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Abstract. Agricultural production and food prices are af-
fected by hydroclimatic extremes. There has been a grow-
ing amount of literature measuring the impacts of individual
extreme events (heat stress or water stress) on agricultural
and human systems. Yet, we lack a comprehensive under-
standing of the significance and the magnitude of the impacts
of compound extremes. This study combines a fine-scale
weather product with outputs of a hydrological model to
construct functional metrics of individual and compound hy-
droclimatic extremes for agriculture. Then, a yield response
function is estimated with individual and compound metrics,
focusing on corn in the United States during the 1981–2015
period. Supported by statistical evidence, the findings sug-
gest that metrics of compound hydroclimatic extremes are
better predictors of corn yield variations than metrics of in-
dividual extremes. The results also confirm that wet heat is
more damaging than dry heat for corn. This study shows the
average yield damage from heat stress has been up to four
times more severe when combined with water stress.

1 Introduction

The United States is the world’s top food exporter, being
the major producer of global calories of the four staple
crops of corn, soybeans, wheat, and rice, which together ac-
count for 75 % of the calories humans consume (USDA–
NASS, 2017). Specifically, it produces more than 40 % of
the world’s corn. Precipitation and temperature weather ex-
tremes cause variations in crop yields, affecting not only crop
growth but also crop prices and farm revenues. As climate

changes, all regions of the planet are experiencing more fre-
quent weather extremes – often with greater magnitude than
in the past (WMO, 2013); the World Meteorological Orga-
nization (WMO) calls 2001–2010 the “decade of climate ex-
tremes”, and this time frame did not even include the record-
breaking year 2012 that devastated corn and soybean produc-
tion across the US (Rippey, 2015). This year was both very
hot and very dry in many parts of the Corn Belt. To under-
stand past and future global food security, it is therefore es-
sential to quantify and build predictive models of the impacts
of extreme weather events on staple crop yields.

The focus of this paper is statistical modeling of crop
yields, (e.g., Schlenker and Roberts, 2009), which draws
heavily on the field of econometrics. While there is also
a rich literature of process-based crop yield models (Jones
et al., 2017), many of these models still rely on observa-
tional data-derived statistical relationships between extreme
weather events and yields to capture impacts of extremes.
Additionally, recent high-visibility studies on the impact of
weather extremes on past and future crop yields rely entirely
on statistical econometric modeling (Lobell et al., 2013). The
relationship between extreme heat and crop yields has been
well documented, particularly across the United States (US)
and for corn, the US’s largest crop by acreage (Schlenker
and Roberts, 2009; Urban et al., 2012; Diffenbaugh et al.,
2012; Roberts et al., 2013; Lobell et al., 2013; Urban et al.,
2015; Wing et al., 2015; Burke and Emerick, 2016). Statis-
tical and process-based crop models also appear to agree on
corn yield impacts due to heat (Liu et al., 2016; Tebaldi and
Lobell, 2018).
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However, there is less agreement and greater uncertainty
around the crop yield impacts of hydrologic extremes, due
largely to the use of annual or season mean precipitation met-
rics in statistical models that fail to capture hydrologic ex-
tremes (D’Odorico and Porporato, 2004; Lobell and Burke,
2010; Schaffer et al., 2015; Werner and Cannon, 2016).
These cumulative indices – monthly mean or seasonal aver-
age precipitation – do not capture extreme events that occur
within the season. For example, precipitation amounts from
early season floods and late season droughts can cancel out
when taking the average, effectively smoothing over these
extreme events in the data. The computed mean for this vari-
able can be misleading as crop growth responds to day-to-day
variability. While average conditions are important, expo-
sure to extreme water stress can cause permanent, unrecov-
erable damage to plants (Denmead and Shaw, 1960), while
too much water can cause yield-damaging floods, waterlog-
ging, or may wash out soil nutrients and fertilizers (Kaur et
al., 2018; Schmidt et al., 2011; Urban et al., 2015).

Crops obtain most of their water directly from soil mois-
ture, yet extreme water metrics based on soil moisture have
been only minimally explored (Fishman, 2016). Several stud-
ies have highlighted the need for irrigation to compensate for
soil moisture deficits (Li et al., 2017; McDonald and Girvetz,
2013; Meng et al., 2016; Williams et al., 2016), further point-
ing to soil moisture as a potentially more important crop
water availability metric than precipitation. However, cur-
rent statistical studies have had limited success in statistically
capturing the yield response to soil moisture metrics (Brad-
ford et al., 2017; Peichl et al., 2018; Siebert et al., 2017).
There are several potential reasons for this limited success.
First, direct measures of soil water availability include com-
plex biophysical and hydrological processes that are difficult
to capture in a rather simple statistical model. Another barrier
has been the limited availability of daily fine-scale soil mois-
ture data and the inconsistency of soil moisture data with heat
information. It has, therefore, become a standard practice in
statistical crop modeling either to focus on a limited geo-
graphical area (Rizzo et al., 2018; Wang et al., 2017) or to
employ a proxy variable like precipitation, evapotranspira-
tion, or vapor pressure deficit estimates (Comas et al., 2019;
Roberts et al., 2013).

A few recent studies have highlighted the importance of
mean soil moisture metrics for estimating crop yields in the
US (Ortiz-Bobea et al., 2019; Ribeiro et al., 2020). How-
ever, Ortiz-Bobea et al. (2019) estimated the average impact
of heat stress on corn yields without distinguishing between
a hot dry day (dry heat) and a hot wet day (wet heat), and
similarly, Ribeiro et al. (2020) evaluated the impacts of dry
heat and ignored the impacts of wet heat stress. These papers
do not focus on the interaction or compound effects. There-
fore, there is currently no robust predictive framework that
captures the implications of compound extremes which ap-
pear in the historical climate record and are expected to be-
come more frequent under future climate change conditions

(Myhre et al., 2019). It is important to build such a frame-
work because harmful extreme heat can be less harmful when
there is sufficient soil moisture (Hauser et al., 2019), indicat-
ing that previous estimates of extreme heat impacts on staple
crop yields may be biased high.

This paper presents the first statistical predictive crop yield
model that directly addresses the gap in our knowledge of
crop yield impacts due to compound weather extremes, in-
cluding both dry heat and wet heat. This is accomplished by
using high-resolution, daily simulated soil moisture data that
are consistent with daily temperature data and applied to corn
yield data across the continental United States.

2 Methods

This paper introduces two statistical models of crop yield
as a function of heat and soil moisture, effectively build-
ing on the regression model methods from Schlenker and
Roberts (2009) and Ortiz-Bobea et al. (2019). While both of
these studies considered similar metrics for heat, the former
is based on precipitation, and the latter considers an average
soil moisture metric. The current study extends them by in-
troducing easy-to-use metrics of individual and compound
extremes based on simulated soil moisture. Here, Model (1)
assumes that the impacts of heat and water on corn yields
are separable. This model considers metrics of individual ex-
tremes (heat stress and water availability). Relaxing the sep-
arability assumption, Model (2) assumes the yield impacts of
heat and water are mutually interdependent. Model (2) con-
siders metrics of compound extremes. Model (1) helps to es-
timate the marginal impact of heat stress (individual extreme)
and the marginal impact of daily soil moisture stress (individ-
ual extreme) on crop yields. Model (2) provides a framework
for measuring the conditional marginal impact of heat and
soil moisture (compound extremes) on crop yields.

2.1 Data

In estimating the marginal impact of soil moisture on corn
yields, we employ information about soil moisture, tempera-
ture, precipitation, and corn yields for counties of the United
States for the 1981–2015 period. The data on yield are ob-
tained from United States Department of Agriculture, Na-
tional Agricultural Statistics Service (USDA–NASS) at the
county level. The yield is defined as the corn production
(in bushels) divided by harvested area (in acres). Precipita-
tion is defined in millimeters as accumulated rainfall during
the growing season (April–September). It is calculated based
on PRISM (Parameter-elevation Regressions on Independent
Slopes Model) daily information at 2.5×2.5 arcmin grid cells
over the continental US for 1981–2015. It is aggregated to
each county according to cropland area weights. Compound
metrics of heat and soil moisture are also calculated daily
at the gridded level. Then, we aggregate the metrics to the
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Figure 1. Soil moisture dynamics within a typical growing season. Some soil moisture conditions can be harmful to crops, including excess
wetness (i), moisture stress intensity (ii), duration of moisture stress (iii), and severity of soil moisture stress (iv). The around normal (∗)
levels can be determined by statistically examining the impacts of various intervals of soil moisture deviation from normal (seasonal mean
volumetric soil moisture).

growing season and county level. Daily soil moisture con-
tent and soil moisture fraction are obtained from the Water
Balance Model (WBM; Grogan, 2016; Wisser et al., 2010),
based on daily simulations using PRISM data at 6×6 arcmin
grid cells for the 1981–2015 period over the continental US.

2.2 Data processing

Major metrics used in this study are listed in Table 1. To
derive the metrics listed in this table, the climate and soil
moisture data are processed. The heat metrics are based
on the concept of growing degree days (dday). Following
D’Agostino and Schlenker (2015), the daily distribution of
temperatures is approximated assuming a cosine function be-
tween the daily minimum and maximum temperature. Let
t = acos

(
2b−Tmax−Tmin
Tmax−Tmin

)
, then dday at each day is defined us-

ing the following:

dday(b)

=



(Tmax+Tmin)
2 − b if b ≤ Tmin

t

π

[
(Tmax+ Tmin)

2
− b

]
+
(Tmax− Tmin)

2π
sin
(
t
)

if Tmin < b ≤ Tmax

0 if Tmax < b

, (1)

where b is the base for calculating dday and can take the
base values and critical values. This study considers a piece-
wise linear function to aggregate the dday. The major as-
sumption is that plant growth is approximately linear be-
tween two bounds. The dday between two bounds are sim-
ply dday above the smaller bound minus dday above the

larger bound. The dday are initially calculated for each day
at each 2.5× 2.5 arcmin grid cell during the growing season
(April–September). Then, they are aggregated for the whole
growing season from the first day of April through the last
day of September. Finally, they are aggregated to the county
level using cropland area weights. We employ the Cropland
Data Layer (CDL) from the US Department of Agriculture
to exclude grid cells with no cropland and to aggregate the
grid cell information to the county level (Boryan et al., 2012;
USDA–NASS, 2017).

The soil moisture metrics are constructed as the deviation
from normal. Normal levels are defined as seasonal mean
volumetric soil moisture over the 1981–2015 period. The
water available to plants depends on volumetric soil mois-
ture and soil type. To operationalize the soil moisture metric,
this study considers the soil moisture deviation from normal.
Soil moisture deviation is defined as daily soil moisture mi-
nus the normal soil moisture levels. Figure S1 in the Sup-
plement shows the difference between normal soil moisture
content, water available to plants, and unavailable water. The
soil moisture level is considered extreme if it is below/above
a threshold. The threshold is obtained by testing the impacts
of 5 mm intervals of soil moisture deviation from normal.

Figure 1 visualizes soil moisture conditions as the basis
for the construction of the soil moisture metrics (the legend
in the figure is as follows: extreme surplus – A; surplus –
B; around normal – C and D; deficit – E; extreme deficit
– F). Three types of metrics are constructed for each con-
dition. The simplest metric is the number of days during the
growing season with each condition. To show the intensity of
each condition, the second metric is defined based on the cu-
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Table 1. Major variables in each model of the study.

Heat metric (h) Water metric (m)

Model (1) – individual extremes

(1-a) dday 10 to 29 ◦C
dday 29 ◦C

Precipitation
Square of precipitation

(1-b) dday 10 to 29 ◦C
dday 29 ◦C

Seasonal mean soil moisture content (SMavg)
Square of seasonal mean soil moisture content

(1-c) dday 10 to 29 ◦C
dday 29 ◦C

Number of days with low soil moisture (NDD)
Number of days with high soil moisture (NDS)

(1-d) dday 10 to 29 ◦C
dday 29 ◦C

Index of soil moisture above normal levels (CMS)
Index of soil moisture below normal levels (CMD)

Model (2) – compound extremes

(2-a) dday 10 to 29 ◦C
dday 29 ◦C and SM 75+mm below normal
dday 29 ◦C and SM 25–75 mm below normal
dday 29 ◦C and SM 0–25 mm around normal
dday 29 ◦C and SM 25–75 mm above normal
dday 29 ◦C and SM 75+mm above normal

Seasonal mean soil moisture content
Square of seasonal mean soil moisture content

(2-b) dday 10 to 29 ◦C
dday above 29 ◦C

SM 0–25+mm around normal (CMN) when T>T ∗

SM 0–25+mm around normal (CMN) when T<T ∗

SM 25+mm above normal (CEMS) when T>T ∗

SM 25+mm above normal (CEMS) when T<T ∗

SM 25+mm below normal (CEMD) when T>T ∗

SM 25+mm below normal (CEMD) when T<T ∗

Note: dday – degree days; SM – soil moisture; SMavg – seasonal mean soil moisture; NDD – number of days when the soil moisture content is more
than 25 mm below normal levels; NDS – number of days when the soil moisture content is more than 25 mm above normal levels; CMS – index of
moisture surplus; CMD – index of moisture deficit; CMN – index of normal soil moisture; CEMS – index of extreme moisture surplus; CEMD – index
of extreme moisture deficit. T ∗ represents the temperature threshold.

mulative deviation from normal for each condition. Finally,
a compound metric is defined as the sum of dday for each
observed soil moisture condition. In Table 1, SMavg is cal-
culated as the seasonal mean of soil moisture content (in
millimeters for the 1000 mm topsoil) from the first day of
April through the last day of September for each grid cell
for each year. This metric shows the average soil moisture
conditions. Then, NDD and NDS represent the number of
days on which the daily volumetric soil moisture content
is more than 25 mm below normal levels or is more than
25 mm above normal levels, respectively. Furthermore, CMS
and CMD show the cumulative soil moisture surplus (above
normal) and deficit (below normal) while CEMS and CEMD
show the cumulative extreme soil moisture surplus (25+mm
above normal) and deficit (25+mm below normal), respec-
tively. These are metrics of extreme soil moisture conditions.
Finally, CMN represents a cumulative metric of soil moisture
index around normal.

2.3 Model (1) – individual extremes

Model (1) is a basic model that uses individual extremes, fol-
lowing a similar approach to Schlenker and Roberts (2009).
Model (1) assumes that the effects of heat on corn yields are
cumulative over the growing season and separable from wa-
ter. In other words, the end-of-season yield is the integral of
daily heat impacts over the growing season. This relationship
can be demonstrated via Eq. (2) as follows:

yit =

h∫
h

g (h)ϕit (h)dh+ zitδ+ ci + εit , (2)

where yit is the crop yield, g(h) is a function showing yield
as a function of heat,ϕit (h) is the time distribution of heat
(h) over the growing season in location i and year t , while
the heat ranges between the lower bound h and the upper
bound h. Metrics of water availability (e.g., precipitation or
soil moisture) and other control factors are denoted as zit ,
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and ci is a time-invariant fixed effect. All other unobserved
variables are in the εit term. The fixed effect variable (also
termed the unobserved individual effect) allows us to control
for other biophysical or economic characteristics of each lo-
cation which are not varying over time and can potentially
explain the yield differences between counties. Note that this
form of equation with fixed effects and unobserved variables
is a standard econometric method. We evaluate the accuracy
of this model, compared to historical data, first using cumu-
lative precipitation and then mean soil moisture as the water
availability metric zit .

For Model (1), different representations of water variables
are considered. In Model (1-a), zit includes cumulative pre-
cipitation from the first day of April to the last day of Septem-
ber and its square term; this will evaluate the standard way
in which yields have been estimated in previous studies. In
Model (1-b), zit is the seasonal mean soil moisture index
and its square term, which is used to evaluate the use of soil
moisture instead of precipitation. Model (1-c) includes the
number of days with low soil moisture and the number of
days with high soil moisture, evaluating the importance of
extreme soil moisture events (Fig. 1). In Model (1-d), zit in-
cludes metrics of soil moisture below or above normal levels,
evaluating the importance of extreme soil moisture intensity
(Fig. 1). For Model (1), it assumes a piecewise linear form
for g (h). It includes dday above 29 ◦C as a metric of extreme
heat and dday from 10 to 29 ◦C as a metric of beneficial heat.
Look at the Supplement for more details about each model.

2.4 Model (2) – compound extremes

Here, a new statistical model is introduced to focus on the
compound metrics of available water and heat as the major
indicators of plant growth to evaluate if including the condi-
tional marginal impact of heat and water on yields provides
improved yield estimates. Model (2) is as follows:

yit =

m∫
m

h∫
h

g (h, m)ϕ (h, m)dhdm+ ci + εit , (3)

where yit is the crop yield, g (h, m) is the yield response
function to each combination of soil moisture level, m, and
heat, h; ϕ (h, m) is the distribution of soil moisture and heat,
m and m are the upper and lower thresholds of soil mois-
ture, h and h are maximum and minimum heat, ci is a time-
invariant county fixed effect, and εit is the residual. Here, the
model does not separate the impact of heat from water. In
other words, the marginal impact of heat depends on water,
and the marginal impact of water depends on heat.

A total of two approaches are employed to estimate the
impacts of compound extremes within this model. First, we
construct a binning estimator based on daily interaction on
heat and soil moisture in Model (2-a). We define several in-
tervals of soil moisture (SM) represented by daily dummy

variables, and we interact these dummy variables with the
daily excess heat index of 29 ◦C. Also, we take 25 mm inter-
vals for soil moisture deviation from normal. In other words,
we split the dday into dday that are conditional to soil mois-
ture conditions. This includes dday 29 ◦C and SM 75+mm
below normal (extreme deficit), dday 29 ◦C and SM 25–
75 mm below normal (deficit), dday 29 ◦C and SM 0–25 mm
around normal (normal), dday 29 ◦C and SM 25–75 mm
above normal (surplus), and dday 29 ◦C and SM 75+mm
above normal (extreme surplus). We estimate a coefficient
for each combination of excess heat and soil moisture; i.e.,
we estimate a model with metrics of dday while controlling
for soil moisture. Second, we estimate a model with metrics
of soil moisture while controlling for temperature in Model
(2-b). We define an index of soil moisture when the temper-
ature is above the threshold and an index of soil moisture
when the temperature is below the threshold. If H is the av-
erage daily temperature, and H ∗ is the temperature thresh-
old, then the metrics are the index of normal soil moisture
(SM 0–25+mm around normal) when H>H ∗, the index of
normal soil moisture when H<H ∗, the index of moisture
deficit (SM 25+mm below normal) when H>H ∗, the in-
dex of moisture deficit when H<H ∗, the index of moisture
surplus (SM 25+mm above normal) when H>H ∗, and the
index of moisture surplus when H<H ∗. Look at the Supple-
ment for more details about each model.

3 Results

The overall simulation results from the WBM are illustrated
in Figs. 2–4, showing the gridded historical mean for the
cultivated continental US, average annual variations for the
cultivated continental US, and bivariate distribution of soil
moisture and heat for the grid cells that produce corn growth.
To illustrate the spatial heterogeneity, Fig. 2 shows the grow-
ing season mean soil moisture content (in millimeters in
1000 mm topsoil), as calculated based on the daily root zone
soil moisture level from April–September for 1981–2015 at
2.5× 2.5 arcmin grids excluding non-cultivated area. Aver-
age growing season soil moisture is heterogeneous across the
continental US, with distinct regional patterns (see Fig. 2).
For the Corn Belt, the soil moisture level is relatively high
compared to other regions. The mean of volumetric soil
moisture ranges from below 50 mm in southern California
to above 250 mm in the corn belt and around Mississippi.

To compare the variation in simulated soil moisture and
precipitation, Fig. 3 illustrates the weighted average soil
moisture and precipitation over the cultivated US for 1981–
2015. In general, variation in soil moisture average is higher
than that of precipitation (Fig. 3), showing how this new
water metric is different from previous approaches. One in-
teresting finding is that, for some years, the mean precipi-
tation and the mean soil moisture move in opposite direc-
tions. For example, in 1990 the mean precipitation is declined
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Figure 2. Growing season mean soil moisture content (in mil-
limeters in 1000 mm topsoil) as calculated based on daily root
zone soil moisture level from April to September for 1981–2015
at 2.5× 2.5 arcmin grids, excluding non-cultivated area. The soil
moisture level is obtained from the WBM, and non-cultivated area
information is from the CDL. This map illustrates the heterogeneity
of simulated soil moisture over the continental US and even within
states.

by around 5 % while the mean soil moisture is increased by
around 13 %.

To show the dynamics of soil moisture and heat, Fig. 4
shows their bivariate distribution by month, based on daily
information for all the cultivated grid cells in the US Corn
Belt for 1981–2015. Heat and soil moisture combinations
vary through the growing season (Fig. 4). The data show sig-
nificant month-to-month variation, with the second half of
the season facing hotter and drier days. Also, July has the
highest variation in soil moisture deviation, with a high prob-
ability of compound extremes, as the distribution moves to-
ward the lower right.

Below, we describe the regression results from each in-
dividual model, and compare their performance to identify
which metrics are important to include in the statistical es-
timate of corn yields. The central finding is that metrics of
soil moisture extremes are statistically significant, and mod-
els including intensity, duration, and severity metrics (as il-
lustrated in Fig. 1) better capture both the mean and vari-
ation in US corn yields. This point is illustrated in Fig. 5,
which compares Model (1-a) to Model (2-a) as each model
estimates the percentage change in corn yields, assuming ad-
ditional 10 dday above 29 ◦C and no change in mean soil
moisture. Figure 1 shows that Model (1) would significantly
underestimate the damage for conditions with extreme water
surplus or extreme water deficit.

3.1 Model (1) – predicting yield responses to individual
extremes

The results from Model (1-a) show a strong relationship be-
tween corn yields and heat and precipitation (Table 2; col-
umn 1-a). The marginal impact of dday within 10–29 ◦C is
significantly positive, while that from additional dday above
29 ◦C is strongly negative, confirming the seminal findings
of Schlenker and Roberts (2009).

The results from Model (1-b), excluding precipitation,
show that the marginal relationship with soil moisture is also
significant (Table 2; column 1-b). This confirms the find-
ings of Ortiz-Bobea et al. (2019). It shows that the marginal
relationship with soil moisture is increasing up to ∼ 92 in
1000 mm topsoil and decreasing for higher values.

In Model (1-c), we consider the number of days that soil
moisture is either too high or too low. The model with metrics
of soil moisture extremes further improves the fit, revealing a
negative marginal relationship associated with the number of
days with low or high soil moisture. Regarding Model (1-c),
the coefficient on the number of days with low moisture is
also significant and negative. Our estimation sample shows
26 d of high soil moisture and 27 d of low soil moisture on
average. The implication is that eliminating 25 d of high soil
moisture and 25 d of low soil moisture can improve the corn
yields by up to 12.6 %.

Model (1-d) shows the estimated coefficients when con-
sidering surplus and deficit (soil moisture deviation from nor-
mal) instead of average seasonal soil moisture. Here, we con-
sider two thresholds for low and high soil moisture. Return-
ing to Fig. 1, we evaluate the area of all blue bars and the area
of all red bars. It shows that the marginal impact of the mois-
ture deficit (cumulative negative soil moisture deviation) is
significant and positive. This indicates the positive contribu-
tion of additional soil moisture when the soil moisture levels
are below normal. On the other hand, the marginal impact of
additional soil moisture in a wet period – i.e., a positive soil
moisture deviation – is negative. In other words, this measure
captures the fact that plants will benefit from reductions in
soil moisture when the soil moisture levels are above normal.
This is an indicator of the value of subsurface drainage for
agriculture. Note that the Model (1-d) decreases the marginal
relationship with extreme heat (dday 29 ◦C). However, this
effect is not statistically different from that produced by the
first model.

The coefficient of the deficit in Model (1-d) is significant
and positive. On the other hand, the coefficient of the extreme
deficit is also significant and positive. The estimation sample
shows that this metric is around 2300 mm on average. It indi-
cates that reducing the deficit by 2300 mm and reducing the
surplus by the same amount can improve the corn yield by up
to 21.2 % on average. Note that the mean soil moisture can
stay unchanged in this scenario.
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Figure 3. Variations in average precipitation versus average soil moisture over corn areas in the United States. The precipitation is aggregated
from PRISM, and soil moisture is aggregated from WBM from 2.5 arcmin grid cells weighted by cropland area.

Figure 4. The bivariate density of heat and soil moisture for 1981–2015 for all the grid cells in the US Corn Belt. The precipitation is
aggregated from PRISM, and soil moisture is aggregated from WBM based on 2.5 arcmin grid cells.

3.2 Model (2) – predicting yield responses to compound
extremes

In Model (2-a), we introduce heat–soil moisture interac-
tions to test whether soil moisture availability changes the
marginal impact of heat on yields (estimation results are in
Table 3). We find that the average marginal impacts of dday
29 ◦Cs (heat stress) are all significant. The coefficient on
dday 29 ◦C combined with the extreme deficit is −0.0082.
The coefficient of dday 29 ◦C (heat stress) combined with
extreme water surplus is −0.0140. These figures are signifi-
cantly different compared to Model (1).

We estimate a model with soil moisture while controlling
for temperature (Model 2-b). The results are presented in Ta-
ble 4. The coefficient of dday from 10 to 29 ◦C is significant

and positive. This is not significantly different from previ-
ous Models (1-a–d) and (2-a). The coefficient on dday above
29 ◦C is significant and negative. It is close to the estimated
values from Model (2-a) but slightly lower than Model (1).
This indicates that the average damage from extreme heat
index (dday 29 ◦C) is around 25 % lower than Model (1).
The estimated parameters show the yield response to changes
in soil water content. Comparing the parameter values can
show the difference in yield response to soil moisture in hot
weather and moderate weather. The coefficient on normal
soil moisture, conditional to hot weather, is 0.00012. The
coefficient on normal soil moisture, conditional to moderate
weather, is 0.00003. This indicates that the yield response to
water is up to 4 times higher in hot weather. The marginal im-
pact on soil moisture deficit index is 0.00009 in hot weather
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Figure 5. Estimated damage to corn yield from additional 10 dday above 29 ◦C and no change in seasonal mean soil moisture.

Table 2. Corn yield estimation without the interaction of heat and soil moisture in Models (1 a–d).

(1-a) (1-b) (1-c) (1-d)
Log corn yield Log corn yield Log corn yield Log corn yield

dday 10–29 ◦C; April–September 0.000336∗∗∗ 0.000343∗∗∗ 0.0003486∗∗∗ 0.0003083∗∗∗

(0.000087) (0.00008) (0.0000725) (0.0000683)

dday above 29 ◦C; April–September −0.005307∗∗∗ −0.005114∗∗∗ −0.005277∗∗∗ −0.005041∗∗∗

(0.000673) (0.000691) (0.0006678) (0.0005999)

Precipitation; April–September 0.000658∗∗

(0.000254)

Precipitation; April–September square −5.16e-07∗∗

(−9.35e-07)

Seasonal mean soil moisture content 0.003593∗∗∗

(0.000664)

Seasonal mean soil moisture content square −0.000017∗∗∗

(3.000e-06)

Number of days with SM 25+mm above normal −0.001838∗∗∗

(0.0003816)

Number of days with SM 25+mm below normal −0.002089∗∗∗

(0.0002817)

Index of soil moisture above normal (mm) −.000040∗∗∗

(2.800e-06)

Index of soil moisture below normal (mm) 0.000044∗∗∗

(7.100e-06)

Observations 69923 69923 69923 69923

R squared 0.4686 0.4714 0.4795 0.4914

AIC (Akaike’s information criterion) −21238.1 −21612.3 −22696.8 −24303.4

BIC (Bayesian information criterion) −21201.4 −21575.7 −22660.2 −24266.8

Note: table lists regression coefficients and shows standard errors in parentheses. The constant term and coefficients on the interaction of each state and time
trends are not reported. Standard errors are in parentheses and adjusted for state clusters. ∗∗∗ p<0.01; ∗∗ p<0.05.
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Table 3. Corn yield estimation while splitting the heat stress index
in Model (2-a).

(2-a)
Log corn yield

dday from 10 to 29 ◦C 0.0003083∗∗∗

(0.0000685)

dday 29 ◦C and SM 75+mm below −.0082398∗∗∗

normal (extreme deficit) (0.0014372)

dday 29 ◦C and SM 25–75 mm below −0.0062069∗∗∗

normal (deficit) (.0009793)

dday 29 ◦C and SM 0–25 mm around −0.0037559∗∗∗

normal (normal) (0.0004045)

dday 29 ◦C and SM 25–75 mm above −0.0055709∗∗∗

normal (surplus) (0.0012041)

dday 29 ◦C and SM 75+mm above −0.0140295∗∗∗

normal (extreme surplus) (0.0019083)

Mean daily soil moisture content 0.0026635∗∗∗

(mm) (0.0008153)

Square of mean daily soil moisture −0.0000161∗∗∗

content (2.600e-06)

Observations 69923

R squared 0.4921

AIC −24401.6

BIC −24328.3

Note: table lists regression coefficients and shows standard errors in
parentheses. The constant term and coefficients on the interaction of each
state and time trends are not reported. Standard errors are in parentheses and
adjusted for state clusters. ∗∗∗ p<0.01.

and is 0.00002 in moderate weather. This also supports the
finding that water is up to 4 times more beneficial to corn
yields in hot weather. Also, the results show that the damage
from excess water is up to 2 times larger in hot weather.

3.3 Model comparison

A comparison of model performance metrics is given in Ta-
ble 5, along with a description of the water metric and the ex-
treme metric used in each model. We find that, for Models (1-
b–d) and (2-a–d), the coefficients on the soil moisture metrics
are significant and with expected signs. Comparing the mod-
els’ performance suggests that Model (1-b), with mean soil
moisture, performs better than the Model (1-a), with cumu-
lative precipitation. Also, Model (1-d), with the extreme soil
moisture metrics, outperforms both previous models (with
cumulative precipitation or with mean soil moisture). The
best corn yield predictor is from Models (2-a) and (2-b), con-
sidering compound extremes through the daily interaction of
heat and soil moisture. We find that using a seasonally aver-
aged soil moisture metric is insufficient for capturing yield

Table 4. Estimation of corn yields while splitting the soil moisture
metrics in Model (2-b).

(2-b)
Log corn yield

dday from 10 to 29 ◦C 0.0003154∗∗∗

(0.0000689)

dday above 29 ◦C −0.004044∗∗∗

(0.0005384)

Index of normal soil moisture 0.0001199∗∗∗

when T>T ∗ (0.0000342)

Index of extreme moisture surplus −0.0000628∗∗∗

when T>T ∗ (0.0000151)

Index of extreme moisture deficit 0.000092∗∗∗

when T>T ∗ (0.0000234)

Index of extreme moisture deficit 0.0000209∗∗∗

when T<T ∗ (7.100e-06)

Index of extreme moisture surplus −0.0000326∗∗∗

when T<T ∗ (3.200e-06)

Index of normal soil moisture 0.000028**
when T<T ∗ (0.0000105)

Observations 69923

R squared 0.5006

AIC −25582.4

BIC −25509.2

Note: table lists regression coefficients and shows standard errors in
parentheses. The constant term and coefficients on the interaction of each
state and time trends are not reported. Standard errors are in parenthesis
and adjusted for state clusters. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1.

extremes; i.e., the temporal resolution of the soil moisture
metric is important for estimating corn yield variability. Fig-
ure 6 illustrates the difference by comparing the modeled im-
pacts of average soil moisture (Model 1-b) on corn yields
(Fig. 6a) to the impacts, considering the deviation from nor-
mal soil moisture (Model 1-d) estimated for a sandy soil type
(Fig. 6b) and a clay soil type (Fig. 6c). In other words, when
parametrizing the soil moisture as a deviation from normal,
we obtain a specific piecewise linear yield response to water,
depending on soil types (and normal levels of soil moisture),
the extremes of which are completely missed by the model
as it only uses mean soil moisture. We find that the average
corn yield damage from excess heat is up to 4 times more
severe when combined with water stress. This damage can
only be estimated when including soil moisture and metrics
of extreme water stress (e.g., Models 2-a–d).

3.4 Decomposing the variation in US corn yields

We have decomposed the changes in the US corn yields from
1981 to 2015 to understand the relative roles of soil moisture
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Table 5. Performance metrics for Models (1-a–d) and (2-a–b).

Model Water metric Extreme metric R squared AIC BIC

(1-a) Average precipitation Precipitation square 0.469 −21238 −21201
(1-b) Average soil moisture Soil moisture square 0.471 −21612 −21576
(1-c) Average soil moisture Number of days with low/high soil moisture 0.480 −22697 −22660
(1-d) Average soil moisture Average soil moisture deficit/surplus 0.491 −24303 −24267
(2-a) Average soil moisture T binned by extreme deficit/surplus 0.492 −24402 −24328
(2-b) Normal soil moisture×T Extreme deficit/surplus×T 0.501 −25582 −25509

Figure 6. Estimated impact of soil moisture on log corn yields. Including soil moisture in the regression and its square term, as in Model
(1-b), will give us a quadratic relationship between soil moisture and yields, as seen in (a). A piecewise linear parametrization, as in Model
(1-d), can provide the location-specific piecewise linear relationship based on soil moisture deviation from normal, as seen in (b) and (c).
This will cause the maximum of the response curve to be in lower soil moisture levels for sand and in higher soil moisture levels for clay soil
texture.

and heat in interannual corn yield variation. Figure 7 illus-
trates a decomposition based on our findings, which are ag-
gregated for the whole US. With no climate variation, the
US corn yield is expected to have a smooth positive trend,
as shown in green. The deviation from the trend occurs due
to changes in water and heat stressors. The blue bars show
the expected changes in US corn yields due to changes in the
water stress, while the orange bars demonstrate the expected
yield changes due to changes in heat stress. While there have
been years in which the stressors have moved together (e.g.,
2011 and 2012), for several years water and heat have off-
set each other’s benefit or damage. For example, in 1992 the
damage from heat is partially offset by benefits from water,
or in 2010, the damage from water stress is partially offset
by benefits from heat.

3.5 Robustness checks

The Supplement provides several robustness checks. The
goal is to investigate whether different assumptions can im-
prove the predictive power of Model (1) such that it outper-
forms Model (2). We answer three questions. First, are the
estimation results from Model (1) different from those us-
ing alternative water metrics from WBM output? Second, are
the estimates in Model (1) different from those obtained us-
ing a model considering growth stages? And third, do the
main findings change if we alter the geographical scope of
the study?

For the first robustness question, i.e., alternative water
metrics, we re-estimate Model (1) using daily evapotranspi-
ration (which is related to the water requirements of plants)
and soil moisture fraction. Overall, the findings remain ro-
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Figure 7. The bars show the contribution of water and contribution of heat in variation in the US corn yields (left axis). The lines illustrate
actual yields and trend (right axis).

bust to alternative soil moisture metrics from WBM, includ-
ing the mean of soil moisture fraction (soil moisture con-
tent divided by field capacity), the seasonal mean of evapo-
transpiration and within-season standard deviations of them.
We also look at the results using an alternative interpolation
of WBM data to PRISM resolution (nearest neighbor ver-
sus bilinear interpolations). We reject the null hypothesis that
the coefficient on yield response to heat is different between
these two metrics. Also, we reject the null hypothesis that the
prediction power across these models is higher than Model
(2).

To test the second robustness question, i.e., time separabil-
ity, we re-estimate Model (1-b) for 2-month intervals (April–
May, June–July, and August–September), and the findings
remain robust. We find that considering bimonthly variables
does not change the yield response to heat. Although this al-
ternative formulation does improve the predictive power of
Model (1-b) a little bit, the performance is not better than the
original Models (2-a) and (2-b) with compound extremes.

To test the sensitivity of our findings to geographical area,
we re-estimate the models for eastern US and western US.
We find that the estimated coefficients of Models (1-a) and
(1-b) are not robust to the geographical choice, while those
of Model (2) remain robust.

4 Discussion

In this paper, we have identified new water availability met-
rics that improve the predictive power of statistical corn yield
models. While predictive power is an important outcome of
this analysis, the insights gained from incrementally adding
higher temporal-resolution metrics of water extremes to the
models are also valuable for understanding the drivers of
corn yield variability and for revealing the resolution of wa-
ter availability data required to capture future extremes un-
der climate change scenarios. Statistical crop models have

been used to both elucidate drivers of crop yield trends and
variability and to evaluate potential climate change impacts
on crop production in the future (e.g., Lobell and Burke,
2010; Diffenbaugh et al., 2012). However, these models typi-
cally use seasonally averaged water availability metrics (e.g.,
total growing season precipitation) and utilize precipitation
more often than soil moisture. Generally, if the location of
the study does not expect a significant change in the within-
season distribution of the soil moisture, a mean soil moisture
index will work. However, if there is an expected change in
this distribution, using the mean variable will create biased
yield projections. Because climate models project significant
changes in the frequency and intensity of both extreme pre-
cipitation and temperature (Bevacqua et al., 2019; Manning
et al., 2019; Myhre et al., 2019; Poschlod et al., 2020; Po-
topová et al., 2020; Wehner, 2019; Zscheischler et al., 2018),
the results presented here show that the mean metrics of wa-
ter availability – especially mean precipitation – are not suf-
ficient for capturing the impacts on yields. It is necessary to
consider the metrics of extreme events as illustrated in Fig. 1.
As we find that the coefficient on extreme heat is significantly
different when considering soil moisture, it is possible that
previous climate impact studies have over- or underestimated
the yield impacts. Furthermore, farm management practices
can alter soil moisture – and therefore yields – independent
of precipitation. Supplemental irrigation, and no-till farming,
cover cropping, and soil conservation, can increase soil mois-
ture. These adaptations may occur in places predicted to face
higher mean precipitation coupled with more extreme water
events. The results of these management practices cannot be
captured by statistical models looking at precipitation met-
rics alone. Such precipitation-based studies could potentially
lead to overestimation yield damages under future climate
extremes by not accounting for human adaptations designed
to conserve soil moisture.

Applying this framework to climate impact studies will
face a key challenge, namely projecting the future compound
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extremes with the high temporal resolution of Model (2).
It requires collaboration between hydrologists, climate sci-
entists, and statisticians (Zscheischler et al., 2020). For fu-
ture yield projections, we need reliable future projections of
daily temperature (maximum and minimum) and soil mois-
ture. Unfortunately, to the best of our knowledge, available
data sets including predictions of future soil moisture have a
relatively coarse spatial and temporal resolution and rely on
climate model projections with known difficulties to repre-
sent daily temporal-resolution events (Hempel et al., 2013).
Further research is required to improve the ability of climate
models and impact models to project the bivariate distribu-
tion of heat–moisture (Sarhadi et al., 2018).

5 Conclusions

This study serves to bridge the gap between statistical stud-
ies of climate impacts on crops and their biophysical coun-
terparts by recognizing the central role of soil moisture –
which is not a simple linear transformation of precipitation
– in understanding crop yields. We employ a fine-scale, high
temporal-resolution data set to investigate the conditional
marginal value of soil moisture and heat in US corn yields
for the 1981–2015 period employing a statistical framework.
The major contribution of this study is showing that the coef-
ficient on extreme heat (dday 29 ◦C) is significantly different,
while considering daily interactions with soil moisture, em-
phasizing the importance of compound hydroclimatic condi-
tions.

Our first key finding is that seasonal mean soil moisture
performs better than average precipitation in statistically pre-
dicting corn yield. While the majority of current empirical
studies employ precipitation as a proxy of water availability
for crops, we show that the precipitation coefficient may not
be always an appropriate measure of water availability. This
study suggests that soil moisture content should be used for
estimating crop yields instead of cumulative rainfall for loca-
tions with high runoff, drainage, or irrigation (e.g., western
and central US).

Also, the metrics of soil moisture extremes can explain
a portion of the damages to corn yield. On average, farm-
ers can improve corn yields by up to 24 % only by avoiding
extreme water stress. We also find that the coefficient of ex-
cess soil moisture is negative. This is in line with the cur-
rent agronomic literature (Torbert et al., 1993; Urban et al.,
2015) which points out that high soil moisture content can re-
sult in nutrient loss through excess water flows. In addition,
at high humidity, the plants may have difficulty remaining
cool at high temperatures. There is also a risk of waterlog-
ging soils. With a few notable exceptions (e.g., rice), most
crops do not grow well in inundated conditions as the plant
roots need oxygen, so the direct impact of excess water stress
is because of the anoxic conditions.

Finally, the marginal impact of the heat index on crop
yields depends on the soil moisture level. We show that the
average yield damage from heat stress is up to 4 times more
severe when combined with water stress; therefore, the value
of water in maintaining crop yield is up to 4 times larger on
hot days.
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