529 0.090
CS 1.278 0.773 0.821 0.779 1.216 0.882 1.59 0.727 1.466 0.565 1.263 0.785 0.047

Figure 2. Mean specific flood (MAF, m3 s−1 km−2) (a), CV (b), mean specific flood normalized to a catchment area of 100 km2 (MAFα ,
m3 s−1 km−2) (c), and coefficient of skewness (CS) (d). Colours represent the estimate partitioned into eight classes of equal frequency.
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of MAFα , as CV and MAFα are slightly negatively corre-
lated with a Spearman correlation coefficient of r =−0.12
(−0.06 for CV vs. MAF). However, there are deviations from
this general pattern. Along the Mediterranean coast between
Genoa, Italy, and Valencia, CVs are rather large even though
MAFα are large as well, partly because of flashy mountain-
ous catchments with high rainfall. The spatial coherence of
CS is less apparent (which can also be seen from the low R2

in Table 2), as roughly half the spatial variability is likely
attributable to sampling variability (the standard error of the
CS estimate for average parameters is σCS = 0.56). However,
there seems to exist a general pattern of larger-than-average
CS along the Mediterranean coast and the mountainous areas
of Europe, and smaller-than-average CS in Scandinavia and
northern Russia. There is a strong positive Spearman corre-
lation between CS and CV (r = 0.63) which points towards
non-linear runoff-generation processes affecting both CS and
CV (Rogger et al., 2013), although again the correlation may
be partly due to the sampling variability resulting in correla-
tions between the estimators of CV and CS (see chap. 10 in
Kendall and Stuart, 1969).

3.2 Seasonality and flood moments

As an indicator of flood processes, the average direction of
seasonality θ̄ and the strength of seasonality k are plotted
in Fig. 3 for each catchment (see Fig. 3 in Blöschl et al.,
2017, for the spatial distribution). The closer the points are
to the edge of the circle, the stronger the seasonality. Addi-
tionally, the magnitudes of MAFα , CV and CS are indicated
as colours as in Fig. 3. The red circles in Fig. 3 highlight ge-
ographic regions that are roughly homogeneous with respect
to seasonality and the magnitude of the estimated flood mo-
ments, which were identified by examining seasonality maps
(Blöschl et al., 2017).

In north-eastern Europe floods mainly occur in spring and
early summer, with a strong seasonality reflecting the role of
snowmelt. MAFα are in a medium range (green in Fig. 3),
with the exception of the Norwegian coast (circle 1), where
MAFα are much larger but with little seasonality because
there is a mix of spring snowmelt floods and winter rain
floods (Kemter et al., 2020). The CVs of these catchments
are small. On the other hand, floods in western Russia almost
always occur in April with large CVs (circle 3). The June
floods further in the north, adjacent to the White Sea, have
much smaller CVs because of a more consistent snowmelt
influence (Kemter et al., 2020, circle 2).

In the north-western part of the Atlantic region (Ireland,
western coast of the UK), floods tend to occur in December,
and the estimates of MAFα are large (circle 4). East of the At-
lantic region (southern Germany, Czech Republic, circle 5),
the average occurrence of floods is in late spring, although
the seasonality is weak but CVs are large.

Figure 3. Seasonality of annual flood peaks. The position in the
circle indicates the mean date of occurrence (angle) and variabil-
ity of date (inverse of distance from the centre). Each point rep-
resents one catchment. Colours of the points indicate flood mo-
ments as in Fig. 2. Small red circles highlight subregions referred
to in the text (1: Norwegian coast, 2: north-western Russia, 3: west-
ern Russia, 4: western UK and south-western Norway, 5: southern
Germany and north of the Czech Republic, 6: parts of Poland and
Ukraine, 7: southern Austria and northern Slovenia, 8: Alpine and
the Carpathian midlands, 9: Alpine region, 10: Slovenia and south-
ern France, and 11: the Balkans).
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Table 3. Dependence of the flood moments with catchment area in a double-logarithmic relationship Eq. (5) and analogous equations for
CV, and a semi-logarithmic relationship for CS, i.e. CS= logAβCS. The last lines show the 5 % and 95 % quantiles of catchment area (km2).
∗ indicates statistical significance (two-sided t test) at the 5 % level.

Europe North-eastern Atlantic Central–eastern Alpine Mediterranean

βMAF −0.245∗ −0.163∗ −0.184∗ −0.108∗ −0.208∗ −0.255∗

βCV −0.030∗ −0.015 −0.042∗ 0.025 −0.020∗ −0.072∗

βCS −0.133∗ −0.054 −0.124∗ 0.280∗ −0.177∗ −0.232∗

5 %/95 % quantiles of area (km2) 35/11500 28/18010 37/5331 142/32509 26/4212 47/27251

Figure 4. Mean annual specific flood (MAF), normalized mean annual specific flood (MAFα), CV, and coefficient of skewness (CS) plotted
against catchment area (km2). Colours indicate region. Lines are regression lines for each of the regions.

In the central–eastern region (Poland, Ukraine, circle 6)
where floods usually occur in spring, the MAFα are generally
low and the CVs are large.

The catchments in the Alpine region with summer floods
(circle 9) show high MAFα due to rainfall enhancement of
the Alps. The catchments with autumn floods in southern
Austria and Slovenia (circle 7) exhibit very high MAFα due
to the stronger influence of the Mediterranean Sea. This re-
gion also contains the Carpathians and adjacent midlands
(circle 8), where floods tend to occur in spring with lower
MAF but rather high CV, likely because of a mix of snow,
rain-on-snow and rainfall floods.

The Mediterranean region contains catchments with
mostly winter floods with rather high MAFα . The autumn
flood catchments in Slovenia have particularly high MAFα
(circle 10) and low CVs, while the catchments with spring

floods in the Balkans (circle 11) possess medium MAFα
and CVs.

3.3 Scaling of flood moments with catchment area

The first control on the flood moments examined here is
catchment area, as it is often the dominant and best under-
stood control (Table 3, Fig. 4). The highest decrease in the
mean annual flood (MAF) with catchment area occurs in the
Mediterranean and the Alpine region, with βMAF =−0.255
and −0.208, respectively, while the smallest decreases oc-
cur in the north-eastern and central–eastern regions (βMAF =

−0.163 and −0.108), where snowmelt is important. The CV
of the flood records decreases with catchment area in most
regions. Again, the strongest decrease occurs in the Mediter-
ranean, while in the north-eastern and central–eastern regions
there is no significant relationship. There are few small catch-
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Figure 5. Correlation between explanatory variables as in Table 1. For each variable the data consist of n= 2370 values, i.e. the number of
catchments. Lower triangle: Spearman correlation coefficients. They are shown if they are statistically significant (α = 0.05). Blue and red
indicate positive and negative relationships, respectively. Upper triangle: 2d histograms with colours indicating the frequency of observations
in the bins (dark: few; bright: many, separate scale for each panel). Diagonal: kernel density estimate. All scales are linear.

ments in the central–eastern region, which may make the re-
gression with area less robust. Overall, there is a tendency
for CS to decrease with catchment area, and the strongest
decrease occurs again in the Mediterranean.

3.4 Individual controls on flood moments

When interpreting the association of climate and catchment
attributes with flood characteristics, it is important to account
for the correlation between the attributes themselves, which
may mask causal relationships. Spearman correlation coef-
ficients have therefore been estimated among all explana-
tory variables (Fig. 5). The largest correlations occur among
the precipitation characteristics, all of which are at least
r = 0.86. The correlation between long-term mean precip-
itation (MAP) and daily precipitation did not exceed 95 %
of the time (P95) is 0.96, indicating that the spatial patterns
of these two variables in Europe are almost identical. The
correlation between soil moisture (SM) and the precipita-
tion variables is at least 0.78, and the correlation between

the AI and the precipitation variables varies between −0.63
and−0.84. The latter may be partly related to the fact that AI
is the ratio of potential evaporation (PET) and MAP. PET is
related to spring temperature (r = 0.73). Elevation and slope
are closely related to each other (r = 0.88), and they are also
closely related to the precipitation variables, with r of at
least 0.56, reflecting orographic influences on precipitation.
Forest cover (LUF) is related to elevation and slope (r = 0.67
and 0.72, respectively), reflecting the presence of forest in
mountain areas. The positive correlation between lake area
fraction (LUW) and catchment area (r = 0.45) results from
a tendency for large catchments to contain lowlands where
lakes are more frequent than in the mountains, and the posi-
tive correlation between soil type (Stex) and spring tempera-
ture (Tspr) (r = 0.37) is due to coarse soils prevailing in the
(colder) north of Europe. Figure 5 also shows 2d histograms
of the variables as well as their kernel density estimates.

Figure 6 gives the Spearman correlations of the flood mo-
ments MAFα and CV with catchment attributes. We mainly
examine MAFα instead of MAF to minimize the effect of
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Figure 6. Spearman correlation between statistical moments of
flood series (mean specific discharge normalized to a catchment
area MAFα of α = 100 km2 and the CV and catchment attributes.
Correlations are shown if they are statistically significant (α =
0.05). Blue and red indicate positive and negative relationships, re-
spectively. The correlations for mean specific discharge MAF and
coefficient of skewness CS with catchment attributes are given in
Table A5.

spatial differences in the catchment area on the correlations
with the flood moments that may mask the direct effects of
other variables. The correlations for CS are often weaker and
more difficult to interpret, at least partly due to estimation
uncertainty. The corresponding correlations for MAF and CS
with catchment attributes are given in Table A5.

While the correlations between MAFα and catchment area
are inherently small in all regions (Fig. 6), the correlations
between MAF and catchment area (Table A5) are significant
in all regions ranging between 0.31 and 0.48, with the excep-
tion of central–eastern, where it is only 0.23, which may be
related to the more important role of snowmelt there, given
that snowmelt floods tend to occur at the same time over large
areas, so one would expect a smaller reduction of flood peaks
due to spatial averaging than for rain floods. Overall, in Eu-
rope, the relative large explanatory power of catchment area
points to an important role of scale effects, although, in most
regions, it is not the variable with the largest correlation.

MAFα is significantly positively correlated with MAP in
all regions (Fig. 6) and its correlations with P95 and Pmax are

similar. These high correlations may reflect the effect of not
only event rainfalls, but also soil moisture as well as land-
scape evolution (Perdigão and Blöschl, 2014), as all rainfall
variables as well as soil moisture are highly inter-correlated
(Fig. 5). The correlations between MAFα and precipitation
(both MAP and P95) are largest in the Atlantic region, re-
flecting the dominant role of precipitation in explaining the
spatial variability of MAFα in this part of Europe. CV is sig-
nificantly negatively correlated with MAP, P95 and Pmax for
almost all regions. The strongest relationship is observed in
the Alpine and Mediterranean regions. In drier catchments,
the occurrence of floods is more irregular (large CV, e.g. in
Spain) as opposed to wetter catchments where every year
rather large floods occur (small CV, e.g. in Norway).

As expected, the strongest correlations between flood mo-
ments and temperature are in the regions with important
snowmelt contributions (north-eastern, central–eastern re-
gions) (Fig. 6). Spring (March–May) and winter (December–
February) temperatures are negatively correlated with MAFα
and positively correlated with CV.

The correlations between the flood moments and mean an-
nual maximum monthly soil moisture (SM) are very sim-
ilar to those with MAP as the two covariates are corre-
lated with r = 0.89. There are high positive correlations of
MAFα , especially in the Atlantic and the Mediterranean, but
strongly negative correlations between CV and soil moisture.
On the other hand, there is a small negative correlation be-
tween MAFα and the mean annual potential evapotranspira-
tion (PET) in all regions, as a higher PET generally reduces
the antecedent wetness conditions of floods and hence the
flood discharges. More striking are the CVs that are strongly
positively correlated with PET in most regions, with r rang-
ing between 0.1 and 0.7. Since the AI, defined as the ratio
of PET and MAP, it has correlations ranging around those of
PET and/or the inverse of MAP. The highest values of the
AI are observed in the Mediterranean region, where strong
negative correlations are observed for all flood moments.

Mean catchment elevation (Elev) and mean topographic
slope (Slope) are highly correlated with each other (r = 0.88)
and therefore have similar correlations with the flood mo-
ments in most regions. MAFα is highly positively correlated
with both elevation and slope across all regions of Europe,
just as it is with the rainfall variables, which points to an in-
direct effect of topography on mean floods through precipita-
tion. This is consistent with high correlations of elevation and
slope with the precipitation variables (around 0.6 and 0.7, re-
spectively, Fig. 5).

MAFα is positively correlated with the fraction of area
covered by forest (LUF) in all regions and negatively cor-
related with the fraction of area covered by water bodies,
i.e. lakes and reservoirs (LUW), in most regions, including
in the region with the largest fraction of water bodies (the
north-eastern region, where the median LUW is 5.7 %). The
positive correlation between MAFα and LUF is most likely
due to an indirect relationship, as areas with high forest cover
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tend to be high-elevation regions such as mountains, where
precipitation is augmented through orographic effects, im-
plying that the positive correlation cannot be interpreted as
deforestation-reducing floods.

While there is little correlation between MAFα and soil
texture, there is a clear effect of soil texture on CV with finer
soils (Stex = 5) being associated with higher CVs than coarse
soils (Stex = 1).

3.5 Multiple controls on the flood moments

While Fig. 6 examines the relationships between flood mo-
ments and single covariates using Spearman correlation co-
efficients, in this section we test the relationship between
flood moments and multiple covariates with regression mod-
els applied for each of the regions separately. Thus the co-
variates with the largest contributions are those that explain
most of the R2 of the spatial variability of the flood mo-
ments within each of the regions. We used MAF, rather than
MAFα , in order to avoid prior assumptions regarding the role
of catchment area. Given that CS was correlated with fewer
covariates than the other flood moments, we focused here on
MAF and CV (Table A5). We represent each of the four most
important groups of covariates (area, precipitation, tempera-
tures and water balance – i.e. SM, PET and AI) by one co-
variate. The contributions to explaining the spatial variabil-
ity of MAF in terms of the normalized general dominance
measure (nGDM) are shown in Fig. 7 and Table A3 and are
discussed below by region.

In north-eastern Europe, like in all regions, catchment area
is an important predictor of MAF. Additionally, P95 and AI
play an important role, representing an east–west gradient
with the largest MAF, largest P95 and lowest AI in Norway.

In the Atlantic region, P95 is by far the most relevant co-
variate (nGDM= 0.8), as one would expect in a region where
floods are rainfall driven and soil moisture tends to be high
in the flood season (winter) (Blöschl et al., 2019; Kemter et
al., 2020).

In the central–eastern region MAF is generally low with
little spatial variability. The corresponding R2 is small (0.33,
Table A1), as it is harder to explain the small spatial contrast.
The largest contribution is winter temperature and P95. Neg-
ative coefficients for winter temperature suggest that lower
temperatures drive deeper snowpacks and, in turn, higher
floods.

In the Alpine region area is most important and in fact
relatively more important than in any other region. How-
ever, the R2 of the model in the Alpine region is low (0.27),
which may be a reflection of the hydrological heterogene-
ity of the area, involving snowmelt, rain-on-snow and rain-
driven floods (Merz and Blöschl, 2003).

In the Mediterranean catchment area is important
(nGDM= 0.43), which is due to the small coastal catchments
exhibiting much larger specific floods than the larger catch-
ments that extend further inland, e.g. in Catalonia (Spain),

Liguria (Italy), and Slovenia (e.g. Gaume et al., 2009). Addi-
tionally, P95 plays a relevant role.

For CV (Fig. 8, Table A4), in the north-eastern region the
AI is the most important covariate by far. This is due to Scan-
dinavia being much wetter than north-western Russia, trans-
lating into lower CVs.

In the Atlantic region AI is the most important variable for
explaining the spatial variability of CV, although the over-
all explanatory power of the regional model is rather low
(R2 of 0.27, Table A2). The smaller CVs closer to the ocean
in the Atlantic region are partly aligned with higher winter
temperatures.

In the central–eastern region AI dominates again with
higher CV in the Ukraine correlated with higher aridity than
further in the west, both due to higher PET and lower MAP.

The Alpine region is an exception in that P95 explains
more of the spatial variability of CV than AI (nGDM of 0.54
and 0.35, respectively). This is because PET is negatively re-
lated to elevation, but the flood magnitudes are controlled
by the higher orographic rainfall on the windward (north-
western) side of the Alps.

In the Mediterranean both aridity and P95 are important
predictors. For example, low aridity (because of high MAP)
in Croatia and Slovenia is associated with low CV, and
high P95 in southern France is associated with moderately
low CV.

3.6 Estimating flood moments from multiple controls

In this section we analyse how well the regression models of
the previous section (where A, P95, Twin, and AI were used
as covariates) are able to predict the moments at any loca-
tion using a leave-one-out cross-validation (Figs. 9 and 10).
Overall, there is a tendency for MAF to be overestimated
in those areas where the observed values of MAF are small
(e.g. Hungary and Denmark) and underestimated where they
are large (e.g. Carpathians, northern Italy), reflecting the ten-
dency of spatial estimators to underestimate spatial extremes.
The overestimation in Finland may also be due to lake reten-
tion not being captured adequately in the model. To some de-
gree CV is also overestimated in areas of low CV (e.g. south-
ern Norway and Denmark) and underestimated in areas of
high CV (e.g. Ukraine, Ore mountains), although there are
also large CV areas where it is overestimated (e.g. southern
Spain). The errors are smallest in Russia, central Germany,
the British Isles, and France, where the spatial gradients in
CV are relatively smooth.

The median absolute normalized error of MAF and CV,
throughout Europe, is 0.37 and 0.18, respectively, with 25 %
quantiles of 0.17 and 0.09 and 75 % quantiles of 0.63
and 0.32. This means that the absolute normalized error of
CV is about half that of MAF, which seems to be related to
the relatively smaller spatial variability of CV as compared
to MAF (spatial CVs of 1.11 and 0.49, respectively, Table 2).
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Figure 7. Results of dominance analysis for regional regression models for MAF. Panels depict the average contributions (normalized general
dominance measure, nGDM) of the covariates included in the regressions (log of catchment area, log of extreme precipitation index P95,
mean winter temperature, and AI). Plus and minus signs indicate signs of the regression coefficients.

Figure 10 depicts the predicted (leave-one-out) MAF and
CV using the regressions (circles in Fig. 10, Tables A1
and A2) and the predicted MAF and CV by spatial proxim-
ity through kriging of the observed moments (background
colour). Predictions are shown on the scale of the data (not
logarithmized) using the colour scale from Fig. 2. Notwith-
standing the relatively large ANE (Fig. 9), the overall pat-
terns of the moments are very similar to the observed ones
(Fig. 2). Overall, the patterns of the moments are consistent
with the process reasoning put forward in this paper.

The intention of Fig. 10 is to offer a visual comparison
between the two regionalization approaches. Before the use
of ordinary kriging estimates for applications in ungauged
basins, additional cross-validations would be useful in the
spirit of Rosbjerg et al. (2013)

4 Discussion and conclusions

4.1 Patterns of flood moments in Europe

Overall, there are clear patterns in flood moments across Eu-
rope. As expected, MAF shows the clearest patterns, while
they are less clear for CV and particularly CS, at least partly
because of sampling variability.

In the Atlantic region, where floods mainly occur in win-
ter as a result of moisture influx from the ocean, MAFα is
very high (above 0.5 m3 s−1 km−2 along the western coasts
of Norway, Scotland and Galicia, Fig. 2). The CVs, on the
other hand, are small (typically around 0.3 at the Norwegian
coast and in Scotland and 0.5 in Galicia) as the atmospheric
moisture influx tends to be consistent between years (Giorgi
et al., 2004). As one moves towards the continent from the
western coast of the British Isles, the MAF tends to decrease
and the CV increases because of the decreasing and more
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Figure 8. Results of dominance analysis for regional regression models for CV. Panels depict the average contributions (nGDM) of the
covariates included in the regressions (log of catchment area, log of extreme precipitation index P95, mean winter temperature, and AI). Plus
and minus signs indicate the sign of the regression coefficients.

variable moisture availability and floods tend to occur later
in the winter (i.e. January instead of December, Fig. 3).

Further inland, various mountain ranges (Pyrenees, Mas-
sif Central, Alps Apennines, Ore mountains, Carpathians,
Balkan mountains) stand out with higher MAF than the sur-
rounding areas (mostly above 0.3 m3 s−1 km−2) and summer
as the dominant flood season due to their effects of enhanc-
ing rainfall and probably shallower soils as well as steeper
slopes and smaller watersheds. On the other hand, there are
clear differences between the CVs of these mountain ranges.
While CVs in the Alps and the southern Slovenian moun-
tains are low, they are high in the Ore mountains and some of
the other mountain ranges, which reflects the stronger influ-
ence of Mediterranean storm tracks with high variability of
extreme precipitation (Hofstätter et al., 2018) perhaps along
with non-linear runoff generation (Viglione et al., 2009).

As one moves inland in northern Europe from the Nor-
wegian coasts towards the North European Plain, MAF de-
creases to values around MAFα = 0.1 m3 s−1 km−2 due to a
decrease in the Atlantic influence and increase in snow pro-
cesses, resulting in late spring events with pronounced sea-
sonality. As one moves southward from the north-east, CV
increases and flood seasonality decreases in line with the in-
creased influence of rain-on-snow and rain floods, which tend
to be more irregular than snowmelt floods alone.

Some of the continental regions of Europe (Hungary,
Poland, Ukraine) are particularly sheltered by mountain
chains, resulting in low precipitation, both at the annual scale
and for extreme events, which translates into low MAF and
mostly high CV due to the more non-linear runoff generation
as compared to wetter regions (Nováaky, 1991; Didovets et
al., 2017; Ries et al., 2017).
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Figure 9. Absolute normalized errors ANEMAF and ANECV of the predictions of the regional regression models for MAF and CV. Errors
are evaluated on the scale of data (not logarithmized). Colours refer to binned classes of equal frequency. Triangles facing upwards indicate
gauges, where the model overestimates the moments, triangles facing downwards where the model underestimates.

Figure 10. Predicted values of regional regression models and ordinary kriging for MAF (m3 s−1 km−2) and CV. Circles refer to predictions
of regression models, and background refers to predictions of kriging. Colours refer to binned classes of equal frequency for original data
(estimated statistical moments) as in Fig. 2.

In the Mediterranean, where floods tend to occur in
autumn and winter, MAF is generally high, particularly
in southern France, Slovenia and Croatia, Liguria (north-
western Italy), and parts of northern Italy, due to heavy au-
tumn storms stemming from the warm sea-surface tempera-
tures. In most regions adjacent to the Mediterranean where

these storms predominate, annual floods also have a high CV
due to the interannual variability of these storms. However,
this is not the case in Slovenia and Croatia, due to the con-
sistency of these storms between years (Xoplaki et al., 2004;
Salinas et al., 2014).
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4.2 Interpretation of controls of flood moments

The degree to which the moments change with catchment
area is a fingerprint of the spatial variability of flood-
producing processes (Merz and Blöschl, 2003; Sivapalan et
al., 2005; Merz and Blöschl, 2009; Viglione et al., 2010) (Ta-
ble 3, Fig. 4). As expected, there is a strong scaling effect of
MAF with area. The strongest decrease in MAF with area
is observed for the Mediterranean region, which points to
the important role of small-scale, convective storms, patchy
runoff-generation processes, and more generally flash floods
there (Gaume et al., 2009; Marchi et al., 2010; Amponsah
et al., 2018). On the other hand, the smallest decrease with
area is found in the central–eastern and north-eastern regions,
where snowmelt is a dominant flood driver. Snowmelt tends
to occur over larger regions simultaneously, which results in
a smaller reduction of MAF with catchment scale (Blöschl
and Sivapalan, 1997; Merz and Blöschl, 2003). The relatively
weak decrease in the Atlantic regions suggests an important
role of large-scale precipitation from large frontal systems,
as would be expected (Kemter et al., 2020).

CV decreases with area in most of the regions. Again, the
strongest decrease is observed for the Mediterranean region,
which can be interpreted in terms of similar aggregation pro-
cesses as in the case of MAF. Additionally, the degree of non-
linearity in runoff generation may decrease with catchment
size (Sivapalan, 2003), as threshold processes associated
with Hortonian runoff generation or soil storage homogene-
ity may be more relevant in small catchments, while in large
catchments these threshold effects may be smoothed and spa-
tiotemporal aggregation may introduce additional scale ef-
fects (Penna et al., 2011; Rogger et al., 2012). On the other
hand, the smallest decrease occurs in the north-eastern region
and in the central–eastern region, where the estimated re-
gression coefficient is even positive. While both relationships
are not significant, they do point towards the larger scale of
snowmelt processes relative to other flood-generation pro-
cesses along with more linear runoff-generation processes
and the larger role of baseflow there (Blöschl and Sivaplan,
1997; Grillakis et al., 2016).

The strongest Spearman correlation (in absolute value) for
MAF is observed for the Mediterranean region, while the
weakest is observed in the central–eastern region (Table A5),
in line with the difference in the scale dependence between
these two regions (Table 3). For CV (Fig. 6) the spatial dif-
ferences of the correlations between the regions are also con-
sistent with the scaling regressions of Table 3 but, overall,
they are smaller than those of MAF. This may be related
to possible non-monotonous relationships between CV and
area as suggested by Smith (1992) and more complex aggre-
gation effects (Blöschl and Sivapalan, 1997), although more
research is needed on the transferability of this finding. The
weakest relationships are found in central–eastern Europe,
where snow is important, and in the Alpine region where

the spatial variability of other controls is particularly large
(r = 0.09 and −0.03, respectively).

As compared to the other controls on the flood moments,
area plays an important role for MAF but less so for CV (Ta-
ble A5, Figs. 7 and 8). In the Alpine region the Spearman
correlations between MAF and area are larger than those be-
tween area and other covariates (Table A5), and it has the
large contributions to the fit of the regional model (Fig. 7).
However, this may not be because of the high explanatory
power of area but of the lower explanatory power of the other
covariates likely related to the complex topography. For CV,
area has some explanatory power in the Atlantic and Mediter-
ranean regions (Fig. 6) and is used in most regional regres-
sion models, but the role of climate variables such as precip-
itation and aridity is always much higher than that of area
(Figs. 6 and 8), suggesting that aggregation effects are rel-
atively less important at the European scale than at the re-
gional scale. This finding is likely related to the larger spatial
variability of climate variables within Europe than within a
region.

Precipitation characteristics are represented by three vari-
ables, which are strongly correlated among themselves
(Fig. 5). The Spearman correlations between MAF and the
precipitation characteristics are positive for Europe and in in-
dividual regions, while for CV and precipitation they are neg-
ative (Fig. 6). MAP is a surrogate for the combined effects of
event precipitation, antecedent soil moisture and the geomor-
phological processes of landscape evolution that affect runoff
generation and routing, whereas P95 and Pmax are more rep-
resentative of characteristics of event precipitation alone.
Pmax is representative of a more extreme part of the daily
precipitation distribution than P95. The correlations of MAP
and P95 with MAFα are similar but generally larger than that
of Pmax, which may be due to annual maxima precipitation
events with low antecedent soil moisture storage. While re-
gional studies have suggested that MAP is a better predic-
tor of MAF than other precipitation variables (Mimikou and
Gordios, 1989; Merz and Blöschl, 2009), this does not seem
to be the case at the European scale (see e.g. Fig. 6).

On the other hand, CV is always better correlated with
MAP than with P95 and Pmax, reflecting the decreasing de-
gree with which antecedent soil moisture is captured as one
moves from MAP to P95 and Pmax, since MAP better cap-
tures soil moisture conditions. Drier catchments can produce
larger CVs because the antecedent soil moisture conditions
tend to vary more than they do in humid catchments with
consistently high soil moisture storage. Consequently, some
of the events in drier catchments may be a combination of
both large precipitation and wet initial conditions, such pro-
ducing much larger floods than usual (Farquharson et al.,
1992; Viglione et al., 2009; Kemter et al., 2020). This ef-
fect is also represented in the negative correlations between
CS and MAP (r =−0.35) and CS and P95 (r =−0.34) (Ta-
ble A5) in the Mediterranean, indicating a decrease in skew-
ness for comparatively wetter catchments, which is related to
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a particularly large potential for this contrast in initial condi-
tions.

In the context of multiple controls, rainfall (in this case
only P95 was considered) is always among the important
variables for explaining MAF (Fig. 7). However, in the case
of CV, aridity is vastly more important, as the combination of
evaporation and precipitation better captures the typical ini-
tial condition state of the catchments before floods. Also, arid
regions tend to have greater interannual precipitation vari-
ability (Fatichi et al., 2012), but if a region becomes drier,
its interannual precipitation variability will not necessarily
increase (Pendergrass et al., 2017). On the other hand, dry-
ing of a region may imply more non-linear runoff-generation
processes and thus enhance the CV of floods (Viglione et al.,
2009).

Mean spring and winter temperature were used in the
analysis to capture snow processes because of the better
data availability. Chaoimh (1998) and Bednorz (2004) identi-
fied correlations between spring and winter temperature with
snowpack depth and days with snow cover, and more gener-
ally air temperature is often used as an indicator of snowmelt
(Ohmura, 2001). Future work could enrich the analysis by
using snow data directly, although remote sensing prod-
ucts may have some limitations related to the duration (see
e.g. Parajka and Blöschl, 2012). As would be expected, the
Spearman correlations between temperature and MAFα and
CV are comparatively high in the north-eastern and central–
eastern regions (higher for spring temperature), where snow
processes are important for floods. Temperatures are nega-
tively correlated with MAFα and positively correlated with
CV. The colder it is, the more precipitation is stored as snow-
pack in winter, leading to on average bigger snowmelt floods
in spring/early summer, but they are less variable (smaller
CV), which may be related to the smaller interannual vari-
ability of air temperature as compared to that of precipitation
(Giorgi et al., 2004). Snowmelt floods are physically limited
by the amount of water stored as snow and solar radiation.
This upper limit also contributes to less extreme and more
regular floods (Merz and Blöschl, 2003). In these cold re-
gions, temperatures are better correlated with MAFα and CV
than with the precipitation variables and almost as well as
with aridity, although this depends on the moment and the
region.

Winter temperatures add explanatory power to the regional
regression models of MAF in the central–eastern region but
a rather small contribution for the other regions (Fig. 7). For
CV, temperatures explain some of the spatial variability in the
central–eastern and Atlantic regions, but generally its con-
tribution is low (Fig. 8). On the one hand, winter tempera-
ture may not be a perfect proxy for the spatial distribution
of flood-relevant snowmelt, whereas the other variables may
more directly capture runoff-generation processes.

Soil moisture, PET and the AI are related to long-term
water balance characteristics and are significantly correlated
with the estimated flood moments for almost all regions. Soil

moisture is positively correlated with MAFα and negatively
correlated with CV, whereas the opposite holds for PET and
AI. Soil moisture and MAP are highly correlated, which is
related to soil moisture being driven by long-term precipita-
tion. The lower the wetness state, the more room for varia-
tions in the runoff coefficients between years and therefore
flood peaks and thus high CV (Viglione et al., 2009). For
PET and AI, the highest correlations with MAFα are ob-
served in the north-eastern, Atlantic and Mediterranean re-
gions. AI is strongly correlated with CV (Fig. 6) and a par-
ticularly important variable for capturing the spatial variabil-
ity of CV in regional regression models (Fig. 8). High aridity
implies a combination of low precipitation and high evapo-
ration, leading to comparatively dry antecedent conditions.
AI may also capture the non-linearity of runoff-generating
mechanisms relevant for CV (Blöschl and Sivapalan, 1997).
Additionally, precipitation tends to be more variable in the
arid regions of Europe (e.g. Giorgi et al., 2004), so there may
be both a precipitation and runoff-generation effect, the lat-
ter being related to the stronger randomness of the runoff
coefficient. The effect of the large variability of runoff co-
efficients between years in the arid catchments of Europe
(large AI) is also apparent in the positive correlations with CS
in the Mediterranean and central–eastern regions (r = 0.35
and 0.50, respectively) (Table A5).

Topography is included via slope and elevation in the
present analysis, but the observed effects of topography on
the flood moments are most likely indirect. Precipitation
characteristics are highly correlated with topographical in-
dices (Fig. 5), and their spatial patterns are very similar (not
shown), suggesting little unique effect. Faster routing (flow
velocity) due to topography does not seem to be a relevant
factor for the spatial patterns of flood moments at the Eu-
ropean scale, given that response times may be more closely
related to geology than topography at the regional scale (Gaál
et al., 2012).

The fraction of area covered by forest (LUF) is posi-
tively correlated with MAFα , which is not consistent with the
usual expectation of higher infiltration capacities and there-
fore smaller floods peaks for forest soils (Sun et al., 2018).
At the European scale, apparently, this effect is masked by
the correlations between forest cover and precipitation. In
high-elevation regions of Europe forest cover tends to be high
as these areas have not been deforested for agricultural pur-
poses, and these are also the areas of high rainfall because
of topographic effects on rainfall. Additionally, runoff coef-
ficients may be higher in these high rainfall areas due to shal-
lower soils and water tables notwithstanding the forest cover
(Merz et al., 2006; Rogger et al., 2017).

The fraction of area covered by water bodies reduces both
MAFα and CV. The former is consistent with retention ef-
fects, while the relationship between CV and water body size
may be non-linear (increasing CV up to a water body thresh-
old and decreasing CV beyond as shown by Wang et al.,
2017, for reservoir effects), which is not captured by Spear-
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man correlation. However, in comparing natural lakes and
reservoirs, it should be noted that reservoirs tend to introduce
more non-linearity in flood frequency behaviour because of
a threshold effect when the spillway is activated.

Soil texture, when interpreted in terms of pedotransfer
functions (Picciafuoco et al., 2019), is expected to affect in-
filtration of event rainfall. Coarse soils (Stex = 1) are there-
fore expected to be associated with smaller MAFα than fine
soils (Stex = 5), but the data show no consistent relationship.
In a similar vein, the data suggest that coarse soils tend to
be associated with small CV, which contrasts with what one
would expect by reasoning in terms of runoff-generation pro-
cesses. For coarse soils one would expect that, for small
events, most of the water infiltrates but that when a thresh-
old is exceeded the rainfall starts to run off from the surface,
thus leading to larger CV relative to soils without thresh-
old behaviour (Rogger et al., 2013). One reason for observ-
ing the opposite is the correlations between MAP and Stex
within the regions which range between −0.08 and −0.36;
i.e. coarse soils would be associated with high precipitation,
which would explain large MAF and small CV. Apparently
at the scale of an entire continent, the soil characteristics (at
least the texture available here) are less important than cli-
mate variables. The rather low explanatory power of soil tex-
ture and land use for hydrological response at the regional
scale is a general concern that also affects the estimation
of other variables in the context of predictions in ungauged
basins (Blöschl et al., 2013).

While here we examined monotonic relationships and lin-
ear relationships, it would also be worth exploring non-
monotonic relationships between flood moments and covari-
ates (see e.g. Blöschl and Sivapalan, 1997; Smith, 1992; Pal-
lard et al., 2009). Possible approaches for modelling non-
monotonic relationships include generalized additive models
(Rahman et al., 2018; Umlauf and Kneib, 2018) and random
forest regression (Desai and Ouarda, 2021).

The properties of the estimators of the investigated corre-
lations and linear regressions depend on assumptions which
are only partly met in this analysis. Tables A1 and A2 re-
port the maximum variance inflation factors (VIFs) for each
regional regression model from Sect. 3.5 as well as p val-
ues of hypothesis tests for the homoscedasticity and normal-
ity of the residuals. While the VIFs are generally low (in-
dicating a low degree of multicollinearity), the assumption
of homoscedasticity and normality of the residuals is gener-
ally not met for many models, which may be related to the
large number of catchments. Additional diagnostic plots for
the regional regression models can be found in the Supple-
ment. The OLS estimator still remains unbiased and con-
sistent under these conditions (Hayashi, 2000), but no in-
ferences such as significance tests of individual coefficients
should be made from standard properties of the OLS estima-
tor. In Tables A1 and A2 we report the standard errors of the
coefficient estimators, which should be interpreted with care
and are thus not used for hypothesis tests. The inclusion of

additional covariates could help to reduce heteroscedasticity
but would lead to less parsimonious models. Alternatively,
heteroscedasticity could be reduced by considering different
regional partitions of Europe.

4.3 Implications

Even though the main objective of this paper is to investigate
process controls on spatial patterns of flood moments in Eu-
rope, the results in Sect. 3.6 may be considered a benchmark
for flood moment estimation in ungauged basins at the Eu-
ropean scale. The median absolute normalized error (ANE)
of MAF and CV is 0.37 and 0.18, respectively. This is rela-
tively large as compared to similar studies at smaller spatial
scales in the literature on flood regionalization, which typ-
ically yield an ANE of 0.35 for the 100-year specific flood
and smaller values for the MAF (Salinas et al., 2013; Ros-
bjerg et al., 2013). The fit of the regional models varies be-
tween the regions, which reflects differences in the relative
importance of the flood-generating processes between the re-
gions. For the case of MAF, R2 is largest in the Atlantic and
Mediterranean regions (Table A1), and for CV it is largest
in the eastern and Mediterranean regions. Clearly, there is no
model applicable to all regions of Europe. The regions here
were derived based on previous climatic partitions of Europe
and guided by flood seasonality rather than optimal predic-
tive performance of the regional models. The results depend
on the regional partitioning of Europe and will look differ-
ent for different partitioning schemes. If the aim of the study
was optimal predictive performance of the regional models,
the partitioning could be derived based on the data, for ex-
ample via cluster analysis or regression trees (see e.g. Laaha
and Blöschl, 2006).

Overall, the findings of this paper suggest that, at the con-
tinental scale, climate variables dominate over land surface
characteristics in their control of the spatial patterns of flood
moments. Given the evidence for the coevolution of land-
scape and climate (Perdigão and Blöschl, 2014; Troch et al.,
2015) but the general lack of predictive power of variables re-
lated to land use, soil and geology for hydrological quantities
that one would expect to be very relevant at individual sites
(Merz and Blöschl, 2009; Rogger et al., 2017), there is a need
for new types of land characteristics consistent across coun-
tries that can explain spatial differences in flood-generation
processes better. Merz and Blöschl (2009) illustrate this need
through a comparison of two Austrian catchments that have
strikingly similar geological characteristics in terms of per-
centage of area of certain geological types but vastly different
rainfall-runoff response behaviour. At the plot, hillslope and
catchment scales, runoff generation is strongly controlled by
soil properties, including their control infiltration and satura-
tion capacities (Peschke and Sambale, 1999; Scherrer et al.,
2007; Rogger et al., 2012; Picciafuoco et al., 2019). There
have been attempts to relate or upscale local soil characteris-
tics and regional ones (e.g. Schmocker-Fackel et al., 2007).
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One successful example is the HOST classification used in
the UK (Boorman et al., 1995; Lilly et al., 1998; Maréchal
and Holman, 2005), which has been demonstrated to be able
to capture runoff-generation processes and their spatial vari-
ability. Of course, scaling becomes important as well, as land
use may have larger explanatory power in small catchments
than in larger ones (Rogger et al., 2017). The finding that
climate is the main control for the spatial variability of the
flood moments, within the range of the variables consid-
ered, also has some implications for quantifying the tempo-
ral flood variability. If the spatial patterns of flood behaviour
at the continental scale are primarily driven by climatic in-
fluences, their temporal fluctuations might be propagated to
floods (Šraj et al., 2016; Blöschl al., 2019; Bertola et al.,
2020; Kemter et al., 2020). On the other hand: flood changes
of small local streams may be much more controlled by land
use changes, such as urban development and deforestation
(Rogger et al., 2017), only a few of which are included in
this study (average catchment size of 2480 km2). One should
however be careful in trading space for time in the context
of change, i.e. in assuming that future flood characteristics in
one region will be similar to the present ones in another re-
gion because the climate in the former will be similar to the
present climate in the latter. This is because of the space–time
asymmetry discussed in Perdigão and Blöschl (2014), i.e. the
fact that, because of the celerity of coevolution, spatial and
temporal statistics are not necessarily the same. For example,
based on data in Austria, Perdigão and Blöschl (2014) found
that a 1 % increase in precipitation as one moves in space
leads to a 2.3 % increase in flood peaks, while the same in-
crease in precipitation as one moves in time leads to an in-
crease of only 0.6 %. Overall, this paper is a step toward a
better process-based understanding of the statistical proper-
ties of annual floods in Europe. The process controls iden-
tified here can assist in choosing suitable covariates, both
for stationary and nonstationary flood frequency models. A
possible extension of the analysis presented here could be
the consideration of non-stationarities in flood moments, for
example in the spirit of Serago of Vogel (2018). Blöschl et
al. (2019) found that significant trends do exist in the mean
flood of the dataset in 28.02 % of the stations. Trends affect
the estimation of flood moments. For example, the detrended
data tend to exhibit smaller CVs than the raw data, while the
effect on the sample mean may be smaller.

Further mixed-distribution analyses could consider differ-
ent subpopulations of floods associated with specific gen-
eration mechanisms and yield additional insights regarding
spatial patterns of process controls (e.g. Fischer et al., 2016;
Tarasova et al., 2019), e.g. as indicated by their seasonality
(Blöschl et al., 2017). Additionally, we believe that a more
comprehensive representation of catchment functioning that
goes beyond soil types has the potential to further improve
our understanding of process controls on flood probabilities.
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Appendix A

Table A1. Regression coefficients (standard errors), model error variance, R2, and maximum variance inflation factor (VIF) of regional
regression models for MAF. The last two columns contain p values for the Breusch–Pagan (BP) and Shapiro–Wilk (SW) tests. Statistically
significant results (small p values) indicate heteroscedasticity and non-normality of the residuals, respectively. All numbers are rounded to
two digits. For details on VIF, see e.g. Weisberg (2005), and for details on the hypothesis tests, see e.g. Helsel et al. (2020).

log10MAF (Intercept) log10A log10P95 TWin AI σ R2 VIF BP SW

Europe −2.18 (0.09) −0.16 (0.01) 1.61 (0.07) −0.02 (0.00) −0.04 (0.02) 0.31 0.47 2.09 0.00 0.00
North-eastern −1.76 (0.42) −0.14 (0.02) 1.22 (0.31) −0.05 (0.01) −0.33 (0.08) 0.24 0.41 3.89 0.00 0.00
Atlantic −3.31 (0.11) −0.13 (0.01) 2.54 (0.09) 0.01 (0.00) 0.26 0.51 1.04 0.00 0.00
Central–eastern −4.54 (0.62) −0.09 (0.03) 3.33 (0.59) −0.07 (0.01) 0.10 (0.07) 0.25 0.33 1.61 0.00 0.00
Alpine −0.68 (0.21) −0.18 (0.02) 0.47 (0.14) −0.16 (0.06) 0.27 0.27 2.46 0.00 0.02
Mediterranean −1.09 (0.26) −0.22 (0.02) 0.94 (0.19) 0.02 (0.01) −0.16 (0.04) 0.32 0.47 3.24 0.00 0.09

Table A2. Regression coefficients (standard errors), model error variance, R2, and maximum variance inflation factor (VIF) of regional
regression models for CV. The last two columns contain p values for the Breusch–Pagan and Shapiro–Wilk tests. Statistically significant
results (small p values) indicate heteroscedasticity and non-normality of the residuals, respectively. All numbers are rounded to two digits.
For details on VIF, see e.g. Weisberg (2005), and for details on the hypothesis tests, see e.g. Helsel et al. (2020).

log10CV (Intercept) log10A log10P95 TWin AI sigma R2 VIF BP SW

Europe −0.49 (0.05) −0.05 (0.00) 0.06 (0.03) 0.00 (0.00) 0.22 (0.01) 0.15 0.29 2.09 0.00 0.00
North-eastern −1.31 (0.10) −0.02 (0.01) 0.54 (0.08) 0.47 (0.03) 0.1 0.48 1.73 0.25 0.14
Atlantic −0.40 (0.02) −0.05 (0.01) −0.02 (0.00) 0.21 (0.01) 0.14 0.28 1.05 0.01 0.00
Central–eastern −2.43 (0.29) 1.42 (0.29) −0.04 (0.00) 0.60 (0.04) 0.13 0.61 1.37 0.10 0.06
Alpine 0.50 (0.10) −0.05 (0.01) −0.64 (0.07) 0.01 (0.00) 0.08 (0.03) 0.13 0.37 2.76 0.19 0.08
Mediterranean 0.23 (0.11) −0.08 (0.01) −0.45 (0.08) 0.12 (0.02) 0.14 0.55 2.29 0.00 0.42

Table A3. Measure of general dominance (additional contributions) for MAF – indicating general dominance. For each row: the highest
value indicates the most important variable in terms of improvement of the model fit for the given regression, the second highest indicates
the second most important, and the lowest indicates the least important. Summing over measures gives R2 of regression.

log10MAF log10A log10P95 TWin AI R2

Europe 0.12 0.25 0.01 0.09 0.47
North-eastern 0.14 0.1 0.03 0.14 0.41
Atlantic 0.08 0.43 0 0.51
Central–eastern 0.06 0.13 0.13 0.01 0.33
Alpine 0.15 0.07 0.06 0.27
Mediterranean 0.2 0.15 0.03 0.1 0.47
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Table A4. Measure of general dominance (additional contributions) for CV – indicating general dominance. For each row: the highest value
indicates the most important variable in terms of improvement of the model fit for the given regression, the second highest indicates the
second most important, and the lowest indicates the least important. Summing over measures gives R2 of regression.

log10CV log10A log10P95 TWin AI R2

Europe 0.03 0.04 0.01 0.21 0.29
North-eastern 0.02 0.05 0.42 0.48
Atlantic 0.04 0.05 0.19 0.28
Central–eastern 0.03 0.14 0.44 0.61
Alpine 0.03 0.2 0.01 0.13 0.37
Mediterranean 0.09 0.2 0.26 0.55

Table A5. Spearman correlation between statistical moments of flood series, including mean specific discharge MAF, mean specific discharge
normalized to a catchment area MAFα of α = 100 km2, the coefficient of variation CV, the CS, and catchment attributes. Statistically
significant estimates (at the 5 % level) are printed in bold.

Europe North-eastern Atlantic Central–eastern Alpine Mediterranean

MAF MAFα CV CS MAF MAFα CV CS MAF MAFα CV CS MAF MAFα CV CS MAF MAFα CV CS MAF MAFα CV CS

A –0.44 –0.12 –0.13 –0.13 –0.47 0.01 –0.16 −0.07 –0.31 0.01 –0.19 –0.08 –0.23 −0.01 0.09 0.17 –0.40 0.02 −0.03 –0.15 –0.48 0.03 –0.25 –0.18
MAP 0.62 0.59 –0.33 −0.01 0.18 0.15 –0.23 0.15 0.64 0.67 –0.33 −0.03 0.25 0.24 –0.49 –0.38 0.34 0.26 –0.61 –0.13 0.42 0.48 –0.68 –0.35
P95 0.64 0.60 –0.22 0.02 0.21 0.02 −0.10 0.17 0.67 0.66 –0.22 0.00 0.39 0.31 –0.19 –0.26 0.32 0.24 –0.58 –0.14 0.49 0.52 –0.59 –0.34
Pmax 0.61 0.55 –0.05 0.12 0.19 −0.04 −0.09 0.20 0.53 0.52 0.14 0.17 0.30 0.22 –0.18 –0.23 0.36 0.26 –0.40 –0.09 0.57 0.49 –0.36 –0.20
TSpr –0.22 –0.22 0.26 0.00 –0.31 –0.35 0.58 0.23 –0.29 –0.29 0.02 –0.14 –0.14 −0.11 0.50 0.41 –0.17 –0.14 0.38 −0.04 −0.09 -0.12 0.17 0.02
TWin –0.04 –0.07 0.04 –0.06 −0.04 –0.20 0.20 0.30 −0.02 −0.03 –0.23 –0.17 –0.28 –0.33 –0.52 –0.31 –0.11 –0.10 0.10 –0.12 0.12 −0.04 0.27 0.14
SM 0.58 0.57 –0.31 −0.03 0.17 0.16 –0.14 0.19 0.52 0.55 –0.29 −0.05 0.28 0.28 –0.4 –0.33 0.26 0.22 –0.56 –0.10 0.45 0.50 –0.64 –0.37
PET –0.05 −0.03 0.39 0.14 –0.30 –0.33 0.60 0.22 –0.23 –0.22 0.34 0.03 0.02 0.07 0.68 0.45 –0.16 –0.11 0.11 –0.10 –0.11 –0.21 0.63 0.31
AI –0.55 –0.53 0.46 0.07 –0.36 –0.36 0.62 0.12 –0.51 –0.53 0.38 0.04 –0.16 −0.12 0.63 0.50 –0.39 -0.31 0.50 0.08 –0.37 –0.43 0.69 0.35
Elev 0.53 0.55 0.08 0.20 0.35 0.47 –0.31 0.06 0.38 0.44 0.35 0.22 0.48 0.50 0.21 0.16 0.19 0.16 –0.47 0.00 0.06 0.02 0.20 0.20
Slope 0.63 0.65 −0.01 0.16 0.34 0.39 –0.36 0.04 0.58 0.62 0.17 0.19 0.29 0.30 −0.01 0.02 0.25 0.24 –0.40 −0.01 0.33 0.37 0.06 0.06
LUF 0.46 0.45 –0.10 0.06 0.30 0.28 −0.01 0.05 0.43 0.45 0.14 0.14 0.08 0.01 –0.39 –0.24 0.27 0.16 –0.26 0.03 0.40 0.32 0.03 −0.03
LUW –0.30 –0.16 –0.27 –0.15 –0.25 –0.21 –0.22 −0.06 –0.19 −0.04 –0.20 −0.06 –0.55 –0.55 –0.50 –0.23 –0.16 0.03 –0.19 –0.14 –0.40 −0.10 -0.19 −0.10
Stex –0.06 –0.06 0.29 0.11 –0.12 −0.07 0.37 0.25 −0.06 −0.05 0.17 −0.01 0.29 0.32 0.53 0.31 −0.02 −0.06 0.23 0.01 –0.22 –0.18 0.26 0.16

Table A6.R2 of regional regression models of MAF with catchment area in a double-logarithmic relationship Eq. (5) and analogous equations
for CV, and a semi-logarithmic relationship for CS, i.e. CS= logAβCS.

Europe North-eastern Atlantic Central–eastern Alpine Mediterranean

0.188 0.190 0.109 0.066 0.188 0.234
0.015 0.009 0.028 0.007 0.007 0.084
0.010 0.005 0.006 0.029 0.020 0.037
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