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Abstract. Long short-term memory (LSTM) models are re-
current neural networks from the field of deep learning (DL)
which have shown promise for time series modelling, espe-
cially in conditions when data are abundant. Previous stud-
ies have demonstrated the applicability of LSTM-based mod-
els for rainfall–runoff modelling; however, LSTMs have not
been tested on catchments in Great Britain (GB). Moreover,
opportunities exist to use spatial and seasonal patterns in
model performances to improve our understanding of hy-
drological processes and to examine the advantages and dis-
advantages of LSTM-based models for hydrological simu-
lation. By training two LSTM architectures across a large
sample of 669 catchments in GB, we demonstrate that the
LSTM and the Entity Aware LSTM (EA LSTM) models
simulate discharge with median Nash–Sutcliffe efficiency
(NSE) scores of 0.88 and 0.86 respectively. We find that the
LSTM-based models outperform a suite of benchmark con-
ceptual models, suggesting an opportunity to use additional
data to refine conceptual models. In summary, the LSTM-
based models show the largest performance improvements
in the north-east of Scotland and in south-east of England.
The south-east of England remained difficult to model, how-
ever, in part due to the inability of the LSTMs configured in
this study to learn groundwater processes, human abstrac-
tions and complex percolation properties from the hydro-
meteorological variables typically employed for hydrologi-
cal modelling.

1 Introduction

Rainfall–runoff models have evolved over many decades,
reflecting a diversity of applications and purposes. These
models range from physically based, spatially explicit mod-
els such as SHETRAN (Birkinshaw et al., 2010), CLAS-
SIC (Crooks et al., 2014) and PARFLOW (Maxwell et al.,
2009) to lumped conceptual models such as TOPMODEL
(Beven and Kirkby, 1979) and VIC (Liang, 1994). Addition-
ally, data-driven models have also been used for modelling
rainfall–runoff processes (Reichstein et al., 2019; Elshorbagy
et al., 2010; Wilby et al., 2003; Nourani et al., 2014; Le et al.,
2019; Gauch et al., 2021b). The diversity of modelling ap-
proaches reflects the diversity of user objectives, uncertainty
in terms of how to best represent the stores and fluxes of wa-
ter and energy, and the trade-offs in terms of data require-
ments, degree of realism and computational costs (Beven,
2011).

Data-driven models range from simple regression mod-
els to large neural networks with thousands of parameters.
These methods draw on empirical relationships between in-
puts and outputs to form a representation of how the hydro-
logical system operates more generally (Beven, 2011). Other
approaches from the class of data-driven models, such as sta-
tistical modelling and machine learning, include genetic pro-
gramming (Chadalawada et al., 2020; Herath et al., 2021),
random forests (Booker and Woods, 2014) and support vec-
tor regression models (Elshorbagy et al., 2010). Alternative
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empirical approaches also exist, including data-based mech-
anistic (DBM) modelling (Young, 1998, 2003). DBM ap-
proaches suggest that rather than imposing model structures
from the outset hydrologists should in the first instance al-
low the data to suggest an appropriate model structure. Then,
the modeller should see if there is a mechanistic interpreta-
tion of the learnt model structure (Young and Beven, 1994).
Our modelling approach uses deep learning (DL) techniques,
which have produced accurate predictions on a wide variety
of tasks, including rainfall–runoff modelling (Huntingford
et al., 2019), and represent a fruitful area of further explo-
ration for hydrologists and Earth scientists (Reichstein et al.,
2019). For a more complete picture on the uses of DL tech-
niques in hydrology, an interested reader is referred to Shen
(2018), Beven (2020), Nearing et al. (2020), and Kratzert
et al. (2018).

DL methods have been used in hydrology and meteorol-
ogy for decades (Daniell, 1991; Halff et al., 1993; Daw-
son and Wilby, 1998; Wilby et al., 2003; Peel and McMa-
hon, 2020). However, one architecture explicitly designed
for time series simulation, the long short-term memory
(LSTM) network (Hochreiter et al., 2001; Hochreiter, 1991),
has recently demonstrated credible performance for mod-
elling hydrological signatures across the continental United
States (CONUS) (Kratzert et al., 2018, 2019; Duan et al.,
2020; Feng et al., 2020; Gauch et al., 2021b; Fang et al.,
2018, 2020). More recent work has begun not only to explore
the accuracy of forecasts but also to use LSTMs to (i) provide
estimates of uncertainty (Klotz et al., 2020), (ii) explore the
ability of the LSTM to integrate prior physical knowledge
into DL model architectures (Hoedt et al., 2021; Jiang et al.,
2020), and (iii) to use LSTMs to produce predictions at mul-
tiple timescales from a single model (Gauch et al., 2021a).

By contrast with the physically based, spatially explicit
hydrological models, lumped conceptual models have rela-
tively few parameters and simulate the stores and fluxes of
water on a catchment scale, e.g. using a single store to rep-
resent the catchment-wide upper-soil water storage (Beven,
2011). Lumped conceptual models have lower data and com-
putational requirements when compared to the spatially ex-
plicit, physically based, models, which is one reason why
they are often used for operational purposes (Clark et al.,
2008). There exist many lumped conceptual models, dif-
fering in their internal structures, the equations that govern
fluxes of water and energy, and the processes that are in-
cluded (Knoben et al., 2019). As an evidence-guided dis-
cipline, performance benchmarks provide hydrologists with
an objective means for selecting between different models,
instead of model selection by lineage or affiliation (Addor
and Melsen, 2019). Furthermore, when applied over a large
sample of catchments, differences in model performance can
be instructive with regards to the hydrological conditions
that are well simulated by one model compared with others
(Gupta et al., 2014). Increasingly, “we need large-scale eval-
uations of model capability to identify which processes are

important and which model structure(s) are most appropri-
ate” (Lane et al., 2019, p. 4012).

This paper seeks to address three research gaps. First, there
exists no large-sample performance benchmark of LSTMs
in a Great Britain (GB) context. This is important because
scientists and practitioners are interested in using LSTMs as
hydrological models for hazard impact assessment, hazard
early warning and rainfall–runoff modelling (Shen, 2018).
Therefore, a rigorous assessment of LSTM performances is
necessary to determine whether such a model choice is ap-
propriate in the GB context. Furthermore, given that the data
archives are rich in GB, there exists a very good opportunity
to learn more about the capabilities and limitations of LSTM-
based methods (Clark and Khatami, 2021). Second, there ex-
ists only one other comparison of the EA LSTM performance
against the LSTM (Kratzert et al., 2019). Finally, there exist
no studies that explore the relationship of performance differ-
ences (between conceptual and deep learning models) with
the hydrological conditions in which those differences occur.
The aim of studying the relationship between performance
differences and hydrological conditions is to determine how
best to improve our conceptual models. What information
might be present in the underlying data that can help iden-
tify processes that are currently missing from our conceptual
models?

The research questions that this study seeks to address are
determined by the research gaps identified above.

1. How well do LSTM-based models (including the EA
LSTM) simulate discharge in Great Britain?

2. How do LSTM-based model performances compare
with the conceptual models used as a benchmark?

3. Can we extract information from the spatial and tem-
poral patterns in diagnostic measures? For example,
what is the relationship between LSTM performance
and catchment attributes?

To address these questions, we have trained an ensemble
of eight LSTMs and eight EA LSTMs on 669 catchments
in Great Britain. We compare the results of the LSTM mod-
els with four deterministic lumped-conceptual models from a
previous benchmarking study (Lane et al., 2019). This paper
provides an evaluation of LSTM model ability across a large
sample of GB catchments. We explore the association be-
tween catchment characteristics and the differences in model
performances and present a data-driven benchmark that re-
flects the null-hypothesis of what information is present in a
large-sample dataset (Nearing et al., 2020). Future modelling
efforts may seek to assess whether hydrological theories en-
coded in conceptual and process-based models may contain
more information than the benchmarks provided here (Near-
ing et al., 2021).

We believe that the research addresses the following needs
of the hydrological community: (i) practitioners wishing to

Hydrol. Earth Syst. Sci., 25, 5517–5534, 2021 https://doi.org/10.5194/hess-25-5517-2021



T. Lees et al.: Benchmarking data-driven rainfall–runoff models in Great Britain 5519

know whether the LSTM is a justifiable model choice in the
GB context, (ii) scientists and practitioners interested in un-
derstanding under what hydrological conditions (e.g. catch-
ment attributes) the LSTM performance differs from concep-
tual models, and (iii) as a reference for future GB-wide mod-
elling studies.

2 Methods

2.1 Data – CAMELS-GB

All data employed in this analysis originate from the
CAMELS-GB data (Coxon et al., 2020a). CAMELS-GB is
a recently released, large-sample, long-term, daily dataset
that offers the potential for GB-wide modelling stud-
ies. CAMELS-GB collates hydrologically relevant data for
671 GB catchments between the years of 1970 and 2015. The
dataset includes daily time series for meteorology (dynamic
data – Xt,n) and discharge (target data – yt,n). Also included
are catchment attributes (static data – At,n) such as topog-
raphy, climate, hydrologic signatures, soil and land cover,
hydrogeology, and human influence. These features are, in
reality, not static over time. However, for the purposes of this
study we treat these features as time-invariant. Further infor-
mation on the variables we used as input to our model can
be found in Table 1. The reader is directed to Coxon et al.
(2020b) for details of the source of the data, how the data
were processed and a discussion of data limitations.

The dataset contains novel inputs compared with previ-
ous CAMELS (US, Chile, Brazil) datasets (Addor et al.,
2017; Alvarez-Garreton et al., 2018; Chagas et al., 2020),
such as human attributes, calculated potential evapotranspi-
ration (pet) and uncertainty estimates. We do not use all of
these features here. The static attributes we use to train the
LSTM models are listed in Table 1. These static attributes
were chosen to reproduce the experimental framework of
Kratzert et al. (2019); however, the differences reflect the
fact that the CAMELS-US and CAMELS-GB have slightly
different attributes. These include both catchment properties
and climate properties, describing the conditions relevant for
rainfall–runoff modelling in different catchments.

2.2 An overview of the LSTM and EA LSTM

In this paper, we test two neural network architectures used in
other hydrological studies (Shen et al., 2018; Kratzert et al.,
2019). The first is the LSTM, which has been used in a vari-
ety of time series modelling applications. The second model
is the EA LSTM, which conditions the discharge response to
meteorological forcings on time-invariant properties of river
catchments, such as soil and topographic attributes, treating
these time-invariant properties separately. For a summary of
notation used throughout the paper, please refer to Table 2:

What follows is a brief introduction to the LSTM model
architectures. For a more complete description of these mod-

els please refer to the Sect. S1 in the Supplement and Kratzert
et al. (2018, 2019).

The LSTM has a strong inductive bias towards retaining
information over long sequences (Hochreiter, 1991; Bengio
et al., 1994). This means that the LSTM architecture is de-
signed to retain information that is important over both long-
and short-term time horizons. LSTMs do this by maintaining
two state vectors: a cell memory vector that captures slowly
evolving processes (Ct) and a more quickly evolving state
vector, colloquially named the “hidden” vector (ht). Informa-
tion flow is controlled by a series of gates which are neural
network layers that determine what information is removed
from ft (forget gate), what information is stored in it (input
gate) and what information is passed to the ot (output gate)
respectively.

The Entity Aware LSTM (EA LSTM) modifies the forget
gate, so the output of the forget gate is a function of only the
static catchment attributes (An) rather than both the catch-
ment attributes and the dynamic data ([Xt,n,An]). The EA
LSTM was developed specifically for rainfall–runoff mod-
elling (Kratzert et al., 2019). For the sake of clarity, it is im-
portant to note that both models receive the same informa-
tion. The LSTM still receives the static catchment attributes.
However, rather than affecting only the input gate the static
data can influence all gates, since they are appended to a vec-
tor of dynamic inputs

([
Xt,n,An

])
, and so the same infor-

mation is given to the LSTM at each time step. The static
attributes are used by the LSTM in the same way as the dy-
namic data. This offers extra flexibility for the LSTM com-
pared with the EA LSTM, since the LSTM is able to modify
the input gate based on information from time-varying data,
whereas the EA LSTM is not. We are using the static nature
of the data as a constraint on the EA LSTM to reflect the
nature of the input data (separated into static and dynamic
inputs).

2.3 Model training

We used the “neuralhydrology” codebase, written in
Python 3.6 (Van Rossum et al., 2007), to train and evalu-
ate the models, which is found at the following link: https:
//github.com/neuralhydrology/neuralhydrology (last access:
20 September 2021). The configuration files used to
run the models can be found using the links at the
end of this article. The predictions and error metrics
for the fitted models can be found online at Zenodo
(https://doi.org/10.5281/zenodo.4555819).

The goal of rainfall–runoff modelling is to predict
time-varying specific discharge, yn = (y1,n, . . . ,yT,n) ∈ RT
(mm d−1) for time t = {1, . . . ,T } at measuring gauge
n of N , given hydro-meteorological forcing data, Xn =
(X1,n, . . . ,XT,n), and catchment attributes (An – Table 1)
within the catchment area upstream of the gauge. In the
present case for GB, N = 669. Although the underlying
CAMELS-GB data have 671 station gauges, we trained on
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Table 1. Catchment attributes from the CAMELS-GB dataset (Coxon et al., 2020b) used to train the LSTM-based models and the static
features included in A.

Static variables Static variable description Median Range

area catchment area (km2) 152 [2, 9931]
elev_mean mean elevation (m a.s.l) 163 [25, 682]
dpsbar slope of the catchment mean drainage path (m km−1) 79 [12, 488]
sand_perc percent sand ( %) 43 [19, 82 ]
silt_perc percent silt ( %) 30 [9, 43]
clay_perc percent clay ( %) 24 [7, 51]
porosity_hypres soil porosity calculated using the hypres pedotransfer function (–) 47 [34, 81]
conductivity_hypres hydraulic conductivity calculated using the hypres pedotransfer function (cm h−1) 1 [0.5, 3]
soil_depth_pelletier depth to bedrock (m) 1 [0.5, 42]
frac_snow fraction of precipitation falling as snow (for days colder than 0 ◦C) 0.02 [0.00, 0.17]
dwood_perc percent of catchment that is deciduous woodland ( %) 6 [0, 37]
ewood_perc percent of catchment that is evergreen woodland ( %) 2 [0, 93]
crop_perc percent of catchment that is cropland ( %) 13 [0.00, 91]
urban_perc percent of catchment that is urban area ( %) 3 [0.00, 81]
reservoir_cap catchment reservoir capacity (ML) 0 [0, 8× 107]
p_mean mean daily precipitation (mm d−1) 2.57 [1.54, 9.61]
pet_mean mean daily PET (mm d−1) 1.38 [1.03, 1.51]
p_seasonality seasonality and timing of precipitation (estimated using sine curves) −0.14 [−0.42, 0.14]
high_prec_freq frequency of high-precipitation days (≥5×mean daily precipitation) 15.69 [7.58, 20.73]
low_prec_freq frequency of dry days (< 1 mm d−1) 214.23 [1.63, 259.23]
high_prec_dur average duration of high-precipitation events (≥5×mean daily precipitation) 1.14 [1.05, 1.25]
low_prec_dur average duration of dry periods (number of consecutive days< 1 mm d−1) 3.70 [2.64, 4.67 ]

Table 2. Table describing the notation used throughout the paper.

Symbol Description Notes

yt,n Our target variable, specific discharge at time t , catchment n mm d−1

ŷt,n Simulated specific discharge at time t , catchment n, predicted by the model Mθ mm d−1

n Gauge ID –
pt,n Precipitation mm d−1

pett,n Potential evapotranspiration mm d−1

Tt,n Temperature ◦C
An Catchment attributes (static data)
Xt,n Hydro-meteorological data (dynamic data)

[
pt,n,pett,n, tt,n

]
hs Hidden size hs= 64
Wlayer The matrix of learnable weights –
blayer The vector of learnable biases –
θ Learnt model parameters, representing all Wlayer and blayer –
Mθ The model (LSTM or EA LSTM) with parameters θ –
Ct The cell state of the LSTM models Rhs

C̃t The candidate cell state values C̃t ∈ R | −1< x < 1}
ht The hidden state of the LSTM models Rhs

ft The forget gate of the LSTM models {ft ∈ R | 0< x < 1}
it The input gate of the LSTM models {it ∈ R | 0< x < 1}
ot The output gate of the LSTM models {ot ∈ R | 0< x < 1}
` The loss function used to train the model (Nash–Sutcliffe efficiency) –
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data from only 669 stations, because two basins have missing
data in the static attributes; stations 18011 and 26006 have
missing mean elevation (elev_mean) and mean drainage path
slope (dpsbar).

Our task is to train a regional hydrological model, i.e. one
model for all catchments in the dataset. This means that we
learn a single set of parameters, θ , of a model, Mθ , that min-
imizes the loss function, `(ŷt,n,yn), for all flow gauges and
thus accurately simulates discharge (ŷt,n) for all of the basins
in our subset of CAMELS-GB:

ŷt,n =Mθ

([
An,Xt−k+1,n, . . . ,Xt,n

]
;θ

)
. (1)

We train our model using the Nash–Sutcliffe efficiency
(NSE) loss as our objective function (`), as described in
Kratzert et al. (2019). Other objective functions could be
used; however, we use the same objective function as the
conceptual models we compare against, in order to control
the possible sources of performance differences. The NSE
describes the squared error loss normalized by the total vari-
ance of the observations. In order to account for the fact that
some basins will have lower variance than others, we follow
Kratzert et al. (2019) to normalize by basin-specific variance.
This prevents the loss from being overly weighted towards
high-variance catchments.

For this study, we trained the models on the days from
1 January 1988 to 31 December 1997 and tested on a hold-
out sample using the days from 1 January 1998 to 31 Decem-
ber 2008 (4018 d of test data). We withheld the years 1975 to
1980 from the training process to check the performance of
the model during training (our validation set). This means
that we have separate time periods for calibration (1988–
1997; train period) and evaluation (1998–2008; hold-out test
period). These train and test periods were chosen to facili-
tate the comparison with the study whose published results
for four lumped hydrological models we use as a benchmark
(Lane et al., 2019). For further analysis of the train and test
periods, please see Sect. S2.

Our input data were taken from CAMELS-GB, described
above (Coxon et al., 2020b). We used precipitation, poten-
tial evapotranspiration and temperature as dynamic inputs
(Xt,n =

[
pt, n,pett, n,Tt, n

]
). We selected 21 individual fea-

tures describing each catchment’s topographic, soil, land-
cover, and climatic properties as static inputs (An). These at-
tributes were chosen to reflect hydrological information that
the model can use to distinguish between catchment rainfall–
runoff behaviours (Kratzert et al., 2019). These catchment at-
tributes are described in Table 1. For both LSTM models, we
pass the final hidden output through a fully connected (lin-
ear) layer. This final layer maps our hidden state vector to
a scalar prediction (ŷt,n ∈ R) for discharge at that gauge on
that day. We give the models 1 year of daily dynamic data
(365 input time steps, Xn = [Xt−365,n, . . . ,Xt,n]) to predict
the final time step of specific discharge (ŷt,n).

All national results shown below are calculated for the 518
gauges that are found in both the CAMELS-GB data and the
benchmark data. We then evaluate model performance on all
of these basins for our test (evaluation) period (1998–2008).
For each model (LSTM, EA LSTM), we also calculate the
average of an ensemble of eight individually trained models
with different random seeds. This strategy accounts for the
random initialization of the network and the stochastic nature
of the optimization algorithm. We used a hidden size (hs) of
64 and a final fully connected layer with a dropout rate of
0.4, which aims to avoid overfitting. Dropout works by ran-
domly forcing certain weights in the network to zero (“drop-
ping them out”), forcing the remaining weights to model the
discharge without that extra information. This has been found
to prevent weights “fixing” the erroneous outputs of other
weights, preventing co-adaptation of weights and, ultimately,
encouraging the model to use a simpler and more robust
representation of rainfall–runoff processes (Srivastava et al.,
2014). The hidden size determines the total number of pa-
rameters in the model. For the LSTM, there are 23 361 train-
able parameters, whereas the EA LSTM has 14 593 trainable
parameters. These are trained on data from 669 catchments
over 4018 time steps (2 688 042 samples). Note that this is for
a regional model and is independent of the number of catch-
ments. Given that we train the LSTM on 669 catchments, we
can interpret the LSTM as equivalent to using 35 parameters
per catchment, with a median catchment area of 152 km2.
The EA LSTM has of the order of 22 parameters per catch-
ment. We chose the hyper-parameters (dropout rate, hidden
size – hs) based on analysis of the NSE performances, find-
ing that the improvement of further model complexity (in-
creased hidden size) was negligible after a hidden size of 64.
The hidden size was also consistent with the choices made
in previous studies (Kratzert et al., 2019). We used the Adam
optimization algorithm (Kingma and Ba, 2014) and stopped
training after 30 epochs, after which there was no further im-
provement to the model. An epoch reflects a single pass of
the training dataset through the model, such that every sam-
ple in the training dataset has been used to update the model
weights. This reflects the fact that during the training of DL
models, the data are often split into batches to allow large
datasets to be read into memory. The LSTM ensemble took
10 h to train. The EA LSTM ensemble took 96 h to train. All
models were trained on a machine with 188 GB of RAM and
a single NVIDIA V100 GPU.

2.4 Model performance comparisons

The LSTMs learn to represent hydrological processes di-
rectly from data. When the LSTMs perform well on hold-out
test samples, a necessary (but not sufficient) conclusion is
that the data contain useful information about the hydrologi-
cal processes that translate inputs (precipitation) into outputs
(discharge). The differences in model performance between
the LSTMs and the benchmark hydrological models can be
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used to determine hydrological processes that are described
by the input data but not captured or under-represented by
the benchmark hydrological models.

2.4.1 Benchmark models

In order to provide a reference for model performance statis-
tics, we compare the performance of the LSTM-based mod-
els against four lumped conceptual models from the FUSE
framework (Clark et al., 2008). To be unbiased on the
model calibration, we used simulated discharge time series
from Lane et al. (2019), who calibrated and evaluated these
four conceptual models on 1000 catchments across Great
Britain. The four conceptual models used are TOPMODEL
(Beven and Kirkby, 1979), Variable Infiltration Capacity
(VIC) (Liang, 1994), Precipitation-Runoff Modelling Sys-
tem (PRMS) (Leavesley et al., 1983) and SACRAMENTO
(Burnash et al., 1973). These conceptual models are often
used in operational settings, due to the relative ease of use
and lower data requirements when compared with physically
based models. These conceptual models all explicitly main-
tain mass balance and so assume no losses or gains of water
other than flow from the catchment outlet or evaporation.

These conceptual models are all lumped models run at a
daily time step. Each model is explicitly forced to close the
water balance, limited by an upper limit of potential evap-
otranspiration for water losses. Every one of the conceptual
models has a gamma distribution routing function. Further-
more, the four conceptual models do not include a snow rou-
tine nor a vegetation module (Clark et al., 2008). SACRA-
MENTO has 5 stores and 12 parameters per catchment, both
VIC and TOPMODEL have 2 stores and 10 parameters, and
PRMS has 3 stores and 11 parameters. A more complete de-
scription of these benchmark models and the processes that
they include can be found in Table 3 of Lane et al. (2019) and
in Sect. 4 of Clark et al. (2008).

The benchmark study provides an assessment of concep-
tual model simulation performances across a large sample of
GB catchments, and it also quantifies uncertainty in hydro-
logical simulations due to parameter uncertainty and model
structural uncertainty (Lane et al., 2019). Parameter values
for each conceptual model were selected from 10 000 sim-
ulations of multi-dimensional parameter space. The best-
estimate model parameter values were selected from these
10 000 samples using the Nash–Sutcliffe efficiency score.
These best-fit parameters are used as a benchmark against
which to compare the LSTM performance. To place the in-
tercomparison into context, we critically reflect on the con-
sistencies and differences between the different model con-
figurations here.

First, the selection of model parameters differs between
the LSTM and the conceptual models. The experimental de-
sign of the benchmarking study produced 10 000 samples of
parameter values, and Lane et al. (2019) provide the sim-
ulations given the best fitting parameters for future studies

to employ as a benchmark. The LSTM parameters are opti-
mized using stochastic gradient descent, choosing the best
fitting set of parameters using the NSE score. While the
method of choosing parameters differs, the objective function
that determines the “best-fit” parameter values is the same
for both the LSTMs and the conceptual models. Second, the
calibration and evaluation data are the same. The calibration
and evaluation of these models were performed using the
same data from CAMELS-GB, i.e. the National River Flow
Archive data (Centre for Ecology and Hydrology, 2016) for
specific discharge (yt ); the Centre for Ecology and Hydrol-
ogy Gridded Estimates of Areal Rainfall, CEH-GEAR, for
precipitation (Tanguy, 2014); and the Climate Hydrology and
Ecology research Support System Potential Evapotranspira-
tion (CHESS-PE) dataset for PET (Robinson et al., 2017).
The benchmark experiment selected the best-fitting param-
eter values using data from the period 1988–2008 and then
evaluated their performance on data from 1993–2008 (Lane
et al., 2019). Instead, we calibrate the LSTMs on data from
1988–1998 and then evaluate the LSTM performances for
our hold-out evaluation period of 1998–2008. We recalcu-
late the performance statistics of the benchmark conceptual
models for this evaluation period, 1998–2008, using the pub-
lished simulated time series. Therefore, the LSTM is eval-
uated on out-of-sample (in time) data, whereas the concep-
tual model parameters were calibrated on data included in the
evaluation period (in-sample evaluation). Finally, it is worth
noting that Lane et al. (2019) focused not only on model per-
formances but also on parameter uncertainty. Uncertainty is
an essential component of any modelling study, and our ap-
proach of training an ensemble of eight models is one pro-
posed method for dealing with uncertainty in LSTMs. For an
analysis of model uncertainty with this method, see Sect. S4.
For a more complete treatment and discussion of the differ-
ent approaches for dealing with uncertainty using LSTMs,
see Klotz et al. (2020).

As with any benchmarking study, there are important
caveats to the intercomparison of model results. Ultimately,
the purpose of the comparison is (i) to provide a reference for
the diagnostic measures of LSTM performance, (ii) to iden-
tify the hydrological conditions where simulations differ, and
(iii) to use these insights to diagnose missing representations
in the conceptual models. We agree with Lane et al. (2019)
that “benchmark [studies] provide a useful baseline for as-
sessing more complex modelling strategies” (p. 4029), and
we follow them in publishing the simulations and results of
the LSTM models for future studies to use for comparison.

2.4.2 Evaluation metrics

Each model produces a daily simulated discharge value
at each station. Three example hydrographs are shown in
Sect. S3. The evaluation metrics described below evaluate the
overall performance of each model to reproduce a specific as-
pect of the observed hydrograph. For the LSTM-based mod-
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els, the evaluation metrics are calculated given the average
discharge of the ensemble. Since no single evaluation metric
can fully capture the performance of streamflow simulations
across all flow-regimes (Gupta et al., 1998), we use a number
of metrics to address the performance of models across the
flow regime, outlined below.

We evaluate the goodness-of-fit metrics of the LSTM-
based models and the conceptual models using six evalua-
tion metrics. The Nash–Sutcliffe efficiency (NSE) (Nash and
Sutcliffe, 1970) score has been used in numerous studies, and
there is extensive literature discussing its strengths and weak-
nesses (Gupta et al., 2009). The NSE can be decomposed into
three components: a correlation term, a bias term (BiasError)
and a variability (SDError) term (Gupta et al., 2009). The
bias term measures the error in predicting the mean flow. The
variability term measures the error in predicting the standard
deviation of discharge. We report results for the NSE and
each of its three components.

To understand how well the LSTMs represent low, mean
and high flows, we also consider the biases for different com-
ponents of the flow duration curve. The low-flow bias (%Bi-
asFLV) is the diagnostic signature measure for long-term
base flow (Yilmaz et al., 2008), and low flows are defined as
those which are exceeded 70 % of the time. For the middle
of the flow duration curve, we use the bias of the midsection
of the flow duration curve, between the 20th and 70th per-
centiles (%BiasFMS). Finally, we also look at the bias of the
high flows, considering the top 2 % of flows (%BiasFHV).

3 Results

3.1 National-scale model performance

The LSTM and EA LSTM models produce accurate simula-
tions across Great Britain when evaluated using a variety of
metrics, with differing levels of performance improvement
over the benchmark conceptual models (See Table 3).

Comparing the median NSE for all catchments, the LSTM
ensemble (0.88) outperforms all other models, including the
EA LSTM ensemble (0.86). The slightly lower median NSE
for the EA LSTM models is consistent with results from pre-
vious studies (Kratzert et al., 2019). The CDFs (cumulative
distribution functions) of the NSE (Fig. 1a) show the entire
distribution of LSTM scores is shifted towards better perfor-
mances. The LSTM NSE scores are significantly different
from all comparison models at α = 0.001 (paired Wilcoxon
signed-rank test). We see the same pattern for the EA LSTM
models. The performance improvement at the tails is par-
ticularly pronounced. Neither the LSTM nor the EA LSTM
model have any station gauges with an NSE of less than zero.

As discussed in the methods, we can decompose the NSE
into three components: bias (BiasError), correlation and error
in predicting the variability of flows (SDError). The pattern
of correlation scores closely follows the pattern of NSE, with

the entire distribution of catchment correlation scores shifted
towards improved performance. The CDFs in Fig. 1c show
that the LSTM catchment bias scores are closer to zero than
the benchmark models, which reflects the fact that the con-
ceptual models are explicitly mass conserving, whereas the
LSTM models are not. The median variability error is nega-
tive (Fig. 1d), showing that the LSTMs tend towards under-
predicting the variability of flows.

The LSTM shows a large performance improvement for
low-flow bias score (%BiasFLV – Fig. 1e). The LSTM has
lower median bias in the slope of the midsection of the
flow duration curve (%BiasFMS) than all models except
ARNOVIC. When we consider the CDFs, both LSTMs have
shorter tails than the conceptual models, showing that a
greater proportion of catchments have biases closer to zero.
The high-flow biases (%BiasFHV) are relatively similar for
all models (as shown by Fig. 1g).

The biases at different flow exceedances suggest that the
conceptual models produce good simulations for the high
flows but are less able to simulate low flows. The LSTM
shows a smaller performance decline at the low flows than
the benchmark models and a competitive performance at
high flows, suggesting that the LSTMs are robust to extreme
conditions. We also note that the negative bias, for the mid-
section and the upper-section of the flow duration curve,
demonstrates that the LSTM model is conservative in its flow
predictions, particularly in comparison to the other models.

3.2 Spatial patterns of performance

The LSTM demonstrates competitive simulation of dis-
charge across Great Britain (see the spatial patterns of vari-
ous performance metrics in Fig. S6). The EA LSTM has very
similar spatial patterns to the LSTM but shows a consistently
worse performance than the LSTM across GB.

The benchmark conceptual models struggled when simu-
lating discharge in catchments on the permeable bedrock in
the south-east of England and the mountainous catchments
in the north-east of Scotland (Lane et al., 2019). Performance
metrics in the south-east were lower due to poor simulation
of variance and correlation and in north-eastern Scotland due
to poor simulation of the mean flow conditions (Lane et al.,
2019). We suggest that these differences in performance are
due to the low rainfall and chalk aquifer in the south-east of
England and to the lack of snow modules incorporated into
the conceptual models for north-eastern Scotland.

Interestingly, the LSTM simulates discharge less well in
the south-east of England relative to LSTM performance
elsewhere in GB, particularly in the summer months (Fig. 2).
Performances for all seasons are worse in the south-east
of England. This pattern is stronger in the summer months
(JJA). The east–west gradient in model performances can be
seen for all models, particularly in JJA. However, the range
of errors is smaller for the LSTM-based models when com-
pared with the conceptual models.
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Table 3. Summary of all goodness-of-fit metrics used to benchmark performance against the conceptual models for the validation period
1998–2008 on the 518 stations found in both CAMELS-GB data (Coxon et al., 2020a) and the FUSE conceptual models (Lane et al.,
2019). We have shown the median catchment score for the metric given the mean simulated discharge of our ensemble. Values that are not
significantly different from the best model are highlighted in bold (α = 0.001).

NSE BiasError SDError Correlation %BiasFMS %BiasFLV %BiasFHV

TOPMODEL 0.76 −0.04 −0.10 0.88 5.70 42.22 −13.04
ARNOVIC 0.78 0.06 −0.10 0.90 2.25 −60.34 −14.66
PRMS 0.77 0.03 −0.03 0.89 35.24 −315.25 −15.11
SACRAMENTO 0.80 −0.01 −0.07 0.90 27.91 −195.92 −16.19
EA LSTM 0.86 −0.02 −0.10 0.94 −6.29 23.61 −10.81
LSTM 0.88 −0.02 −0.09 0.94 −3.67 26.34 −9.09

The LSTM shows an underestimate of the variability and
a cluster of high bias scores in the south-east (Fig. S6). The
LSTM both overestimated and underestimated mean flows
in catchments in the south-east region, explaining the rela-
tive underperformance in the composite metric (NSE) for the
LSTM relative to the rest of GB.

Spatial patterns in the biases for different sections of the
flow duration curve show that only the LSTMs demonstrate
a consistent underprediction of the midsection slope of the
flow duration curve (%BiasFMS). A steep slope in the mid-
section of the flow duration curve reflects a watershed hav-
ing a “flashy” response (Yilmaz et al., 2008), potentially due
to low soil moisture capacity. Therefore, an underprediction
of the midsection reflects an underestimation of the “flashi-
ness” of the catchment. The LSTM %BiasFMS is largest for
the south-east of England. The LSTM shows improved per-
formance compared to the benchmark models across GB,
including these underperforming regions, the south-east of
England and north-eastern Scotland.

3.3 In what hydrological conditions do model
performances differ?

Large sample studies allow us to detect catchment attributes
that our models are or are not able to represent. In order to
determine what the LSTM is capable of representing well,
we perform two analyses. Firstly, we directly calculate the
difference in NSE scores. Secondly, we correlate catchment
attributes with model diagnostic scores.

The 1meanNSE is the mean difference between a ref-
erence model (LSTM) and the comparison model. The
1medianNSE is the median difference. The mean differ-
ences between the LSTM station NSE and the other mod-
els is smallest for the EA LSTM (1meanNSE= 0.02).
This is unsurprising given the very similar architec-
tures of the two models. The differences for the con-
ceptual models range from TOPMODEL (1meanNSE=
0.15), ARNOVIC (1meanNSE= 0.17), SACRAMENTO
(1meanNSE= 0.20) and PRMS (1meanNSE= 0.43). While
the mean performances show large differences, due to the
presence of poorly performing stations, the median differ-

ences are smaller for SACRAMENTO (1medianNSE= 0.07),
ARNOVIC (1medianNSE= 0.09), PRMS (1medianNSE=
0.10) and TOPMODEL (1medianNSE= 0.10). Both sum-
maries (median, mean) demonstrate that the LSTM offers
a single model architecture that offers more accurate simu-
lations than traditional hydrological models in a variety of
hydrological conditions.

Spatially, the benchmark conceptual models struggled to
produce good simulations in two geographical regions. These
were in the south-east of England and north-east of Scotland.
The performance improvement (1NSE) of the LSTM over
the conceptual model was indeed largest in the south-east of
England and north-eastern Scotland (see Fig. 3).

North-eastern Scotland is one of the most mountainous re-
gions of GB. The Cairngorm National Park and the North
Pennines are the only areas of GB where snow processes
are consistently important, owing to catchments having a
higher elevation. There are 36 catchments in the CAMELS-
GB dataset with fraction of snow cover greater than 5 %,
and 3 catchments are in the North Pennines; the other 33
catchments are in the Cairngorm National Park. The results
in Fig. 3 show that the LSTM exhibits a large performance
improvement in these catchments, since 1NSE is high. This
is most likely due to the cell state being able to represent
longer-term stores and fluxes of water, therefore capturing
the melting snow processes. The conceptual models lack a
snow module and are therefore unable to capture snow melt
or frozen ground processes, which are especially important in
winter (DJF) and spring (MAM) (Lane et al., 2019). By con-
trast, what the LSTM performance shows is that data-driven
models are able to flexibly incorporate snow processes in
the catchments where they are required (NE Scotland) even
when trained to produce one set of weights. This flexibility
is an important asset of data-driven approaches, since these
hydrological processes do not need to be specified prior to
model training but can be learnt from the available data.

The south-east is a relatively dry area, with large chalk
aquifers, contributing to a high baseflow index, and large
urban and agricultural areas, contributing to a large an-
thropogenic signal in the hydrographs. Although the im-
provement in simulation accuracy compared to the concep-
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Figure 1. Cumulative distribution functions (CDFs) of station goodness-of-fit metric scores for each model. EA LSTM (orange) and the
LSTM (blue), as well as the conceptual models: TOPMODEL (green), VIC (red), PRMS (purple) and SACRAMENTO (brown) (Lane et al.,
2019). Panels indicate the distribution of stations: (a) NSE scores, (b) correlation scores, (c) bias error scores, (d) variability error scores, (e)
low-flow bias scores, (f) mid-range of flow bias scores and (g) high-flow bias scores.

tual models is large in the south-east, the pattern of raw
LSTM NSE shows that the LSTM still underperforms in the
south-east relative to elsewhere in GB. The seasonal pat-
terns showed that the LSTMs performed worse in summer
months, which is the drier period of the year. Consistent with
this spatial pattern, the ratio of mean potential evapotranspi-
ration to mean precipitation attribute (labelled “aridity” in

the CAMELS-GB dataset; Coxon et al., 2020b) is negatively
correlated with model performance for all models (Fig. 4),
although the magnitude of this association is smaller for the
LSTM-based models than the conceptual models.

We observe consistently poorer performance across all
models, including the LSTMs, in drier hydrological condi-
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Figure 2. Seasonal NSE patterns for the two LSTM-based models (above) and the conceptual models (below). Each station in the evaluation
data is shown as a point. The colour of the point reflects the NSE score. Brighter colours reflect lower NSE values, currently capped at a
minimum of 0.7 NSE.

tions. This can be seen by the negative correlations between
catchment P /PET (aridity) and model NSE scores (Fig. 4).

The LSTM-based models show no significant correlation
between baseflow index and model performances, in contrast
with the other models. ARNOVIC also shows no significant
correlation. ARNOVIC’s improved performance can be at-
tributed to the non-linear relationship in the upper storage,
which means that the model will only produce very fast re-
sponses when that storage is very close to full (Lane et al.,
2019).

3.3.1 The impact of water balance closure on
simulation accuracy

One of the key hydrological conditions that hydrological
models struggle with is the lack of closure of the catchment
water balance. The conceptual models we test here explic-
itly maintain mass balance. They define the topographic sur-
face water catchment as the surface over which water is con-
served; i.e. the surface water catchment is not expected to
leak nor should any water enter the catchment other than
through measured precipitation. This will not then capture
water losses or gains from undercatch, drifting snow, advec-
tion of fog, groundwater, or anthropogenic transfers into or
out of the topographic catchment. Consequently, we would
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Figure 3. The performance improvement of the LSTM relative to the four conceptual models SACRAMENTO, ARNOVIC, TOPMODEL
and PRMS. The difference in NSE is calculated by subtracting the conceptual model NSE from the LSTM NSE (1NSE= NSELSTM−
NSEconceptual). Each point represents a station, and the colour reflects the performance improvement (measured by NSE) of the LSTM
compared with the conceptual models. Positive values reflect stations where the LSTM outperforms the conceptual models.

Figure 4. Static features (rows) and their Spearman’s rank correlation coefficient with model (columns) NSE scores. The positive correlations
are in blue, and the negative correlations are in red. Pale bars show very low correlations. Symbol “*” indicates that the correlation is
significant at the α = 0.001 level. The first six features can be classified as land cover features. The next four features are climatic indices.
The next six features are hydrologic attributes and the final four are topographic features. “dpsbar” refers to the mean drainage path slope
and reflects the average steepness of a catchment.
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not expect the conceptual models to take account of catch-
ments where the water balance (defined in the data) does not
close. The LSTM, in contrast, is free to adjust to account
for patterns in these anomalies. It is not yet possible to di-
agnose the origin of any such anomalies using the LSTM
alone: they may arise from inter-catchment transfers (either
through anthropogenic or groundwater processes) or data er-
rors, among other reasons that the water balance might not
be closed based on observations at the catchment scale. In
spite of this, we expect that the LSTM will show improved
performance in these catchments where there is no closure of
the catchment water balance in the underlying dataset. Since
we are calculating performance on out-of-sample time steps,
if the LSTM performance is improved, we can infer that the
LSTM-based model has learnt to correct these inconsisten-
cies in a way which is consistent between training and eval-
uation data and is therefore adjusting the catchment water
balance to better simulate the hydrograph.

We plot catchments on two dimensions (Fig. 5), their wet-
ness index (P /PE) and the runoff coefficient (Q /P), to iden-
tify catchments where water is not conserved. Points above
the horizontal line reflect catchments where the observed dis-
charge is greater than the precipitation input to the catch-
ment. This area of the graph represents catchments where
the data have too little water to generate the observed runoff.
Points below the curved line are where runoff deficits exceed
total PET in a catchment. This area of the graph represents
catchments where PET is not large enough to describe the
water remaining after runoff is accounted for; i.e. the data
have “excess” water (Fig. 5).

We tested whether the LSTM was better able to simulate
discharge in catchments with excess water (i.e. the points be-
low the curved lines in Fig. 5, which are then represented
by the orange kernel density estimate in Fig. 6). As hypoth-
esized, we find that the LSTM is more robust to these con-
ditions and produces NSE scores that are comparable to the
stations where the conceptual models perform best.

Interestingly, despite the performance improvement over
the benchmark conceptual models, the LSTMs continue to
produce a performance decline in catchments with an imbal-
anced water balance (Fig. 6). This suggests that the LSTM
models still struggle with water-limited and energy-limited
(low runoff coefficient and low wetness index) catchments.
This could be because human management decisions that
lead to abstractions are unpredictable without further dy-
namic inputs, such as timings of abstractions and effluent
returns, or else that the underlying data do not contain suffi-
cient geological information to describe the complex perco-
lation and surface or subsurface connectivity pathways that
cause a surface water catchment to leak.

Ultimately, the performance decline is less pronounced for
the LSTM. The LSTM continues to produce simulations with
NSE scores greater than 0.6. This suggests that there remains
information in the data that the LSTM is capable of using to
maintain accurate simulations in out-of-sample conditions.

4 Discussion

This study benchmarks the performance of the LSTM
using four commonly used conceptual models as a ref-
erence. The LSTM produced accurate simulations for a
large number of catchments across Great Britain. The per-
formance of the LSTM demonstrates that there is ade-
quate information in the observational data to accurately
simulate discharge behaviours across the various hydro-
logical conditions found in Great Britain. The simulated
time series and catchment error metrics can be found at
https://doi.org/10.5281/zenodo.4555820.

In the discussion that follows we return to our three re-
search questions. (i) How well do LSTM-based models sim-
ulate discharge in Great Britain? (ii) How do LSTM-based
model performances compare with the conceptual models
used as a benchmark? (iii) Can we extract information from
the spatial and temporal patterns in diagnostic measures?

4.1 Inter-model performances

The LSTM-based models produce accurate simulations of
discharge across GB, a temperate region. Two findings from
this research confirm and extend the conclusions of pre-
vious work. First, the LSTM consistently outperforms the
EA LSTM (Kratzert et al., 2019). Secondly, both LSTM-
based models demonstrate improved simulation accuracy for
discharge modelling compared with the conceptual models
we use as benchmarks.

4.1.1 How well do LSTM-based models simulate
discharge in Great Britain?

The EA LSTM is constrained to treat information that does
not vary over time (catchment attributes) separately from in-
formation that varies over time (hydro-meteorological forc-
ings). However, the constraint penalizes performance, which
was also found by Kratzert et al. (2019). The EA LSTM,
in contrast to LSTM, is forced to keep the input gate static
through time. The input gate receives only information about
catchment attributes. This means that no time-varying in-
formation is passed through the EA LSTM input gate. In
contrast, the LSTM gates receive information from both
time-varying meteorological inputs and static catchment at-
tributes. The underperformance of the EA LSTM relative to
the LSTM suggests that this regularization hurts performance
in out-of-sample conditions.

It is worth noting that the LSTM and EA LSTM also differ
in terms of practical computational requirements. The LSTM
trains much faster than the EA LSTM. The LSTM will train
30 epochs in 1 h compared with 30 epochs in 10 h for the
EA LSTM. This is due to the LSTM being an in-built Py-
Torch (v.1.7.1) function that makes use of CUDA-optimized
code (for running the models on a GPU). In contrast, the
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Figure 5. Scatter plot for the relationship between the wetness index, runoff coefficient and the model NSE score. Each point is a catchment,
coloured by the NSE score ranging from 0.8 (lighter) to 1.0 (darker). Points above the horizontal line reflect catchments where the observed
discharge is greater than the precipitation input to the catchment. Points below the curved line are where runoff deficits exceed total PET in
a catchment; therefore, there is excess water in the data, since PET cannot explain the leftover water after accounting for runoff.

EA LSTM relies on custom code without the CUDA-enabled
optimizations.

4.1.2 How do the LSTM performances compare with
the conceptual models used as a benchmark?

We have demonstrated that the LSTM is an effective
model architecture for extracting information from hydro-
meteorological data, providing a data-driven benchmark
showing what is achievable given the information contained
in available observation data from CAMELS-GB (Nearing
et al., 2021). The LSTMs demonstrate better performance
on out-of-sample times than in-sample performance from the
benchmark conceptual models.

There are obvious challenges with direct comparison of
LSTM performance against the benchmark developed by
Lane et al. (2019). The first is that the LSTM is not con-
strained to maintain water mass balance, whereas the con-

ceptual models discussed here are. Another challenge is that
the method of optimization used for choosing parameters in
the LSTM (stochastic gradient descent) is different to the
random-sampling and NSE selection criteria used to select
the “best” model parameters for the conceptual models. The
sampling process used by Lane et al. (2019) is explicitly for
estimating uncertainty as well as providing a reference of
conceptual model performances. Another difference is that
the LSTM diagnostic scores are calculated on out-of-sample
predictions, compared with the in-sample predictions for the
benchmark conceptual models.

Finally, the LSTM-based models are trained on all basins,
with a single set of weights for the whole of GB. There-
fore, these LSTM models are regional models that are able
to reproduce behaviours across Great Britain. In contrast,
most hydrological models perform best when calibrated on
individual basins (Beven, 2006a). By contrast, LSTM-based
models are most accurate when trained with as much data
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Figure 6. Comparing the NSE results for catchments that have
excess water, where runoff deficits exceed total PET (orange), to
those catchments that have physically realistic conditions (blue).
The orange line shows the histograms for stations that fall below
the curved line in the Budyko analysis above (the runoff deficit ex-
ceeds total PET; therefore there is excess water in the model). The
blue line shows the histograms for those stations between the two
dashed lines.

from as many catchments as possible (Gauch et al., 2021b).
It is important to interpret the number of parameters for each
model type in light of this fact.

The catchments where the comparative performance dif-
ference is small, i.e. where the conceptual models perform al-
most as well as the LSTM, reflect areas where the conceptual
models capture the majority of the information from the data,
and the conceptual model well represents the hydrological
process. This is the case in western Scotland, north-western
England and northern Wales, and north-eastern England (see
Fig. S7). The benchmark results are valuable in providing a
reference point for us to assess the value of LSTM-based ap-
proaches. We welcome future studies that use the LSTM sim-
ulations provided here and that further explore performance
differences and the limitations of DL methods across GB.

4.1.3 Can we extract information from the spatial and
temporal patterns in diagnostic measures?

The LSTM shows the largest performance improvement over
the conceptual models in the north-west of Scotland and the
south-east of England. The performance differences in north-
western Scotland are very likely a result of the ability of the
LSTM to learn a representation of snow processes from the
input data, whereas the conceptual models were simulating
these catchments without a snow module.

Despite the performance improvement over conceptual
models in the south-east of England, the LSTM still strug-
gles in the south-east relative to elsewhere in GB. The south-
east is a relatively dry region compared to elsewhere in GB.
It contains the highest proportion of catchments that fall be-
low the dashed line in Fig. 5 and therefore stations where
the surface water catchment is “leaky”. Furthermore, there
are underlying chalk aquifers which provide water storage

and lateral transfers. We outline three hypotheses for why
the LSTM performance may be lower in the south-east com-
pared with elsewhere in GB.

The first hypothesis is linked to the training of the LSTM-
based models. The LSTM shows a performance decline in
drier conditions (Fig. 4, see “aridity”). This confirms the
findings of other DL studies in the USA, where the LSTM
also struggled to reproduce hydrographs in drier conditions
(Kratzert et al., 2019, 2018). Basins that have long periods of
low flow contain little information, since changing meteoro-
logical inputs co-occurs with very little change in the target
discharge. Therefore, the physical process relating meteoro-
logical inputs to river discharge can only be inferred from
those catchments with varying discharge. There is some evi-
dence for this hypothesis. NSE scores show positive correla-
tions with increased discharge (at mean flow, Q5 and Q95), as
well as increased NSE as rainfall increases (p_mean) (Fig. 4).

A related but separate hypothesis is that the use of NSE as
an objective function fails to adequately weight performance
in these low-flow regimes (the NSE was the objective func-
tion across both the conceptual models and the DL models).

A final hypothesis is that groundwater dynamics and hu-
man abstractions, which influence catchments in the south-
east, are not well captured by the variables in CAMELS-
GB. Hydrological processes are not simulated as effectively
in leaky catchments compared to those catchments where
the water balance can be closed with hydrometric data
(Sect. 3.3.1), even using a very flexible and effective data-
driven model that is not constrained to balance water (the
LSTM). This suggests that the underlying data do not contain
sufficient information to model the full range of processes
that influence the hydrograph in these catchments, including
groundwater and abstractions. The catchment-averaged in-
formation on soil texture (sand–silt–clay) provides a coarse
proxy for catchment porosity. Furthermore, further data, such
as groundwater time series, might be necessary to obtain
more accurate discharge predictions. We suggest that differ-
ent input datasets should be tested to try and improve LSTM
performances, enabling the LSTM to more properly account
for the complex percolation and infiltration dynamics in these
catchments.

In terms of the seasonal patterns in LSTM performances
and the worse performances in summer, the above hypothe-
ses also apply, since the summer is the driest season in GB.
Despite this, the LSTM-based models have been able to use
the information in the available data to better model summer
(JJA) discharge than the benchmark models. As in the data-
based mechanistic modelling framework (Young, 2003), the
next stage for hydrologists is to search for a mechanistic in-
terpretation of the learnt model structure; also see Nearing
et al. (2021). One possible mechanistic interpretation that
warrants further exploration is the idea that the LSTM is ca-
pable of learning seasonally varying catchment “connectiv-
ity” (Bracken and Croke, 2007). In winter, when soils are
saturated, there are a greater number of pathways for water
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to enter river channels, and connectivity is high. In summer,
however, there is greater resistance to water flow, since water
can be absorbed and stored in drier soils, as found in Swiss
catchments by van Meerveld et al. (2019), and connectivity is
lower. Connectivity information could be represented by the
hidden state (ht) or cell state vectors (Ct). The proposed im-
pact of catchment connectivity on the performance improve-
ment of the LSTM-based models is ultimately speculative,
and future work will explore whether the LSTM has learnt to
represent the concept of connectivity and seasonally variable
flow pathways.

In contrast with the benchmark conceptual models, the
LSTM-based model NSE scores have no negative correla-
tion with crop cover percentage (Fig. 4). It is possible that
the LSTM has effectively used the cropland cover variable
to improve its internal representation of hydrology in those
catchments with a strong agricultural signal. In order to test
this hypothesis, one could perform an ablation study, remov-
ing input features and determining the impact on model per-
formances. Alternatively, sensitivity analysis could be used
to determine the relative contribution of the input features to
the discharge prediction, thus revealing what input features
are important for the model simulations. We intend to pursue
this idea in upcoming papers.

Ultimately, compared with the benchmark models, the
LSTM shows robustness to catchment conditions associated
with poor conceptual model performance. Dry catchments,
catchments with a strong agricultural signal, and summer
discharges are all strongly correlated with worse conceptual
model performances. In contrast, the LSTM has good per-
formance on out-of-sample times in these same conditions.
There is therefore information that the LSTM has learnt to
generalize from the CAMELS-GB dataset that the concep-
tual models are not utilizing. The experiments we present
here demonstrate conditions in which we can (and cannot)
improve our traditional hydrological models given the avail-
ability of high-quality, large-sample datasets (Nearing et al.,
2020; Beven, 2006b).

5 Conclusions

In this study we have benchmarked the performance of
two LSTM-based models trained on 669 catchments across
Great Britain. We have demonstrated that LSTM-based
models trained on a large sample of catchment-averaged
hydro-meteorological time series produce accurate simu-
lations across GB. There is clearly information available
in CAMELS-GB for modelling diverse hydrological condi-
tions, and the LSTM performances should be interpreted as
a competitive reference for what simulation performance is
possible for out-of-sample (in time) conditions. We trained
an ensemble of LSTM-based models to account for random
initialization during the training process of these deep learn-
ing models, which also provides an estimate of prediction un-

certainty (Sect. S4). The ensemble mean simulation produces
median NSE scores of 0.88 (LSTM) and 0.86 (EA LSTM),
with no catchments scoring NSE below 0. These results are
consistent with the findings from Kratzert et al. (2018) in a
different geographical context.

We have explored the spatial and temporal patterns in
LSTM and EA LSTM performances, using the large sample
of catchments to better understand the conditions in which
the LSTM-based models perform well compared to them-
selves (LSTM in catchment A vs. LSTM in catchment B)
and compared with traditional conceptual models. The re-
sults show that LSTM-based model performances are more
robust to hydro-climatic conditions in the south-east of Eng-
land, in more arid catchments and in catchments where the
water balance does not close. This suggests that there is more
information in large-sample datasets such as CAMELS-GB
than is captured by hydrological theory as encoded in the
benchmark conceptual models. Further work remains to de-
termine what information has been learnt by these LSTM-
based models, to use that information to improve hydrolog-
ical theories and to feed them back, if possible, into further
developments in conceptual and physically based models.

Relative to the LSTM-based model performances else-
where in GB, the LSTM-based models continue to under-
perform in south-eastern England relative to elsewhere in
GB. Considering the catchment conditions that are associ-
ated with this pattern, it is clear that all models struggle with
drier conditions and catchments where the water balance
does not close. It also seems possible that the training process
fails to capture hydrological behaviours in drier catchments.
There are a number of possible reasons. Firstly, changing
meteorological conditions in dry catchments lead to little or
no change in discharge (as would be the case in ephemeral
streams). Alternatively, the LSTM architecture may not be
capable of simulating both dry catchments and those with a
higher runoff ratio using just a single set of weights. Finally,
the data may not contain sufficient information to capture the
percolation and connectivity dynamics that drive hydrolog-
ical behaviour in catchments with significant groundwater
processes. Further studies will examine the internal represen-
tation of hydrological processes in these catchments to better
understand what the LSTM has or has not learnt about con-
nectivity and groundwater processes.

This paper benchmarks LSTM performance across Great
Britain using a new large-sample dataset, i.e. CAMELS-GB
(Coxon et al., 2020b), providing a reference for future hydro-
logical modelling efforts. Furthermore, this article outlines
the hydrological conditions in which the LSTM-based mod-
els perform well and those conditions which are more diffi-
cult to model. We encourage future benchmarking studies to
include LSTMs as a competitive model choice for simulating
rainfall–runoff processes.
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Code and data availability. CAMELS-GB data are available at
https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
(Coxon et al., 2020a). The FUSE benchmark model simulations
are available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-
86d2987543a9 (Coxon et al., 2020a). The neuralhydrology package
is available on Zenodo: https://doi.org/10.5281/zenodo.5541446
(Kratzert et al., 2021). The model simulations are freely available:
https://doi.org/10.5281/zenodo.4555820 (Lees and Lane, 2021).
The predictions and error metrics for the fitted models can be found
online: https://doi.org/10.5281/zenodo.4555820 (Lees and Lane,
2021).
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