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Abstract. Hydrological models are usually systems of non-
linear differential equations for which no analytical solu-
tions exist and thus rely on numerical solutions. While some
studies have investigated the relationship between numerical
method choice and model error, the extent to which extreme
precipitation such as that observed during hurricanes Harvey
and Katrina impacts numerical error of hydrological mod-
els is still unknown. This knowledge is relevant in light of
climate change, where many regions will likely experience
more intense precipitation. In this experiment, a large num-
ber of hydrographs are generated with the modular modeling
framework FUSE (Framework for Understanding Structural
Errors), using eight numerical techniques across a variety of
forcing data sets. All constructed models are conceptual and
lumped. Multiple model structures, parameter sets, and ini-
tial conditions are incorporated for generality. The computa-
tional cost and numerical error associated with each hydro-
graph were recorded. Numerical error is assessed via root
mean square error and normalized root mean square error. It
was found that the root mean square error usually increases
with precipitation intensity and decreases with event dura-
tion. Some numerical methods constrain errors much more
effectively than others, sometimes by many orders of magni-
tude. Of the tested numerical methods, a second-order adap-
tive explicit method is found to be the most efficient be-
cause it has both a small numerical error and a low com-
putational cost. A small literature review indicates that many
popular modeling codes use numerical techniques that were
suggested by this experiment to be suboptimal. We conclude

that relatively large numerical errors may be common in cur-
rent models, highlighting the need for robust numerical tech-
niques, in particular in the face of increasing precipitation
extremes.

1 Introduction

Computational hydrological models describe the movement
and distribution of water within a region. They enjoy frequent
use within and outside of academia, addressing a diversity
of topics from the determination of catchment characteristics
(Kirchner, 2009; Rempe and Dietrich, 2014; Wrede et al.,
2015; Melsen et al., 2018), and assessing water supply secu-
rity (Paton et al., 2013), to deciding which areas are in danger
of flooding (Jasper et al., 2002; Madsen et al., 2014).

Hydrological models usually have state variables, which
describe relevant physical quantities, and fluxes, which de-
scribe how the state variables change over time or space.
For example, a state variable could be the amount of wa-
ter in the unsaturated zone of a catchment, and fluxes inter-
acting with that state variable could be evaporation, percola-
tion to the saturated zone, discharge from the catchment, or
precipitation, among others. Differential equations are used
to describe the relationships between fluxes and state vari-
ables. These differential equations are often highly nonlinear,
meaning that it is impossible to obtain their exact solutions.
However, approximate solutions to these systems of differ-
ential equations are possible through a variety of numeri-
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cal strategies. Therefore, hydrological models contain math-
ematical relationships between state variables and fluxes (as
well as relationships between state variables themselves) that
need to be solved numerically (approximately) rather than
analytically (exactly).

While discharge predictions resulting from hydrological
models are often reasonably accurate (Refsgaard and Knud-
sen, 1996; Refsgaard, 1997; Addor et al., 2011), they are
always subject to error. Total hydrological model error can
be decomposed in a few ways, i.e., observational, structural,
and numerical, among others. Observational errors are dif-
ferences between real and observed values caused by inaccu-
rate measurements, and structural errors are differences be-
tween model results and observed quantities due to the con-
ceptual simplification or misrepresentation of processes in a
model compared to reality. Numerical errors are differences
between the exact and approximate solutions to the set of
equations composing the model that result from the choice
of numerical method used to find an approximate solution
(Higham, 2002). While many recent efforts in hydrology
have advanced observational data quality (Wrede et al., 2015;
Kittel et al., 2018) or structural representations of nature
(Wrede et al., 2015; Melsen et al., 2018; Melsen and Guse,
2019; Prancevic and Kirchner, 2019; Dralle et al., 2018;
Coxon et al., 2014), relatively few studies investigate the ef-
fects of numerical choices on model error. Notably, it has
been demonstrated that numerical method choice has a large
impact on hydrological modeling error (Clark and Kavetski,
2010; Kavetski and Clark, 2010). These papers test the ability
of various numerical methods to approximate exact solutions
and to predict real discharges, including fixed step and adap-
tive methods, implicit, explicit, and semi-implicit methods,
and first- and second-order methods. Changing these options
leads to differences in how fluxes are calculated, and it is
shown that certain combinations of these qualities allow for
a relatively accurate approximation of the exact solution of a
hydrological model.

The numerical daemons papers (Clark and Kavetski, 2010;
Kavetski and Clark, 2010) provide useful numerical conven-
tions in observational contexts, mainly under general hydro-
climatic conditions. As the climate changes and extreme pre-
cipitation events become more common (Trenberth, 2011;
Meehl et al., 2005; Prein et al., 2017; Huang et al., 2020), one
might expect numerical errors to become larger. It is simple
to demonstrate that numerical errors could depend on precip-
itation extremeness, as in Fig. 1.

This figure shows discharge hydrographs resulting from
a model using two different numerical methods. The condi-
tions yielding the left and right plots are identical in every
way, except for the precipitation intensity used to simulate
discharge, which is 3 times larger in the graph on the right.
The only differences between the blue and green hydro-
graphs are caused by choice of numerical method. Clearly,
the two methods agree relatively poorly when higher inten-
sity precipitation data are used; thus, there is a greater oppor-

Figure 1. Illustration of the impact of precipitation intensity on dif-
ferences between discharge simulations from the same model but
with two different numerical techniques. Discharge hydrographs are
shown resulting from two different numerical methods, indicated by
blue and green. These are the fixed step explicit Heun and adaptive
implicit Heun methods, respectively, as discussed in Sect. 2. The
only difference between the left and right plots is that the precipita-
tion intensity is 3 times greater during days 2 through 6 for the right
plot. With this figure, we do not suggest that any particular climate’s
precipitation will triple; this is merely used to demonstrate the re-
lationship between precipitation intensity and potential numerical
error.

tunity for a numerical method to provide an erroneous rep-
resentation of the exact solution when precipitation is more
intense. This is compatible with the findings that models can
perform relatively poorly under relatively intense precipita-
tion regimes (Weerts and El Serafy, 2006; Noh et al., 2014;
Jasper et al., 2002) where it is possible that numerical error
contributes to total modeling error. Furthermore, one might
intuitively expect greater numerical errors for more extreme
precipitation. The amount of water precipitated by a more
extreme storm may be comparable to the total storage of a
model, whereas this is not the case for milder storms. Given
a sufficiently large time step or large enough flux, fixed step
numerical solvers are not equipped to handle large precip-
itation events. In essence, it is known that numerical error
can contribute significantly to total modeling error, and it is
known that total modeling errors can increase with increas-
ing precipitation extremeness, but it is currently not known
how changing precipitation extremeness (intensity or dura-
tion) will impact the numerical error associated with a model.

In this paper, the same eight numerical methods as in Clark
and Kavetski (2010) and Kavetski and Clark (2010) are stud-
ied (see Sect. 2 for descriptions of these methods). We aim to
determine which qualities of these numerical methods con-
tribute to numerical error as precipitation is varied from mild
to extreme. To this end, the numerical error associated with
each method is assessed over a broad range of precipitation
intensities, ranging from mild to more intense than histori-
cally observed, for various event durations.

In order to thoroughly investigate the relationship between
numerical error and precipitation extremeness for each nu-
merical technique, testing must occur under a variety of con-
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ditions. Numerical error could depend on model structure
(i.e., the specific relationship between state variables and
fluxes, as well as choice of which state variables to include),
physical setting (given by a specific combination of model
parameters), and antecedent state variable values. This de-
pendence is due to the fact that each of these will affect
the set of differential equations composing a model. In or-
der to systematically test these different conditions, a modu-
lar modeling framework (MMF) is required. Modular mod-
eling frameworks are tools that are able to rapidly create
hydrological models with various processes or structures in-
cluded, varying numerical schemes (with some MMFs), and
other options related to model setup or input. This allows a
comparison of model results as these settings are systemat-
ically altered. The Framework for Understanding Structural
Errors (FUSE) is the MMF selected for this experiment.

We are also interested in the change in efficiency of nu-
merical techniques with respect to precipitation extremeness,
where efficiency involves both the numerical error associ-
ated with a method and its computational expense. Therefore,
trends in computational expense with changing precipitation
are also assessed.

It is possible that many existing hydrological modeling
codes use numerical methods that yield large numerical er-
rors. In order to gain insight into how often relatively erro-
neous numerical methods might be employed, a small litera-
ture review is conducted on 12 popular modeling codes, de-
termining the numerical options available in each. When the
numerical techniques used by the reviewed codes are placed
in the context of this study, an estimate of the potential mag-
nitude of numerical errors arising from these codes is ob-
tained.

In summary, we use an MMF to study the numerical er-
ror and computational expenses associated with different nu-
merical techniques as precipitation varies from mild to ex-
treme. This is carried out under a variety of initial conditions,
parameter sets, and model structures for further generality.
Trends in error and efficiency are analyzed. Then, a litera-
ture review suggests the prevalence of potential numerical
errors in popular modeling codes. Finally, we present a dis-
cussion of the key findings and their practical implications
for modeling, where we hypothesize that numerical errors
can be reduced in practice via a careful selection of the nu-
merical method.

2 Overview of numerical methods used for
approximating differential equation solutions in this
experiment

A hydrological model is usually composed of a system of
differential equations relating to state variables and fluxes.
These equations are usually highly nonlinear, which means
that they cannot be solved in closed form (though this is not
always the case; see Coxon et al., 2019). Thus, a numerical

approximation must be used. In this section, a description of
the numerical techniques studied in this paper is given, to-
gether with a justification for the selection of these specific
methods. The reader might choose to skip this section if fa-
miliar with numerical methods for approximating solutions
of systems of differential equations.

In this experiment, each numerical technique is used to
solve a system of coupled ordinary differential equations,
where the equations are coupled because the flux from each
state variable generally depends on multiple state variables.
For example, the net flux from the saturated zone could be
a function of the amount of water in the saturated zone and
the amount of water in the unsaturated zone. These systems
can be solved in two ways: via sequential solving (or oper-
ator splitting), where the equations are solved (and the state
variables are updated) in some predetermined order, or via
simultaneous solving, where all equations are solved at once
(which requires a space-state formulation of the equations
which compose a model). Sequential solvers are able to use
different numerical methods for individual fluxes, which in
some fields is desirable (for example, Glowinski et al., 2017
state that “splitting of diffusion terms and convection terms in
a convection–diffusion partial differential equation” allows
for a faster solution of the differential equation). However,
when using sequential solvers, the model output may depend
on the sequence in which state variables are solved, which
is undesirable when comparing different model structures
(Clark and Kavetski, 2010; Glowinski et al., 2017). Using
the simultaneous method, N equations will be solved at the
same time with the same numerical technique, where N is
the total number of state variables, so that n= 1, . . . ,N in
the equations of this section.

The simplest numerical method studied in this paper is the
fixed step explicit Euler method (credited to Leonhard Eu-
ler). This method works by evaluating the flux for a state
variable at the start of a time step, then adding this flux to
the state variable at the beginning of the time step to gener-
ate the value for the state variable at the end of the time step.
An illustrated example is given in Fig. 2a. Symbolically, the
method is as follows:

Sn(t +1t)= Sn(t)+ fn(S(t), t)1t +O(1t) (1)
Sn(t +1t)≈ Sn(t)+ fn(S(t), t)1t, (2)

where1t is the time step, Sn is a state variable, fn is the time
derivative, or net flux, of Sn at time t and is a function of S

and t , and S is a vector of all relevant state variables for com-
puting fn, determined by the model structure. The flux f is
indicated to be a function of S and t because fluxes gener-
ally depend on both (for example, net flux to the unsaturated
zone depends on precipitation, which is a function of time,
and the amount of water in the unsaturated zone, which is a
state variable). O(1t) indicates that the truncation error – or
the difference between this numerical approximation and an
exact solution to the differential equation – is proportional
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Figure 2. Examples illustrating a single step of explicit Euler (a),
implicit Euler (b), explicit Heun (c), and a comparison of all
three (d). A single differential equation rather than a system is
solved, given by y′ =−y(x(t))− x(t)− 1, y(x(0))= 2, where
x(t)= t for simplicity. The black curve is the exact solution to this
linear differential equation. Each approximation method uses a time
step of 1 in these examples.

to the size of the time step to the first power. This can be
shown by equating the right-hand side of Eq. (2) to a Taylor
series expansion of the left-hand side of Eq. (2), yielding er-
ror terms where the lowest order in1t is 1. Thus, this method
is first-order accurate. The method is known as fixed step be-
cause the time step can only be one value (in this experiment,
all fixed steps are daily) and explicit because it calculates the
flux using state variables that are already known (Süli and
Mayers, 2003).

The fixed step implicit Euler method is similar to its ex-
plicit counterpart in that it is first-order accurate and has a
fixed time step. It is different in that the derivative at the
end of the time step, rather than the start of the time step,
is used to calculate the state variable at the end of the time
step. However, the derivative of a state variable is generally
a function of the state variables, which are initially unknown
for the end of the time step. So, the implicit Euler method
must iteratively solve a system composed of equations in the
style of Eq. (4) by searching for the values of S(t+1t)which
yield a derivative that matches Sn(t). In the graphical exam-

ple of Fig. 2b, the value for y at the end of the time step is first
approximated with an explicit Euler calculation, and then the
method checks if the derivative there leads back to the value
at the beginning of the time step within a given mass bal-
ance error tolerance (the mass balance error tolerance and
monitoring methods are not studied in this paper). If not, this
process is repeated with a new guess for Sn(t +1t) until the
derivative at the end of the time step leads back to the value
of y at the beginning of the time step or graphically until
the dotted orange line leads back to the value of y at t = 0.
Symbolically, the method is given by the following:

Sn(t +1t)= Sn(t)+ fn(S(t +1t), t +1t)1t +O(1t) (3)
Sn(t +1t)≈ Sn(t)+ fn(S(t +1t), t +1t)1t, (4)

where fn is now the derivative of Sn at time t+1t . The itera-
tions required by fixed step implicit methods can make them
more computationally expensive than their explicit counter-
parts. However, a property of implicit methods is that they are
unconditionally stable (Jameson and Turkel, 1981) and can,
in some situations, be more accurate than explicit methods.

The fixed step semi-implicit Euler method works by first
performing an explicit Euler calculation, followed by a single
correction in the style of implicit Euler. Visually, this would
yield a result at the second guess value in Fig. 2b, and math-
ematically, this is achieved by a single iteration of Eq. (4)
after the initial estimate of Sn(t+1t). This method then the-
oretically has a computational expense usually somewhere
between the fixed step implicit and explicit Euler methods
and is first-order accurate. It is typically able to constrain in-
stabilities (Kavetski et al., 2002).

The fixed step explicit Heun method (credited to
Karl Heun) works by first explicitly calculating the derivative
at the start of a time step (in exactly the same style as fixed
step explicit Euler), then explicitly calculating the derivative
at the end of the time step using the initial explicit Euler pre-
diction, averaging the derivatives from the start and end of
the time step, and then using this corrected average deriva-
tive in order to make a final prediction of the state variable
value at the end of the time step. In Fig. 2c, the blue slope,
or the explicit Heun derivative, is simply the average of both
dotted red slopes, where the dotted red slope on the right is
calculated using the initial explicit Euler result y∗ at t = 1,
and the dotted red slope on the left is the same slope as in
Fig. 2a. Symbolically, the method is as follows:

Sn(t +1t)= Sn(t)+
1
2

[
fn(S(t), t)

+fn
(
S∗(t +1t), t +1t

)]
1t +O

(
1t2

)
(5)

Sn(t +1t)≈ Sn(t)+
1
2

[
fn(S(t), t)

+fn
(
S∗(t +1t), t +1t

)]
1t, (6)

where S∗(t +1t) is the initial explicit Euler prediction of
the state variables. This is a second-order method; its trun-
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cation error is proportional to 1t2, meaning that as 1t ap-
proaches 0, the truncation error approaches 0 faster than it
would with first-order numerical methods.

The final tested fixed step method is the fixed step implicit
Heun method, which is also second order. This method is
commonly known as the implicit trapezoidal or trapezium
method (Süli and Mayers, 2003). It is called the implicit
Heun method in this paper due to the fact that it is an im-
plicit analog of the explicit Heun method and for consistency
with Clark and Kavetski (2010). The two Heun methods are
similar in that they both use the explicit Euler prediction at
the beginning of the time step, but the derivative is calcu-
lated implicitly in the implicit Heun method, incorporating
both the known value of the state variables at time t and the
initially unknown value of the state variables at time t +1t .
Symbolically, the method is as follows:

Sn(t +1t)= Sn(t)+
1
2

[
fn(S(t), t)

+fn(S(t +1t), t +1t)
]
1t +O

(
1t2

)
(7)

Sn(t +1t)≈ Sn(t)+
1
2

[
fn(S(t), t)

+fn(S(t +1t), t +1t)
]
1t, (8)

where Eq. (8) must be solved iteratively. Graphically, this
will appear somewhat similar in method to Fig. 2b.

While so far only fixed step methods have been discussed,
this paper also tests adaptive methods, which are able to
adapt their step sizes based on various criteria. Adaptive
methods can reduce numerical error, due to the fact that a re-
duced step size will reduce the truncation error. They can also
reduce computational expense because a small step size is
not always necessary for high numerical accuracy (Press and
Teukolsky, 1992). This paper examines the following three
adaptive methods: the adaptive semi-implicit Euler method,
the adaptive explicit Heun method, and the adaptive implicit
Heun method, which are all adaptive analogs of their fixed
step counterparts. The adaptive semi-implicit Euler method
adapts its step size by calculating the error e or the differ-
ence between its explicit Euler component and its final value.
Specifically, after computing Sn(t +1t), in the following, it
checks whether:

e− τrSn(t +1t)− τa < 0, (9)

where τr is the relative error tolerance (unitless), and τa is
the absolute error tolerance; respectively, these default to
0.01 and 0.01 mm. Both e and Sn have units of millimeters.
Each state variable must satisfy this threshold. If the step size
is accepted, then Sn(t +1t) is taken as the state variable for
the end of the time step, and the step size is adjusted ac-
cording to Appendix B in Clark and Kavetski (2010). If the
step size is rejected, then it is reduced incrementally until
convergence criteria are satisfied, which is also detailed in

Appendix B of Clark and Kavetski (2010). The adaptive im-
plicit and explicit Heun methods make the same comparison,
although they do calculate e based on differences between a
first-order component and the second-order prediction at the
end of the time step rather than two first-order predictions as
in the case of the adaptive semi-implicit Euler method (Clark
and Kavetski, 2010). In all of these adaptive methods, various
precalculated components are compared, so additional calcu-
lations are not needed for the sake of error control. Therefore
these are embedded error control methods (Press and Teukol-
sky, 1992).

In total, eight distinct numerical methods are employed in
this experiment. These broadly represent popular choices in
hydrologic models (Clark and Kavetski, 2010); this is further
tentatively supported by the results of the literature review
(see Sect. 4.7), where none of the numerical techniques used
by the surveyed modeling codes were significantly different
from those available in FUSE. Nonetheless, here a few other
choices in numerical methods are briefly described. Midpoint
methods are similar to Heun methods in that they are second
order (Süli and Mayers, 2003). The difference is that mid-
point methods calculate an intermediate flux in the middle of
the specified time step and then average this result with an-
other preliminary flux calculated at the end of the time step
in order to produce a final flux for the end of the time step,
whereas Heun methods perform the same strategy on subse-
quent time steps (rather than subdividing a single time step).
Higher order Runge–Kutta methods (credited to Carl Runge
and Wilhelm Kutta) are also promising choices to numeri-
cally solve systems of differential equations; these methods
take further terms in the Taylor expansion that is used to ap-
proximate the exact solution of a system of differential equa-
tions. They therefore have numerical errors which are pro-
portional to the time step raised to the order of the method
(e.g., a fifth-order method, as in Schoups et al., 2010). Fi-
nally, note that the models in this experiment are lumped
rather than spatially distributed, and therefore, the backward
Euler method, which is directly analogous to the implicit Eu-
ler method, is not considered.

3 Methods

This study aims to examine the relationship between precip-
itation extremeness and numerical error for a variety of nu-
merical methods implemented in hydrological models. This
section describes the conditions under which models are run,
the methods by which numerical error and computational ex-
pense are assessed, and the conditions of the literature re-
view by which the approximate magnitudes of errors result-
ing from popular modeling codes are assessed.
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3.1 Modular modeling frameworks (MMFs) and the
framework For Understanding Structural
Errors (FUSE)

Modular modeling frameworks are fairly new tools in hy-
drology. These are pieces of code or software that are able to
rapidly create hydrological models with various processes or
structures included, varying numerical schemes (with some
MMFs), and other options related to model setup or input.
This allows for the controlled comparison of models, en-
abling studies on model structure, model uncertainty, and a
wealth of other topics. In this case, an MMF offers the oppor-
tunity to study the change in numerical error resulting from
the instantaneous (unrouted) discharge hydrograph as the di-
mensions of model structure, numerical method, parameters,
initial conditions, and forcing data are systematically altered.
This allows us to test for generality concerning the relation
between numerical error and precipitation extremeness over
a large dimensional space, as well as account for interactions
among these dimensions.

The Framework for Understanding Structural Er-
rors (FUSE) was selected for this experiment. To our best
knowledge, this is the only MMF that allows for implicit
and explicit numerical methods of higher order than 1. Note
that the update to FUSE allowing for higher-order numerical
techniques was introduced by Clark and Kavetski (2010),
after FUSE’s initial development (Clark et al., 2008).

The five different FUSE members, or five different model
structures, are used to generate all hydrographs. Different
combinations of state variables and fluxes are used in each.
These include FUSE 070, 536, 550, 092, and 330, which are
taken directly from Clark and Kavetski (2010) and are from
a list of “models broadly representative of the wide spectrum
of conceptual hydrological models used in research and prac-
tice”. All of these models are lumped rather than distributed.
The FUSE snow module is always off in this experiment.

The model runs are generated across 20 parameter sets.
This makes the results more generalizable, simulating hydro-
graph behavior in different physical settings. The parameter
sets are generated via a Latin hypercube (LH) method, en-
suring they cover as large a region of the parameter space as
possible. The LH technique is used on the total set of param-
eters used across all models; each model, having a different
structure, does not require the full set of LH-optimized pa-
rameters. In order to determine whether a sufficient number
of parameter sets was used, hydrographs resulting from both
20 and 80 parameter sets are separately generated and com-
pared.

3.2 Synthetic forcing data

In order to determine the change in model numerical error
as precipitation varies from mild to extreme, a clearer idea
of what constitutes extreme precipitation is required. Here,
extreme precipitation is some combination of intense and

long-lasting precipitation. In order to test the effect of both
changing precipitation intensity and duration on numerical
error, precipitation data sets are synthetically generated along
the intensity, duration, and frequency (IDF) curves shown in
Fig. 3. All points in Fig. 3 are World Meteorological Or-
ganization world records (World Meteorological Organiza-
tion, 1994) in total precipitation for a given duration. We
generate six IDF curves, representing interpolations between
the world record events, scaled by factors of 0.01, 0.025,
0.075, 0.25, 1, and 1.2. These factors logarithmically span
a large range of rainfall intensities, ranging from mild to
larger than historically observed. The inclusion of precipita-
tion events that are more intense than have been historically
observed is due to the projected increase in wet day pre-
cipitation intensity under emission scenario SRES (Special
Report on Emissions Scenarios) A2; for many regions, this
exceeds 20 % when comparing the simulated periods 2081–
2100 and 1980–1999 (Seneviratne et al., 2017). Synthetic
precipitation data were generated along these interpolations
for the following three different event durations: 5, 10, and
20 d. These are selected with the motivation that flood mod-
eling for larger catchments is often done for precipitation
events at these timescales (Jasper et al., 2002; Weerts and
El Serafy, 2006). Thus, in total, 18 synthetic precipitation
data sets were generated. The shape of the rainfall signals
used in the majority of the analysis is flat, such that each day
has the same precipitation intensity for a given event, though
the effect of using precipitation data based on real events is
briefly discussed. Total accumulated precipitation per event
ranges between 40.1 mm (for the 5 d event with a daily in-
tensity of 1 % of the average intensity of the interpolated 5 d
historical maximum) and 9787.2 mm (for the 20 d event with
a daily intensity of 120 % of the average intensity of the in-
terpolated 20 d historical maximum).

It is also important to determine to what extent results de-
pend on initial conditions. To this end, the forcing data are
preceded by a 500 d spin-up period with one of three constant
precipitation intensities, i.e., 2.5, 5, or 10 mm d−1. Each spin-
up intensity is used with each of the above-described pre-
cipitation events. The goal of using these three intensities is
not necessarily to simulate initial conditions which are char-
acteristic of three distinct climatologies but rather to estab-
lish a broad range of initial conditions in terms of percent of
maximum storage. Because we incorporate a broad variety of
model structures and parameter sets, the total storage in the
model at end of the spin-up period spans a variety of values,
ranging from nearly empty (less than 1 % full) to approxi-
mately 70 % full. From least to most intense spin-up periods,
median storages expressed as a percent of maximum storages
at the end of the spin-up period are 21 %, 25 %, and 28 %,
respectively. Comparing results from three different spin-up
precipitation intensities allows for a systematic method by
which to investigate initial conditions and their effect on the
relative numerical errors of various numerical methods.
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Figure 3. Synthetic IDF (intensity, duration, and frequency) curves
along which synthetic forcing data were generated, where the ver-
tical black lines show the precipitation event durations used. The
IDF curves are interpolated between world record events for given
durations, scaled by 6 different factors, ranging from 0.01 to 1.2,
indicated by color. The precipitation world records are World Mete-
orological Organization data (World Meteorological Organization,
1994) and are indicated by orange points. The power function giv-
ing the best fit for the world records is shown. Black points are
real events which are described here in order to give further con-
text for the IDF curves. (a) The largest precipitation ever recorded
in the Netherlands in a 24 h period (Brauer et al., 2011). (b) An at-
mospheric river event in Sonoma County, California, USA, in late
February 2019 (NOAA, 2019; Ralph et al., 2020). (c) Cyclone Hy-
acinthe (World Meteorological Organization, 1994). (d) Hurricane
Harvey near Nederland, Texas, USA (Blake and Zelinsky, 2018).

The synthetic forcing data sets are completed with po-
tential evapotranspiration (ET) and temperature data. For all
forcing data sets, constant potential ET values of 2 mm d−1

and temperatures of 10 ◦C are used. In most cases, the
ET flux is small relative to the precipitation flux.

3.3 Method for determination of numerical error

For a fixed model structure (out of five), initial condition (out
of three levels), parameter set (out of 20), and forcing data
set (out of 18), there are nine instantaneous discharge hy-
drograph runs, corresponding to the eight tested numerical
methods and the benchmark method. The benchmark method
is the near-exact solution against which all other methods are
compared. It is generated with the most sophisticated numer-
ical technique available in FUSE, adaptive implicit Heun,
with error tolerances 1000 times smaller than the defaults
(τr = 10−5; τa = 10−5 mm for the benchmark). A desirable
property of the benchmark is that it yields approximate so-
lutions that are much closer to the exact solutions than those
resulting from any other method. To ensure this, the hydro-
graph resulting from the benchmark method, but with 10
times larger error tolerances, was compared to the discharge
hydrographs from all other methods. It was found that the
larger tolerance benchmark had lower error (when compared
to the real benchmark) than any other method more than 99 %
of the time.

The error for any tested run is determined by calculat-
ing the root mean square error (RMSE; millimeters per day,
hereafter mm d−1) and normalized root mean square er-
ror (NRMSE; percent) with respect to the benchmark run.
The RMSE is given by the following:

RMSE=

√√√√ 1
T

T∑
t=1

(
q̂t − qt

)2
, (10)

where T is the total time evaluated in days, q̂t is the near-
exact discharge resulting from the benchmark method at
time t , and qt is the discharge resulting from the numeri-
cal method being assessed at time t . The NRMSE is simply
the RMSE normalized by the mean discharge of the associ-
ated benchmark run and then multiplied by 100 to become
a percent. The time T for which the error is evaluated is 7 d
for 5 d precipitation events, 14 d for 10 d precipitation events,
and 28 d for 20 d precipitation events, always beginning on
the first day of rainfall after the spin-up period. This is a
somewhat arbitrary albeit valid period on which to evaluate
hydrograph performance; it captures all or part of the rising
limb, the crest segment, and the falling limb. Figure 4 shows
example discharge hydrographs resulting from the fixed step
explicit Heun method and the benchmark method. The total
number of times the system of differential equations compos-
ing a model must be solved, or, alternatively, the number of
system flux evaluations, is also recorded and represents the
computational expense of generating the hydrograph.

RMSE and NRMSE are both included in this experiment
because they show errors in two different yet valid ways,
namely in the original units of the discharge and as a relative
measure of the near-exact discharge, respectively. RMSE is
useful in that its units (mm d−1) are easy to interpret, directly
showing the numerical error in the daily discharge, while the
benefit of NRMSE is that it provides context for the error.
These definitions of error are purely numerical and, there-
fore, differ from fidelity as described in Clark and Kavet-
ski (2010), which further incorporates real discharge obser-
vations.

3.4 Literature review

A small literature review determining available numerical
strategies was conducted on 12 hydrological modeling codes.
This included seven off-the-shelf models, which are the ob-
jects of study in Addor and Melsen (2019), and five popu-
lar MMFs. The reviewed modeling codes are shown in Ap-
pendix A. Information is gathered on whether recently up-
dated versions of each modeling code are capable of sequen-
tial or simultaneous solving, available orders of numerical
solver, the implicit or explicit (or other) nature of the nu-
merical solver, and whether or not adaptive substepping is
available. When solvers were found to have the option of
simultaneous solving, all available numerical options were
recorded. When solvers were found to only have sequential

https://doi.org/10.5194/hess-25-5425-2021 Hydrol. Earth Syst. Sci., 25, 5425–5446, 2021



5432 P. T. La Follette et al.: Numerical daemons of hydrological models are summoned by extreme precipitation

Figure 4. Example hyetographs and discharge hydrographs, including results from the fixed step explicit Heun method and the benchmark
method for 5, 10, and 20 d precipitation events. The vertical orange lines are the differences between the two hydrographs and represent the
numerical error. From the shortest to the longest duration, the RMSEs are 0.55, 0.14, and 0.10 mm d−1. The precipitation forcing data come
from the IDF curve scaled at 2.5 % of the historical maxima interpolation. These hydrographs all result from the same structure (FUSE 092),
the same parameter set, and the same spin-up precipitation intensity (5 mm d−1). The last day of the spin-up period is shown.

options – allowing for different numerical options per indi-
vidual flux – the modeling code is considered to be restricted
to the least sophisticated method specified among the fluxes
encountered (specifically, we consider explicit methods to be
less sophisticated than implicit methods, fixed step less so-
phisticated than adaptive, and lower order less sophisticated
than higher order). This reflects our assumption that a nu-
merically erroneous component of the model will produce
errors which propagate to other components of the model; in
other words, numerical accuracy is only as good as the most
erroneous part of a model. This review has the objective of
approximately placing other models or MMFs in the context
of this experiment, which sheds light on what kinds of nu-
merical errors might be expected as a result of using popular
modeling codes.

We restrict the sampled models to those examined by Ad-
dor and Melsen (2019) for two reasons. First, Addor and
Melsen (2019) chose these models based on their popular-
ity rather than their numerical techniques. In this way, we
do not cherry-pick models which either support or refute the
premise that sophisticated numerical methods are common
in current hydrologic models. Second, we limit the number
of reviewed modeling codes because compiling a list of all
current hydrologic models and their used numerical methods
would provide a more accurate description of which numer-
ical methods are widely used but represents a much larger
project.

4 Results

4.1 Numerical error and precipitation intensity for 5 d
events

Figure 5 details the evolution of numerical errors for the
tested numerical techniques for 5 d events of increasing pre-

cipitation intensity, for 20 parameter sets, all model struc-
tures, and all initial conditions. It is immediately apparent
that, for all methods, median RMSE increases with increas-
ing precipitation intensity, and second-order adaptive meth-
ods usually outperform fixed step methods (in some cases by
a few orders of magnitude). The following two paragraphs
explore trends in RMSE, shown in the top panel of Fig. 5,
from left to right.

For lower precipitation intensities, adaptive Heun methods
usually outperform the other methods. The adaptive semi-
implicit Euler method yielded more error than the other adap-
tive methods, putting this method on par with the second-
order fixed step methods. The relatively low performance
of adaptive semi-implicit Euler is likely due to the fact that
the Heun methods adapt their step sizes based on compar-
isons between first- and second-order results, while the semi-
implicit method adapts its step size based on a comparison
between two first-order results. Here, all adaptive methods
use the same default error tolerances, where the effects of
changing these will be discussed later. Among fixed step
methods, for lower precipitation intensities, first-order meth-
ods (the Euler methods) are on average outperformed by
second-order methods (the Heun methods). Apparently, the
extra flux evaluations required by second-order methods are
able to reduce error in these low intensity cases.

As precipitation intensity increases, it is clear that adap-
tive methods outperform fixed step methods, where the adap-
tive semi-implicit Euler method begins to yield lower er-
ror than fixed step methods. For fixed step methods with
higher precipitation intensity, it is no longer the case that
second-order methods outperform first-order methods. In-
stead, implicit or semi-implicit methods outperform explicit
methods; the fixed step explicit methods yield median errors
above 70 mm d−1 for the two highest precipitation intensi-
ties. This indicates that instabilities contribute more signifi-
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Figure 5. Box plots showing the errors (RMSE shown in a and NRMSE shown in b) associated with associated with each numerical technique
for 5 d precipitation events of increasing intensity, where the intensity is represented as a percentage of the interpolated world record 5 d event
intensity. The solid black line in each box is the median error, the boxes extend to the 25 % and 75 % quantiles, and the whiskers extend to
extreme values. All adaptive methods use the FUSE default error tolerances. Heun methods are second order, whereas Euler methods are first
order. The model runs represented in this figure are generated across 20 parameter sets, five model structures, and three spin-up conditions.

cantly to numerical error as precipitation intensity increases,
as implicit methods are unconditionally stable (Jameson and
Turkel, 1981), and the semi-implicit method constrains in-
stabilities more readily than the explicit methods (Kavetski
et al., 2002). Furthermore, because fixed step explicit Heun
clearly outperforms explicit Euler for low precipitation inten-
sities but not for high precipitation intensities, and because
fixed step implicit Heun and implicit Euler have this same
property, we can conclude that higher-order truncation error
is more sensitive to increasing precipitation intensity than
first-order truncation error at the daily time step. This sug-
gests that simply selecting an arbitrarily higher-order fixed
step method will not always constrain error – and in some
cases, it might make the error worse. Evidently, adaptive
methods are most suitable for constraining numerical errors.

In the bottom panel of Fig. 5, the NRMSE is shown. All of
the above-identified trends can be found here as well, except
that the median error always increases with increasing pre-
cipitation intensity. With many (especially adaptive) meth-

ods, NRMSE decreases with increasing precipitation inten-
sity. This is due to the fact that RMSE might usually increase,
but not as fast as the discharge by which the RMSE is normal-
ized. When this analysis was repeated with Kling–Gupta ef-
ficiency (Gupta et al., 2009), Nash–Sutcliffe efficiency (Nash
and Sutcliffe, 1970), and normalized error in maximum dis-
charge, similar trends in performance and precipitation inten-
sity were obtained when compared to NRMSE.

To put the errors introduced by numerics into perspec-
tive, we compare it to other sources of error in hydrolog-
ical modeling. Uncertainty in discharge measurements de-
pends on the employed method, e.g., whether the observation
is based on a rating curve or acoustic Doppler current pro-
filer (ADCP; McMillan et al., 2017). Using a rating curve,
Westerberg et al. (2011) observed for a specific case 20 %
error for medium and high flows, due to nonstationarity of
the channel, and McMillan et al. (2012) estimate discharge
measurement uncertainty for medium to high flows even up
to 40 %. Estimating the error in precipitation observations is
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more challenging because it not only depends on the mea-
surement device but also on the spatial representativeness of
the measurement. Wood et al. (2000) estimate a 50 % error
in rainfall observations when comparing radar and tipping
buckets. When employing a fixed step explicit Euler method,
numerical errors are in the same order as discharge and pre-
cipitation measurement errors. Observation errors in precipi-
tation and in discharge both show heteroscedasticity, i.e., the
error increases with an increasing value of the variable. This
study shows that the numerical error increases along with
increased precipitation values (Fig. 5; upper panel) and, for
some numerical methods, also increases along with discharge
values (Fig. 5; lower panel).

The effect of measurement uncertainty in forcing and dis-
charge observations on parameter and model structure infer-
ence has already been explored in the literature (Kavetski
et al., 2006a, b; Vrugt et al., 2008). This study shows that
numerical errors, having the same order of magnitude, can
also hamper the process of parameter identification, model
structure identification, uncertainty estimation, or, in short,
in testing hydrologic theory.

4.2 Robustness of results

The previous subsection makes a variety of claims relat-
ing to numerical error and method choice. These are reliant
on a ranking of numerical methods, based on numerical er-
ror, that is different for low and high precipitation intensity
events. For low-intensity events, we state that the second-
order adaptive methods occur as the group with the lowest
error, the adaptive semi-implicit Euler method and the fixed
step second-order methods occur as the group with the sec-
ond lowest error, and the fixed step first-order methods occur
as the group with the largest error. For high-intensity events,
we state that the adaptive methods occur as the group with
the lowest error, fixed step implicit and semi-implicit meth-
ods occur as the group with the second lowest error, and fixed
step explicit methods occur as the group with the highest
error. While these groupings are clearly viable via median
errors in RMSE and NRMSE (see Fig. 5), it could be that
various model dimensions can sometimes interact in such a
way that these groupings are not observed. In this subsection,
we determine how often these groupings are observed in the
above-ranked orders over the chosen modeling dimensions.
In short, we find that the above-described rankings are robust
over the majority of the tested dimensional space.

When spin-up precipitation intensity, forcing data set,
model structure, and parameter set are all fixed to a single
choice, there are eight model runs which have their error cal-
culated, corresponding to the eight tested numerical methods.
For each individual set of eight hydrographs, for the most
and least intense 5 d precipitation intensities, methods were
given a rank of 1 to 8, based on RMSE, where 1 indicates
the lowest RMSE and 8 indicates the highest. Any ranking
with ties was discarded, which occurred about 20 % of the

time for the lowest intensity and did not occur for the high-
est intensity. The numerical techniques were sorted into one
of the three groups based on their rank, where, for the low-
est intensity, the two lowest error methods occupy ranked
group 1, the next three methods occupy ranked group 2, and
the three most erroneous methods occupy ranked group 3 and
for the highest intensity, the three lowest error methods oc-
cupy ranked group 1, the next three methods occupy ranked
group 2, and the two most erroneous methods occupy ranked
group 3. Then, the composition of each ranked group is re-
ported. When a ranked group is mostly composed of a sin-
gle selection of methods, these methods can be said to have
the rank corresponding to the ranked group over most of the
tested dimensional space. This is indicated by the predomi-
nance of a single color for a given ranked group in Fig. 6.

As a concrete example, consider the ranking wherein
adaptive second-order methods generally outperform other
methods for the least intense 5 d precipitation events. This
is reliant upon the adaptive Heun methods occurring often
in the ranked group with the lowest error (ranked group 1),
given the least intense 5 d precipitation data. To determine
how often this is the case, each numerical method in each
set of eight runs was given a ranking based on RMSE, where
1 is low error and 8 is high error, and rankings with ties were
discarded. Whenever the second-order adaptive methods had
either rank 1 or 2 in an individual set of eight runs, they were
placed into ranked group 1. As can be seen in Fig. 6, on aver-
age, adaptive explicit Heun and adaptive implicit Heun occur
in ranked group 1 at a frequency of 74 % across the tested di-
mensional space for the lowest precipitation intensity for 5 d
events, meaning it is usually the case that these two methods
as a group have the lowest error for the lowest precipitation
intensity for 5 d events. This indicates that the claim “adap-
tive second-order methods outperform other methods for the
least intense 5 d precipitation events” is valid over the major-
ity of the dimensional space tested in Fig. 6 (i.e., it is valid
over a variety of choices in model structure, parameter set
choice, and initial conditions). Note that there are different
rankings for the lowest and highest precipitation intensities,
as some numerical methods react very differently to increas-
ing precipitation intensity (described in the previous subsec-
tion).

Because the frequency with which methods occurred in
their desired groups is generally high, we can be confident
that the trends in relative method performance in the previ-
ous subsection are usually true over the tested model struc-
tures, parameter sets, and initial conditions. The fraction of
each ranked group composed of its dominant methods al-
ways changed by less than 2 % as a result of changing the
initial conditions (see Fig. 6). We can conclude that the rank-
ings are relatively insensitive to initial condition. We deter-
mined that the ranking is robust over different model struc-
tures as well; the desired ranking was usually observed a
high percentage of the time when individual model struc-
tures were assessed. However, we found that the model struc-
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Figure 6. The robustness of rankings of numerical techniques in RMSE for high and low precipitation intensity events for three different
initial conditions. A ranking is more robust when a selection of numerical methods is prevalent in a given ranked group, indicated by the
predominance of a single color in a ranked group. All adaptive methods here use FUSE default error tolerances. These results incorporate
hydrographs generated across five model structures and 20 parameter sets. Different rankings are observed for high and low precipitation
intensities.

tures containing interflow process representations – namely,
FUSE 536, FUSE 550, and FUSE 330 – were less likely than
structures without interflow to produce the dominant rank-
ing of Fig. 6 for both the lowest and highest precipitation
intensity for 5 d events. The most common deviations from
the most common ranking for the lowest precipitation in-
tensity occur due to fixed step implicit Heun outperforming
adaptive explicit Heun or adaptive semi-implicit Euler per-
forming approximately as well as the first-order fixed step
methods. In order to determine if the rankings were sensi-
tive to the number of parameter sets used, hydrographs were
further generated over 80 parameter sets, where the spin-up
precipitation intensity was set to 2.5 mm d−1, with no change
in the other dimensions. Then, the rankings were compared

between the two cases where 80 or 20 parameter sets were
used and the spin-up precipitation intensity was 2.5 mm d−1.
Because the frequency with which the required ranking is
observed changed very little between the two cases – with
a largest change for any grouping of 4.9 % – it is evident
that the ranking is fairly insensitive to the number of parame-
ter sets used. This indicates that enough parameter sets were
used to establish generality over the parameter space. The
hydrographs generated over 80 parameter sets were not used
beyond investigating ranking robustness.

The same procedure was used to evaluate rankings in
computational expense, using number of system flux evalu-
ations rather than RMSE, because further analysis involving
computational expense should also be robust over the tested
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model dimensional space. A total of five distinct ranked
groups were discovered. From lowest to highest expense,
these groups include the following:

1. fixed step explicit Euler;

2. fixed step explicit Heun;

3. adaptive explicit Heun and fixed step semi-implicit Eu-
ler;

4. fixed step implicit Euler, fixed step implicit Heun, and
adaptive semi-implicit Euler;

5. adaptive implicit Heun.

This ranking appeared to be common for both low and
high precipitation intensity cases. In the style of Fig. 6, and
over the same model dimensions, the dominant selection of
method(s) never occurred in any ranked group less than 73 %
of the time. This indicates that these rankings are robust
over a variety of choices in initial condition, parameters, and
model structure. Changing either number of parameter sets or
initial conditions also always yielded a change in frequency
of less than 12 %, demonstrating the insensitivity of compu-
tational expense ranking to initial conditions or number of
parameter sets used. Based on the results of this subsection,
we conclude that the impact of model structure, different pa-
rameter sets, and initial conditions on the ranking of numer-
ical methods based on numerical error or computational ex-
pense is limited.

4.3 Impact of event duration on error

It was found that longer-duration events have lower asso-
ciated RMSE, where the median RMSE across all meth-
ods decreases with increasing duration. This was analyzed
across 20 parameter sets, all five model structures, and for
all three spin-up precipitation intensities. The average re-
duction in median RMSE across all methods between 5 and
20 d events was 74 % for the least intense scaling factor (1 %
of interpolated world record average intensity) and 54 % for
the most intense scaling factor (120 % of interpolated world
record average intensity), where the median RMSE of all in-
dividual methods decreased monotonically with increasing
precipitation duration. This is, to some extent, a mathemati-
cal artifact; because the rainfall signal is flat, a larger portion
of a longer time series is closer to an equilibrium discharge.
This reduces the average error for the hydrograph. In order
to test the extent to which RMSE depends on the geometry
of the rainfall signal, the experiment was repeated with new
forcing data based on CAMELS precipitation data observed
during Hurricane Katrina (Newman et al., 2015). Original
forcing data were scaled such that the total precipitation per
event is consistent with the rest of the experiment, but rel-
ative daily precipitation intensities reflect real data. Under
these conditions, the same dominant compositions of ranked

groups are observed (and in fact become slightly more ro-
bust), and the trend of increasing median RMSE with in-
creasing precipitation intensity is still clear. The decrease
in error with increasing duration is still present, though less
pronounced, with variable rainfall signals. In this case, the
average reduction in median RMSE across all methods be-
tween 5 and 20 d events was 69 % for the least intense scaling
factor (1 % of interpolated world record total precipitation)
and 35 % for the most intense scaling factor (120 % of inter-
polated world record total precipitation). In either the case
of the flat or variable rainfall signal, increasing the duration
along an IDF curve necessarily means reducing the daily in-
tensity of the event. Therefore, the reduction in numerical
error due to increasing duration might simply be due to the
lower daily intensity per event of longer events. Nonethe-
less, longer-duration events along an IDF curve do represent
more total rainfall per event, and it appears as if models yield
less error for longer-duration events along an IDF curve (not
shown).

4.4 Impact of rainfall signal geometry on error

Here, we present the errors which arise when the experiment
is repeated with a variable rainfall signal based on Hurricane
Katrina (Newman et al., 2015 and see the previous subsec-
tion). Magnitudes of median errors are generally larger with
the variable intensity precipitation data but tend to be on the
same order of magnitude as in the cases with no variance;
because a larger variance in the rainfall signal can increase
numerical errors, we can expect that numerical errors in prac-
tice might be somewhat larger than reported in the previous
subsection. Numerical errors resulting from the 5 d forcing
data based on Hurricane Katrina can be found in Fig. 7.

It is also interesting to note that precipitation intensities
greater than the 1 d world record event were contained within
the variable intensity 5 d forcing data. Because these data
generally yield larger errors than with the flat rainfall sig-
nals, we can conclude that shorter-duration events incorpo-
rating larger intensities can produce larger numerical errors.
This further establishes the relationship between numerical
error and precipitation intensity and especially underscores
the importance of numerical technique choice for intense,
short-duration events.

4.5 Computational efficiency

So far, this study makes assessments of numerical errors as-
sociated with various numerical techniques. As a result, and
with default error tolerances, it seems as if adaptive second-
order methods tend to yield the lowest numerical error. Low
error is desirable, but computational expense can also be a
decisive factor when selecting a numerical method. Figure 8
shows the computational efficiency of the tested numerical
techniques. More efficient methods will produce a relatively
low median numerical error and will take a relatively small
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Figure 7. Box plots showing the errors (RMSE shown in a and NRMSE shown in b) associated with each numerical technique for 5 d
precipitation events of variable intensity with increasing total precipitation, where the total precipitation is represented as a percentage of
the interpolated world record 5 d event total precipitation. The solid black line in each box is the median error, the boxes extend to the 25 %
and 75 % quantiles, and the whiskers extend to extreme values. All adaptive methods use the FUSE default error tolerances. The model runs
represented in this figure are generated across 20 parameter sets, five model structures, and three spin-up conditions. Note that errors are
generally larger than in the case where the precipitation signals have no variance per event.

median number of flux evaluations in order to achieve this,
i.e., they will occur closer to the leftmost gray line. Mathe-
matically, we can also consider high efficiency to be achieved
when the product of number of function calls and numerical
error is minimized. We explore multiple error tolerances for
the adaptive semi-implicit Euler method. These are examined
in order to determine how efficient the adaptive semi-implicit
method is when it yields approximately as much error as the
adaptive Heun methods with default error tolerances.

Because each precipitation intensity is shown for 5 d
events, it is clear that the efficiency of each method tends
to decrease with increasing precipitation intensity. Arbitrar-
ily small errors can be achieved with adaptive methods by
selecting smaller error tolerances. The semi-implicit method
with the smallest error tolerance has the lowest error of any
tested numerical method, though this comes at a large com-
putational cost. Adjusting the error tolerances of the adap-
tive semi-implicit method does not seem to change its ef-

ficiency. The central feature of Fig. 8 is that the adaptive
explicit Heun method emerges as a clear leader in terms of
efficiency, significantly outperforming all other methods for
any precipitation intensity. This was also established for the
longer-duration events (not shown).

It is possible to examine individual sets of eight runs,
rather than median errors and expenses, to determine how
often the adaptive explicit Heun method has the highest effi-
ciency. We find that the adaptive explicit Heun method is the
most efficient method among those tested 85 % of the time,
on average over all 18 forcing data sets, three initial condition
levels, 20 parameter sets, and five model structures. When
model runs were grouped based on the percentage of world
record precipitation intensity, it was found that the percent-
age of the model runs for which the adaptive explicit Heun
method was most efficient ranged between 80.3 % (when pre-
cipitation intensities were at 1 % of historical maxima) and
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Figure 8. Relationship between computational efficiency and the numerical error, where methods are more efficient if they have a low
RMSE and a low number of flux evaluations. All medians are calculated across all five model structures, 20 parameter sets, and three spin-up
precipitation intensities. All six precipitation intensities for 5 d events are shown, where the light gray dot represents the lowest intensity
event, darker gray dots represent increasingly intense precipitation events, and the black triangle represents the highest intensity event.
Unless otherwise stated, adaptive methods use the FUSE default tolerances. Purple lines depict adaptive semi-implicit Euler methods with
error tolerances below the FUSE default, where the brightest purple method has the smallest error tolerance. Gray lines are visual aids of the
form y= 10n

x , where n is an integer, and x and y, respectively, represent RMSE and number of flux evaluations (gray lines do not represent
real data and are used only for visualization purposes). Moving between adjacent gray lines represents an order of magnitude change in
efficiency.

90.1 % (when precipitation intensities were at 25 % of his-
torical maxima).

4.6 Numerical choices control numerical error more
than structural choices

Earlier, numerical error was defined as the difference be-
tween the exact and the approximate solution to the set of
equations composing the model. While numerical error ul-
timately comes from numerical method choice, the same
method in a different model structural context might produce
different error magnitudes, so model structure might be able
to contribute to numerical error.

A basic analysis of variance (ANOVA) was conducted
on NRMSE for all model runs using 20 parameter sets, all

three spin-up precipitation intensities, and with all 18 forc-
ing data sets. The p values for groupings based on numer-
ical method choice and structural choice were calculated.
The p values for groupings based on the numerical method
were always less than 1× 10−20, demonstrating that numer-
ical method choice strongly controls NRMSE. The p values
for groupings based on structure were below 0.05 for zero of
the six 5 d forcing data sets, two of the six 10 d forcing data
sets, and three of the six 20 d forcing data sets. The p values
for numerical groupings were always lower than the p val-
ues for structural groupings. This demonstrates that numeri-
cal choices control numerical error more strongly than model
structural choices, and structural choices seem to become
more important in controlling numerical error for longer du-
ration events.
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Figure 9. Grouping the reviewed modeling codes (12 in total) into
three categories, based on available numerical techniques. Cate-
gory C codes are the most common.

4.7 Literature review results

Finally, a short literature review was conducted to place the
results of this study in context. The surveyed hydrological
modeling codes were lumped into three categories (shown
in Fig. 9). Presently, we discuss numerical errors that might
result from each category.

Of the 12 reviewed codes, one belongs to category A, three
belong to category B, and eight belong to category C; the
highest order numerical method found in any code was sec-
ond order. The codes of categories A and B, both having the
option of adaptive substepping, can guarantee any level of
numerical accuracy with sufficiently small error tolerances.
The difference is that the numerical techniques of category B
did not include higher-order (second order or higher) adap-
tive explicit methods and so are not identified as being opti-
mally efficient, according to Fig. 8.

The codes of category C have fixed step solvers. These
codes can be further subdivided into more categories, based
on the ability or inability to specify a fixed time step, sequen-
tial or simultaneous solving, order of numerical method, or
implicit or explicit (or other) nature of the numerical meth-
ods available. However, the fixed time step either causes an
extremely large computational expense when the fixed time
step can be arbitrarily set by the user to constrain error (Clark
and Kavetski, 2010; Press and Teukolsky, 1992) or relatively
large numerical inaccuracies when the time step cannot be
adjusted by the user (as shown by this experiment, at least
for the daily time step).

The most common method of category C is closely analo-
gous to the fixed step explicit Euler method, albeit in sequen-
tial rather than simultaneous form. If willing to accept the
flat rainfall signal and chosen dimensional space of Fig. 5 as
physically possible, and if willing to accept that FUSE can at
least approximately mimic other codes, one could tentatively
estimate that category C codes could often yield large median
numerical errors from the perspective of RMSE or NRMSE.
Specifically, the fixed step explicit Euler method yields a me-
dian NRMSE of more than 4 % for 5 d events where the pre-
cipitation intensity is 2.5 % of the average intensity for the
5 d historical maximum. This is already fairly large, but me-
dian NRMSE for this method can become much larger; by
the time precipitation is at 25 % of the world record, numer-
ical NRMSE is over 30 %. Similar trends can be found for
longer-duration events, where median errors in RMSE and

NRMSE for this method increase with increasing intensity.
For 10 and 20 d events, the median NRMSE resulting from
the explicit Euler method is maximized at 29 % and 23 %,
respectively. When judging a numerical technique by its ex-
tremes in error rather than its average, the fixed step explicit
Euler method performs poorly; in this experiment, extremes
in NRMSE when using this numerical technique easily ex-
ceed 100 % for any forcing data set. These results seem to
indicate that the most frequently used numerical technique
that we encountered in our short survey performs relatively
poorly for any precipitation event, where its performance is
especially poor for (increasingly common) extreme precipi-
tation events.

5 Discussion

5.1 Implications of the study design and further
opportunities

5.1.1 Model dimensional space covered

Though the dimensional space tested in this experiment is
reasonably large (incorporating various model structures, pa-
rameter sets, initial conditions, forcing data, and numerical
techniques), it does not cover all possible behaviors of its
dimensions. There are model structures in common use out-
side of the five tested, especially considering that we do not
incorporate processes related to freezing or snow. Addition-
ally, we do not use an energy balance; instead, FUSE gener-
ates bucket-style hydrological models that only solve a mass
balance. Because land surface models incorporate processes
involving energy, these might have a different (perhaps more
complicated) relationship between numerical error and pre-
cipitation extremeness. Furthermore, this experiment incor-
porates multiple FUSE members (model structures) for gen-
erality of results regarding numerical error over multiple
structural choices. Our analysis does not extend to determin-
ing the extent to which individual physical processes are re-
sponsible for numerical error; this presents a clear opportu-
nity for substantial future work. It is important to note that all
models generated by FUSE are composed of systems of non-
linear first-order ordinary differential equations; these could
have different error characteristics than partial differential
equations (such as the Richards equation or shallow wave
equations) or higher-order differential equations. Next, even
higher-order or differently implemented low-order numerical
methods, more initial conditions, less intense precipitations,
or longer or shorter precipitation durations remain untested.
Still, the results were shown to be rather robust across the
fairly broad tested dimensional space, which indicates that
extrapolation of the results to other precipitation durations
and intensities might be justified.

All rainfall signals in this experiment are either constant
with respect to time or are based on a single real event
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with variance. As such, we do not account for a broad va-
riety of precipitation regimes in terms of variable intensity,
which might introduce complexity that is not accounted for
in this experiment (Müller-Thomy and Sikorska-Senoner,
2019). However, similar results were obtained with different
rainfall signal geometries, indicating that the results might
be robust across rainfall geometries. Furthermore, the trends
relating numerical error resulting from a numerical method
and precipitation extremeness appeared to be rather insensi-
tive to the other tested dimensions, providing robustness to
the conclusions.

Because we used a Latin hypercube approach in generat-
ing parameter sets and demonstrated that using a larger num-
ber of parameter sets did not significantly change the results,
we can conclude that we have sufficiently sampled the pa-
rameter space. However, in practice, it is likely that most pa-
rameters obey a given distribution, which would limit the pa-
rameter space which represents physically likely catchments.
By sampling broadly rather than using calibrated parame-
ter sets, we do not necessarily represent catchments that are
commonly observed. Both approaches have merit; using only
calibrated parameter sets might provide a greater assurance
that results arise from only physically likely catchments but
could bias the results via parameter restriction, while using
a broad sampling of the parameter space gives more weight
to catchments that might be underrepresented but might not
proportionately represent average or common physical set-
tings. Nonetheless, a large variety of parameter combinations
is used in Monte Carlo optimization methods regardless of
physical realism, which further makes the investigation of
numerical error resulting from a broad sampling of param-
eters worthwhile. While this experiment uses a broad sam-
pling of the parameter space, using only calibrated parame-
ter sets is also a defensible choice – although there is a risk
of interaction between numerical error and calibration opti-
mization.

5.1.2 Choices in temporal and spatial discretization

In this experiment, we examine the daily time step because it
is commonly used with hydrologic models. However, hydro-
logic (especially flood) modeling is often carried out at a finer
temporal resolution, e.g., hourly (Boithias et al., 2017; Ficchì
et al., 2016). If this experiment was repeated with an hourly
time step instead of a daily time step, one might expect sim-
ilar trends in terms of the evolution of numerical error with
respect to precipitation intensity and duration, simply with
smaller magnitudes of error. This is supported by the the-
ory described in Sect. 2, wherein numerical error is propor-
tional to the time step raised to some integer power. With a
smaller time step, one could expect smaller numerical errors,
especially for higher-order numerical methods as opposed to
lower-order numerical methods (with higher-order numeri-
cal methods, numerical error is proportional to the time step
raised to a larger integer). Note that this speculative extension

of results for a smaller time step also assumes a uniform pre-
cipitation intensity. It is possible that, when using real forc-
ing data, rainfall that is locally intense with an hourly tem-
poral resolution could be smoothed out if resampled to the
daily temporal resolution. This implies that, with real hourly
forcing data, it is possible that a large precipitation inten-
sity which lasts for a short time can produce significant nu-
merical error for a fraction of 1 d; this numerical error might
be lessened if the forcing data were aggregated to the daily
resolution. Still, the theory presented in Sect. 2 implies that,
from a mathematical perspective, one would expect smaller
numerical errors when using a smaller time step.

All models in this experiment are lumped rather than dis-
tributed and, therefore, do not contain numerical error related
to choices in spatial discretization. In a distributed model, nu-
merical error is proportional to the chosen spatial resolution
raised to some power and to the time step raised to some
power. This theoretically implies that numerical error could
potentially increase in terms of maximum value in the con-
text of distributed models under spatially and temporally uni-
form precipitation. However, a fully distributed model (with
real, distributed forcing data) could have its local extremes in
space smoothed out given the choice of spatial discretization,
while this option is not available for lumped conceptual mod-
els. More generally, it is possible for numerical errors due
to spatial and temporal discretizations to interact. Therefore,
our results are not directly applicable to distributed mod-
els. How large the net numerical error is in case of a spa-
tially explicit model, and what controls the magnitude of the
errors involved, are interesting subjects for future research.
Nonetheless, we tentatively suspect that similar trends might
be found in distributed models; namely, that adaptive higher-
order methods yield significantly lower numerical error than
fixed step lower-order errors do.

5.1.3 Numerical details

Several numerical details remain untested by this experi-
ment. First, FUSE employs embedded error control, which is
more efficient than error control requiring extra calculations
by about a factor of 2 (Press and Teukolsky, 1992). While
we can assume that embedded error control methods are rel-
atively efficient, unembedded methods remain untested, and
it is possible that some hydrological models do not use em-
bedded methods. It is possible that this could alter the rela-
tive efficiency of various adaptive methods, albeit probably
not to a different order of magnitude. Second, all implicit
techniques here use a single method to ensure that mass bal-
ance errors are sufficiently small; changing the treatment of
mass balance errors could lead to somewhat different median
computational expenses for implicit methods. However, the
median number of flux evaluations per time step under a vari-
ety of mass balance error monitoring strategies for fixed step
implicit Euler apparently ranges between approximately 8
and 21 (Clark and Kavetski, 2010), where the median number
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of flux evaluations for fixed step implicit Euler in 5 d events
ranges between 14 and 20 (from lowest to highest precipita-
tion intensities) in this experiment. This suggests that the im-
plicit Euler method studied in this paper would probably not
achieve a new order of magnitude of efficiency, as shown in
Fig. 8, regardless of mass balance error monitoring method.
Third, this study does not examine different methods for en-
forcing solution constraints (e.g., making sure physically im-
possible storages do not occur as model results). The method
for enforcing solution constraints is outlined by Clark and
Kavetski (2010), and altering this method could affect nu-
merical error (Shampine et al., 2005). Finally, the adaptive
explicit Heun method appears to be the most efficient tech-
nique given the limited space of techniques tested; this may
no longer be the case when even higher-order adaptive meth-
ods are studied. For example, adaptive fourth- or fifth-order
Runge–Kutta methods (Schoups et al., 2010) are untested
here. A truly optimal solver might be able to dynamically
change its order or other options associated with the solver,
as in other fields (Karimov et al., 2017; Rackauckas et al.,
2020; Lauritzen et al., 2010; Ullrich et al., 2017). Though this
point is technically a subset of issues with total dimensional
space sampling, testing even higher-order or further modu-
larized numerical techniques would be a straightforward and
useful advancement of this work.

5.1.4 Breadth of literature review

The literature review is not an exhaustive survey of all exist-
ing modeling codes; instead, it is a smaller investigation of
some of the modeling codes that we consider to be widely
used. Therefore, it should not be interpreted as a quantita-
tive result of how common numerical errors are but rather a
preliminary indication of what might be. Furthermore, note
that we only suggest the magnitude and prevalence of errors
arising from model runs that are not further scrutinized. Ac-
cordingly, our results give an indication of numerical errors
arising purely from modeling codes, rather than the occur-
rence of these errors in published work. For example, it has
been demonstrated that fixed step explicit methods are likely
to produce large instabilities, but these would probably be
identified as such and discarded by the majority of model
users.

5.2 Are minimized numerical error and computational
expense good metrics with which to choose a
numerical method?

At a glance, it might seem as if an inexpensive numerical
method with minimized numerical error – the adaptive ex-
plicit Heun method – would be an optimal choice for mod-
eling. After all, Clark and Kavetski (2010) do show that nu-
merical error can easily be a large source of error in a model.
However, a numerical technique that minimizes numerical
error might not always minimize total error in an observa-

tional context; in reality, numerical error can cancel out other
error sources. This is possible, for example, when a model
structure is not sufficiently diffuse, and then a first-order
fixed step numerical choice is overly diffuse. The numerical
method introduces numerical diffusion (a numerical error),
which interacts with the structural error in such a way that
the total error is reduced when evaluated on discharge obser-
vations, even when compared to a near-exact solution (Clark
and Kavetski, 2010). Numerical diffusion has even been in-
tentionally used to represent physical diffusion for increased
accuracy (Thober et al., 2019). Furthermore, during calibra-
tion, error due to parameter choice can cancel out numerical
error, in the same way model structural error can.

Whether or not these are desirable qualities of a numeri-
cal method (i.e., whether hydrological models should simply
provide accurate predictions of observable data or accurately
represent their intended structure regardless of physical real-
ism) is an open question, where the answer is context depen-
dent. On one hand, a more accurate, real-world prediction
is ultimately more useful for anyone whose livelihood de-
pends on model results, e.g., a municipality that has to decide
whether or not to issue evacuation advisories due to flooding
risk. On the other hand, having somewhat unknown errors
cancel each other out is a classic instance of finding the right
answer for the wrong reasons (Kirchner, 2006), which could
pose a problem when the aim of a modeling effort is to gain
understanding of hydrological processes. Especially because
this experiment shows that model structure can impact nu-
merical error, it is possible that a structural development in
a model yielding reduced error is interpreted as an improved
representation of nature, where, in reality, the structural de-
velopment changed the numerical error such that the total er-
ror is reduced. When we want to test multiple process-based
hypotheses, it would be ideal if we could be more assured
that our results are due to the structural changes we make
rather than being conflated with numerical error. With this
study, we do not claim to have identified optimal methods
in an observational context. We do submit, however, that we
have identified a few numerical techniques that are desirable
(or undesirable) for future process-based hypothesis testing.

5.3 Recommendation for numerical technique

Of the studied methods, this experiment finds that the adap-
tive explicit Heun method provides the best economy of low
error and computational expense on average and, accord-
ingly, is a practical choice for the numerical method. This
is consistent with Clark and Kavetski (2010); Kavetski and
Clark (2010). However, this study differs in that it does not
recommend the fixed step implicit Euler method as an opti-
mal solution, due to the fact that this method, on average, has
relatively large numerical error and computational expenses
here. The difference in recommendation between the present
study and Clark and Kavetski (2010) or Kavetski and Clark
(2010) is likely due to two methodological differences. First,
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Clark and Kavetski (2010); Kavetski and Clark (2010) use
the concept of fidelity to determine how closely a numeri-
cal technique approximates an exact solution which incor-
porates real discharge observations. The present study uses
purely numerical definitions of error, which are simply dif-
ferent methods. Second, the time periods on which errors
were evaluated were different, where the present study eval-
uates error on the timescale of days, and Clark and Kavet-
ski (2010); Kavetski and Clark (2010) evaluate error on the
timescale of years. As this study shows, the RMSE depends
on precipitation intensity and duration. It could be the case
that the fixed step implicit Euler method produces small nu-
merical errors for a majority of a long time series when pre-
cipitation is mild or absent, which would keep the numerical
error small on average. In contrast, a shorter but more in-
tense precipitation time series yields larger average numeri-
cal errors. On balance, it is encouraging that the present study
and the 2010 numerical daemon papers authored by Clark
and Kavetski (2010) agree that the fixed step explicit Euler
method produces a large amount of error and that the adap-
tive explicit Heun method is a good choice.

It is further encouraging to see a high degree of simi-
larity between the numerical method recommended by the
presented experiment and the recommendation in Schoups
et al. (2010). Both works indicate that a second-order ex-
plicit adaptive method offers the best intersection of low error
and low computational expense. In the case of Schoups et al.
(2010), it is further found that the second-order explicit adap-
tive method is superior to a variety of other methods when
calibrating a hydrologic model with Markov chain Monte
Carlo methods. This offers additional evidence that second-
order explicit adaptive methods are preferred in the simula-
tion of real (rather than just synthetic) streamflow. Further-
more, tasks such as parameter estimation (via calibration)
and the simulation of state variables aside from streamflow
can be compromised by using the fixed step explicit Euler
method (Schoups et al., 2010; Kavetski and Clark, 2010).

5.4 Why are sophisticated numerical methods
uncommon in conceptual hydrologic models?

The original numerical daemons papers and other notable
work on numerics in hydrologic models (Clark and Kavetski,
2010; Kavetski and Clark, 2010; Schoups et al., 2010) were
published over a decade ago; these papers and the present
study recommend similar numerical techniques. While some
new models use sufficiently advanced numerical methods
(Buitink et al., 2020; David et al., 2019; Pilz et al., 2020), it
appears as if many current hydrologic models continue to use
relatively unsophisticated numerical methods (see Sect. 4.7),
where the fixed step explicit Euler method is rather common.
Here, we offer some speculative reasoning as to why this
might be and indicate an opportunity in hydrologic educa-
tion with respect to numerical techniques.

Numerical techniques receive substantially more attention
in several other environmental sciences disciplines. This is
related to the nature of the processes in these disciplines –
they may be subject to chaos. That is, small changes in initial
conditions or small perturbations will eventually yield wildly
different model results. Examples include predator–prey sys-
tems (Vano et al., 2006; Inoue and Kamifukumoto, 1984) and
meteorological systems, such as the famous Lorenz butter-
fly (Lorenz, 1963). Attention to numerical schemes is much
needed, since the positive feedback loops inherently present
in these fields are very sensitive to numerical error. Hydro-
logic systems of equations, in contrast, tend to contain nega-
tive feedback loops. Therefore, numerical errors do not ex-
plode – albeit that they are still present, as shown in this
study. This stability compared to other fields might offer an
explanation for why numerics in hydrology have received
relatively little attention. There is clearly a role for hydrol-
ogy education here, where more attention to numerical tech-
niques can make the next generation of hydrological model-
ers more aware.

Besides the stability of the hydrological system, another
explanation for the limited attention to numerics in hydrol-
ogy is that numerical error can interact with other sources
of error. Multiple sources of error can cancel each other out,
such that hydrologic models produce accurate results, despite
having significant numerical error. When hydrologic models
are working, although not necessarily for the right reasons,
there is likely to be less incentive to investigate numerical
errors.

6 Conclusions

In this study, the effects of changing precipitation intensity
and duration on the numerical errors and computational ex-
penses resulting from various numerical techniques in the
context of lumped hydrological models were examined. Pre-
cipitation events varying between 1 % and 120 % of inter-
polated historical precipitation intensity maxima for various
durations were used as forcing data. Model results were gen-
erated over a variety of choices in parameters, initial condi-
tions, and model structures for generality. It was found that
median root mean square error (RMSE) usually increased
with increasing precipitation intensity and decreased with
increasing precipitation event duration. Rankings of numer-
ical techniques in terms of RMSE and the number of flux
evaluations were established for varying precipitation inten-
sities. These were shown to be robust over the majority of
choices in parameters, model structures, and initial condi-
tions. Then, the efficiency of each technique was examined
by comparing computational expense and numerical error.
Of the tested methods, a clear leader in efficiency emerged
for all precipitation intensities, namely the adaptive explicit
Heun method. A small literature review was conducted on
various hydrological modeling codes, demonstrating that this
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method, and even adaptive methods in general, might be un-
common in practice, and that a much more numerically er-
roneous method might be common. Because process-based
hydrological knowledge is enhanced by reductions in numer-
ical error and computational expense, and because numerical
errors are in many areas likely to increase with the chang-
ing climate (via more extreme precipitation), we advocate a
more widespread use of highly efficient numerical methods.

Appendix A: Reviewed codes

The MMFs reviewed for this study were the Modular As-
sessment of Rainfall–Runoff Models Toolbox (MARRMoT;
Knoben, 2018; Knoben et al., 2019), the Structure for Uni-
fying Multiple Modeling Alternatives (SUMMA; NCAR,
2017; Clark et al., 2015), Raven (Snowdon, 2010; Craig
et al., 2020), the Framework for Understanding Structural Er-
rors (FUSE; Clark et al., 2008; Clark and Kavetski, 2010),
and SUPERFLEX (Fenicia et al., 2011). The models re-
viewed for this study included the Variable Infiltration Ca-
pacity model (VIC; University of Washington, 2016; Ham-
man et al., 2018), the mesoscale Hydrological model (mHM;
Zink and Cuntz, 2013; Samaniego et al., 2010), dynamic
TOPMODEL (Buytaert, 2018; Metcalfe et al., 2015; Kavet-
ski et al., 2003), the Precipitation Runoff Modelling Sys-
tem (PRMS; Markstrom et al., 2015), the Génie Rural model
à 4 paramètres Journaliers (GR4J; Perrin et al., 2003; San-
tos et al., 2018), the Sacramento soil moisture accounting
model (Finnerty et al., 1997; Burnash et al., 1973; Koren
et al., 2014), and Hydrologiska Byråns Vattenbalansavdel-
ning (HBV) light (Reynolds et al., 2017). More information
about the numerical methods used by each code can be found
in the Supplement. Note that this literature review was per-
formed in the first half of 2020; it is possible that modeling
codes have received updates to their numerical methods since
then.
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