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Abstract. Patterns of distinct preferential pathways for fluid
flow and solute transport are ubiquitous in heterogeneous,
saturated and partially saturated porous media. Yet, the un-
derlying reasons for their emergence, and their characteriza-
tion and quantification, remain enigmatic. Here we analyze
simulations of steady-state fluid flow and solute transport
in two-dimensional, heterogeneous saturated porous media
with a relatively short correlation length. We demonstrate
that the downstream concentration of solutes in preferen-
tial pathways implies a downstream declining entropy in the
transverse distribution of solute transport pathways. This re-
flects the associated formation and downstream steepening
of a concentration gradient transversal to the main flow di-
rection. With an increasing variance of the hydraulic con-
ductivity field, stronger transversal concentration gradients
emerge, which is reflected in an even smaller entropy of
the transversal distribution of transport pathways. By defin-
ing “self-organization” through a reduction in entropy (com-
pared to its maximum), our findings suggest that a higher
variance and thus randomness of the hydraulic conductiv-
ity coincides with stronger macroscale self-organization of
transport pathways. Simulations at lower driving head dif-
ferences revealed an even stronger self-organization with in-
creasing variance. While these findings appear at first sight
striking, they can be explained by recognizing that emer-
gence of spatial self-organization requires, in light of the
second law of thermodynamics, that work be performed to
establish transversal concentration gradients. The emergence
of steeper concentration gradients requires that even more
work be performed, with an even higher energy input into an
open system. Consistently, we find that the energy input nec-

essary to sustain steady-state fluid flow and tracer transport
grows with the variance of the hydraulic conductivity field
as well. Solute particles prefer to move through pathways
of very high power in the transversal flow component, and
these pathways emerge in the vicinity of bottlenecks of low
hydraulic conductivity. This is because power depends on the
squared spatial head gradient, which is in these simulations
largest in regions of low hydraulic conductivity.

1 Introduction

1.1 Preferential flow phenomena - fast, furious, and
enigmatic

Distinct patterns of preferential movement of water and dis-
solved and suspended matter are ubiquitous in fully saturated
aquifer systems (e.g., LaBolle and Fogg, 2001; Bianchi et
al., 2011; Berkowitz et al., 2006), in partially saturated soils
(e.g., Beven and Germann, 1982), and at the land surface
(e.g., Howard, 1990). Preferential flow and solute transport
in porous media commonly lead to fast, localized early ar-
rivals and/or long tailing in temporal breakthrough curves
(e.g., Berkowitz et al., 2006) and pronounced fingerprints in
concentration patterns in soils (Flury et al., 1994).
Preferential flow and transport often occur along con-
nected highly conductive networks of least flow resistance.
Some networks are formed by previous physical/chemical
work performed by the fluid, as in the cases of surface rill and
river networks (Howard, 1990), subsurface pipe networks
(Jackisch et al., 2017), karst conduits (Groves and Howard,

Published by Copernicus Publications on behalf of the European Geosciences Union.



5338 E. Zehe et al.: Preferential pathways for fluid and solutes in heterogeneous groundwater systems

1994), and fractured rock formations (Becker and Shapiro,
2000; Berkowitz, 2002). Other networks are created by soil
fauna and flora as earth worm burrows (Zehe and Fliihler,
2001; van Schaik et al., 2014) and plant roots (Wienhofer
et al., 2009; Tietjen et al., 2009). Although it might appear
unsurprising that flow and transport through these networks
dominate system behavior, effective ways to model flow and
transport in these networks have been debated for more than
30 years (Beven and Germann, 1981; Simtnek et al., 2003;
Klaus and Zehe, 2011; Wienhofer and Zehe, 2014; Berkowitz
et al., 2006, Sternagel et al., 2019, 2021). The emergence
of preferential flow and transport in systems without well-
defined networks — and their characterization — remains even
more enigmatic (Bianchi et al., 2011; Edery et al., 2014). The
numerical study of Edery et al. (2014), for example, revealed
that a higher variance in the hydraulic conductivity (K) field
coincided with a stronger concentration of solutes within a
smaller number of preferential flow paths. If the emergence
of preferential flow is indeed manifested self-organization,
as argued by Berkowitz and Zehe (2020), this key finding
of Edery et al. (2014) suggests that macroscale steady states
of stronger organization (or higher order) emerge and per-
sist despite a greater degree of randomness. The related key
questions we address here are (i) how spatial organization
in preferential fluid flow and solute transport can be quanti-
fied and (ii) why a larger randomness might favor stronger
macroscale organization.

1.2 Attempts to characterize and predict preferential
transport in groundwater

The emergence of preferential pathways of fluid flow and so-
lute transport in saturated porous media has been explored in
numerous simulation studies in heterogeneous conductivity
fields, to relate the spatial correlation structures of the hy-
draulic conductivity and velocity fields to features of anoma-
lous transport behavior (e.g., Cirpka and Kitanidis, 2000;
Willmann et al., 2008; Berkowitz and Scher, 2010; de Dreuzy
et al., 2012; Morvillo et al., 2021). While velocity correla-
tion parameters have been successfully related to statistical
moments of hydraulic conductivity, it remains challenging to
delineate preferential pathways a priori exclusively based on
multivariate and topological characteristics of the hydraulic
conductivity field. Cirpka and Kitanidis (2000) and Will-
mann et al. (2008) report, for instance, the emergence of pref-
erential pathways in the distributions of tracer travel veloci-
ties and shapes of solute plumes. However, these pathways
were not apparent from the analysis of the stationary con-
ductivity fields. Moreover, Edery et al. (2014) demonstrate
that critical path analysis (based on percolation theory), for
example, does not determine the actual preferential pathways
in a system; the authors suggest that the operational prefer-
ential pathways become fully apparent only when solving for
fluid flow and solute transport through the domain.
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Bianchi et al. (2011) explored the link between connectiv-
ity and the emergence of preferential flow paths at the MADE
site, using three-dimensional, conditional, geostatistical real-
izations of the hydraulic conductivity field. Their simulations
of flow and transport under permeameter-like boundaries re-
vealed that the first 5 % of particles, arriving at the down-
stream domain outlet, moved through preferential flow paths
carrying 40 % of the flow. Fiori and Jankovic (2012) reported
similar findings and stressed the rather small probability that
solute particles visit highly conductive blocks, particularly in
the case of a high variance in K. Bianchi et al. (2011) high-
lighted that the fraction of particle paths passing the high-
conductivity regions was between 43 % and 69 %, while the
most rapid transport passed through low-conductivity bottle
necks. This is in line with the findings of Edery et al. (2014),
who concluded that connectivity of rapid preferential path-
ways need not require connected zones of continuously high
hydraulic conductivity. Along a different avenue, Bianchi
and Pedretti (2017) characterized spatial disorder in two-
dimensional conductivity fields by means of the Shannon en-
tropy (Shannon, 1948) and related this to moments of so-
lute breakthrough curves. Dispersion in travel times and the
probability of solutes to pass through high conductivity re-
gions were found to increase with lower order expressed by
a higher geological entropy.

1.3 Preferential flow, self-organization, entropy, work —
where is the connection?

The results of all the studies mentioned above underpin that
(a) preferential flow and transport in heterogeneous, satu-
rated porous media remain a largely enigmatic phenomenon,
and (b) there is no generalized framework allowing for pre-
dictions of this behavior by means of effective transfer func-
tions, which are inferred from volume-averaging-based scal-
ing of the hydraulic conductivity field. This is why we pro-
pose to shift the attention from the question of “where”
preferential pathways emerge to questions regarding their
“macroscale organization and strength”, and “the necessary
physical work™ to establish their self-organized emergence.
Haken (1983) defined self-organization as the emergence
of ordered macroscale states, or the dynamic behavior of an
open system far from thermodynamic equilibrium (TE), that
arises from a synergetic interplay of microscale, irreversible
processes. An ordered state is characterized by the deviation
of its entropy from the entropy maximum at TE (Kondepudi
and Prigogine, 1998). This reduction in entropy, and any ad-
ditional entropy produced by the internal irreversible pro-
cesses, must be exported from the open system to establish
order. This is turn requires physical work, and thus an input
of free energy into the system, that is large enough to create
and maintain the self-organized state. A classical example
to illustrate that self-organization in open systems requires
free energy and work, which also inspired Haken’s theory
of “synergetics”, is a gas laser. Laser light results from co-

https://doi.org/10.5194/hess-25-5337-2021



E. Zehe et al.: Preferential pathways for fluid and solutes in heterogeneous groundwater systems 5339

herent stimulated light emissions from all molecules in the
system. Stimulated emission emerges when the energy input
into the gas laser becomes sufficiently large that the number
of stimulated molecules exceeds the number of molecules
in the basic state. This “energetic pumping” establishes a
state very far from thermodynamic equilibrium, correspond-
ing even to an apparently negative absolute temperature in
Boltzmann statistics, at which coherent emission from all in-
dividual emissions emerges. Haken (1983) postulated that a
higher order, non-local “enslavement principle” forces the in-
dividual molecules into a coherent and thus ordered behavior.
This example of a critical pumping rate to establish organi-
zation of laser light will be shown below to be analogous to
fluid flow through porous media.

Several researchers have suggested that self-organization
and the formation of complex organisms and patterns in bi-
ological and environmental systems are governed by non-
local/global energetic extremal principles, in analogy to the
Haken (1983) enslavement principle. Pioneering studies in
this context proposed that species maximize their energy
throughput (i.e., power) during evolution (Lotka, 1922a, b)
or showed that steady-state planetary heat transport may be
modeled successfully with a very simple two-box model,
when assuming that this state maximizes entropy production
(Paltridge, 1979). This work motivated several studies that
explored the possibility that energetically optimized model
setups allow for hydrological prediction of the land surface
energy balance and evaporation (Kleidon et al., 2014), rain-
fall runoff behavior (Zehe et al., 2013), and groundwater
flow and spring discharge (Hergarten et al., 2014). These and
other studies generally showed that preferential flow in con-
nected networks allows for a more energy efficient through-
put of water and matter through the system. This is because
they reduce flow-weighted dissipative losses due to an in-
creased hydraulic radius in the rill or river network compared
to sheet overland flow (Howard, 1990; Kleidon et al., 2013)
or in subsurface connected preferential pathways compared
to matrix flow (Hergarten et al., 2014; Zehe et al., 2010).

While the second law of thermodynamic refers to phys-
ical entropy (introduced by Clausius, 1857, Sect. 3.1), in-
formation entropy (introduced by Shannon, 1948) is closely
related and well suited for diagnosing spatial organization
(see Sect. 3.3). The concepts of information and Shannon en-
tropy have been widely used to characterize irreversible mix-
ing and reaction processes and their predictability (Chiogna
and Rolle, 2017), the emergence of order in distributed time
series (Milicke et al., 2020), information in multiscale per-
meability data (Dell’Oca et al., 2020), and the role of spa-
tial variability of rainfall and topography in distributed hy-
drological modeling (Loritz et al., 2018, 2021). Woodbury
and Ulrych (1993) and Kitanidis (1994) used the Shannon
entropy to describe the spatial-time development and dilu-
tion of tracer plumes in groundwater systems. Chiogna and
Rolle (2017) expanded the dilution index for the case of reac-
tive solute mixing in groundwater and found a critical value
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that indicated the complete consumption of a reactant, which
was independent of advection and dispersion. Bianchi and
Pedretti (2017) used the Shannon entropy to quantify spa-
tial disorder in stochastically generated alluvial aquifers and
explored its relation to the first three moments of simulated
tracer break through curves. They found the average break-
through time and its variance to increase with increasing ge-
ological entropy, while the skewness in travel times declined
with increasing geological entropy and thus increasing disor-
der. In a follow-up study, Bianchi and Pedretti (2018) gen-
eralized their local geological entropy concept to multiple
block sizes. The resulting entrogram quantifies how local en-
tropy of, e.g., hydraulic conductivity in a block converges to
the entropy in the entire domain when subsequently increas-
ing the block size. While the entrogram appears similar to a
variogram, the related entropic length scale is helpful to ex-
plain the various characteristics of simulated breakthrough
curves in multivariate Gaussian and non-Gaussian media.

1.4 Objectives

We thus suggest that the concepts of entropy, free energy,
and work hold the key to better understand why preferential
flow and transport in unstructured heterogeneous, saturated
porous media actually emerge. To this end, we analyze sim-
ulations of fluid flow and solute transport through stochas-
tically heterogeneous aquifers with different degrees of ran-
domness (variance in hydraulic conductivity), based on the
results and insights of Edery et al. (2014). We propose that
macroscale self-organization due to the downstream emer-
gence of preferential solute transport can be quantified based
on the downstream decline of the Shannon entropy of the
transversal concentration pattern. We propose, furthermore,
that the concentration of solutes into a smaller number of
preferential paths, as observed by Edery et al. (2014) in the
case of higher variances in hydraulic conductivity, coincides
with a state of stronger self-organization and thus a lower en-
tropy. Finally, we propose that this apparent paradox — in the
sense that a higher randomness of the medium hydraulic con-
ductivity causes a stronger spatial organization of pathways
— can be explained by comparing power in fluid flow and the
related work performed by the fluid among the different me-
dia and driving head differences.

2 Underlying simulations of fluid flow and transport

2.1 Media generation and numerical simulations of
fluid flow

Before we detail the concepts of free energy, entropy, and
work in Sect. 3, we revisit and expand upon the numeri-
cal simulations of Edery et al. (2014) because they form the
main motivation of this study. Edery et al. (2014) considered
steady-state fluid flow within a two-dimensional, stochastic
heterogeneous system. The flow domain measured 300 by
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120 space units as discretized into grid cells of uniform size
Ax =0.2, Ay =0.2, while all quantities that relate to these
simulations are expressed using the same space—time units.
In a first attempt, we consider a deterministic head difference
of AH =100, from the left (vertical) upstream boundary to
the right downstream boundary, as well as additional simula-
tions with a head difference of A H = 10 across the domain,
while no-flow conditions are assigned to the two horizontal
domain boundaries.

We generated random realizations of statistically homo-
geneous, isotropic Gaussian fields for the natural logarithm
of the hydraulic conductivity In(K), with exponential covari-
ance and mean In(K) = 0, using the sequential Gaussian sim-
ulator GCOSIM3D (Gémez-Herndnez et al,. 1997). Edery
et al. (2014) considered fields associated with a unit cor-
relation length for the covariance function, ! =1, exploring
the impact of different values of the variance of In(K), i.e.,
1 <02 <5, on the emergence of preferential solute transport.

Figure la, b, and c show single realizations for o?=1,
3, and 5, corresponding to mild, intermediate, and strong
randomness, respectively. The deterministic flow problem
for each realization was solved using a code that is
based on finite elements with Galerkin weighting functions
(Guadagnini and Neuman, 1999). The corresponding hy-
draulic head values throughout the domain were converted to
local velocities, and thus streamlines (Fig. 1b), which were
in turn used for transport simulations using particle tracking.
For the system considered here, we used a porosity of 0.3
(e.g., Levy and Berkowitz, 2003).

2.2 Simulated solute transport with particle tracking
and emergent preferential transport

Solute movement in each domain realization and for the
two head differences was simulated using the calculated
streamlines, with a standard Lagrangian particle tracking
method. The head differences correspond to Péclet numbers
of Pe =597 and 59.7, representing a relative importance of
advective transport against diffusion ranging from strong to
intermediate dominance. For all domains, values of A and
[ were chosen such that [/A =35, to enable capture of small-
scale fluctuations and advective transport features (Ababou et
al., 1989; Riva et al., 2009). Along the left upstream bound-
ary, particles are injected, by flux-weighting, and advance by
advection and diffusion. The Langevin equation defines the
particle displacement vector r, starting from given particle
locations at time #:

r=vlx )]t +d,, (1)

where v is the fluid velocity vector, 8¢ is the time step magni-
tude, and d, denotes the diffusive displacement, with a mod-
ulus of d,, given by £/2D018t; £ is a random number drawn
from the standard normal distribution N[0,1]. A representa-
tive molecular diffusion coefficient of Dpyoj =10~ m?s~!
was prescribed (Domenico and Schwartz, 1990). The advec-
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tive displacements in Eq. (1) are computed using the local
velocities at x with a fixed, uniform spatial step §s. In Eq. (1),
the time step 8¢ is given by 6t = &s/v, where v is the modulus
of v. Reflection conditions are prescribed along the two hor-
izontal no-flow boundaries to avoid particle leakage. As in
Edery et al. (2014), we used 10° particles, with és = A /10.

As explanation of the formation of preferential transport
patterns is the main motivation of the thermodynamic frame-
work we present in Sect. 3, we briefly compare these patterns
for a randomly selected realization as a function of the vari-
ance, o2, for the head differences AH = 100 (Fig. 1d—f) and
10 (Fig. 1g—i), respectively.

For the head difference AH =100, transport pathways,
visualized by the accumulated particle densities that passed
through the grid cells, extend in a largely parallel form and
share rather similar particle densities for o2 =1 (Fig. 1d).
However, the number of preferential pathways clearly de-
clines with increasing variance, and they exhibit a stronger
meandering on their downstream course (Fig. le, f). Trans-
port pathways in the case of the 10 times smaller head gradi-
ent evolve in a qualitatively similar fashion, with a stronger
downstream concentration of particles into a smaller number
of preferential pathways when moving to larger variances.
However, the meandering of preferential channels is more
distinct. As already stated, Edery et al. (2014) performed a
critical path analysis to examine the formation of preferen-
tial pathways, based on the common assumption that prefer-
ential flows are a manifestation of percolation, controlled by
the lower cutoff for the hydraulic conductivity from which a
path is possible. This analysis revealed that percolation con-
siderations are not relevant for explaining these differences
in preferential flow and transport behavior, as the domains
are well connected and well above a percolation threshold.

3 Free energy, entropy, and work

3.1 Thermodynamics in a nutshell: the first and the
second law

We start very generally with the first law of thermody-
namics, which relates the variation in internal energy U
J=kg m2s~2) of a system to a variation of work Efee (J)
and a variation of heat Qy (J), while overall energy is con-
served:

8U = 8Efree + 8 Oh. 2

Note that the capacity of a system to perform work is equiv-
alent to free energy, while a variation in heat is equal to the
product of a variation of physical entropy S (J K~!) and the
absolute temperature 7 (K): 6Qp =T §S as introduced by
Clausius (1857). The second law of thermodynamics states
that entropy is produced during irreversible processes, while
it cannot be consumed. The second law implies that isolated
systems, which neither exchange mass, nor energy, nor en-
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Figure 1. Examples of (a)—(c) In(K) for variances 62=1,3,and5, respectively, and the corresponding cumulative number of particles that
visited a grid cell in the simulation domain normalized with the total number of N particles, for the head differences (d—f) AH =100 and
(g—i) 10. This corresponds to Péclet numbers of 597 and 59.7, respectively.

tropy with their environment, reach a dead state of maxi-
mum entropy called thermodynamic equilibrium in which all
gradients have been depleted. Kleidon (2016) distinguishes
three types of physical entropy: thermal entropy produced
by friction and depletion of temperature gradients, molar en-
tropy produced by mixing and depletion of chemical poten-
tial/concentration gradients, and radiation entropy produced
by radiative cooling and depletion of radiation temperature
differences.

From Eq. (2) and the second law, we can conclude that
free energy is not a conserved property, as it corresponds to
the variation in internal energy minus the variation in heat,
during which entropy is produced. Free-energy dissipation
and entropy production are thus inseparable, and maximiza-
tion of the entropy of an isolated system occurs due to con-
servation of energy at the expense of minimizing its free
energy. An open system may nevertheless persist in steady
states of lower entropy, if it is exposed to a sufficient influx
of free energy to sustain the necessary physical work that
needs to be performed to act against the natural depletion of
the internal gradients or even to steepen them and further re-
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duce the entropy (as discussed for the gas laser). Order in an
open system thus manifests through persistent gradients and
an entropy lower than the maximum. Steps to higher order
and lower entropies imply a steepening of internal gradients.
This is exactly what occurs when preferential transport of
solutes emerges in our transport simulations: solute particles
tend to concentrate in localized pathways, thereby forming a
transversal concentration gradient (according to the domain
geometry shown in Fig. 1). The Shannon entropy (Shannon,
1948) is ideally suited to quantify the related entropy reduc-
tion, as detailed in Sect. 3.3.

3.2 The free-energy balance of saturated porous media

To determine the work that is performed by the fluid when
flowing through heterogeneous media, we derive the free-
energy balance of the fluid by relating changes in hydraulic
head and fluid flux to their energetic counterparts. The local
formulation of the free-energy balance of a groundwater sys-
tem, seen as an open thermodynamic system, is determined
by the difference/divergence of the free-energy fluxes J gee
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(Js~'m™2) per unit area and the amount of dissipated en-
ergy per volume D (Js~' m™3):

Oefree
ot

= __‘7'*Ig;e'_ D, (3)

where efree (J 571 m—3 ) is the volumetric free-energy density.
Advective fluxes of relevant free-energy forms are generally
determined by multiplying the Darcy flux by the correspond-
ing form of energy per unit volume. Here we account for
advection of mechanical energy J Z (named “power” here-
after), gravitational potential energy J got, and kinetic energy
of the flowing fluid J fin. As energy is additive, the term J gee
hence corresponds to the sum of the following free-energy
fluxes:

J5 =qpgH
J i =qpgz
1
JE =q§pv2, )

where p (kg m~—?) is the density of water, g (m s72) the
gravitational acceleration, ¢ (m s~1) the Darcy flux vector,
v (ms~!) the absolute value of the fluid velocity, H (m) the
pressure head, and z (m) the geodetic elevation. Note that
while kinetic energy is proportional to v2, the kinetic energy
flux corresponds to the product of the volumetric water flux ¢
and its kinetic energy density 1/2 pv?. Thus, kinetic energy
is in fact proportional to v3 and is usually very small. By
inserting Eq. (4) into Eq. (3) and assuming a constant fluid
density, we obtain

Oefree

— 1 2
o _—ng-[q(H—i-Z)]—E,OV-[qv ]—D. (®)]

The left-hand side of Eq. (5) corresponds to the change in
Gibbs free energy of a fluid volume under isothermal con-
ditions (Bolt and Frissel, 1960). This change in free-energy
storage on the left-hand side can be decomposed into the sum
of three terms as well (Zehe et al., 2019): (i) the change in
storage of gravitational potential energy reflecting soil water
storage changes in partially saturated soils or density changes
in groundwater; (ii) the change in storage of mechanical en-
ergy reflecting changes in pressure head in groundwater or
changing matric potentials in partially saturated soils; and
(iii) the change in kinetic energy stored in the system, due to
acceleration of the fluid. The latter is usually very small and
can be neglected.

In the case of steady-state conditions, the change in free-
energy storage on the left-hand side of Eq. (5) is zero. As z is
constant along the system and we neglect density changes of
the fluid, the divergence in the flux of gravitational potential
energy on the right-hand side is zero, as well. The system un-
der investigation hence receives solely steady-state inflow of
high mechanical energy, corresponding to the upstream in-
flow of water at a high pressure head, and it exports water
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with a much lower mechanical energy at the lower down-
stream pressure head. The corresponding energy difference
is partly dissipated and partly converted into kinetic energy
of flowing fluid and dissolved solute masses. The latter is,
however, usually neglected, as dissolved solute mass is much
smaller. As steady-state fluid flow further implies that the di-
vergence of ¢ is zero as well, the free energy (Eq. 5) hence
becomes

pgq-VH =—pvq-Vv—D. (6)

The left-hand side is the available power per unit volume
P (Js~'m™3) in the groundwater flux, which is partly con-
verted into a spatial change in kinetic energy of the fluid and
partly dissipated. In contrast to overland flow systems (Loritz
et al., 2019; Schroers et al., 2021), the change in kinetic en-
ergy can be neglected for groundwater as it is proportional
to the cube of the fluid velocity (as noted before Eq. 5). In
fact, the use of Darcy’s law implies that kinetic energy can
be neglected.

The total available power P in the groundwater flux during
steady-state flow is hence nearly completely dissipated:

P=pgq-VH =—-D. )

By inserting Darcy’s law into Eq. (7) and recalling that we
focus on a two-dimensional domain, we obtain an equation
that relates power and dissipation to the squared head gradi-
ent (in the sense of a scalar product):

oH 0H
dy dy

[8H oH
P=—-pgK|—— =—-D. ®)
dx 0x

The physical mechanism that causes dissipation relates to the
shear and frictional losses the fluid experiences when pass-
ing through the porous medium. As hydraulic conductivity
relates to the ratio of intrinsic permeability k (m?) and vis-
cosity of the fluid n (Nsm™!), the inverse of K is a mea-
sure of the flow resistance and related dissipative losses. One
would thus expect that the dissipative losses grow with fluid
viscosity (declining K, increasing resistance) and declining
permeability (declining k). To better underpin this, we sim-
plify Eq. (8) for steady-state flow through an heterogeneous,

one-dimensional system, which means that % =0:
P =pg(K(x)d:H)d,H = D(x), )

where d, denotes the gradient with respect to x. Steady-state
flow in one dimension implies a constant flux ¢ in the x di-
rection, which means that the total spatial variation of dyq is
zero. As K is spatially variable, this implies that local spa-
tial variations of conductivity denoted by d, (K (x)) must be
compensated for by opposite spatial variations of the pres-
sure head gradient, d, (d, H):

dyg=0—
dy (K (x)dyH)=0—
— dy (K (x)) deH = K(x)dy(dc H). (10
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As a consequence, power P is not constant (Eq. 7) but instead
grows with the magnitude of local spatial variations of the
head gradient d, (V, H):

di P = pgq di(d: H). 1)

Due to Eq. (10) (constant Darcy flux), we can express the
spatial variation in the head gradient d, (d, H) in Eq. (11) as
follows:

—d,Hdy, (In(K (x)) = dy (dy H) . (12)

Combining Eq. (12) with Eq. (11), together with the defini-
tion of power in Eq. (9), yields

dy P = —P(x)dy (In(K (x)) = dx(In(P(x))
= —d,(In(K (x)). (13)

As a consequence, we expect an anti-proportionality between
In(P(x)) and In(K (x)) for the one-dimensional case. In con-
clusion, we propose that the necessary power to push the
fluid through an heterogeneous medium also grows in the
two-dimensional case with the variance of the In(K) field.
Local areas of high power coincide with large positive devia-
tions from the overall average head gradient, and these in turn
peak across regions of low conductivity. This makes sense,
as dissipation peaks in those areas as flow resistance reach a
maximum, and the required work to push fluid through these
bottlenecks grows as well. This potentially explains the find-
ing of Edery et al. (2014) that the preferential flow paths also
pass through areas of low conductivity. We discuss this idea
further in Sect. 5.

3.3 Characterizing emergent spatial organization in
solute transport using information entropy

3.3.1 Information entropy and its relation to physical
entropy

We now address the connection between physical entropy
and information entropy and explain how we use the latter to
quantify ordered states due to the emergence of preferential
flow paths and the associated formation of a concentration
gradient transversal to the main flow direction. The Shannon
entropy Sy (bit) is defined as the expected value of informa-
tion (Shannon, 1948). Here we defined Sy using the discrete
probability distribution to find particles at a distinct transver-
sal position y at a given x coordinate, as detailed below.

The field of information theory, originally developed
within the context of communication engineering, deals with
the quantification of information with respect to a concept
called the “surprise” of an event (Applebaum, 1996). For a
discrete random variable Y that can take on several values
y; with associated prior probabilities p(y;), the surprise or
information content of receiving/observing a specific value
Y = y; is defined as

I =—log, (p (1)), 14
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where [ is the information content, b is the base of the loga-
rithm, and p (y;) is the prior probability that ¥ can be ob-
served in the state y. Due to the use of the logarithm in
Eq. (14), information is an additive quantity, similar to physi-
cal entropy, energy, and mass. The expected information con-
tent associated with the probability distribution of the ran-
dom variable Y is the Shannon entropy Sy :

Su(Y) ==Y pylog,p (). (15)

yeY

The definition of the Shannon entropy is equivalent to Gibbs’
definition of physical entropy in statistical mechanics (Ben-
Naim, 2008). The latter is obtained when using the natural
logarithm in Eq. 15 and by multiplying the sum by the Boltz-
mann constant (kg = 1.30640 x 10723 K~ h. Physical en-
tropy describes, in terms of statistical mechanics, the num-
ber of microstates that correspond to the same macrostate
at a given internal energy. In the state of maximum entropy
where all gradients are depleted, each microstate is equally
likely (Kondepudi and Prigogine, 1998). The probability p
of a single state is in this case, hence, simply the inverse of
the number of microstates. This implies a maximum uncer-
tainty about the microstates and corresponds to a minimum
order in the system. Jaynes (1957) transferred this funda-
mental insight into a method of statistical inference, stating
“when making inferences based on incomplete information,
the best estimate for the probabilities is the distribution that is
consistent with all information but maximizes uncertainty”.
We emphasize that a maximum in information entropy and
physical entropy commonly implies a zero gradient either in
probability (from the information perspective) or in an inten-
sive state variable such temperature, concentration or pres-
sure (from the thermodynamic perspective).

3.3.2 Calculation of flow path entropy in concentration
patterns

Its straightforward implementation makes the Shannon en-
tropy a flexible means (i) for the optimization of obser-
vation networks (Fahle et al., 2015; Nowak et al., 2012);
(ii) for the characterization of mixing and dilution of so-
lute plumes (e.g., Woodbury and Ulrych, 1993; Kitanidis,
1994); or (iii) to illuminate how spatial disorder in hydraulic
conductivity relates to statistical moments of solute break-
through curves (Bianchi and Pedretti, 2017). Here we adopt
a straightforward use of the Shannon entropy to character-
ize simulated solute transport, as introduced by Loritz et
al. (2018) to characterize redundancy in a distributed hy-
drological model ensemble. We suggest that the maximum
uncertainty corresponds to the case where each flow path
through the domain is equally likely, and the probability dis-
tribution to find particles in a position in the y direction is,
hence, uniform. Deviations from this entropy maximum re-
flect spatial order due to the concentration of particles in pre-
ferred flow paths and the associated persistence of a transver-
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sal concentration gradient. This can be analyzed by comput-
ing the Shannon entropy of the particle density distributions
along y, Sy (x), at a fixed position x along the main flow
direction, using the particle density matrix. A state of maxi-
mum entropy implies that the same number of particles has
visited each of the 120 grid cells at a given x coordinate; i.e.,
SH™ =log, (120) = 6.9 bits. A state of perfect spatial orga-
nization and zero entropy arises, on the other hand, when all
particles move through a single grid cell at a distinct coordi-
nate x.

4 Results

In the following, we present the Shannon entropy of transver-
sal flow paths distribution and relate this to power in the fluid
flow across the range of the variances in In(K) and head dif-
ferences, respectively. For this purpose, we set the dimen-
sionless length and time units to meters and seconds, respec-
tively.

4.1 Preferential flow paths and flow path entropy as a
function of the variance in In(K)

Figure 2a—c compare the accumulated particle densities that
passed through grid cells in the domain as a function of
the variance, o2, for a randomly selected realization, for the
head difference of 100 m. The solute transport pathways ex-
tend in a largely parallel form and share rather similar par-
ticle densities for 0> = 1. However, the number of pathways
clearly declines with increasing variance, and they exhibit
a stronger meandering and a larger visitation of particles in
a smaller transversal number of grids on their downstream
course. The Shannon entropy Sy of the flow paths (“flow
path entropy” hereafter) exhibits, in general, and for all three
variance cases, a clear decline with increasing downstream
transport distance (Fig. 2d-f).

This reflects the increasing order in the flow path distribu-
tion, corresponding to the emerging and increasing transver-
sal concentration gradients. A comparison of Sy among the
variance cases clearly corroborates the visual impression that
the number preferential flow paths declines with increasing
randomness, while the concentration of solutes therein in-
creases. The analysis of flow path entropy within the entire
set of 100 realizations revealed that this behavior is not an
artifact of single realization. The flow path entropy averaged
across all realizations of a variance case exhibits a steady
downstream decline (Fig. 3a, AH =100 m). The curves are
clearly shifted to lower values with increasing variance of
In(K), and the differences between the averages exceed the
standard deviations within the ensembles. The boxplots in
Fig. 3b (A H = 100 m) characterize the distribution of Sy (x)
at the downstream outlet among the realizations. While the
spreading and the skewness of the distribution clearly in-
crease with increasing variance in In(K), we also observe
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that flow path entropy at the outlet declines clearly and sta-
tistically significantly with increasing variance, as the differ-
ences between the medians exceed the confidence limits.

We thus state that a higher variance — and thus random-
ness — in hydraulic conductivity coincides, for all realiza-
tions, with a stronger downstream reduction of the flow path
entropy. This corresponds to a macrostate of higher order due
to a more efficient self-organization into a state of stronger
preferential transport. In the case of the lower driving head
difference of AH = 10m, an even stronger self-organization
manifests, as reflected in the smaller average flow path en-
tropies for variances of o> =3 and 5, respectively (Fig. 3c
and d).

4.2 Power in fluid flow as a function of the variance in
In(K)

Figure 4a—c compare the distribution of power in the fluid
flow calculated according to Eq. (7), as a function of the
variance of In(K) in the different domains for the driving
head difference of AH =100m. For consistency, we used
the same ensemble as for Fig. 2. The distributions of power
in the fluid generally spread across a wide range of magni-
tudes and are skewed to the left. However, the distributions
clearly shift to larger values, and their spread becomes wider
when moving to larger variances. This is underpinned when
comparing the integrated power in fluid flow across the en-
tire two-dimensional domain. An increase in variance by 4
orders of magnitude in the lognormal scale corresponds to
an increase in power of 2.28 W per unit width of the domain.
A closer look reveals that this increase in total power stems
mainly from the increasing power in the vertical/transversal
flow component (Fig. 4d—f). To further illuminate whether
the above postulate of a strong linear relation between power
and variation in the head gradient exists, we integrated power
in fluid flow across the transversal extent of the domain (Pi’r‘lt
hereafter) and plotted it against the laterally averaged head
gradient (Fig. 3g—i). In the case of a unit variance, this in-
deed yields a strongly linear relation, with an almost per-
fectly linear growth of P with the head gradient, as indi-
cated by the correlation coefficient of 0.96. While this corre-
lation becomes weaker with increasing variance, it remains
significant, even for the case of 02 =5 with a correlation
coefficient of » =0.84. The decline in correlation is plau-
sible as a higher variability in K in the two-dimensional
domains causes stronger transversal flow components and
thus a larger deviation from the one-dimensional heteroge-
neous case for which Eqs. (9)-(12) are valid. The increas-
ing role of transversal flow is also reflected by the increasing
power in the vertical flow component with increasing vari-
ance (Fig. 4d—f). As expected, the head gradients also show
a wider spread with increasing variance (Fig. 4g—i); the same
holds true for power in the total downstream fluid flow. For
simulations driven with a head difference AH = 10m, the
correlation relation between downstream power and the lo-
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Figure 2. Accumulated, normalized number of particles that passed a distinct point in the domain as a function of the variance in In(X), o2,
(a, b, ¢) and the corresponding Shannon entropy of the transversal concentration, Sy, as a function of the main flow direction (d, e, f).
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Figure 3. Flow path entropy averaged across all 100 ensemble realizations <Sg > as a function of downstream transport distance for
(a) AH =100m and (b) AH =10m; the dashed lines mark the range plus/minus the standard deviations. Boxplot of flow path entropy
at the domain outlet for all realizations of the three variance cases for (¢) AH =100m and (d) AH = 10 m; note this corresponds to the

asymptotic values in (a) at x =60 m.

cal head gradient was even stronger, with values of r =0.97,
0.94, and 0.91 for 02 =1, 3, and 5, respectively.

To check the inverse-linear relationship between In(P)
and In(K'), which was derived for the one-dimensional ap-
proximation as well (recall Egs. 11-13), we related ln(Pifn)
for AH =100 m to the logarithm of laterally averaged con-
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ductivity In(Kef) (Fig. 4j-1). For the unit variance, we ob-
serve an almost perfect linear increase of In(P;,) with a de-
cline in In(Kcff), as underpinned by the correlation coeffi-
cient of » = —0.92. This negative correlation declined with
increasing variance to values of r =—0.81 and r = —0.72
for 02 =3 and 0> =5, respectively, yet they are still signifi-
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cant. For the lower head of AH = 10 m, the anti-correlation
is stronger again, with r values of —0.93, —0.83, and —0.76,
for 02 =1, 3, and 5, respectively.

We hence state that the system also behaves energetically
in the case of the highest variance, largely similar to a het-
erogeneous one-dimensional system; this holds even truer in
the case of a smaller driving head difference. The power re-
quired to maintain the driving head difference and fluid flow
in steady state increases with increasing variance of the hy-
draulic conductivity field. Regions of high total power coin-
cide with large positive deviations of the hydraulic head from
its mean, which emerge in the vicinity of bottlenecks of low
hydraulic conductivity. However, it is the increasing power in
the vertical/transversal flow component that matters, as de-
tailed in the next section.

4.3 Entropy as a function of work and power along
solute transport trajectories

Figure 5 presents boxplots of the power in the vertical flow
component P* as a function of the variance in In(K) for the
head differences of AH =100 and 10 m. These results con-
firm that it is indeed mainly the power in the vertical flow
component that grows with increasing variance of K. This
makes intuitive sense because transversal concentration gra-
dients are formed by vertical flow and transport of solute par-
ticles.

The growing power in the vertical flow component ex-
plains, hence, the stronger self-organization and declining
flow path entropy with growing variance.

While the differences in vertical power P are significant
between the variance cases, vertical power is in the case of
AH =10m 2 orders of magnitude smaller than for the case
of AH =100 m. This is plausible as both the Darcy flow ve-
locities and the local head gradients are on average 10 times
smaller. The decline of the median entropy med(Sy (Xmax))
with the med < PZ > reveals, in line with the gas laser ex-
ample given in the Introduction, that a larger power input
due to a higher pumping rate leads to an higher order in the
macroscale preferential transport pattern. Yet the reduction
in flow path entropy at the domain outlet is stronger with
increasing variance for AH =10m than for AH =100m
(Fig. 5¢). This is nevertheless plausible because the particle
travel times in the case of AH =10m are between a fac-
tor of 10 to 100 larger (see also Fig. 7). Hence, this extra
residence time (a) compensates for the on average 10 times
smaller vertical flow velocities and (b) also implies that the
work, defined as the integral of power in vertical flow along
the particle travel times to the outlet, is larger for o> =3 and
5, as in the case of AH =100 (Fig. 5d). The larger amount
of work performed by the vertical flow component explains
the stronger self-organization in the case of the lower head
difference well.

Figure 6a, b, and c compare the probability density distri-
butions (pdfs) of In(P) within the entire flow domain (blue)
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against the power averaged along the actual particle trajec-
tories (in brown). While in the case of perfectly mixed flow
and transport, both pdfs should be rather similar, they actu-
ally are remarkably different. This is because particles accu-
mulate downstream along pathways of high vertical power
into preferential pathways, and this is clearly reflected by the
shift of the pdfs towards higher power values.

4.4 Space-time asymmetry and entropy export into the
breakthrough

To switch the observation perspective, we determined the
particle breakthrough curves (BTCs) for the different vari-
ance cases and calculated their Shannon entropy as a means
of uncertainty and order in the arrival times, using the time
step width of 0.1 dimensionless time units as bin width. For
the head difference A H = 100, the width of the breakthrough
curves clearly increases with increasing variance, indicating
an earlier breakthrough, a longer tailing, and a more even
distribution of normalized concentrations in time (Fig. 7a).
In the case AH =10, we observe a similar but stronger be-
havior and a clear shift to larger breakthrough times, due to
the smaller Darcy velocities (Fig. 7b). For both head differ-
ences, one can observe that the Shannon entropy in arrival
times grows with increasing variance of In(K), reflecting a
larger uncertainty and a declining order in the temporal dis-
tribution of travel times. In this context, it is important to re-
call that entropy cannot be consumed, due to the second law.
This that means that the declining flow path entropy needs to
be exported from the system.

Figure 7b clearly visualizes this space—time asymmetry in
entropies; the growing spatial organization with increasing
variance of In(K) translates due to the associated entropy ex-
port into a declining organization in arrival times. Please note
that due to the different binning in space and time, changes
in Sptc and Sy with changing variance cannot be exactly
the same, in fact, also the entropy, which is produced due
to energy dissipation. The opposite dependence of the BTC
entropy on the variance in In(K) corroborates nevertheless
that the reduced flow path entropy is indeed exported into
the BTC.

5 Discussion

5.1 An energy- and entropy-centered framework to
characterize and explain preferential flow

This study proposes an alternative framework to quantify
and explain the enigmatic emergence of preferential flow
and transport in heterogeneous saturated porous media, us-
ing concepts from thermodynamics and information theory.
We examined simulations of two-dimensional fluid flow and
solute transport based on the methods of Edery et al. (2014),
who at total head differences of 100 and 10 characterized the
discrete probability distribution of solute particles to cross
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a distinct transversal position in a plane normal to the di-
rection of the mean flow by means of the Shannon entropy.
In general, we found a declining entropy with increasing
downstream transport distance, reflecting a growing down-
stream self-organization due to the increasing concentration
of particles in preferential flow paths. Strikingly, preferential
flow patterns with lower entropies emerged when analyzing
simulations in media with larger variances in hydraulic con-
ductivity, and this enhanced self-organization appeared even
stronger for simulations at lower head differences. This im-
plies that macrostates of higher order are established, despite
the higher randomness of In(K) for a range of Péclet numbers
representing strong and intermediate importance of advective
transport. The key to explaining this almost paradoxical be-
havior is the finding that power in the vertical flow compo-
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nents grows with the variance of the hydraulic conductivity
field. Due to this larger energy input, the vertical/transversal
flow component may perform more work to increase the or-
der in the flow path distribution, through steepening transver-
sal concentration gradients as reflected in lower entropies.

Notwithstanding these findings, we of course recognize
that the concepts of entropy, free energy, and work are, per se,
not new in hydrology. We thus place our findings in context
relative to related studies, in the sections below.

5.2 Measuring irreversibility and macroscale
organization using the Shannon entropy

Here we show that the Shannon entropy of the transversal
distribution of solutes is suited to quantify the downstream
emergence of preferential solute movement, as reflected in a
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declining flow path entropy. Lower flow path entropies and
thus a stronger spatial order in preferential transport are es-
tablished when solutes are transported through stronger het-
erogeneous hydraulic conductivity fields. In this context, we
recall that Edery et al. (2014) analyzed breakthrough curves
using the continuous time domain random walk framework
(Berkowitz et al., 2006). When fitting an inverse power law
to the breakthrough curves, the corresponding 8 parame-
ter (which is a measure of the degree of anomalous trans-
port, with 8 increasing to 2, indicating Fickian transport) in-
creased with increasing variance of In(K). Here we analyzed
the Shannon entropy of the breakthrough curves in time, and
contrary to the flow path entropies, they grow with increas-
ing variance of In(K). This means that higher degrees in spa-
tial order in solute transport that emerges at larger variances
in In(K), expressed by lower flow path entropies, translate
into a higher entropy and thus a higher disorder and thus un-
certainty in arrival times. This is reflected by an earlier first
breakthrough, a retarded appearance of the peak concentra-
tion, a longer tailing in the breakthrough curves, and a higher
similarity of the BTC to a uniform, rectangular pulse. This
finding coincides well with the illustrative case that Bianchi
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and Pedretti (2017) used to compare solute breakthrough
through ordered and disordered alluvial aquifers.

This space—time asymmetry in entropy and organization
can, however, only be explained using the physical perspec-
tive of entropy and the second law. The emergence of spa-
tially organized preferential transport and the related decline
in flow path entropy essentially requires an export of the en-
tropy from the system into the BTC. We thus conclude that
the B parameter of the CTRW framework is also a twofold
measure for spatial organization of solute transport through
the system and temporal organization in arrival times and
their asymmetry. One might hence wonder whether a perfect
spatial organization due to preferential transport of the entire
solute particles through a single preferential flow path would,
in the case of a step input, translate into a BTC of maximum
entropy/disorder, i.e., rectangular BTC (and vice versa). We
return to this issue in Sect. 6.

We speculate, too, that the concepts of entropy, power, and
work might be helpful to explore the interplay of dissolution
and precipitation of minerals such as silicate or carbonate
rock, and the related local feedbacks on saturated hydraulic
conductivity, as investigated by Edery et al. (2021). These
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processes certainly affect and change the distribution of en-
tropy and power in fluid flow. The key to assessing this is to
include molar entropy and the free-energy differences associ-
ated with the chemical reactions and chemical energy fluxes
associated with chemical transport into the entropy and en-
ergy balances.

5.3 Preferred flow and transport pathways as
maximum power structures?

The idea that preferential flow coincides with a larger
power in fluid flow has been discussed widely in hydrol-
ogy. Howard (1971, cited in Howard, 1990) proposed that
angles of river junctions are arranged in such way that they
minimize stream power; later he postulated that the topol-
ogy of river networks reflects an energetic optimum, formu-
lated as a minimum in total energy dissipation in the network
(Howard, 1990). This work inspired Rinaldo et al. (1996) to
propose the concept of minimum energy expenditure as an
enslavement principle for the self-organized development of
river networks. Hergarten et al. (2014) transferred this con-
cept to groundwater systems. They derived preferential flow
paths that minimize the total energy dissipation at a given
recharge, under the constraint of a given total porosity, and
showed that these setups allowed for predictions of spring
discharge at several locations. Minimum energy expenditure
in the river network implies that power therein is maximized.
In this light, Kleidon et al. (2013) showed that directed struc-
tural growth in the topology of connected river networks can
be explained through a maximization of kinetic energy trans-
fer to transported suspended sediments.

Our findings are in line with but a step beyond these stud-
ies, which commonly refer to preferential flow in connected,
highly conductive networks. Here we find that solute par-
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ticles prefer to move through pathways of very high verti-
cal power, even when they are not connected by a continu-
ous set of cells of relatively high hydraulic conductivity. On
the contrary, these pathways incorporate regions of low hy-
draulic conductivity. This finding reflects the squared depen-
dence of power on the spatial head gradient, which in turn
becomes largest in regions of low hydraulic conductivity. We
stress that this result, and our finding that a larger power in-
put (due to a higher pumping rate) leads to a higher order
in the macroscale preferential transport pattern, is a conse-
quence of the imposed boundary condition. A steady-state
head difference implies a positive energetic feedback: in a
real-world experiment, the pump provides this feedback, as
otherwise the gradient is depleted by the flowing fluid. Al-
though such a positive feedback is straightforwardly estab-
lished in a numerical model by assigning the desired constant
head difference, it is important that this choice implies that
such a positive feedback exists. Due to this virtual energy
input, the vertical flow component and solutes may perform
the necessary work to steepen the transversal concentrations
and thereby establish an ordered preferential flow pattern at
the macroscale. Ultimately, it is the higher necessary pump-
ing rate/power and the duration of the experiment that deter-
mine the elevated total energy input into the domains with
higher K variance. This constrains the amount of work per-
formed by vertical flow components and explains (a) why
preferential flow patterns of higher order emerge with grow-
ing subscale randomness and (b) why self-organization was
even stronger in the case of a lower driving head difference
of 10.

One might hence wonder whether an even stronger self-
organization might be observed during similar simulations
in 3D stochastic media. We generally expect similar behav-
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ior, because the local changes in power of the transversal
flow component arise from the local feedback on the pressure
head gradient upstream of the low-conductivity bottlenecks.
The gradients steepen ahead of these bottlenecks, which im-
plies a higher power in the transversal flow component. This
feedback will also occur in a 3D confined system, as it is a
direct result of the boundary conditions (no flow boundary
conditions for the upper, lower, inlet, and outlet boundaries).

6 Conclusions and outlook

Based on the presented findings, we conclude that the
combined use of free energy and entropy holds the key
to characterizing and quantifying the self-organized emer-
gence of preferential flow phenomena and to explaining the
underlying cause of their emergence. Information entropy
is an excellent, straightforward concept to diagnose self-
organization in space and time: here, the formation of prefer-
ential transport is reflected in the downstream decline in the
entropy of the transversal flow path distribution and in this
decline becoming stronger with increasing variance of hy-
draulic conductivity. The concepts of free energy and physi-
cal entropy, however, provide the underlying cause: steepen-
ing of transversal concentration gradients requires work; the
formation of even steeper gradients and lower flow path en-
tropies needs even more work and thus a higher free-energy
input into the open system. The higher necessary pumping
rate and energy input into the domains is the reason why spa-
tial organization in preferential solute movement increased
with growing subscale randomness of hydraulic conductivity.
This behavior is very much in line with what we discussed for
the gas laser in the Introduction.

Entropy can, however, due to the second law not be con-
sumed, and the declining flow path entropy is in fact ex-
ported from the system into the breakthrough curve. Shan-
non entropy allows again for the straightforward diagnosis,
while physical entropy provides the reason for this space—
time asymmetry in entropy, organization, and uncertainty.
Transport of all solute particles through a single preferen-
tial flow path implied a maximum spatial organization and
maximum knowledge certainty about the transversal spread-
ing of solute. However, this would, due to the entropy export,
result in a maximum disorder of and thus uncertainty about
the arrival times, as the BTC would correspond to a rect-
angular pulse of uniform concentration. Advective diffusive
transport through a homogeneous flow field implied, in the
case of a spatially homogeneous step input, maximum uncer-
tainty about transversal position of solute molecules, while
the BTC would be perfectly certain and provide minimum
uncertainty about arrival times. This space—time asymme-
try in entropy implies that perfect organization and certainty
about both flow paths and travel times can never simultane-
ously occur. This required consummation of entropy and thus
violation of the second law of thermodynamics. However,
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we wonder whether effective predictions of the entropies in
the BTC and the flow path distributions based on the knowl-
edge driving head differences and the variance and correla-
tion lengths of hydraulic conductivity might be achievable in
the future. This will of course not tell us where solutes move
and when they break through, but it will predict the related
uncertainty as an important constraint of transversal distribu-
tion of transport pathways and travel times.
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