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Abstract. Knowledge of the variability of the hydrograph
of outflow from urban catchments is highly important for
measurements and evaluation of the operation of sewer net-
works. Currently, hydrodynamic models are most frequently
used for hydrograph modeling. Since a large number of their
parameters have to be identified, there may be problems at
the calibration stage. Hence, sensitivity analysis is used to
limit the number of parameters. However, the current sen-
sitivity analytical methods ignore the effect of the temporal
distribution and intensity of precipitation in a rainfall event
on the catchment outflow hydrograph. This article presents a
methodology of constructing a simulator of catchment out-
flow hydrograph parameters (volume and maximum flow).
For this purpose, uncertainty analytical results obtained with
the use of the GLUE (generalized likelihood uncertainty es-
timation) method were used. A novel analysis of the sensi-
tivity of the hydrodynamic catchment models was also de-
veloped, which can be used in the analysis of the operation
of stormwater networks and underground infrastructure fa-
cilities. Using the logistic regression method, an innovative
sensitivity coefficient was proposed to study the impact of
the variability of the parameters of the hydrodynamic model
depending on the distribution of rainfall, the origin of rainfall
(on the Chomicz scale), and the uncertainty of the estimated

simulator coefficients on the parameters of the outflow hy-
drograph. The developed model enables the analysis of the
impact of the identified SWMM (Storm Water Management
Model) parameters on the runoff hydrograph, taking into ac-
count local rainfall conditions, which have not been analyzed
thus far. Compared with the currently developed methods,
the analyses included the impact of the uncertainty of the
identified coefficients in the logistic regression model on the
results of the sensitivity coefficient calculation. This aspect
has not been taken into account in the sensitivity analytical
methods thus far, although this approach evaluates the relia-
bility of the simulation results. The results indicated a consid-
erable influence of rainfall distribution and intensity on the
sensitivity factors. The greater the intensity and rainfall were,
the lower the impact of the identified hydrodynamic model
parameters on the hydrograph parameters. Additionally, the
calculations confirmed the significant impact of the uncer-
tainty of the estimated coefficient in the simulator on the sen-
sitivity coefficients. In the context of the sensitivity analysis,
the obtained results have a significant effect on the interpre-
tation of the relationships obtained. The approach presented
in this study can be widely applied at the model calibration
stage and for appropriate selection of hydrographs for iden-
tification and validation of model parameters. The results of
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the calculations obtained in this study indicate the suitabil-
ity of including the origin of rainfall in the sensitivity anal-
ysis and calibration of hydrodynamic models, which results
from the different sensitivities of models for normal, heavy,
and torrential rain types. In this context, it is necessary to
first divide the rainfall data by origin, for which analyses will
be performed, including sensitivity analysis and calibration.
Considering the obtained results of the calculations, at the
stage of identifying the parameters of hydrodynamic mod-
els and their validation, precipitation conditions should be
included because, for the precipitation caused by heavy rain-
fall, the values of the sensitivity coefficients were much lower
than for torrential ones. Taking into account the values of the
sensitivity coefficients obtained, the calibration of the mod-
els should not only cover episodes with high rainfall inten-
sity, since this may lead to calculation errors at the stage of
applying the model in practice (assessment of the stormwa-
ter system operating conditions, design of reservoirs and flow
control devices, green infrastructure, etc.).

1 Introduction

Climate change and progressive urbanization result in an
increase in the volume of stormwater outflow from catch-
ments, which leads to flooding and deterioration of water
quality in receivers (Crocetti et al., 2020; Fletcher et al.,
2013). To reduce the incidence of these phenomena, runoff
model generation is needed. This can be achieved using
hydrodynamic models based on physical equations repre-
senting stormwater outflows. One of the common tools is
the SWMM (Storm Water Management Model) program
(Buahin and Horsburgh, 2015; Crocetti et al., 2020; Gironás
et al., 2010). SWMM allows for simulation of sewage quan-
tity (Guan et al., 2015), quality (Dotto et al., 2012), includ-
ing objects located in sewer networks (separation and com-
bined sewer networks. The program allows for simulation of
surface runoff from a drainage basin including the flow in
a network of pipes and analysis of interaction between hy-
draulic conditions in the system and sewage flooding on the
ground (Fraga et al., 2016). The program’s advantages also
include the possibility to model green infrastructure facili-
ties (McGarity et al., 2013). The source code of the program
is available to users, which gives the possibility of its mod-
ification and adaptation to individual requirements. Due to
the interactions between parameters identified in the models,
they may be difficult to calibrate, and the results may be bi-
ased. Therefore, statistical models are used for the simulation
of runoff, which has been shown in a number of studies (Ger-
naey et al., 2011; Yang and Chui, 2020). A serious drawback
of many models (the so-called black-box techniques) is their
inability to interpret structural parameters (Zoppou, 2001).
Linear models, including multiple linear regression (MLR),
as well as nonlinear models such as artificial neural networks

(ANNs) and classification and regression trees (CRTs) with
their modifications (Yang and Chui, 2020), are used for this
purpose. Nonlinear models enable a more accurate descrip-
tion of hydrological processes in urban catchments, which
results from the physics of the analyzed phenomena and is
confirmed in the literature (Zoppou, 2001).

The hydrodynamic model must be calibrated to reflect the
conditions prevailing in the real system. Calibration of the
catchment model is a complex task aimed at determining
the optimal values of parameters with a satisfactory good-
ness of fit of calculation outcomes and measurement results
(Bárdossy, 2007; Dotto et al., 2012; Guan et al., 2015). Pa-
rameter values are determined for an appropriate form of the
objective function in which one or more criteria (maximum
instantaneous flow, hydrograph volume, or mean relative or
absolute error of flow prediction) can be included. Since the
description of the stormwater outflow from the catchment is
complicated, modeling the phenomenon requires knowledge
of many parameters (physical and geographic characteristics
of the catchment and sewer network). A number of these pa-
rameters can be determined using detailed spatial data (GIS,
geographic information system), as has been indicated in nu-
merous studies (Fraga et al., 2016; Leandro and Martins,
2016). This helps to reduce the number of variables included
in the calibration. However, since a large number of param-
eters must be included in the models, there may be prob-
lems with the identification of their values. Therefore, the
aim is usually to simplify the calibration process by elimi-
nating factors that have a negligible impact on simulation re-
sults. Hence, model sensitivity analysis is employed. To un-
derstand the modeled processes in urban catchments and to
determine the influence of interactions between the identified
parameters on the simulation results, an uncertainty analysis
(GLUE – generalized likelihood uncertainty estimation) is
performed. This method is widely used in the analysis of the
quantity and quality of stormwater for models of urban and
agricultural catchments (Dotto et al., 2012; Mirzaei et al.,
2015), retention reservoirs (Kiczko et al., 2018), stormwa-
ter flooding (Fraga et al., 2016), etc., which is reflected in a
large number of publications in this field. In this approach,
the empirical distributions of parameters identified in hydro-
dynamic models are determined (catchment retention, rough-
ness coefficients of pervious and impervious areas, rough-
ness of channels, etc.) and a confidence interval is determined
(e.g., 95 %), containing the data obtained from the measure-
ment results.

As shown by the literature (Chisari et al., 2018; Tolley
et al., 2019; Xu et al., 2019), the analysis is often applied at
the stage of calibration of the mathematical models. In prac-
tice, local and global sensitivity analytical methods, which
can be implemented for statistical and physical relationships,
are used (Link et al., 2018; Morio, 2011; Cristiano et al.,
2019). In the case of the local sensitivity analysis, the cal-
culations consist of determination of the derivative value at
a given point, which is the basis for assessment of the ef-
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fect of the variance of the variables on the modeled value
(Razavi and Gupta, 2015). One of the drawbacks of the lo-
cal sensitivity analysis is the fact that the variability of the
analyzed phenomenon and the effect of variables are consid-
ered in the narrow domain of the modeled variable (Pianosi
et al., 2016). This approach ignores the fact that the sensi-
tivity of the model in the domain of the output values may
change, which may be important for calibration of the model
at the validation stage and its course. In the case of nonlinear
models, the local sensitivity analysis does not take into ac-
count the character of the relationships between the explana-
tory variables and dependent variable. Then, the sensitivity
coefficient is calculated only for the mean level of the ex-
planatory variable. Nevertheless, this method is widely used
in the analysis of the sensitivity of models describing runoff
in urban catchments, which has been confirmed by numer-
ous studies (Ballinas-González et al., 2020; Liu et al., 2020;
Yang et al., 2019). Another shortcoming of sensitivity analy-
sis based on partial derivatives is the fact that the effects of in-
dividual variables on the output variable are estimated while
the other variables are kept constant. This is rarely observed
in the case of complex relationships, as the explanatory vari-
ables are then correlated to some extent. The ceteris paribus
analysis does not take this fact into account. Consequently,
the effects of individual variables may be overestimated.

In the context of literature studies (Xu et al., 2019), the
results of LSAs (local sensitivity analyses) may lead to sim-
plifications in the interpretation of hydrological processes in
catchments. From the point of view of the appropriate selec-
tion of the identified parameters of urban catchment models,
the local sensitivity analytical method has limited application
and may lead to problems with calibration (Morio, 2011).
Global sensitivity analysis does not have many of the afore-
mentioned disadvantages. One of the simplest methods used
in many cases is based on multiple linear regression (Ashley
and Parmeter, 2020; Touil et al., 2016). However, the results
of the sensitivity analysis can be considered reliable when
the coefficient of determination reflecting the relationship be-
tween the dependent variable and explanatory variables is not
lower than 0.70. When this requirement is not met, other
methods for global sensitivity analysis should be applied
(Saltelli et al., 2007). Variance methods, which facilitate esti-
mation of the contribution of the individual parameters to the
model output variance using the Monte Carlo method, are
more precise and more computationally complex. The global
sensitivity analysis (GSA) method is one of the commonly
used approaches. It has been subjected to modifications, as
described in Iooss and Lemaître (2015). Variance methods
are currently gaining increasing interest, which is confirmed
by the number of publications in this field. However, since
implementation is complicated, simplified methods are used
in many cases despite the major advantage of variance ap-
proaches over local analytical methods. The implementation
of global sensitivity analytical methods is not a simple task,
as it requires complex mathematical tools, which limits their

application. Despite the limitations of the local sensitivity
analytical method and the complex implementation of the
global sensitivity analysis, in both cases, the aspects related
to local precipitation conditions are treated to a limited ex-
tent. Recent studies of urban catchments indicate that the
temporal and spatial distributions of rainfall are very impor-
tant factors that strongly influence the catchment response
(Schilling, 1991; Berne et al., 2004; Ochoa-Rodriguez et al.,
2015; Cristiano et al., 2017). However, a number of issues
have not been fully clarified. In the currently used methods,
the influence of rainfall origin on the results of the sensitiv-
ity analysis is neglected. It is not clear how the sensitivity
of the model (maximum flow rate and hydrograph volume)
changes for rainfall events resulting from high (convective)
or low intensity (convergence zone) rainfall. The LSA and
GSA methods ignore the influence of rainfall temporal dis-
tribution on the sensitivity coefficients, which is contrary to
the information from the literature (Schilling et al., 1991)
describing the analyses conducted for different urban catch-
ments. It is important to select outflow hydrographs from the
catchment area for the identification of parameters and their
validation in the context of rainfall parameters (rainfall ori-
gin, rainfall intensity, and temporal distribution). It is also of
great methodological importance in the context of modify-
ing the currently used methods of sensitivity analysis of hy-
drodynamic catchment models. In the sensitivity analytical
methods based on statistical models, the influence of the un-
certainty of the estimated coefficients on the sensitivity coef-
ficients is neglected. From the point of view of the reliability
of the obtained results, this is important when deciding on the
selection of the method of parameter identification in hydro-
dynamic models (GIS, maps, etc.) to reduce the uncertainty
of the simulation results.

Given the information specified above, this paper presents
an original application of the logistic regression method for
sensitivity analysis. This is one of the first studies to analyze
the sensitivity of the model in terms of the temporal variabil-
ity of rainfall. The advantage of the model is the fact that
it has the form of a statistical relationship; hence, without
the need for complex analyses, it can be used to determine
the effects of parameters included in the calibration of the
catchment model, precipitation characteristics, and absolute
values of the modeled dependent variables on the parameters
of outflow hydrographs (maximum instantaneous flow and
hydrograph volume). The approach proposed in the present
study also facilitates analysis of the sensitivity of selected ex-
planatory variables, depending on the numerical values of the
modeled hydrograph parameters of catchment runoff. At the
stage of sensitivity analysis, the effect of the uncertainty of
coefficients estimated in the statistical model (logistic regres-
sion) on the calculated results is included, which is reflected
in the determined sensitivity coefficients. Since the model
is constructed based on simulation results provided by the
Monte Carlo method, which is typical for global sensitivity
analytical methods, this approach can complement and ex-
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tend the results of GSA calculations. In summary, (Saltelli
et al., 2007; Razavi and Gupta, 2015), the sensitivity analy-
sis used in the present study represents a fusion of local and
global sensitivity analysis through a combination of logistic
regression in phenomenon modeling with partial derivatives.
Since logistic regression is not an example of a black-box
method, as it has an explicit form of dependence between the
modeled probability of success and explanatory variables,
the use of partial derivatives for assessment of the sensitivity
of the model to individual parameters seems reasonable. Es-
pecially in the case of an implicit, complex, and nonlinear de-
pendence, it is recommended that variance-based techniques
such as the Sobol method be employed. Partial derivatives
used in the logistic regression model increase the flexibility
of this method, as it is possible to assess the model sensitivity
to individual parameters at any point in the domain. An ad-
ditional modification can be the use of a standardized local
sensitivity analytical method based on logarithms of depen-
dent and explanatory variables. This facilitates assessment of
the effect of the percentage increase in the explanatory vari-
able on the percentage increase in the dependent variable.

Due to the extensive nature of the conducted analyses, the
article has been divided into several sections, including char-
acteristics of the research object and methodology, which
presents an innovative algorithm for the development of a
logistic regression model and subsequent calculation steps,
i.e., determination of a hydrodynamic model of a catchment,
identification of the threshold values of the outflow hydro-
graph parameters from a catchment using a hydrodynamic
model, uncertainty analysis using the GLUE method, devel-
opment of a logit model and its verification, analysis of the
influence of rainfall origin and temporal distribution of rain-
fall on the calculated sensitivity coefficients, and assessment
of the impact of uncertainty of the identified coefficients in
the logit model on the values of the sensitivity coefficients.

2 Case study

The analysis in this study was carried out in a catchment
with a total area of 62 ha located in the southeastern part of
the city of Kielce, central Poland (Fig. 1). Six types of im-
pervious surfaces were distinguished in the catchment: side-
walks, roads, parking lots, greenery, school playgrounds, and
roofs (with 72.5 % of their area directly connected to the
stormwater sewer system). The main canal is 1.6 km long
with a diameter in the range of ∅ 0.60–1.25 m. Detailed in-
formation concerning the analyzed catchment was provided
by Kiczko et al. (2018). The analysis of measurement data
(2010–2016) from the catchment distinguished a dry pe-
riod of 0.16–60 d. The annual precipitation depth was 537–
757 mm, and the number of days with precipitation was in
the range of 155–266. The number of storms per year in the
analyzed period ranged from 27 to 47. The area was charac-
terized by an average annual temperature of 8.1–9.6 ◦C and

36–84 snowfall days. The analysis of flow measurement data
recorded with a MES1 flow meter revealed that the instanta-
neous stormwater stream in the dry periods was in the range
of 0.001–0.009 m3 s−1, which indicates an infiltration effect
in the sewer network.

The analyzed sewer system consists of 200 manholes and
100 conduit sections with ∅ 0.20–1.25 m diameters and lon-
gitudinal slopes of 0.1 %–2.7 %, which gives a retention ca-
pacity of 2032 m3. Manning’s roughness coefficient for the
conduit is in the range of 0.010–0.018 m−1/3 s. The aver-
age retention depth is 2.5 mm in the impervious areas and
6.0 mm in the pervious surfaces, which gives a weighted
mean of 3.81 mm for the entire catchment. Stormwater is
discharged from the catchment through the S1 channel to
the diversion chamber (DC), and some part is discharged
directly to the stormwater treatment plant (STP) to a fill-
ing level of hm= 0.42 m. After exceeding the hm value, the
stormwater is discharged via the stormwater overflow (OV)
into channel S2, which discharges the stormwater into the
Silnica river.

As part of the continuous monitoring carried out in 2009–
2011, the volume of stormwater outflow from the catchment
was measured using a flow meter installed in the S1 channel
at a distance of 3.0 m from the inlet to the diversion chamber
(DW). In turn, in 2015, parallel MES1 and MES2 flow me-
ters were installed in the inlet (S1) and discharge (S2) chan-
nels to measure the flow and stormwater level. A detailed
description of the stormwater catchment and installed mea-
suring equipment is provided in Szeląg (2016).

The catchment (Fig. 1) had previously been analyzed
to determine the variability of the quantity and quality of
stormwater and the operation of the sewer system based on
the catchment hydrodynamic model generated in the SWMM
program. The model used in the study was subjected to deter-
ministic (Szelag et al., 2016) and probabilistic (Kiczko et al.,
2018) calibration and was used as the basis for the sensitiv-
ity analysis. It was also subjected to probabilistic calibration
with the GLUE+GSA method (Szelag et al., 2016). The de-
terministic calibration was perceived in the present study as
a computational case where the uncertainty and interaction
of calibrated parameters in the SWMM were omitted. The
parameters were determined with the method of successive
substitutions to achieve a sufficiently high degree of agree-
ment between the modeled and measured hydrographs.

3 Methodology

The developed methodology of the sensitivity analysis of
hydrodynamic models included several independent stages:
preparation of data for the construction of the model and its
implementation, conducting the uncertainty analysis using
the GLUE method, development of a logit model for specific
threshold values of the hydrograph parameters and model
verification, and calculation of sensitivity coefficients, tak-
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Figure 1. Scheme of the hydrodynamic model of the catchment generated in the SWMM program.

ing into account the rainfall origin, the temporal distribution
of rainfall, and the evaluation of the impact of the uncertainty
of the identified coefficients in the logit model on the results
of the sensitivity analysis.

3.1 Rainfall and separation of independent rainfall
events

The methodology described in the DWA-A 118E (2006)
guidelines was applied in the study to separate independent
rainfall events. The interval between successive independent
rainfall events was 4 h (Dunkerley, 2008; Joo et al., 2014;
Szeląg et al., 2021). The minimum rainfall depth (3.0 mm)
constituting a rainfall event was adopted, as in the studies
conducted by Fu et al. (2011) and Fu and Butler (2014).

3.2 Scheme of model analysis

In the present study, a method of model sensitivity analysis
was proposed to predict the stormwater volume (maximum
instantaneous flow and hydrograph volume) with the use of
logistic regression (Fig. 2). The method presented here rep-
resents a group of sensitivity analytical methods based on
empirical models. It was assumed that the variable rainfall
distribution may exert different effects on the sensitivity of
the model and induce changes in the calibrated parameters.
It was also assumed that the sensitivity of the model may
change as a result of an increase in the maximum instanta-
neous stormwater flow and the volume of the outflow hydro-
graph. Due to the nonlinearity between the modeled hydro-
graph parameters and the calibrated model coefficients, use
of the linear approach is limited (Chan et al., 2018); there-
fore, the classification model (logit) was used in the study.
Appropriate threshold values of hydrograph parameters con-

stituting the basis for substitution of continuous values with
classes were selected in the model.

On the one hand, this approach is based on the precipita-
tion dynamics during rainfall events specified in the DWA-
A 118E (2006) guidelines (distribution R1 – constant rain-
fall intensity during a rainfall event; distribution R2 – max-
imum rainfall intensity in the middle of the rainfall event,
i.e., t/tr= 0.50; distribution R3 – maximum rainfall inten-
sity, i.e., for t/tr= 0.85–1.00; and distribution R4 – maxi-
mum rainfall intensity in the initial phase of rainfall). The
approach assumed in this paper was confirmed by the anal-
yses of numerous researchers conducting computer simula-
tions of the operation of the stormwater network for various
rainfall parameters, including the analysis of the conditions
of the total system functioning (Siekmann and Pinnekamp,
2011), the location of green infrastructure objects (Jia et al.,
2015), and the location of underground infrastructure facili-
ties allowing real-time control of the flow in channels or at
the outflow from reservoirs (Garofalo et al., 2017).

On the other hand, the modeled hydrograph parameter val-
ues were combined with the rainfall classification, which fa-
cilitated generalization of the analytical results. Compared
with the local and global analytical methods, detailed anal-
ysis of changes in the sensitivity to the effect of calibrated
coefficients was possible with the proposed approach, taking
into account values of the modeled parameters of the catch-
ment outflow hydrograph. This has been scarcely considered
in this approach thus far. The calculation algorithm presented
in this study consists of three elements (Fig. 2). The first
comprises a simulator of parameters of the catchment out-
flow hydrograph (statistical model generated with the logis-
tic regression method), which includes rainfall characteris-
tics and coefficients calibrated in the hydrodynamic catch-
ment model. The simulator was constructed based on simu-
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Figure 2. Calculation algorithm scheme in a logit model.

Table 1. Ranges of SWMM coefficients (Kiczko et al., 2018).

Parameters Unit Range

Coefficient for flow path width (α) – 2.7–4.7
Retention depth of impervious areas (dimp) mm 0.8–4.8
Manning roughness coefficient for impervious areas (nimp) m−1/3 s 0.010–0.022
Manning roughness coefficient for sewer channels (nsew) m−1/3 s 0.010–0.048

lations performed with the use of calculations in the catch-
ment model, which included the uncertainty of the identi-
fied coefficients subjected to calibration. The approach pro-
posed here is applied in computational experiments at the
stage of generation of mathematical models for urban catch-
ments, as described by Thorndahl et al. (2009). It is impor-
tant that the distribution of coefficients (Table 1) used for
GLM (generalized likelihood model) identification should
result from their actual variability. The distribution can be
determined by probabilistic identification of calibrated co-

efficients. The GLUE methodology, in which the variability
of calibrated coefficients is determined by selecting the so-
called behavioral simulations, was employed in this study.
Based on a posteriori distributions of calibrated coefficients
in the catchment model determined by observation data, sim-
ulations of catchment outflow hydrographs were performed
based on the separated rainfall events in continuous rainfall
time series (2010–2016), for which typical temporal rainfall
distribution was assumed independently (R1, R2, R3, and
R4). This was the basis for determination of the outflow hy-

Hydrol. Earth Syst. Sci., 25, 5493–5516, 2021 https://doi.org/10.5194/hess-25-5493-2021



F. Fatone et al.: Advance sensitivity analysis of rainfall impact on hydrograph in urban catchments 5499

drograph parameters – maximum instantaneous flow (Qm)
and hydrograph volume (V ).

The second stage consisted of establishing the so-called
threshold values of maximum flow (Qm,g) and hydrograph
volume (Vg), which served as the basis for the division into
rainfall events with different intensities and their temporal
distribution in the time series (ξ =R1, R2, R3, and R4). Es-
tablishment of general rules for selection of threshold values
may be very difficult, as they are the result of the response of
the catchment to rainfall, which is catchment-specific. These
may be characteristic values of flows influenced by the pres-
ence of objects in the sewer network (e.g., stormwater over-
flows) at which they begin to operate. An alternative ap-
proach is to apply rainfall classification measures (proposed
by Chomicz, 1951; Sumner, 1988; etc.), which allow for de-
termination of the characteristic parameters of hydrographs.
Sumner’s classification is universal in its nature and – like the
Chomicz classification – it expresses the qualitative relation-
ship between the category of rainfall and its intensity. Hence,
belonging to the appropriate rainfall class can be associated
with the average rainfall intensity. The rainfall classes on
the Sumner scale determine the extremely different hydraulic
conditions prevailing in the stormwater network, which may
not always be used in practice for measurements and cali-
bration. In the case of the Chomicz classification, a number
of rainfall categories were introduced, ranging from normal
to heavy rain and ending with torrential rain. This approach
makes it possible to identify the operating conditions of the
stormwater network and facilities located in it, taking into ac-
count the rainfall data, i.e., rainfall duration (tr) and rainfall
depth (Ptot) within the appropriate range of variability. This is
important because it enables the identification of the average
intensity of rainfall (i=Ptot · t

−1
r ) as a parameter connected

with the operation of the stormwater system, which can be
associated with runoff from the catchment and hydrograph
parameters (volume and maximal flow rate).

In the present study, the reference rainfall values de-
termined at the regional classification scale proposed by
Chomicz (1951) were the basis for the selection of threshold
values (maximum instantaneous flow and hydrograph vol-
ume) in accordance with the following equation:

Ptot = U = α0 ·
√
tr, (1)

where tr is the rainfall duration, Ptot is the rainfall depth
equal to its efficiency, and α0 is the rainfall efficiency co-
efficient taking into account the normal, heavy, and torrential
rain types.

Based on the Chomicz (1951) classification of rainfall,
outflow hydrographs were calculated, their parameters (Qm
and V ) were determined, and classification variables were
defined. The outflow hydrographs and their parameters (vol-
ume and maximum flow rate) were calculated for the set val-
ues Ptot= f (tr, α0), which matched the assumed categories
of rainfall and the temporal distribution of rainfall in the rain-
fall episode. When the calculated values Q(Ptot, tr, ζ , θ ) and

V (Ptot, tr, ζ , θ ) (where ζ is a function describing the tem-
poral intensity distribution, and θ is a function taking into
account the uncertainty of the calibrated parameters in the
catchment model) are smaller than the threshold values, they
have a value of 0; otherwise, they are equal to 1.

In the third stage, logistic regression models were devel-
oped for the values of the explanatory variables (Ptot, tr, ζ ,
and xj – values of calibrated coefficients in the catchment
model; rainfall characteristics) and for the established de-
pendent (zero-one) variables for the applied threshold val-
ues (Qg,m and Vg) and temporal rainfall distribution (ζ ). The
subsequent stage of the analyses consisted of determination
of the values of the sensitivity coefficients (Sxj) in accordance
with the methodology described later in this study. The pro-
posed computational algorithm of the sensitivity analysis was
performed in the following stages:

a. Determination of the hydrodynamic model of the catch-
ment;

b. Identification of a posteriori distributions of the cali-
brated parameters in the model of the catchment;

c. Monte Carlo sampling of the identified parameters of
the SWMM and calculation of the parameters of the out-
flow hydrograph from the catchment for the separated
rainfall events (described by the temporal distribution
of rainfall and duration of rainfall, as well as rainfall
depth);

d. Identification of the threshold values of the outflow hy-
drograph parameters from the catchment, taking into ac-
count the origin of rainfall (on the Chomicz scale);

e. Determination of logit models and their validation using
a hydrodynamic model;

f. Calculation of sensitivity coefficients, taking into ac-
count the origins of rainfall and the temporal distribu-
tion of rainfall;

g. Determination of the influence of uncertainty of esti-
mated coefficients in logistic regression models on the
sensitivity coefficients.

Based on the calculation scheme described above, this pa-
per presents the next stages of construction of a logit model.
A catchment model generated in the SWMM program was
used for this purpose. The threshold values were determined
in accordance with the Chomicz (1951) classification, in
which the following categories of rainfall were defined: nor-
mal rain (α0= 1.00), heavy rain (α0= 1.40), and torrential
rain (α0= 5.66), assuming a constant temporal rainfall dis-
tribution and rainfall duration of tr= 15 min. For these as-
sumptions, the depth of rainfall was determined from Eq. (1),
and catchment outflow hydrographs were simulated using the
calibrated catchment model.
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3.3 Logistic regression

The logistic regression model, also known as the binomial
logit model, is usually employed for the analysis of binary
data and can be used to determine the probability and iden-
tify the occurrence of events (Jato-Espino et al., 2018; Li and
Willems, 2019; Szeląg et al., 2020). The maximum amount
of stormwater outflow from the catchment and the hydro-
graph parameters of any rainfall event can be calculated us-
ing hydrodynamic models, e.g., SWMM. An alternative so-
lution is statistical models (hydrograph simulators are con-
siderably easier to implement than physical models); for in-
stance, the generalized linear model (GLM – generalized
likelihood model), which comprises the variability of rainfall
characteristics and the uncertainty of calibrated coefficients,
is shown in the following equation:

Q(µ)m = α0+α1 ·Pc+α2 · td+α3 · x1+α4 · x2+ ·· ·

+αj+2 · xj, (2)

where α0 represents intercept; α1, α2, . . . , αj+2 represent
empirical coefficients determined with the maximum like-
lihood method; Ptot represents rainfall depth; tr represents
rainfall duration; x1,2,j=n represents calibrated coefficients
in the SWMM; and Qm represents the link function deter-
mining the relationship of the mean value of the dependent
variable µ with the linear combination of predictors.

Assuming that µ=p and introducing the link function re-
ferred to as logit, it is possible to transform the modeled val-
ues of dependent variables included in Eq. (2) into a new
(zero-one) system describing the probability values:

Q(p)=Q(µ)m = logit(p)= ln
(

p

1−p

)
= exp(α0+α1 ·Ptot+α2 · tr+α3 · x1

+α4 · x2+ ·· ·+αj+2 · xj). (3)

This approach may prove especially useful when the
results of calculations in the multiple linear regression
model exhibit unsatisfactory convergence (R2< 0.70), and
it is therefore advisable to introduce classification variables,
which is a simplifying solution. Moreover, this approach
makes it possible to emphasize and include relationships that
might be omitted in the calculations of multiple linear regres-
sion, as has been demonstrated in many reports (Hosmer and
Lemeshow, 2000; Kleinbaum and Klein, 2010; Myers et al.,
2010). Since the continuous values Q(Ptot, tr, xj)m are trans-
formed into the probability space p by the logit function in
this case, it is reasonable to equate them with the determined
p(Ptot, tr, xj) values for a given threshold Qg,m (Fig. 2). In
the transformed data system (expressing probability) varying
in the range of 0–1, it was shown that the effect of the change
in individual variables (xj) by1xj on the p value is described

by the following equation:

Sxj =
∂p

∂xj
·
xj

p
=
p(xj,g+1xj)−p(xj,g;Qg,m)

(xj,g+1xj)− xg,j

·
xj

p(xj,g;Qg,m)

= αj+2 · xj · (1−p(xj,g;Qg,m)), (4)

where Q and p(xj,g+1xj) represent maximum flow value
(Fig. 2a) and the probability of exceeding thereof for value
(xj,g+1xj), respectively (Fig. 2b); Q(xj,g)m,g represents
maximum instantaneous outflow from the catchment; and
p(xj,g;Qm,g) represents probability of exceeding the thresh-
old value Qg,m for the given explanatory variables (Ptot, tr,
x1, x2, x3, . . . , xn) equal to p= 0.50 (most considerations
in the present analyses related to the value p= 0.50, as this
value corresponds to that ofQg,m in the probability scale p).

As indicated in Fig. 3, an increase in xj,g by 1xj results
in a decrease in the Qg,m value by 1Qm and yields a flow
value ofQξ , which facilitates determination of the numerical
value of the sensitivity coefficient described by Eq. (4). In the
transformed space (see Fig. 2b), the increase in the xj,g value
(corresponding to p= 0.50 and the threshold value Qg,m) to
the value of xj,g+1xj is accompanied by a decline in the
p value by 1p to the value p∗. In these analyses, the deter-
mined p∗ value corresponds to Q∗m, which can be defined as
Qg,m – f (p,p∗), and the relationship can be expressed as
follows:

Sxj =
Q(xj,g+ ε ·1xj)

∗
m−Q(xj,g)g,m

(xj,g+ ε ·1xj)− xj,g
·

xj

Q(xj,g)g,m

=
f (p,p∗)−Q(xj,g)g,m

(xj,g+ ε ·1xj)− xj,g
·

xj

Q(xj,g)g,m
, (5)

where ε is the empirical coefficient for conversion of theQ∗m
value into p∗. The p∗ value can be related to Q∗m<Qm,g;
hence, the effect of changes in the xj value on the calculated
results can be inferred, and the sensitivity coefficient can be
determined from Eq. (5). Assuming a p value of 0.50 for
the analyses was driven by the fact that the logit models de-
termined should be universal, which is important from the
point of view of being able to generalize the results obtained
and apply them also to other urban catchments (Jato-Espino
et al., 2018; Li and Willems, 2019; Szeląg et al., 2020).

The following parameters were included in the assessment
of the predictive abilities of logit models: sensitivity – SENS
(reflects the correctness of classification of data in a dataset
p>p(Qg,m)), specificity – SPEC (reflects the correctness
of classification of data in a dataset p<p(Qg,m)), and cal-
culation error – R2

z (reflects the correctness of classification
of events at p<p(Qg,m) and p<p(Qg,m)), as described in
detail by Hosmer and Lemeshow (2000) and Szeląg et al.
(2020).

In the deterministic solution, the values of the sensitiv-
ity coefficients (Sxi, where xi is α, nimp, dimp, and nsew) are
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Figure 3. Calculation diagram showing the effect of changes in the xj,g value by 1xj on (a) the flow volume Qm and (b) probability of
exceeding p(Qg,m; xj,g)= 0.50.

calculated from Eq. (4) for the subsequent parameters cali-
brated in the SWMM for the assumed rainfall characteristics
(Sect. 5.1), temporal distribution of rainfall, and the bound-
ary values of xi determined in such a way that p= 0.50. For
the solution that takes into account the uncertainty of the es-
timated coefficients in logistic regression models, the values
of the sensitivity coefficients are also calculated from Eq. (5).
Additionally, the errors of the determined coefficients (stan-
dard deviation) are taken into account, Monte Carlo simu-
lations are performed for subsequent parameters included in
the calibration, the sensitivity coefficients are calculated, and
empirical distributions are determined.

3.4 Analysis of the uncertainty of estimated coefficients
in the logit model

The study comprised the analysis of the effect of the para-
metric uncertainty of the logit models on the results of calcu-
lations of probability p as propagation of the uncertainty of
the model coefficients. Moreover, the values of the sensitiv-
ity coefficients of individual factors Sxi were determined. The
calculation of uncertainty in the scheme presented in Fig. 1
consisted of the following steps:

– Determination of mean coefficient values (αj) and their
standard deviations (σj) in logistic regression models
used for determination of normal distributions N(µα ,
σα)i ;

– T-fold sampling of the α∗j value with the Monte Carlo
method based on the developed theoretical distributions
Nj;

– Determination of probability curves for exceeding the
Qg,m value, i.e., p∗= f (Ptot, tr, ζ , xn, N(µα , σα)) and
sensitivity coefficients S∗xi=F(Ptot, tr, ζ , xn, N(µα ,
σα)) from Eq. (4), as well as the relevant percentiles.

On the basis of the determined logit models for the as-
sumed cutoff thresholds Qg,m depending on the tempo-
ral rainfall distribution (ζ ), probability curves described by

Eq. (3) were plotted, and the values of sensitivity coefficients
Sxi were determined from Eq. (4) for individual explanatory
variables.

3.5 Hydrodynamic model

The SWMM 5.1 model was used to simulate the outflow
from the catchment. The hydrodynamic model considered in
this study consists of 92 partial catchments, 200 manholes,
and 72 conduit sections. The proportion of impervious areas
in the individual subcatchments ranges from 5 % to 90 %,
and the average slope of the area is 0.5 %–6 %. The surface
area of the partial catchments varies from 0.12 to 2.10 ha.
After calibration, the Manning roughness coefficient for the
sewer channels had a value nsew= 0.018 m−1/3 s; the rough-
ness coefficient and retention depth for the impervious ar-
eas were nimp= 0.020 m−1/3 s and dimp= 1.65 mm, respec-
tively; and the flow path width expressed as W =αS ·A0.50

was αS = 2.00 (Kiczko et al., 2018). In the developed model
of the catchment, stormwater flows independently from im-
pervious (QImp) and pervious (QPerv) areas to the stormwa-
ter network. Thus, the outflow hydrograph from single catch-
ments is the sum of the two-component runoff hydrographs
at time t , which means thatQ=QImp+QPerv. The analyzed
catchment model was calibrated and used in the analysis
of the quantity and quality of stormwater outflow from the
catchment, the operation of the stormwater treatment plant,
and the function of the stormwater system, which was re-
ported in detail by Szeląg et al. (2016) and Kiczko et al.
(2018). The sensitivity analysis and calibration of the catch-
ment model were also performed with the GLUE+GSA
method (Szeląg et al., 2016).

3.6 GLUE – generalized likelihood uncertainty
estimation

The model uncertainty was estimated using generalized like-
lihood uncertainty estimation (Beven and Binley, 1992). It
was assumed that model uncertainty can be described by the

https://doi.org/10.5194/hess-25-5493-2021 Hydrol. Earth Syst. Sci., 25, 5493–5516, 2021



5502 F. Fatone et al.: Advance sensitivity analysis of rainfall impact on hydrograph in urban catchments

random variability of its calibrated coefficients. The coeffi-
cient variability ranges for the SWMM of the Kielce Basin
were investigated in previous studies (Kiczko et al., 2018;
Szelag et al., 2016). They are shown in Table 1. In the pre-
vious studies conducted by Kiczko et al. (2018) and Szeląg
et al. (2016), parameter identification was performed along
with the Bayesian approach using likelihood functions. The
parameters were identified on the basis of Bayesian estima-
tion (Beven and Binley, 1992):

P(Q/θ)=
L(Q/θ)P (θ)∫
L(Q/θ)P (θ)dθ

, (6)

where P(θ) stands for an a priori (Table 1) calibrated coef-
ficient distribution (uniform distribution was applied in the
present study), and L(Q/θ) is a likelihood function used to
calculate weights for the Monte Carlo sample depending on
the model fit to the observed basin flows Q and P(Q/θ) re-
sulting in a posteriori distribution of model coefficient θ . The
following formula was used as the likelihood function (Ro-
manowicz and Beven, 2006):

L(Q/θ)= exp


∑N
i=1

(
Qi − Q̂i

)2

κ · σ 2

 , (7)

whereQi and Q̂i values represent the time series of observed
and computed flows, respectively, and κ is the scaling fac-
tor for the variance σ 2 of model residuals used to adjust the
width of the confidence intervals. In the study conducted by
Kiczko et al. (2018), the value of κ was determined, ensur-
ing that 95 % of observed flow points are enclosed by 95 %
confidence intervals of the model output.

The coefficients in the ranges given in Table 1 were uni-
formly sampled 5000 times, and the model was evaluated for
each set. The simulation goodness of fit was determined as
the standard deviation of computed and observed outflow hy-
drographs. The behavioral simulations were selected using a
threshold value of deviation; i.e., simulations with a poorer
fit were rejected. The threshold value was determined itera-
tively to ensure that confidence intervals explained the model
uncertainty with respect to the observation. The goal was to
enclose 95 % observation points within 95 % confidence in-
tervals. Confidence intervals were calculated on the basis of
empirical cumulative distribution functions of an ensemble
of modeled hydrographs. The value of the threshold was iter-
atively increased to reach the above assumption. Coefficients
were identified, and the threshold was adjusted for two rain-
fall events on 24 July 2011 and 15 September 2010. The size
of the behavioral set was 5000. It should be noted that it is
assumed in the above approach that the simulations from the
behavioral set are equally probable. In this study, analyses
were limited to four parameters in the SWMM. Computer
simulations (Szeląg et al., 2016) using the presented catch-
ment model (SWMM) integrated with the MATLAB algo-
rithms, in which the GLUE+GSA method was implemented

(including global sensitivity analysis and uncertainty analy-
sis), showed that the parameters of the Horton model, reten-
tion depth, and Manning’s roughness coefficient of pervious
areas had a negligible impact on the modeled outflow hydro-
graph from the catchment. These results were also confirmed
by simulations performed by other researchers (Thorndahl,
2009; Fu et al., 2011; Fraga et al., 2016) for urban catch-
ments in Belgium, Great Britain, Italy, etc., using local and
global sensitivity analytical methods. These results were also
confirmed in the analyses performed by Skotnicki and Sow-
iński (2015) and Mrowiec (2009) for catchments in Poland.
The relationships between the calibrated parameters in the
SWMM and the modeled parameters of the outflow hydro-
graph are complex and depend on many factors, i.e., spa-
tial distribution of impervious areas, geometry and retention
of the stormwater network, catchment area, etc. (Razavi and
Gupta, 2015). Due to the size of the catchment area and lim-
ited outflow from pervious areas compared with impervious
areas (Szeląg et al., 2016), the roughness and retention coef-
ficients of impervious areas proved that they had a negligible
effect on the outflow hydrograph from the catchment com-
pared with other calibrated parameters of the SWMM.

With precise spatial data about the catchment, it was
shown that the uncertainty in the identification of impervi-
ous areas also had an insignificant influence on the modeled
outflow hydrograph (Szeląg, 2014, 2016). Based on the con-
tinuous rainfall series from the 2010–2016 period and the de-
termined a posteriori distributions of calibrated coefficients
in the SWMM, simulations of the combinations of numeri-
cal values [α, nimp, dimp, nsew] (5000 samples) were carried
out, which facilitated the determination of catchment outflow
hydrographs (Fig. B3, Appendix). On this basis, parameters,
i.e., maximum instantaneous outflow (Qm) and volume (V ),
were determined for each calculated hydrograph. The results
of these analyses were used for the development of logit
models for the established threshold values (Qg,m and Vg)
and the assumed temporal rainfall distributions (R1, R2, R3,
and R4). To ensure that the number of rainfall events in the
2010–2016 period was 321 rainfall events, 160 5000 rain-
fall event simulations were performed (considering the un-
certainty of the SWMM), of which 120 000 episodes were
separated for logit model validation.

3.7 Verification of generated logit models for analysis
of hydrograph parameters

The suitability of the generated logit models for simulation
tasks in the case of the stormwater catchment analyzed in
this study was verified vs. measurement data. Since the tem-
poral rainfall distributions in the rainfall events derived from
measurements varied, they were assessed and adjusted to the
theoretical distributions presented in this study (see Fig. B1,
Appendix B) based on the value of the correlation coeffi-
cient (R) expressing the goodness of fit of empirical distri-
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butions P
Pt
= f

(
t
tr

)
to the theoretical distributions (R1, R2,

R3, and R4).

4 Results and discussion

Following the developed computational algorithm, the “Re-
sults and discussion” section includes the following steps:
determining the threshold values of the outflow hydrograph
parameters using the hydrodynamic model of the catchment,
as well as uncertainty analysis; developing the logistic re-
gression model and its verification; sensitivity analysis, in
which the influence of rainfall origin and temporal rainfall
distribution on the parameters of the hydrograph is analyzed
(volume and maximum flow rate); and analysis of the impact
of uncertainty of the estimated coefficients in the logit model
on the determined sensitivity coefficients.

4.1 Separation of independent rainfall events

Independent rainfall events were distinguished based on a
series of rainfall events (2010–2016) measured at the rain-
fall station located at a distance of 2 km from the Si9 col-
lector catchment and the definition of a rainfall event spec-
ified above. The number of events in the individual study
years was estimated at 36–58. The rainfall duration (tr) in
the events was 20–2366 min, and the length of the dry period
was 0.16–60 d. The rainfall depth (Ptot) in the rainfall events
was in the range of 3.0–45.2 mm.

4.2 Establishment of threshold values

The values of calibrated parameters shown in Table 1 served
for the SWMM calculations. Assuming rainfall intensity
values corresponding to normal (Ptot,u= 3.7 mm), heavy
(Ptot,m= 5.8 mm), and torrential (Ptot,g= 21.9 mm) rain,
outflow hydrographs were determined for tr= 15 min, and
the Q(t) values were determined at a 10 s resolution. The
abovementioned assumption is made because the area
under consideration is a small urban catchment, where
the time of stormwater runoff is relatively short, and the
stormwater retention time is limited due to the signifi-
cant slope in the channels, reaching 3.9 %. Moreover, the
stormwater system model is simplified and limited to the
main channels. In the context of the adopted assumptions
(catchment retention resulting from land development and
topography), the value of the rainfall duration (tr= 15 min)
theoretically including the concentration time, the pipe
retention time seems to be representative for small urban
catchments, considering that the measure of the influence
of rainfall origin on the model sensitivity is primarily to be
differentiated by the mean intensity of rainfall (Meynink
and Cordery, 1976; Watt and Marsalek, 2013; Krvavica
and Rubinić, 2020). Appropriate selection of the duration
of rainfall and classification of rainfall for calculation
purposes may result from the local rainfall parameters and

the climatic conditions shaping the dynamics of rainfall–
runoff processes. The simulations revealed the following
values of maximum instantaneous flow and hydrograph
volumes: Q(qu)m= 0.275 m3 s−1 and V (qu)= 450 m3,
Q(qs)m= 0.735 m3 s−1 and V (qs)= 812 m3, and
Q(qg)m= 2.95 m3 s−1 and V (qg)= 3500 m3, respec-
tively. It is worth noting that the values of the catchment
outflow hydrographs were identical to the rainfall intensity
distributions R1, R2, R3, and R4, as demonstrated by Szeląg
et al. (2016).

4.3 GLUE

Parameters were identified using outflow time series for two
rainfall events on 24 July 2011 and 15 September 2010
(Kiczko et al., 2018). The threshold value of the correlation
coefficient ensuring that 95 % of the observations were en-
closed within 95 % confidence intervals was 0.920. The size
of the behavioral obtained set was 3375. The confidence in-
tervals were verified for two rainfall events on 30 May 2010
and 30 July 2010 (see Fig. B2 – Appendix B). The percentage
values of the enclosed observation points were as follows:
91 % for 30 May 2010 and 47 % for 30 July 2010 (Kiczko
et al., 2018).

4.4 Estimation of coefficients in the logit model and
assessment of goodness of fit

Based on the determined values of the dependent variables
and the corresponding explanatory variables (Ptot, tr, α, dimp,
nimp, and nsew) for the assumed rainfall distributions (R1, R2,
R3, and R4), logit models were generated for calculation of
the probability of exceeding the threshold values: maximum
instantaneous flows (Qg,m) and outflow hydrographs (Vg).
Table 2 presents the determined values of empirical coeffi-
cients (αj) and assessment of the goodness of fit of the cal-
culation vs. measurement results in the logit models used for
calculation of p=F(Qm,g) and p=F(Vg). The calculations
indicated identical coefficient values in the case of temporal
rainfall distributions R3 and R4 in the logit model; hence, the
tables below show the results for temporal rainfall distribu-
tion R3. The analysis of the goodness of fit of the calculated
results to the measurement results (SPEC, SENS, and R2

z ) re-
vealed that the proposed logit models were characterized by
satisfactory classification abilities.

As shown in Table 2, no less than 95.79 % of the
cases were correctly identified at the calculated values of
p<p(Qg,m; Vg) and p≥p(Qg,m; Vg). The model was vali-
dated with 40 000 independent rainfall events for R1, R2, R3,
and R4 rainfall distributions (Table 3).

The results of calculations of the goodness of fit measures
of the logit models for the temporal rainfall distributions R1,
R2, R3, and R4 associated with the normal, heavy, and tor-
rential rains confirm the high goodness of fit of the calcu-
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Table 2. Calculated coefficients (αj) and measures of the goodness of fit of measurement results to the logit model calculations of the Qg,m
and Vg values for rainfall distributions R1, R2, R3, and R4. Statistically significant parameters are in bold.

Rainfall distribution R1

Variable Q(qu)g,m Q(qs)g,m Q(qg)g,m

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj)

α0 −0.235 0.083 −23.72 6.749 5.051 1.327
α 2.571 0.988 1.901 0.821 0.091 0.028
dimp −1.344 0.413 −1.13 0.473 −0.129 0.035
nimp −234.241 84.098 −7.481 2.593 −5.449 2.057
nsew −205.159 141.19 −377.74 107.016 −419.281 81.495
Ptot 3.821 0.913 2.797 1.157 0.249 0.022
tr −0.221 0.051 −1.125 0.139 −0.1 0.009

SPEC= 96.51; SPEC= 100; SPEC= 95.74;
SENS= 99.79; SENS= 99.77; SENS= 97.62;
R2

z = 99.51 R2
z = 99.82 R2

z = 96.28

Rainfall distribution R2

Variable Q(qu)g,m Q(qs)g,m Q(qg)g,m

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj)

α0 −1.307 0.465 −3.509 0.785 6.582 1.386
α 1.503 0.491 1.444 0.567 0.29 0.12
dimp −2.971 0.542 −2.872 0.905 −0.029 0.015
nimp −68.921 29.814 −56.207 26.698 −22.629 10.949
nsew −114.428 53.26 −397.451 132 −666.661 88.012
Ptot 2.792 0.355 3.867 0.81 0.468 0.044
tr −0.052 0.007 −0.207 0.043 −0.092 0.009

SPEC= 97.43; SPEC= 99.28; SPEC= 98.06;
SENS= 98.97; SENS= 99.57; SENS= 98.13;
R2

z = 98.66 R2
z = 99.48 R2

z = 98.10

Rainfall distribution R3

Variable Q(qu)g,m Q(qs)g,m Q(qg)g,m

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj)
α0 −3.842 0.98 −2.908 0.916 1.726 0.675
α 1.285 0.283 1.175 0.259 0.312 0.043
dimp −1.869 0.3 −1.22 0.25 −0.152 0.043
nimp −97.252 20.082 −70.814 18.365 −20.008 3.15
nsew −161.108 32.34 −197.528 36.361 −264.179 40.089
Ptot 3.068 0.261 1.959 0.164 0.267 0.017
tr −0.022 0.002 −0.046 0.004 −0.027 0.002

SPEC= 95.79; SPEC= 95.92; SPEC= 97.60;
SENS= 97.11; SENS= 96.11; SENS= 96.89;
R2

z = 96.93 R2
z = 96.01 R2

z = 97.25

Rainfall distribution R1, R2, R3, and R4

Variable V (qu)g V (qs)g V (qg)g

Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj)

α0 −27.793 3.511 −23.483 2.997 −20.903 4.516
α 5.427 1.963 3.142 0.917 2.837 0.688
dimp −3.983 0.968 −3.075 1.381 −1.978 0.722
nimp −48.794 21.066 −40.105 21.133 −31.321 14.474
nsew −86.986 46.889 −66.569 32.38 −42.606 20.799
Ptot 7.417 2.824 6.904 1.726 2.473 0.391
tr −0.001 0.001 −0.001 0.0003 −0.001 0.008

SPEC= 96.53; SPEC= 98.63; SPEC= 97.63;
SENS= 99.17; SENS= 97.77; SENS= 98.77;
R2

z = 98.73 R2
z = 98.13 R2

z = 98.33
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Table 3. Results of validation of logit models shown in Table 2.

Rainfall distribution R1

Data to validation Q(qu)g,m Q(qs)g,m Q(qg)g,m
Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj)

40 000 SPEC= 96.00; SENS= 95.60 SPEC= 94.11; SENS= 96.20 SPEC= 96.20; SENS= 95.20

Variable Q(qu)g,m Q(qs)g,m Q(qg)g,m
Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj)

40 000 SPEC= 97.30; SENS= 96.50 SPEC= 96.20; SENS= 95.22 SPEC= 95.20; SENS= 96.50

Rainfall distribution R3

Variable Q(qu)g,m Q(qs)g,m Q(qg)g,m
Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj)

40 000 SPEC= 95.50; SENS= 97.10 SPEC= 96.45; SENS= 96.56 SPEC= 97.12; SENS= 96.45

Rainfall distribution R1, R2, R3, and R4

Variable V (qu)g V (qs)g V (qg)g
Values (αj) SD (σj) Values (αj) SD (σj) Values (αj) SD (σj)

120 000 SPEC= 95.25; SENS= 96.15 SPEC= 96.03; SENS= 93.17 SPEC= 95.03; SENS= 96.34

lated and measured results. This confirms the suitability of
the models for further analyses.

4.5 Verification of the generated logit models vs.
measurement data

The analyses showed that in 237 of the 248 events for which
the empirical and theoretical rainfall distribution exhibited
high convergence (R≥ 0.96), the calculated results from the
logit models were consistent with the simulation data pro-
vided by the SWMM in terms of the Qm classification.
In the total number of 248 rainfall events, the R1 tempo-
ral rainfall distribution was identified in 126 events (calcu-
lated results consistent with measurements in 122 events),
72 events represented the R2 temporal distribution (calcu-
lated results consistent with measurements in 69 events), and
58 events were determined as the R3 and R4 temporal dis-
tributions (simulation results consistent with measurements
in 56 events). In the other 73 events (with R< 0.96), the re-
sults of calculations performed in the logit models agreed
with the measurement results in 43 events. In this group of
events, 19 rainfall events were classified as the R1 temporal
distribution (simulation results consistent with measurement
results in 8 events), 23 events represented the R2 temporal
distribution (calculated results consistent with measurement
results in 17 events), and 31 events were identified as the
R3 and R4 temporal distributions (simulation results consis-
tent with measurements in 18 events). The Vg value calcu-
lated for 321 rainfall events agreed with the measurement re-
sults obtained for 281 events. Table 4 shows a comparison of
the calculated results provided by the proposed logit models

with the measurement results obtained in consecutive years
(2010–2016).

The table shows the agreement of the calculated results for
the hydrograph parameters obtained via simulation with the
SWMM and logistic regression with regard to the classifica-
tion of maximum flows and hydrograph volumes. The data
presented in Table 4 indicate agreement of the logit model-
based calculated results with the measurement results.

In Table 4, the format x1/x2 represents the number of rain-
fall events in a year with an exceeded x1=Qg,m/x2=Vg
threshold value; calibrated values α, nimp, dimp, and nsew
specified in the “Hydrodynamic model” section were used
for verification calculations in the logit models shown in Ta-
ble 4.

The calculated results confirm that the proposed logit mod-
els include the key determinants of the variability of hydro-
graph parameters, which has been confirmed in theoretical
studies and the results of field studies conducted by many
authors (Gironás et al., 2010; Guan et al., 2015; Thorndahl,
2009). The maximum difference between the number of rain-
fall events where the parameters of the catchment outflow
hydrograph were identified correctly based on rainfall distri-
bution and rainfall characteristics by the logit model and the
calibrated values of the SWMM was six events, which was
noted for 2015. In this case, and in the other years, this was
associated with problems with agreement between empiri-
cal and theoretical distributions specified in DWA-A 118E
(2006). This was confirmed by the local nature of the dy-
namics of rainfall events in some urban catchments in Eu-
rope, as reported by various authors (De Paola and Ranucci,
2012; Todeschini et al., 2012) investigating the variability of
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Table 4. Comparison of measurement and calculated results in the analyzed period.

Year M Qmes
m < 0.3 Qsim

m < 0.3 Qmes
m > 2.5 Qsim

m > 2.5 Qmes
m < 0.75 Qsim

m < 0.75 Qmes
m > 0.75 Qsim

m > 0.75

V (Q= 0.3 m3 s−1) V (Q= 2.5 m3 s−1) V (Q= 0.75 m3 s−1)

2010 47 18/15 20/18 3/9 3/6 30/24 22/20 17/23 15/19
2011 51 20/23 15/19 2/7 2/5 29/28 26/23 22/23 18/16
2012 36 15/17 12/14 3/7 2/6 22/20 18/18 14/16 11/18
2013 41 20/18 16/15 4/8 3/9 28/22 24/20 13/19 10/22
2014 44 18/15 14/12 3/8 2/8 29/25 26/22 15/15 12/13
2015 58 23/18 18/22 3/9 3/10 39/32 33/29 19/26 15/23
2016 44 24/17 22/13 4/9 4/7 34/25 30/22 10/19 12/17

temporal rainfall distribution in a rainfall event. Hence, there
is a need to construct regional rainfall models that take into
account the variability of measured rainfall distribution in an
event rather than that assumed for another region (Wartal-
ska et al., 2020). However, this may be the only solution in
the absence of measurement data, which has been confirmed
in studies on the use of typical DWA-A 118E (2006) rain-
fall distributions to model sewer network operation (Siek-
mann and Pinnekamp, 2011). Analysis of the data compiled
in Table 3 demonstrates that, in addition to their theoretical
value and the possibility of determining sensitivity (Qm and
Vg), the proposed models can be used for identification of an
event with a probability of exceeding the Qm,g or Vg values
in the analyzed catchment.

The analyses performed in this study (Table 2) indicate
a strong effect of the flow path width (α), Manning rough-
ness coefficient of impervious areas (nimp), retention depth
of impervious areas (dimp), and Manning roughness coeffi-
cient of sewer channels (nsew) on the hydrograph volume
and maximum instantaneous stormwater stream outflow in
the analyzed catchment. This is confirmed by the values
of the αj coefficients. The other explanatory variables (Ta-
ble 1) are statistically insignificant at the assumed confi-
dence level of 0.05. These findings were confirmed by Barco
et al. (2008), Kleidorfer et al. (2009), and Skotnicki and
Sowiński (2015), who calibrated hydrodynamic models of
catchments in the USA (Santa Monica; area catchment of
217 km2), Australia (Melbourne; area catchments of 37.98
and 89.10 ha), Poland (Poznań; area catchment of 6.7 km2),
respectively. The present simulation results confirm the find-
ings reported for larger catchments located in China (Li et al.,
2014), where correlation coefficient values and entropy mea-
sures were used; the USA (Muleta et al., 2013), where the
GLUE method was applied; and Iran (Rabori and Ghazavi,
2018), where the local sensitivity analysis was carried out.
The analysis of the values of coefficients αj in the logit mod-
els indicates that only an increase in the flow path width (α)
leads to an increase in the probability of exceeding Qg,m as
well as Vg, which is confirmed by the analyses performed
by Barco et al. (2008). An inverse correlation was found for
the other parameters in the SWMM (nimp, dimp, and nsew).

The results of the nsew simulations relative to Qg,m and Vg
were confirmed by the calculations reported by Barco et al.
(2008) and Li et al. (2014). The catchment analyzed by Li
et al. (2014) was located in China (Changsha city, area catch-
ment of 11.7 ha). The impervious area accounted for 56 % of
the catchment. The increase in the nsew value reported by
many authors (Barco et al., 2008; Fraga et al., 2016; Li et al.,
2014) indicated an opposite relationship to that observed in
this study. This shows that an increase in the nsew value re-
sults in a shorter stormwater flow time and accumulation of
flow from channels, which leads to a rise in the stormwater
level and reduction of the instantaneous flow stream in the
cross-section closing the catchment (Leandro and Martins,
2016). The calculations performed by Li et al. (2014) con-
firmed the Qm= f (nimp) relationship obtained in this study;
however, these analyses did not include the rainfall distribu-
tion and genesis. The nimp and dimp simulation results ob-
tained in this study are relevant in the nonlinear reservoir
SWMM for simulation of the catchment outflow (Gironás
et al., 2010; Rossman, 2015). An increase in the catchment
retention leads to a reduction in the amount of stormwater
flowing into the sewer channels, which has an impact on the
simulation results of the outflow in the cross-section closing
the catchment.

4.5.1 Sensitivity coefficients – hydrograph volume vs.
maximum instantaneous flow

The plotted curves indicated that the smaller the volume of
the calibrated catchment outflow hydrograph, the greater the
sensitivity of the model to changes in the calibrated coeffi-
cients identified in the catchment model (Fig. 5a–d). As part
of the present calculations, the effect of the rainfall intensity
distribution (ξ ) and threshold value (Qg,m and Vg) on sensi-
tivity coefficients Sxj was assessed. The analyses focused on
the temporal R2 distribution, i.e., Euler type II, as this distri-
bution is used for assessment of the effectiveness of the op-
eration of sewer networks (Siekmann and Pinnekamp, 2011)
and is thus highly important in engineering considerations.
The analyses of the subsequent rainfall distributions (R1, R2,
R3, and R4) were based on the maximum flow caused by
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normal rainfall (Q= 0.3 m3 s−1), which is determined by the
occurrence of stormwater overflow in the case of the above-
mentioned value. The results of these analyses are presented
in Figs. 4 and 5.

The analysis of the results of calculations of the proba-
bility of exceeding the threshold values Vg revealed that the
rainfall intensity distribution did not influence the model sen-
sitivity, which was confirmed by simulation experiments in
the analyzed urban catchment (Szelag et al., 2016). The plot-
ted curves (Fig. 5) indicated that the calibrated volume in
the domain of the Vg value exhibits the greatest sensitivity
(deterministic solution) to changes in dimp and α. This rela-
tionship was confirmed by Skotnicki and Sowiński (2015),
who simulated outflows from a 6.7 km2 catchment in Poznań
and employed local sensitivity analysis. Similar results were
also obtained by Rabori and Ghazavi (2018) in their analyses
of a catchment outflow in Iran. These correlations were also
confirmed by the calculations reported by Mrowiec (2009),
who modeled hydrographs in the urban catchment in Często-
chowa (120 ha). The present analytical results were also con-
firmed by Ballinas-Gonzáles et al. (2020), who demonstrated
a major impact of the characteristics of impervious areas on
the variability of the catchment outflow hydrograph. Differ-
ent sensitivity analytical results were reported by Li et al.
(2014), who demonstrated a crucial effect of nsew on the out-
flow hydrograph volume. Among the explanatory variables
considered in this study (for any p in Eq. 4), nimp was found
to exert the lowest effect on the probability of exceeding Vg
at any p value. The course of the curves and their variabil-
ity (Fig. 5) indicate the lowest Sxi values of the calibrated
coefficient (α, nimp, dimp, and nsew) catchment outflow hy-
drographs in the case of torrential rainfall events, whereas
the highest values were noted in the case of normal rainfall
events (on the Chomicz scale). In terms of the selection of hy-
drographs for calibration followed by validation (SWMM),
the present results have an engineering aspect. This is asso-
ciated with the fact that different relationships V (Q)= f (xi)
can be obtained by validation of the model coefficients at the
calibration stage, which is crucial for minimization of the dif-
ference between measurement and simulation values.

The curves in Fig. 4e–h show that apart from the rain-
fall origin (average rainfall intensity as a result of normal,
heavy, and torrential rainfall), the temporal distribution of
rainfall has an impact on the values of the determined sen-
sitivity coefficients. This result is the effect of the fact that
the temporal distribution of rainfall and the intensity of rain-
fall have a significant impact on the values of the modeled
maximum flow rates, which was confirmed by the analysis
by Schilling (1991). The obtained curves (Fig. 5) prove that
the volume of the outflow hydrograph depends on the origin
of rainfall and hence the variability of the determined values
of the sensitivity coefficients for normal, heavy, and torren-
tial rainfall.

In turn, the impact of rainfall distribution was not found,
which was confirmed by studies in the field of modeling

the volume of runoff from urban catchments (Grum and
Aalderink, 1999), including computer simulations by Szeląg
et al. (2014) for the urban catchment under consideration.

4.5.2 Sensitivity coefficient – maximum instantaneous
flow vs. rainfall distribution

Based on the plotted curves (probabilistic solution), it can
be concluded that when the Qm value is calibrated in the re-
gion ofQg,m= 0.30 m3 s−1 (uniform rainfall distribution R1,
normal rain), the model shows the greatest sensitivity (per-
centile 0.50) to changes in nimp (deterministic solution), as
confirmed by the value Snimp=−2.47 (Fig. 4g). The Man-
ning roughness sewer channel coefficient (Snsew=−2.12;
Fig. 4h), flow path width (Sα = 1.25; Fig. 4e), and retention
depth of impervious areas (Sdimp=−1.03; Fig. 4f) have a
lower impact. The plotted curves and the deterministic solu-
tion indicate that the absolute Snimp and Snsew values for the
R2 and R3 temporal rainfall distributions (deterministic so-
lution) are lower than those for the R1 distribution (Fig. 4e–
f). In turn, in the case of Sα (Fig. 4e) and Sdimp (Fig. 4f),
it was found that the absolute values of the sensitivity co-
efficients calculated for the R1 distribution have lower val-
ues than for R2 and R3. When the model is calibrated based
on hydrographs reflecting the reaction of the analyzed catch-
ment to normal rain (constant temporal rainfall distribution
in an event – R1), the greatest effect on the Qm in the Qg,m
domain is exerted by nimp and the lowest impact is shown
by dimp (in terms of absolute values); this is indicated by the
curves in Fig. 4f–g. In turn, a different relationship, i.e., the
greatest effect of dimp and α and the lowest effect of nimp,
was found for the R2 distribution (Fig. 4e and f). These re-
lationships indicate a significant effect of temporal rainfall
intensity distributions on the model sensitivity to changes in
the coefficients calibrated in the domain of Qg,m values.

The results of the present analyses may be highly impor-
tant in engineering practice, as they confirm that, with the
Qm values assumed to be the basis for calibration, the hydro-
graph should be selected in a way that facilitates identifica-
tion of the coefficients (α, dimp, nimp, and nsew) and valida-
tion so that the values will be a result of rainfall with similar
intensity dynamics. Therefore, it should be emphasized that
in the hydrograph intended for identification of model coeffi-
cients and validation, the relationship between the dependent
variables and the calibrated coefficients must have a similar
form.

4.5.3 Sensitivity coefficients – maximum instantaneous
flow vs. size of threshold Qm

The plotted curves (probabilistic solution) with the determin-
istic solutions showed that the greater the rainfall intensity
(risingQm value), the smaller the values of the sensitivity co-
efficients (Sα , Snimp, and Sdimp) (Fig. 4a–d). This indicates a
decline in the sensitivity of the model of predicting the prob-
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Figure 4. Comparison of the calculated results (deterministic and probabilistic solutions) of sensitivity coefficients (Sα , Sdimp, Snimp, and
Snsew) for (a–d) threshold values (Q=Qg,m) and temporal rainfall distribution ξ =R2 and (e–h) temporal rainfall distributions (ξ =R1,
R2, and R3) for Qg,m= 0.30 m3 s−1.
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Figure 5. Comparison of the calculated results (deterministic and probabilistic solutions) of sensitivity coefficients (Sα , Sdimp, Snimp, and
Snsew) for threshold values V (Q)=Vg and temporal rainfall distribution ξ =R1, R2, and R3.

ability of exceeding Qg,m to changes in calibrated parame-
ters (α, nimp, and dimp) (Fig. 4a–c). An inverse relationship
was found for the nsew value (Fig. 4d). During the calibration
of the catchment model for normal rainfall (maximum inten-
sity in the middle of the event – R2), the model exhibited
the highest sensitivity (Qg,m prediction) to changes in the
retention of impervious areas (Sdimp=−2.342; Fig. 4b) and
the lowest sensitivity to the Manning roughness coefficient
of impervious areas (Snimp=−0.683; Fig. 4c). In the case of
calibration of the catchment model for heavy and torrential
rainfall events, the maximum instantaneous flow Qm in the
region of corresponding Qg,m values exhibited the highest
sensitivity to changes in nsew (Fig. 4d).

The relationships presented in this study have been
scarcely analyzed by other researchers (Barco et al., 2008;
Krebs et al., 2014; Li et al., 2014) in terms of catchment out-
flow modeling. These relationships, which confirm the sig-
nificant effect of rainfall intensity distribution on hydraulic
phenomena occurring in a sewer network, were described by

Jato-Espino et al. (2018) in their study of stormwater over-
flow. The authors showed a statistically significant effect of
the rainfall intensity distribution on the relationship between
stormwater overflow onto the land surface and catchment
characteristics. A certain analogy with the calculated results
described in the present study may be suggested. This is re-
lated to the fact that, along with the increase in rainfall in-
tensity, Jato-Espino et al. (2018) reported a decline in the
sensitivity of the model to the values of selected catchment
characteristics; this is equivalent to a decrease in the sensi-
tivity of the model to the calibrated parameters.

4.5.4 Sensitivity coefficients – uncertainty of estimated
coefficients in the logit model

The calculations showed that the uncertainty of parameter es-
timation in logit models exerts a strong effect on the values of
the sensitivity coefficients calculated for the analyzed cases.
This is confirmed by the determined range of variability of
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the sensitivity coefficient values (Sα , Snimp, Sdimp, and Snsew)
depending on the size of the respective percentiles (Figs. 4
and 5). In most calculation variants (with the exception of α;
Figs. 4a and e and 5a), the difference between the determined
values of the sensitivity coefficients (for the different tempo-
ral rainfall distributions R1, R2, and R3 – normal, heavy, and
torrential rains, respectively, and rainfall genesis) was shown
to decrease with the increase in percentile values.

Different relationships were observed in the analysis
of the variability of Sxi values shown in Fig. 5a. In this
case, for percentiles below 0.36, the highest and low-
est Sα values were obtained for V (Qm,g= 2.50 m3 s−1)
and V (Qm,g= 0.30 m3 s−1), respectively. The analysis
of the effect of rainfall distribution (R1, R2, and R3)
on model sensitivity (calibrated Qm value) revealed
an increase in the difference in the sensitivity coeffi-
cient Sα values with the increase in the percentiles. As
shown by the analysis of the values of sensitivity coef-
ficients Sα and Sdimp (Fig. 4a and b), the relationship
Sα(dimp)(Qm= 0.75 m3 s−1)>Sα(dimp)(Qm= 2.50 m3 s−1)
was obtained for percentile values above 0.42, whereas an
inverse relationship was found for lower percentile values.

5 Summary and conclusions

Modeling of outflows and calibration of hydrodynamic mod-
els with the design of tools supporting this task represent
a relevant current research topic. It is necessary to search
for methods that will yield reliable results reflecting reality,
as well as what is possible, on the one hand. On the other
hand, with their acceptable time and cost efficiency in the
retrieval and analysis of data, the methods should have the
potential to be used in practice by a wide group of engineers.
The currently used methods of analyzing the sensitivity of
hydrodynamic models neglect the origin of rainfall and the
temporal distribution of rainfall. Moreover, in the methods
based on statistical models, the influence of the uncertainty
of the estimated coefficients in the logit model on the values
of the calculated sensitivity coefficients is not taken into ac-
count. Neglecting the abovementioned conditions may result
in problems with the calibration of models and simplifica-
tion in the interpretation of the physics of hydrological pro-
cesses in catchments, which makes them difficult to under-
stand. This study showed that the logistic regression model
can be used for analyses of the sensitivity of the maximum
flow in a hydrograph and hydrograph volume in a rainfall
event. The hydrograph parameters depended on the tempo-
ral rainfall intensity distribution in the rainfall event and pa-
rameters identified in the SWMM. In addition to their scien-
tific aspects, the proposed logit models may be a useful tool
for forecasting the variability of the parameters of catchment
outflow hydrographs, which confirms the usefulness of the
developed tool. The analyses performed in this work showed
that the origin of rainfall and the temporal distribution of

rainfall in the event have a large impact on the sensitivity of
the model. However, this aspect has been neglected until now
in sensitivity analytical methods. The results of the calcula-
tions showed that the lowest values of the sensitivity coef-
ficients were obtained for the outflow hydrographs resulting
from heavy rainfall, while the highest values of the sensitiv-
ity coefficients were obtained for normal rain. In the context
of the currently used methods of sensitivity analysis and cal-
ibration, it seems advisable to modify them by introducing
an additional calculation step consisting of the classification
of the measured rainfall data in terms of the origin of rainfall
(accounting for average rainfall intensity) and the temporal
distribution of rainfall. For this purpose, it is possible to use
unsupervised machine learning methods (hierarchical cluster
analysis, Kohonen neural networks, etc.). In the context of
the obtained calculated results, it is advisable to select the
rainfall–runoff events for calibration and validation in such a
way that the determined sensitivity coefficients do not show
significant variability. It is important for the appropriate se-
lection of the values of calibrated parameters and their po-
tential correction at the stage of model validation. The sensi-
tivity coefficient proposed in this study facilitates the deter-
mination of the impact of selected parameters of the SWMM
on the outflow hydrograph parameters with consideration of
rainfall genesis and variability of temporal rainfall distribu-
tion in a rainfall event. Furthermore, it was demonstrated that
rainfall genesis and the temporal variability of rainfall inten-
sity in a rainfall event should be included in the selection of
hydrographs for calibration and validation of the model. It
was found that the higher the rainfall intensity determining
the modeled outflow hydrograph, the lower the sensitivity of
the identified SWMM parameters to the maximum outflow
and hydrograph volume. The calculations indicated that the
uncertainty of the coefficients identified in the logit model
has a significant impact on the determined sensitivity coef-
ficients. The aspects discussed above are highly important
for the procedure of hydrodynamic model calibration, which
ultimately has a significant effect on the accuracy of the iden-
tified model parameters.

The computational methodology proposed in this paper is
universal in nature and can be applied to any urban catch-
ment area. The simulation results presented in this paper re-
fer to a single catchment area. Therefore, further analyses
are required to verify the developed model for catchments
with different physical and geographic characteristics. Thus,
it is advisable to determine the applicability range of the de-
veloped computational model. Considering the usefulness of
the obtained dependencies, as well as the large influence of
rainfall origin and rainfall temporal distribution on the sen-
sitivity coefficients, further studies are needed. The purpose
of these analyses should be to expand the developed method-
ology of the sensitivity analysis aimed at additionally taking
into account the shape and area of the catchment, land use,
the path of the stormwater network, and the retention of the
network. The analysis of the effect of the temporal distribu-
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tion of rainfall, together with the spatial distribution, seems
to be a particularly interesting issue, especially because both
distributions strongly depend on rainfall genesis. However,
the design of an appropriate experiment seems challenging.

Appendix A: List of symbols

tr rainfall duration,
Ptot rainfall depth,
αj estimated coefficient of logistic regression model,
α0 rainfall efficiency coefficients taking into account the normal, heavy, and torrential rain types,
qu hydrograph caused by normal rainfall (according to the Chomicz scale),
qs hydrograph caused by heavy rainfall (according to the Chomicz scale),
qg hydrograph caused by torrential rainfall (according to the Chomicz scale),
R1, R2, R3, and R4 temporal rainfall distribution,
V volume of hydrograph,
Qm maximum instantaneous flow,
Vg threshold of volume of hydrograph,
Qg,m threshold of maximum instantaneous flow,
ξ function describing the temporal intensity distribution,
nimp Manning roughness coefficient for impervious areas,
nsew Manning roughness coefficient for sewer channels,
α coefficient for flow path width,
GLUE generalized likelihood uncertainty estimation,
dimp retention depth of impervious areas,
Sxj sensitivity coefficient,
p probability of exceeding of Qg,m and Vg,
SWMM Storm Water Management Model,
SPEC specificity,
SENS sensitivity,
R2

z calculation error,
ε empirical coefficient for conversion of the Q∗m value into p∗,
Q(t) outflows from of the catchment at time t ,
x1,2,j=n calibrated parameters in the SWMM.
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Appendix B: Supporting graphical information

Figure B1. Dimensionless rainfall curves, P/Ptot= f (t/tr), obtained from measurements performed in 2008–2016.

Figure B2. Comparison of measurement results of hydrographs of outflow from the catchment area with GLUE calculations.
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Figure B3. Calculated likelihood function – scatter plots of M val-
ues versus calibrated catchment parameters in SWMM.
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