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S.1. Overview  

This material provides details on the soil moisture module, estimation strategy, decomposition method, and some robustness checks 

on the results and the model variables. Besides, this material illustrates the correlation between mean volumetric soil moisture and 

other potential seasonal variables that can be used as indicators of water availability. This includes cumulative precipitation, mean 

seasonal evapotranspiration, and mean seasonal soil moisture. It also provides some examples to demonstrate the seasonal mean 5 

soil moisture shows no linear relationship with the seasonal heat index (dday 10˚C). However, it has a positive correlation with 

evapotranspiration and soil moisture fraction. Then alternative models are introduced controlling for irrigation, growth periods, 

spatial scope of the study, and other measures of individual and compound extremes.  

S.2. Soil moisture in the Water Balance Model 

Here, we briefly describe WBM’s soil moisture module. However, the model is much more complex and employs a large list of 10 

inputs. Full documentation for WBM can be found in Wisser et al., (2010) with updates in Grogan (2016). In WBM, crop-specific 

soil moisture balance within each grid cell is calculated with an accounting system that tracks a location's water inputs and outputs 

and is limited by the soil moisture pool’s water holding capacity.  

ఋௐೞ

ఋ௧
=  ቐ

𝑔(𝑊𝑠)(𝐼 − 𝑃𝐸𝑇) 𝑖𝑓 𝐼 < 𝑃𝐸𝑇

𝐼 − 𝑃𝐸𝑇 𝑖𝑓 𝑃𝐸𝑇 ≤ 𝐼 𝑎𝑛𝑑 (𝐼 − 𝑃𝐸𝑇) < (𝑊௖௔௣ − 𝑊௦)

𝑊௖௔௣ − 𝑊௦ 𝑖𝑓 𝑃𝐸𝑇 ≤ 𝐼 𝑎𝑛𝑑 ൫𝑊௖௔௣ − 𝑊௦൯ ≤ (𝐼 − 𝑃𝐸𝑇)

 (s1) 

where Ws is soil moisture, t is time, I is the sum of all water inputs to the soil moisture pool, PET is potential evapotranspiration, 15 

and Wcap is available water capacity. Water inputs to the soil come in the form of precipitation as rain and as snowmelt. Water 

intercepted by the canopy reduces precipitation reaching the soil. Here, we use the Hamon method for estimating PET (Federer et 

al., 1996; Hamon, 1963), and g(Ws) is 1 for all crops, while it is an exponential function of soil moisture depth for non-crop soil 

areas.  Crop-specific potential evapotranspiration values, PETc, are calculated following the FAO-recommended crop-modeling 

methodology (Allen et al., 1998): 20 

 𝑃𝐸𝑇௖ = 𝑘௖ ∙ 𝑃𝐸𝑇 (s2) 

where kc [-] is a crop-specific, time-varying scalar. Crop scalar values are from Siebert and Döll (2010), and crop maps that identify 

the area of each rainfed crop type within a grid cell are from the Cropland Data Layer. When soil moisture is insufficient for crops 

to extract water equal to PETc, actual crop evapotranspiration is limited to available soil water volumes. Available water capacity, 

Wcap, is a function of vegetation-specific rooting depth, a crop-specific depletion factor, soil field capacity, and soil wilting point: 25 

𝑊௖௔௣ = 𝐷௖𝑅௖(𝐹 − 𝑊௣)  (s3) 

where Dc is the depletion factor for crop c, Rc is the rooting depth of crop c, F is the soil field capacity, and Wp is the soil wilting 

point. Here we use the Harmonized World Soil Database (Fischer et al., 2008) as model input for all soil properties.  Corn rooting 

depth is set to 1 meter; and the depletion factor is 0.5, following Siebert and Döll (2010).  Once the soil moisture content reaches 

field capacity, no further water is added to the soil moisture pool; excess inputs move to the groundwater pool via percolation and 30 

the river system via runoff. 
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S.3. Estimation strategy 

Considering the exposure to each temperature interval to capture the marginal impact of heat and water on crop yields, we estimate 

the following for Model (1-a): 

10 29 29 2 2
it it it a it a it s s i ity D D P P t t c                      (s4) 35 

where i is an index for counties, t is the index of time, s is the index for states, yit is the log corn yields, Dit represents growing 

degree day variables,  P shows cumulative precipitation over the growing season, t shows the time trend variable (t = year – 1950), 

ci is a time-invariant county fixed effect, ε is the residual, and α, β, δ, λ are the regression parameters showing the marginal impacts. 

The subscript a is used to show the water coefficients (δ) are related to metrics in Model (1-a).  To evaluate the importance of soil 

moisture metrics in Model (1-b), we estimate the following: 40 

10 29 29 2 2
it it it b it b it s s i ity D D M M t t c                      (s5) 

where the variables are defined as Model (1-a) except for the water availability metric. Here M shows the seasonal mean soil 

moisture index calculated as average daily root zone soil moisture from the first day of April to the end of September. The subscript 

b is used for δ to distinguish the water coefficients in Model (1-b).  For Model (1-c) we estimate the following model: 

10 29 29 2def sur
it it it c it c it s s i ity D D NDD NDS t t c                     (s6) 45 

where we replace seasonal mean or cumulative metrics with two new metrics to control the impacts of water extremes on corn 

yields. Here, NDDdef is the number of days that soil moisture is under 25 mm below normal levels (deficit); and NDSsur is the 

number of days that soil moisture is higher than 25 mm above normal levels. The rest of the variables are defined as Model (1-a). 

The subscript c shows δc is specific to Model (1-c). Finally, we estimate the following equation for Model (1-d): 

10 29 29 2
it it it d it d it s s i ity D D CMS CMD t t c                     (s7) 50 

where CMS is a cumulative measure of positive soil moisture deviations compared to the normal levels (equivalent to A+B+C in 

Fig. 1). And CMD is the cumulative measure of negative soil moisture deviations compared to the normal levels (equivalent to 

D+E+F in Fig. 1). The subscript d distinguished estimated δ from previous models. 

 

We assume the errors are serially correlated due to unobservable and systematic measurement errors, and we consider clustering 55 

US counties by the state which has been a standard approach in the literature (Blanc and Schlenker, 2017; Hsiang, 2016; Lobell 

and Burke, 2010). In this study, the models are estimated using a panel fixed-effect approach. A panel fixed-effect approach is a 

statistical method for analyzing two-dimensional (e.g. time and location) panel data. This method is helpful for analyzing those 

data collected for the same locations over time with a relatively short time span (Wooldridge, 2016). As our data set contains 

information for counties over time, a panel data analysis is appropriate. In addition, a fixed-effect model is appropriate as there are 60 

unique biophysical and economic attributes of counties that can explain yield differences across counties and are not changing over 

time. When we conduct a statistical test (Hausman test), it rejects the random effects model in favor of the fixed effect models we 

use. The panel consists of 35 years (1981-2015) for all US counties with corn production. For purposes of model comparison, we 

provide adjusted R2, Akaike’s information criterion (AIC), and Bayesian information criterion (BIC). 

 65 
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For Model (2), we consider the daily interaction of heat and soil moisture as the compound metric. The interaction term is defined 

when the marginal impact of an explanatory variable depends on the magnitude of yet another explanatory variable (Wooldridge, 

2016). Here, the marginal impact of heat on yield depends on water availability; also, the marginal impact of water on yield depends 

on heat. This is called conditional marginal impact. A key empirical challenge arises when estimating the model with daily 

interaction of heat and soil moisture. A simple multiplicative interaction of soil moisture variable and heat variables will be 70 

problematic (Hainmueller et al., 2019). It implies a linear interaction effect that changes at a constant rate with heat. However, as 

will be shown below, soil moisture has a non-linear marginal effect. We take two approaches here to calculate the conditional 

marginal impact of heat on corn yields to address the challenges of aggregating daily soil moisture to seasonal water availability 

metrics. Model (2-a) provides the conditional marginal impact of excess heat as: 

10 29 29 2 2
it it m mit it it s s i it

m

y D D M M t t c                  
 
      (s8) 75 

where i is the county index, t is the time index, m is an index of soil moisture condition (high, low, normal), s is an index for states, 

y is average corn yields, D represents conditional growing degree day variables, M shows the seasonal mean soil moisture content, 

T stands for the time trend variable, ci is a time-invariant county fixed effect. Here, β is indexed by m; i.e., the marginal impact of 

heat is conditional to soil moisture conditions. α, β, δ, λ are the regression parameters showing the marginal impacts.  

 80 

Second, we estimate a model with metrics of soil moisture while controlling for temperature in Model (2-b). We define an index 

of soil moisture when the temperature is above the threshold and an index of soil moisture when the temperature is below the 

threshold. In this model, the soil moisture is separated by a temperature threshold H*.  

10 29 29 2

* *it it it m mit m mit s s i itH H H H
m

y D D M M t t c      
 

          
 
    (s9) 

where i is the county index, t is the time index, m is an index of soil moisture condition, s is an index for states, y shows average 85 

corn yields, D represents growing degree day variables, M shows conditional seasonal mean soil moisture, T stands for the time 

trend variable, H is the average daily temperature, H* is the temperature threshold, and ci is a time-invariant county fixed effect. 

Here, we define δ and    to test whether the marginal impact of soil moisture depends on heat.  

S.4. Decomposition method 

To show the significance of weather variation for crop yields, we estimate the historical impacts of heat and water. In a general 90 

form, we can decompose the impacts by taking the total derivative from the yield function. The general form is: 

 


heat impacts water impacts

y y
dy dh dm

h m

 
 

 
  (s10) 

where dy shows the deviation of crop yields from the trend, dh is the deviation of heat from the historical mean; and dm is the 

deviation of soil moisture from normal levels. We apply this to Model (2-a) while the trend is estimated assuming no variation in 

heat and water availability. We predict the overall variation in yields using the estimated coefficients of Model (2-a): 95 
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10 29 29 2
10 29 29 2

ˆ m
m m

y y y y
dy dD dD dM dM

D D M M




   
   
      (s11) 

where d shows the differential, 𝑑𝑦ො is the predicted variation of crop yields, and partial derivatives are the estimated coefficients. 

Then, we re-predict the yields using the estimated coefficients of Model (2-a) for normal soil moisture. Thus, the predicted variation 

in crop yields is driven only by the variation in observed heat.   

10 29 29
10 29 29

ˆ heat

nl

y y
dy dD dD

D D




 
 
 

 (s12) 100 

Finally, the difference between (s12) and (s13) shows the predicted impact of variation in water.  

ˆ ˆ ˆwater heatdy dy dy   (s13) 

Note that the deviations are calculated for each year. 

S.5. Correlation of mean seasonal soil moisture and other variables 

The soil moisture output from WBM is informed mainly by soil moisture memory, heat, precipitation, and many other time-variant 105 

and time-invariant information. In a statistical study, a natural first step is to look at the correlation between these variables. To 

show that mean soil moisture is a different metric than mean precipitation, we have plotted the annual mean soil moisture versus 

annual cumulative precipitation in Fig. S2. This figure is a scatter plot for US counties for the growing season from 1981 to 2015. 

The simple correlation coefficient between them is 0.44. This rejects the hypothesis that soil moisture is highly correlated with 

precipitation. As mean precipitation has a linear relationship with cumulative precipitation, it shows that mean soil moisture is a 110 

different metric than cumulative or mean precipitation. 

 

We have taken two other variables from WBM including soil moisture fraction and evapotranspiration (ET). Also, we have 

interpolated WBM soil moisture using an alternative method (nearest neighbor method). Here, we plot these variables against the 

volumetric soil moisture content to illustrate the correlation and differences. As shown in Fig. S3 two interpolations of soil moisture 115 

are closely correlated by R= 0.9997. Figures S4 and S5 are the scatter plots of seasonal ET and seasonal mean soil moisture fraction 

against volumetric soil moisture. The figures show the seasonal variables are not following a simple linear relationship. Figure S6 

shows the scatter plot of cumulative growing degree days above 10˚C versus mean soil moisture for US counties for the growing 

season from 1981 to 2015. This indicates the soil moisture output is not a simple linear transformation of heat data. 

S.6. Are the results different with alternative water metrics?  120 

We re-estimate Model (1) with other related metrics of water availability to crops including simulated daily evapotranspiration of 

rainfed corn (ET) from WBM; daily soil moisture fraction (SMF) from WBM;  and soil moisture content from different spatial 

interpolation of WBM grid cells to PRISM (nearest neighbor method versus original bilinear method).  

 

The soil moisture fraction index considers the volumetric soil moisture content divided by field capacity. We have also considered 125 

the within-season standard deviation of ET and SMF. Note that we keep the degree days above 29˚C as an indicator of heat stress 

and the degree days from 10˚C to 29˚C as an indicator of beneficial heat to corn.  
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Table S1. reports regression results for these models. Columns 1 and 2 show a significant relationship with the mean of soil 

moisture fraction, its square term, and its within season standard deviation. Columns 3 and 4 with mean ET and within-season SD 130 

of ET also show a significant relationship. Column 5 shows that the other interpolation of soil moisture has a very close marginal 

coefficient and standard error compared to our original Model (1). The important finding is the marginal relationship for beneficial 

and harmful heat remains significant and not significantly different from Model (1). Overall, the main findings of the paper remain 

robust to the choice of alternative seasonal metrics of water availability. 

S.7. Are the estimates different when considering the stages of plant growth?  135 

How critical is separating the stages of plant growth in the yield function? We re-estimate the Model (1-b) considering bi-monthly 

metrics of seasonal soil moisture. Table S3. provides the estimation coefficients, standard errors, AIC, BIC, and R-squares statistics 

for Model (1-b) for Eastern, Western, and the continental US with bi-monthly mean soil moisture. The results suggest that the 

coefficients on extreme heat (dday 29˚C) are not significantly different from the model with seasonal mean soil moisture.  

 140 

The results suggest that the marginal impact of mean soil moisture is higher in June-July. This is in line with agronomic literature 

as it suggests the water stress during pollination and the silking stage is more damaging. These stages are the most critical stage of 

development for corn. Water stress during this stage can cause higher yield loss than almost any other stage in the crop's 

development.  

 145 

The marginal impact of mean soil moisture is not significant in August-September. This suggests that additional soil moisture can 

have a positive or negative impact on yield. This also makes sense as a high level of moisture can hurt the maturity and drying 

stage. High soil moisture at the end of the growing season can cause delayed grain maturity and may lead to delay in the harvest.  

 

In Addition, the marginal impact of mean soil moisture in April-May is negative for the whole US and the Western US and 150 

significant at 90% confidence interval. This can be a result of the negative impacts of excess soil moisture on germination and 

early crop developments as a result of flooding and waterlogging.  

S.8. Do the main findings change if we alter the geographical scope of the study  

In this section, we estimate the main models separately for Eastern and Western US. Those counties with centroids on the left of 

100th meridian are considered West. The idea is that water stress is less severe in the Western US as it is mostly irrigated. Table 155 

S2. provides the main descriptive statistics to compare these regions. Overall, Western US experiences more excess heat by 82 

versus 58 dday 29˚C in the East. On average, Eastern US receives 601 mm of cumulative precipitation while it is only 271 mm in 

the Western US. On the other hand, within-season SD of soil moisture is 39 mm in the East while it is 13 mm in the west. Looking 

at the number of days with high/low soil moisture, only 11 days in the West soil moisture is not at normal levels, while this is 59 

days in the East. 160 

Table S4. shows the estimated coefficients, standard errors, adjusted R-squared, AIC, and BIC statistics for four models for Eastern 

US. Model (1-a) includes cumulative precipitation. Model (1-b) includes mean soil moisture metrics. The third column, similar to 
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Model (1-d), considers soil moisture extremes. The results suggest that the coefficient on the extreme heat is not significantly 

different from the estimations for the whole US. 

 165 

Table S5. shows the estimated coefficients, standard errors, adjusted R-squared, AIC, and BIC statistics for four models for the 

Western US. The results suggest that the coefficients on the extreme heat are significantly different from the estimations for the 

whole US and the Eastern US. For example, the coefficient on dday 29˚C is -0.0020 in Model (1-a) for the West, while it was 

estimated -0.0056 in Model (1-a) for the East. This is around 65% lower damage for a given degree day above 29˚C.  

 170 

We also re-estimate Model (2) for Eastern and Western US. The results of Model (2-a) are presented in Table S6. Column 1 shows 

the results for the whole US while columns 2 and 3 contain the results for the Western US and Eastern US, respectively. According 

to column 2, the coefficient on dday 29˚C and the extreme deficit is -0.0074 in the Western US which is significantly different 

from all other estimations for the Western US. These results indicate that, even in the Western US, the damage from heat stress 

can be up to four times higher when combined with water stress. The coefficient on excess heat and the extreme surplus is not 175 

significant (note that this is a very rare condition in the West).   

 

The results of Model (2-b) for Eastern, Western, and whole US are shown in Table S7. As in column (3) of Table S7, the coefficient 

on normal soil moisture conditional to hot weather is 0.00010. The coefficient on normal soil moisture conditional to moderate 

weather is 0.00002. This indicates that yield response to water is up to four times more in hot weather. The marginal impact on 180 

soil moisture deficit index is 0.00008 in hot weather and is 0.00002 in moderate weather. This also supports the finding that the 

yield response to water is up to four times more in hot weather. Also, the results suggest that the damage from excess water is up 

to two times bigger in hot weather. 

  



 

7 
 

References 185 

Allen, R. G., Pereira, L. S., Raes, D. and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-
FAO Irrigation and drainage paper 56, Fao Rome, 300(9), D05109, 1998. 

Blanc, E. and Schlenker, W.: The use of panel models in assessments of climate impacts on agriculture, Rev. Environ. Econ. 
Policy, 11(2), 258–279, 2017. 

Federer, C. A., Vörösmarty, C. and Fekete, B.: Intercomparison of methods for calculating potential evaporation in regional and 190 
global water balance models, Water Resour. Res., 32(7), 2315–2321, 1996. 

Fischer, G., Nachtergaele, F., Prieler, S., Van Velthuizen, H. T., Verelst, L. and Wiberg, D.: Global agro-ecological zones 
assessment for agriculture (GAEZ 2008), IIASA Laxenburg Austria FAO Rome Italy, 10, 2008. 

Grogan, D.: Global and regional assessments of unsustainable groundwater use in irrigated agriculture, Dr. Diss. [online] 
Available from: https://scholars.unh.edu/dissertation/2, 2016. 195 

Hainmueller, J., Mummolo, J. and Xu, Y.: How much should we trust estimates from multiplicative interaction models? Simple 
tools to improve empirical practice, Polit. Anal., 27(2), 163–192, 2019. 

Hamon, W. R.: Computation of direct runoff amounts from storm rainfall, Int. Assoc. Sci. Hydrol. Publ., 63, 52–62, 1963. 

Hsiang, S.: Climate econometrics, Annu. Rev. Resour. Econ., 8, 43–75, 2016. 

Lobell, D. B. and Burke, M. B.: On the use of statistical models to predict crop yield responses to climate change, Agric. For. 200 
Meteorol., 150(11), 1443–1452, doi:10.1016/j.agrformet.2010.07.008, 2010. 

Siebert, S. and Döll, P.: Quantifying blue and green virtual water contents in global crop production as well as potential 
production losses without irrigation, J. Hydrol., 384(3–4), 198–217, doi:10.1016/j.jhydrol.2009.07.031, 2010. 

Wisser, D., Fekete, B. M., Vörösmarty, C. J. and Schumann, A. H.: Reconstructing 20th century global hydrography: a 
contribution to the Global Terrestrial Network-Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14(1), 1–24, 2010. 205 

Wooldridge, J. M.: Introductory econometrics: A modern approach, Nelson Education., 2016. 

  



 

8 
 

 
Table S1. Estimating corn yields using ET and SMF from WBM 

      
       Log 

CornYield 
   Log 

CornYield 
   Log 

CornYield 
   Log 

CornYield 
   Log 

CornYield 
 Degree days from 10˚C to 29˚C .0003422*** .0003445*** .0003193*** .0003372*** .0003426*** 
   (.0000752) (.0000741) (.0000801) (.0000751) (.0000801) 

 Degree days above 29˚C -.005298*** -.005343*** -.005017*** -.004884*** -.005115*** 
   (.00069) (.0006681) (.00064) (.0006367) (.0006914) 

 Mean daily soil moisture fraction .2533803** .9821037***    
   (.1107891) (.2394119)    

 Sqr. mean soil moisture fraction -.1030471 -.777505***    
   (.1166278) (.2402404)    

 SD daily soil moisture fraction  -.509464***    
    (.1156073)    

 Mean daily ET1 (mm)   .4901121*** .6357687***  
     (.0735423) (.0985801)  

 Sqr. mean daily ET1    -.086206*** -.118748***  
     (.0234848) (.0254433)  

SD daily ET1    -.2516986**  
      (.0997848)  

 Mean moisture content (mm)2     .0036395*** 
       (.0006759) 

 Sqr. mean daily moisture content2     -.000017*** 
       (3.000e-06) 

 Observations 69923 69923 69923 69923 69923 
 R-squared .4667911 .4712361 .4755177 .4770727 .4713225 
 Akaike's Crit -21005.7 -21589.0 -22159.5 -22365.1 -21602.5 
 Bayesian Crit -20969.0 -21543.3 -22122.9 -22319.4 -21565.9 
      
Standard errors in parenthesis       
*** p<0.01, ** p<0.05, * p<0.1      

  Notes: 1- ET shows the average daily evapotranspiration. 2- It shows the volumetric soil moisture interpolated from WBM to 210 
PRISM grid cells using the nearest neighbor method. Table lists regression coefficients and shows standard errors in brackets.   
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Table S2. Descriptive statistics of main variables for Eastern and Western US 

 East  West 

Variables Mean Std. Dev. Mean Std. Dev. 

 Degree days from 10˚C to 29˚C 1877.79 433.54 1612.74 363.57 

 Degree days above 29˚C 58.01 57.13 82.11 80.29 

 Cumulative precipitation Apr-Sep (mm) 601.13 153.31 271.69 132.12 

 Mean daily soil moisture content (mm) 50.49 39.49 15.15 13.17 

 Number of days with high soil moisture 28.89 30.38 8.69 11.57 

 Number of days with low soil moisture 30.39 35.46 2.97 7.1 

 Surplus (sum of positive daily deviation, mm) 2546.95 2177.62 964.98 938.69 

 Deficit (sum of negative daily deviation, mm) -2563.43 2200.22 -962.27 699.6 

 Degree days from 10˚C to 29˚C & low soil moisture 442.94 433.88 29.08 94.27 

 Degree days from 10˚C to 29˚C & high soil moisture 364 351.68 62.88 90.52 

 Degree days from 10˚C to 29˚C & normal soil moisture 1067.65 573.28 1462.24 426.27 

 Degree days above 29˚C & low soil moisture 20.19 32.55 .85 3.22 

 Degree days above 29˚C & high soil moisture 5.17 9.34 .76 2.41 

 Degree days above 29˚C & normal soil moisture 32.24 41.87 72.91 72.8 

 Index of extreme deficit  -1823.19 2339.6 -160.91 597.29 

 Index of extreme surplus  1942.11 2207.68 482.25 770.15 

 Index of normal soil moisture -194.99 516.76 -406.16 434.96 

 Mean daily evapotranspiration (mm) .6 .59 .15 .19 

 Mean daily soil moisture fraction .71 .18 .68 .2 

 Mean daily soil moisture content (mm), alternative  50.52 39.41 15.17 13.2 

 Mean daily soil moisture content (mm), Apr-May 21.82 16.5 6.29 6.75 

 Mean daily soil moisture content (mm), Jun-Jul 17.7 15.77 5.14 4.53 

 Mean daily soil moisture content (mm), Aug-Sep 10.98 10.74 3.72 3.27 

Observations 62094 62094 7829 7829 

 215 
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Table S3. Corn yield estimation with bi-monthly soil moisture metrics 

    US West East 
    Log 

CornYield 
Log 

CornYield 
Log 

CornYield 
 Degree days from 10˚C to 29˚C .0003176*** .0004543*** .0002921*** 
   (.0000774) (.0000853) (.0000838) 

 Degree days above 29˚C -.0044571*** -.0023373*** -.0047849*** 
   (.0006231) (.0004904) (.0006742) 

 Mean daily soil moisture content (mm), Apr-May -.0029599* .0045436** -.0034124** 
   (.0015561) (.002061) (.0015243) 

 Square of mean daily soil moisture content (mm), Apr-May -9.800e-06 -.0000564 -2.600e-06 
   (.000022) (.0000581) (.0000216) 

 Mean daily soil moisture content (mm), Jun-Jul .0141021*** .0148123* .013605*** 
   (.0019928) (.0071408) (.0020404) 

 Square of mean daily soil moisture content (mm), Jun-Jul -.0001589*** -.0005616** -.0001562*** 
   (.0000252) (.0002422) (.0000258) 

 Mean daily soil moisture content (mm), Aug-Sep .0030501* .007007 .0026044 
   (.001805) (.0049266) (.0018059) 

 Square of mean daily soil moisture content (mm), Aug-Sep -.0000385 -.000213 -.0000351 
   (.0000291) (.0002114) (.0000294) 

 Observations 69923 7829 62094 
 R-squared .4884616 .2782172 .515591 
 Akaike's Crit -23898.8 -3040.6 -22112.9 
 Bayesian Crit -23825.6 -2984.8 -22040.6 
    
Standard errors are in parenthesis     
*** p<0.01, ** p<0.05, * p<0.1    

  Notes: Table lists regression coefficients and shows standard errors in brackets.   
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 220 
Table S4. Estimation of Model (1) for the East 

      (1-a)   (1-b)   (1-d’)  
    Log 

CornYield 
Log 

CornYield 
Log 

CornYield 
 

 Degree days from 10˚C to 29˚C .0003108*** .0003152*** .0003072***  
   (.0000936) (.0000868) (.0000724)  

 Degree days above 29˚C -.0056293*** -.0054707*** -.0052882***  
   (.0007259) (.0007343) (.0006442)  

 Cumulative precipitation Apr-Sep (mm) .0009245***    
   (.0002502)    

 Square of cumulative precipitation Apr-Sep -7.000e-07***    
   (2.000e-07)    

 Mean daily soil moisture content (mm)  .00319***   
    (.0006763)   

 Square of mean daily soil moisture content   -.0000158***   
    (3.000e-06)   

 Index of extreme deficit    .0000379***  
     (5.700e-06)  

 Index of extreme surplus    -.0000381***  
     (2.700e-06)  

 Index of normal soil moisture   .0000292**  
     (.0000112)  

 Observations 62094 62094 62094  
 R-squared .4997799 .4989592 .5205428  
 Akaike's Crit -20126.6 -20024.8 -22756.9  
 Bayesian Crit -20090.4 -19988.6 -22711.8  
     
Standard errors in parenthesis      
*** p<0.01, ** p<0.05, * p<0.1     

   Notes: Table lists regression coefficients and shows standard errors in brackets. Model (1-d’) is slightly different from Model (1-d) 
considering extreme deficit and extreme surplus metrics.   
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Table S5. Estimation of the Model (1) for the West 

      (1-a)   (1-b)   (1-d’)  
    Log 

CornYield 
Log 

CornYield 
Log 

CornYield 
 

 Degree days from 10˚C to 29˚C .0004426*** .0004484*** .0004539***  
   (.0000829) (.0000823) (.0000862)  

 Degree days above 29˚C -.0020381*** -.0023744*** -.0022938***  
   (.000423) (.0004911) (.0004752)  

 Cumulative precipitation Apr-Sep (mm) .0005768    
   (.0003372)    

 Square of cumulative precipitation Apr-Sep -3.000e-07    
   (5.000e-07)    

 Mean daily soil moisture content (mm)  .0078908**   
    (.0027432)   

 Square of mean daily soil moisture content   -.0000848**   
    (.0000326)   

 Index of extreme deficit    .0000255  
     (.0000271)  

 Index of extreme surplus    -9.800e-06  
     (7.600e-06)  

 Index of normal soil moisture   .0000762**  
     (.0000309)  

 Observations 7829 7829 7829  
 R-squared .2784229 .2768284 .2772401  
 Akaike's Crit -3050.8 -3033.5 -3035.9  
 Bayesian Crit -3022.9 -3005.6 -3001.1  
     
Standard errors are in parenthesis      
*** p<0.01, ** p<0.05, * p<0.1     

   Notes: Table lists regression coefficients and shows standard errors in brackets. Model (1-d’) is slightly different from Model (1-d) 225 
considering extreme deficit and extreme surplus metrics.   
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Table S6. West versus East in corn yield estimation with the interaction of heat and soil moisture (Model 2-a)  

      (US)   (West)   (East) 
    log  

 CornYield 
log  

 CornYield 
log  

 CornYield 
 Degree days from 10˚C to 29˚C .0003083*** .0004344*** .0002963*** 
   (.0000685) (.0000847) (.0000736) 

 dday29˚C & SM 75+ mm below normal (extreme deficit) -.0082398*** -.0074467* -.0082928*** 
   (.0014372) (.0035727) (.0014365) 

 dday29˚C & SM 25-75 mm below normal (deficit) -.0062069*** -.0033152* -.0061966*** 
   (.0009793) (.001627) (.0009797) 

 dday29˚C & SM 0-25 mm around normal (normal) -.0037559*** -.0024412*** -.0041335*** 
   (.0004045) (.0005053) (.0004376) 

 dday29˚C & SM 25-75 mm above normal (surplus) -.0055709*** -.004754* -.005625*** 
   (.0012041) (.0024763) (.0011677) 

 dday29˚C & SM 75+ mm above normal (extreme surplus) -.0140295*** .0095881 -.0143573*** 
   (.0019083) (.0128016) (.0018101) 

 Mean daily soil moisture content (mm) .0026635*** .0080027** .0025636*** 
   (.0008153) (.0028858) (.0008324) 

 Square of mean daily soil moisture content  -.0000161*** -.0000844** -.0000156*** 
   (2.600e-06) (.0000326) (2.600e-06) 

 Observations 69923 7829 62094 
 R-squared .4921263 .2777862 .5149811 
 Akaike's Crit -24401.6 -3035.9 -22034.8 
 Bayesian Crit -24328.3 -2980.2 -21962.5 
    
Standard errors in parenthesis     
*** p<0.01, ** p<0.05, * p<0.1    

  Notes: Table lists regression coefficients and shows standard errors in brackets.   



 

14 
 

Table S7. West versus East in estimation of corn yields while splitting the soil moisture indicators (Model 2-b) 230 

      (US)   (West)   (East) 
    log  

 CornYield 
log  

 CornYield 
log  

 CornYield 
 Degree days from 10˚C to 29˚C .0003154*** .0004451*** .0002983*** 
   (.0000689) (.0000919) (.000074) 

 Degree days above 29˚C -.004044*** -.0020707*** -.0044516*** 
   (.0005384) (.0005793) (.0005981) 

 Index of normal soil moisture when T > T* .0001199*** .0001805 .0001034*** 
   (.0000342) (.0001426) (.0000358) 

 Index of extreme moisture surplus when T > T* -.0000628*** -.0001173 -.0000586*** 
   (.0000151) (.0001071) (.0000149) 

 Index of extreme moisture deficit when T > T* .000092*** -.0000526 .0000817*** 
   (.0000234) (.0000978) (.0000229) 

 Index of extreme moisture deficit when T < T* .0000209*** .0000287 .0000223*** 
   (7.100e-06) (.0000337) (7.000e-06) 

 Index of extreme moisture surplus when T < T* -.0000326*** -5.700e-06 -.0000334*** 
   (3.200e-06) (6.500e-06) (3.200e-06) 

 Index of normal soil moisture when T < T* .000028** .000063** .0000247** 
   (.0000105) (.0000249) (.0000102) 

 Observations 69923 7829 62094 
 R-squared .5006312 .2782242 .5262193 
 Akaike's Crit -25582.4 -3040.6 -23490.5 
 Bayesian Crit -25509.2 -2984.9 -23418.2 
    
Standard errors in parenthesis     
*** p<0.01, ** p<0.05, * p<0.1    

  Notes: Table lists regression coefficients and shows standard errors in brackets.  
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Figure S1. Soil texture affects normal moisture levels. The sandy soil has the lowest normal level while the clay has the highest normal 
levels.  
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Figure S2. WBM mean soil moisture versus PRISM cumulative precipitation for 1981-2015 by US counties.  
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Figure S3. County-level mean seasonal soil moisture based on bilinear interpolation versus alternative interpolation (nearest-neighbor) 
from WBM 6 arcmin grids to PRISM 2.5 arcmin resolution for the 1981-2015 period.   
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Figure S4. County-level mean soil moisture versus mean ET aggregated from WBM for the 1981-2015 period. 
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Figure S5. County-level mean volumetric soil moisture content versus mean of soil moisture fraction aggregated from WBM for the 
1981-2015 period. 
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Figure S6. County-level seasonal mean soil moisture versus seasonal heat index aggregated from WBM and PRISM for the 1981-2015 
period. 


