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1 LSTM and EA LSTM Model Description

The LSTM captures information that is important over both long and short term time horizons, overcoming a key difficulty

with traditional RNNs, which are unable to retain information over longer sequences (Hochreiter, 1991; Bengio et al., 1994).

LSTMs do this by maintaining two state vectors, a cell memory vector that captures slowly evolving processes (Ct, Eq. 5) and

a more quickly evolving state vector, colloquially named the "hidden" vector (ht, Eq. 6). The Ct vector, accounts for longer-5

term dependencies, and a series of ‘gates’ control the information passing into and out of the memory vector. The ht vector

evolves more quickly depending on input information and the output of the memory vector (see Fig. S1). The gates include:

the forget gate (ft), which controls the elements of the cell memory vector that are forgotten (i.e. how long water persists

in the system, Eq. 1); the input gate (it), which controls what information from the new input data at that timestep will be

incorporated into the cell memory vector (i.e. what information is stored for future timesteps, Eq. 2); and finally the output gate10

(ot), which determines what information from the cell memory will be used to update the hidden state (i.e. what information

will impact discharge at the current timestep, Eq. 3). These gates are neural network layers, made up of weights (Wlayer), biases

(blayer) and activation functions. The activation functions allow the LSTM to model nonlinear processes. During training, we

seek the values for these weights and biases that best describe observed discharge. The information that passes through the

input gate to the cell state (Ct - see Eq. 5) is itself processed through a neural network layer, producing a series of candidate15

values that may be used to update the cell state (Eq. 4). Finally, information from the cell state is passed through the output gate

(ot) to produce the hidden output (ht) at that time-step (Eq. 6). Note that for the LSTM we have explicitly defined the inputs

as the concatenation of the dynamic meteorological data and the static catchment attributes, [Xt,n,An]. That is, both LSTM

models receive the same information. We refer the reader to Kratzert et al. (2018) and Kratzert et al. (2019) for comprehensive

descriptions of the LSTM and EA LSTM, and their hydrological interpretation.20
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ft = σ (Wf [Xt,n,An,ht−1] + bf) (1)

it = σ (Wi [Xt,n,An,ht−1] + bi) (2)

ot = σ (Wo [Xt,n,An,ht−1] + bo) (3)

C̃t = tanh(WC [Xt,n,An,ht−1] + bC) (4)

Ct = ft ∗Ct−1 + i ∗ C̃t (5)25

ht = ot ∗ tanh(Ct) (6)

The EA LSTM was developed specifically for rainfall-runoff modelling (Kratzert et al., 2019). The key difference between

the EA LSTM and the LSTM is that the input gate (i) is no longer conditional upon the dynamic (time-varying) data. Instead,

the static (time-invariant) catchment attributes (An) exclusively influence the input gate (Eq. 2 is replaced with Eq. 8), and all

other gates are solely influenced by the dynamic input data (Eq. 7, 9, 10).30

ft = σ (Wf [Xt,ht−1] + bf) (7)

i= σ (WiA+ bi) (8)

ot = σ (Wo [Xt,ht−1] + bo) (9)

C̃t = tanh(WC [Xt,ht−1] + bC) (10)

The EA LSTM is described as “entity-aware” because it explicitly learns how to use An to distinguish between similar35

dynamic inputs (Xt,n) for different catchments ("entities"). For the EA LSTM, i is determined solely by the catchment at-

tributes (Eq. 8). Therefore, each catchment has one unique hs dimensional vector which controls what information should

persist in future timesteps. In contrast, the LSTM learns to modify the input gate it based upon the meteorological forcing data

(Xt,n) and the catchment attributes (An). The output of the input gate (it or i) is a vector of values between 0 and 1, which

is learned from data. This vector, also known as an "embedding", translates our catchment attributes into a high-dimensional40

space that represents catchments in a manner optimised to differentiate between catchment rainfall-runoff behaviours. Kratzert

et al. (2019) demonstrated how this embedding represents what the model has learned about our catchments.

For the sake of clarity, it is important to note that both models receive the same information. The LSTM still receives the

static catchment attributes. However, rather than affecting only the input gate, the static data can influence all gates, since they

are appended to a vector of dynamic inputs ([Xt,n,An]) and so the same information is given to the LSTM at each timestep.45

The static attributes are used by the LSTM in the same way as the dynamic data. This offers extra flexibility for the LSTM

compared with the EA LSTM, since the LSTM is able to modify the input gate based on information from time-varying data,

whereas the EA LSTM is not. We are using the static nature of the data as a constraint on the EA LSTM to reflect the nature of

the input data (separated into static and dynamic inputs - see Fig. S1).
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Figure S1. Wiring diagram for the LSTM and EA LSTM recurrent cells, adapted from Olah (2016). These cells are repeated for each input

timestep in our sequence length. The key difference between the EA LSTM and the LSTM is the separation of the static data, An), from the

dynamic data Xt,n. In the EA LSTM, the static data is the sole input to the input gate, producing an embedding, it. In both LSTM models

there is a cell state Ct, that passes from cell to cell, capable of modelling longer-term dependencies. Note that the neural network layers

correspond with the weights (W ), biases (b) and activation functions (σ, tanh). These operations correspond to the yellow layers in the

diagram.

Both models have a final layer, a fully connected linear layer, which transforms the ht vector into a single discharge predic-50

tion, ŷt,n.

2 Comparison of the Train and Test Periods

The calibration (train) period and the evaluation (test) period are similar in terms of their predictability, although the evaluation

period was slightly less predictable, as can be seen in the shifting of the two baseline model distributions towards lower NSE

values (see Fig. S2). We used two baseline models to test how “predictable” the catchment hydrographs are in these two time55

periods. Climatology makes a prediction based on the mean discharge for that day of the year. Persistence is equivalent to

predicting yesterday’s value today, predicting the future will be the same as the past. Fig. S2 shows that the processes are

largely stationary, and the period we use for calibration is similar to the period we use for evaluation. Indeed, the period

we use for calibration is slightly easier to predict than the test period, since the benchmark models perform better, i.e. the

distribution of catchment NSE scores is shifted towards higher NSE scores during the train period. Furthermore, the conditions60

for precipitation, PET, temperature and specific discharge are very similar between the train and test period. The temperatures
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have warmed slightly and there are slightly more days with zero precipitation, however, it is unlikely that such small changes

have impacted the ability of the DL model to generalize. Discharge has risen slightly in the period of interest, across Great

Britain.

Figure S2. Kernel Density Estimates (KDE) of NSE scores for two baseline models (above), Climatology (a) (calculated as the mean

discharge for that day-of-year for each site) and Persistence (b) (calculated as the discharge shifted one day into the future, so yesterdays

discharge is a prediction of today). Below, Kernel Density Estimates are provided for hydro-meteorological variables, precipitation (c),

potential evaporation (pet) (d), temperature (e) and specific discharge (f) in the training period (1980–1997, dotted line) and the test period

(1998–2008, dashed line). Climatology represents the mean conditions for that day of the year. Persistence reflects predicting yesterday’s

values today, i.e. predicting no change from yesterday. These give an overview of how “predictable” a time period is, since if these baseline

models perform well, it will be easier to score at least as well as the baseline.

3 Model Hydrographs65

We illustrate the model predictions by showing the hydrographs for three stations from the Thames, the Severn and the Tay, as

the largest rivers having at least part of their catchment in England, Wales and Scotland respectively.
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Figure S3. Hydrographs for the Thames at Kingston (Station 39001), the Tay at Ballathie (Station 15006) and the Severn at Bewdley

(Station 54001), for the hydrological year from October 2006 – September 2007. The model performances displayed in the header reflect the

performance of each model on the entire test period (1998–2008), not just the displayed period. The observed discharge, from (Coxon et al.,

2020), is shown as a dotted black line. The bars reflect catchment averaged precipitation with the axis shown on the right side. The LSTM

and EA LSTM simulations are shown in blue and orange respectively. Conceptual model simulations for Sacramento (brown), VIC (red),

PRMS (purple) and TOPMODEL (green) are taken from published timeseries from Lane et al. (2019).
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4 Model Uncertainty

Uncertainty is present in all rainfall-runoff models. Model uncertainty has three main sources: (i) uncertainties in the observed

data used to calibrate (train) hydrological models (McMillan et al., 2010); (ii) uncertainties in model structure (Fenicia et al.,70

2014; Krueger et al., 2010); and (iii) uncertainties in model parameters (Beven and Freer, 2001; Gupta et al., 2009; Arsenault

et al., 2014). Parameter uncertainty can be evaluated by using an uncertainty evaluation framework (Beven and Binley, 2014),

often involving a sampling strategy. Model structural uncertainty is often estimated within multi-model frameworks, such as

the Modular Modelling System (Leavesley et al., 1996) or the Framework for Understanding Structural Errors (FUSE) (Clark

et al., 2008). Uncertainties in observations can be estimated and accounted for by using multiple forcing products (Kratzert75

et al., 2021) or by resampling the input data. This study addresses predictive uncertainty in the LSTM-based models by using

an ensemble of 8 LSTM models trained with different random seeds, representing different starting conditions for the training

process.

The results in the main text, unless otherwise specified, show diagnostic scores given the ensemble mean discharge. Here,

we discuss the ensemble range and the uncertainty that this represents. The ensemble is produced by different random seeds,80

and therefore different starting parameters used during the training process. The mean catchment ensemble variability is 0.16

mm3 day−1. The median is 0.12 mm3 day−1. However, model uncertainties and their relationship with catchment attributes

are in accordance with our hydrological intuition. For example, we see increasing uncertainty at increased streamflow (Fig.

S4). Furthermore, by normalising for mean catchment discharge we can calculate ensemble standard deviation as a ratio of

total discharge. This coefficient of variability is greatest in the South East of England (Fig. S5). A more principled treatment of85

uncertainty, which benchmarks various methods for using DL models to directly simulate a distribution can be found in Klotz

et al. (2020).

Figure S4. Histogram of raw station averaged variability (standard deviation) across ensemble members. The blue histogram reflects the

variability in simulations where observed discharge is lower than the 10th percentile (y_truet,nQ0.1
n ). The green histogram shows variability

for only those times where observed discharge is greater than the 90th percentile (y_truet,nQ0.9
n ). The orange histogram shows variability

for all times when the observed discharge is between the 30th and 70th percentile (Q0.3
n y_truet,nQ0.7

n .)
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Figure S5. Spatial Patterns of normalised catchment averaged variability (standard deviation) of ensemble predictions. Brighter colours

reflect greater variability across members of the ensemble of LSTMs.
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5 Spatial Performances of Error Metrics

8



9



Figure S6. Spatial Patterns of different performance metrics. Each point is a single station-gauge, and the point is coloured according

to the performance metric. For performance metrics with a diverging score (above and below an optimum, e.g. Bias Error) more intense

colours represent worse performance. Red represents an under-prediction, blue an over-prediction. For scores which are increasing (e.g.

NSE, Correlation), darker colours reflect improved performance.

Figure S7. Median NSE scores for eight Great Britain river basin regions. The regions are based on the UKCP09 river basins (mur) aggregated

from 21 river basin districts to eight regions. The leftmost column is the median score for all GB catchments, which is the same as in Table

3 in the main text. It is included here for reference.
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