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Abstract. Climate change impact assessment related to
floods, infrastructure networks, and water resource man-
agement applications requires realistic simulations of high-
resolution gridded precipitation series under a future climate.
This paper proposes to produce such simulations by com-
bining a weather generator for high-resolution gridded daily
precipitation, trained on a historical observation-based grid-
ded data product, with coarser-scale climate change infor-
mation obtained using a regional climate model. The climate
change information can be added to various components of
the weather generator, related to both the probability of pre-
cipitation as well as the amount of precipitation on wet days.
The information is added in a transparent manner, allowing
for an assessment of the plausibility of the added informa-
tion. In a case study of nine hydrological catchments in cen-
tral Norway with the study areas covering 1000–5500 km2,
daily simulations are obtained on a 1 km grid for a period of
19 years. The method yields simulations with realistic tem-
poral and spatial structures and outperforms empirical quan-
tile delta mapping in terms of marginal performance.

1 Introduction

The rate of projected future warming in northern Europe is
amongst the highest in the world, driven to a large extent by
the strong feedback involving snow and ice as the climate
warms (Collins et al., 2013). As a consequence, the hydro-
logical cycle intensifies (Bengtsson, 2010), leading to more
precipitation as well as more intense extreme events (e.g.
Vautard et al., 2014). The projected changes in precipitation

amounts, snowpack, and snow cover will considerably im-
pact surface hydrology through, for example, changed runoff
magnitude as well as timing and amplitude of the spring flood
(e.g. Von Storch et al., 2015). In order to study these effects,
impact models optimally require inputs that reliably repre-
sent precipitation occurrence and intensity at a high spatial
resolution, spatial and temporal variability, as well as phys-
ical consistency for different regions and seasons (Maraun
et al., 2010).

Coupled atmosphere–ocean general circulation models
(GCMs) remain our main source of information for projec-
tions of future climate. However, these have spatial resolu-
tions that are too coarse for assessing the often localized
impacts of changing precipitation patterns. Regional climate
models (RCMs) at a spatial resolution of 10–15 km (e.g. Ja-
cob et al., 2014) are able to explicitly resolve mesoscale at-
mospheric processes and add valuable information for pre-
cipitation modelling over a region, with the newest model
generations at an even higher resolution and able to include
explicit deep convection (Lind et al., 2020; Prein et al.,
2020).

To obtain reference results for the current climate, im-
pact models are commonly applied to high-resolution his-
torical data products such as the Nordic Gridded Cli-
mate Dataset (NGCD, https://surfobs.climate.copernicus.eu/
dataaccess/access_ngcd.php, last access: 27 March 2019),
which provides historical estimates of precipitation and tem-
perature in northern Europe at a 1 km spatial resolution. Such
data products come with their own inherent biases which
can be difficult to correct due to lack of data. For an accu-
rate assessment of climate impact, one goal is thus to gen-
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Figure 1. The proposed two-stage weather generator approach for simulations of fine-scale daily precipitation in a future climate.

erate high-resolution realizations of future climate with the
same distributional properties as the historical data product,
except for potential changes in these distributional proper-
ties due to climate change. For comparable future projec-
tions, RCM simulations need a further downscaling step, and
systematic biases as well as incompatibilities between the
two spatial scales should be removed. It has further been
argued that downscaling should be stochastic in nature and
able to generate sub-grid spatial variability (Maraun et al.,
2017). The stochastic point processes of the Neyman–Scott
and Bartlett–Lewis types have been used to stochastically
downscale precipitation data, most often at single locations
(Burton et al., 2008). More recent model extensions into two-
dimensional space (Cowpertwait et al., 2002), spatial nonsta-
tionarity (Burton et al., 2010), and temporal nonstationarity
regarding long-term trends (Luca et al., 2020) have seen rarer
applications in the literature. Recently proposed stochastic
downscaling methods have proven skillful in modelling the
small-scale variability of precipitation occurrence and in-
tensity across sets of point locations (Wong et al., 2014;
Volosciuk et al., 2017).

This paper proposes a two-stage weather generator (WG)
approach to generate high-dimensional simulations of fu-
ture climate on a fine-scale grid. Specifically, a stochastic
model describing a high-resolution data product in a ref-
erence period is combined with climate change projections
based on a lower-resolution RCM. Weather generators are
commonly used to generate spatially and temporally corre-
lated fields of daily precipitation, with the early work of
Wilks (1998) paving the way for many current approaches.
Chandler and Wheater (2002) illustrate the use of a general-
ized linear model (GLM) to describe daily precipitation se-
ries at individual sites, using a logistic regression model for

the occurrence and a gamma model for the amounts. More
recently, Kleiber et al. (2012) propose an approach relying
on two latent Gaussian random fields to generate spatially
correlated occurrence and intensity, with spatial heterogene-
ity described through both spatially varying covariates and
regression parameters. Serinaldi and Kilsby (2014) propose
a more computationally efficient approach, where a single
latent Gaussian random field is used to describe the spatial
correlation in both precipitation occurrence and intensity.

With applications related to hydrological impacts in mind,
we consider a case study of nine different catchments in cen-
tral Norway. The simulation of daily fine-scale precipitation
for a catchment requires daily simulations of spatially cor-
related random fields on a high-resolution grid with roughly
1000–5500 grid cells, depending on the size of the catch-
ment. As the catchments are located in different climatic
zones, the stochastic model is estimated independently for
each catchment. Spatial heterogeneity within a catchment is
introduced via spatially varying covariates for both the oc-
currence and the intensity models, where the covariate con-
tribution to the precipitation intensity may vary smoothly in
space. Additionally, temporal aspects are modelled with sea-
sonal effects and linear trends in the marginal distributions
as well as an autoregressive component in the residual pro-
cess. Climate change information from an RCM output may
be added in a transparent manner by updating each com-
ponent of the weather generator based on estimated climate
change in the corresponding component at the coarser RCM
scale. Yuan et al. (2019) propose a similar model for obtain-
ing high-resolution daily mean temperature projections.

As demonstrated in Fig. 1, the stochastic model generates
realizations of future precipitation occurrence and intensity
that are correlated in space and time, thus combining four
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separate components: spatial and temporal correlation struc-
tures and marginal models at each grid-cell location for prob-
ability of occurrence and intensity. The fine-scale spatial cor-
relation structure is assumed constant over time, while cli-
mate change information from the RCM can be used to up-
date the other three components in terms of both overall level
as well as seasonal patterns. In addition to being stochastic
in nature, the method provides a transparent way to add a
climate change signal to the precipitation simulations. The
success of the model producing realistic realizations for a fu-
ture climate depends on two factors: the RCM must be able
to correctly capture the climate change signal in the model
components and the scale of the fine-scale change must be
close enough to that of the RCM scale for climate change
effects to be transferrable between the two scales.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the datasets and the study area. Details of
the two-stage WG approach are given in Sect. 3 together
with a description of a reference method based on empiri-
cal quantile delta mapping as well as the evaluation methods
used to compare the two approaches. The models are esti-
mated based on data from the period 1957–1986 and the es-
timates are used to simulate data for the period 1987–2005.
The results of this analysis and comparison of the various ap-
proaches are given in Sect. 4. The paper then concludes with
a brief summary and discussion in Sect. 5.

2 Data and study area

We apply our methodology to daily precipitation simula-
tions from two RCMs from the EURO-CORDEX-11 ensem-
ble. One (referred to as RCM1 in the following) combines
the COSMO Climate Limited-area Model (CCLM) from the
Potsdam Institute for Climate Research (Rockel et al., 2008)
with boundary conditions from the CNRM-CM5 Earth sys-
tem model developed by the French National Centre for Me-
teorological Research (Voldoire et al., 2013), whereas the
other (referred to as RCM2) combines the CCLM model with
boundary conditions from the MPI Earth system model de-
veloped by the Max Planck Institute for Meteorology (Gior-
getta et al., 2013). The RCM simulations are conducted over
Europe at a spatial resolution of 0.11◦ or about 12 km (Jacob
et al., 2014). In the historical period up to 2005 the outputs
are simulated based on recorded emissions and are thus com-
parable to observed climate.

For observational reference data, we use the seNorge grid-
ded data product version 2018 produced by the Norwegian
Meteorological Institute (Lussana et al., 2019) as a subset of
the Nordic Gridded Climate Dataset for Norway. The data re-
sult from a multi-scale spatial interpolation of measurements
from 500 to 700 surface weather observation stations for the
period 1957 to the present. The data have a daily temporal
resolution and a spatial resolution of 1 km over an area cov-
ering the Norwegian mainland and an adjacent strip along

Table 1. Characteristics of the nine catchments in Trøndelag, Nor-
way, considered in the stochastic simulations of gridded daily pre-
cipitation.

Catchment ID Size Downscaling Median elevation
(km2) area (km2) (ma.s.l.)

Gaulfoss A 3084 5479 734
Aamot B 286 1112 460
Krinsvatn C 206 1108 349
Oeyungen D 245 952 295
Trangen E 852 2327 558
Veravatn F 176 1101 514
Dillfoss G 484 1863 506
Hoeggaas H 491 1853 505
Kjeldstad I 144 940 578

the Norwegian border. Compared with previous versions of
the data product (i.e. Lussana et al., 2018), seNorge version
2018 adjusts the measurements for wind-induced undercatch
of solid precipitation and makes use of dynamically down-
scaled reanalysis to form the reference fields for data-sparse
areas and thus is considered to have a higher effective reso-
lution. In the following, we will treat this dataset as observa-
tions and refer to it as such.

Grid-cell precipitation is an areal average of sub-grid pre-
cipitations and, at a daily timescale, each value in a time se-
ries is an accumulation over 24 h. We upscale the fine-scale
seNorge values to the coarse-scale RCM grid by calculat-
ing the weighted average over all seNorge grid cells within
a given RCM grid cell, where the weights equal the propor-
tion of each seNorge cell within the given RCM cell. The
precipitation data have unit kgm−2, which is approximately
equivalent to mm; we then set all values less than 0.1 to 0
before other processing.

For the study area, we consider the Trøndelag area in cen-
tral Norway; see Fig. 2. The area comprises 695 RCM grid
cells and 109 514 seNorge grid cells. The extraction of the
climate change signal is performed at the RCM scale, while
the fine-scale daily precipitation fields are generated at nine
hydrological catchments within the domain; see Fig. 2 and
Table 1. Two of the catchments, Krinsvatn and Oeyungen,
have a maritime climate, while the others have a continen-
tal climate. For each catchment, the modelling is performed
over all seNorge grid cells within the RCM grid cells that
cover the catchment, the spatial dimensions of which vary
between approximately 940 and 5500 grid cells at 1 km res-
olution. Both historical RCM simulations and seNorge ob-
servations are available over the time period 1957–2005. We
use the time period 1957–1986 as a training period to esti-
mate model parameters and perform an out-of-sample eval-
uation over the remaining 19 years 1987–2005. As a result,
the training period consists of 10 950 d, while the test period
comprises 6935 d.
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Figure 2. The study area is located in Trøndelag in central Norway, covering the entire Trøndelag and a small part of neighbouring Sweden,
and consists of 695 RCM grid cells (rectangular-like polygons) and 109 514 seNorge grid cells (within the polygons, not shown). For
stochastic simulations of gridded daily precipitation, nine catchments within Trøndelag with catchment areas from 144 to 3084 km2 (shaded
in grey) are used; see also Table 1.

Additionally, we use explanatory variables, or covariates,
to describe the spatial variations in the statistical characteris-
tics of the daily precipitation distributions. We consider lat-
itude, longitude, and elevation as potential geographic co-
variates. Elevation information for the seNorge data is ob-
tained from a digital elevation model based on a 100 m-
resolution terrain model from the Norwegian Mapping Au-
thority (Mohr, 2009). We upscale these data in the same man-
ner as the daily mean precipitation to obtain the elevation at
the RCM scale. Note that this is not equal to the orography
information provided by EURO-CORDEX.

3 Methods

As mentioned in the introduction, the aim of this study is
to provide realistic projections of daily precipitation at a
fine spatial scale over large areas. We apply a parametric
weather generator approach that belongs to the class of mod-
els proposed by Wilks (1998) and Chandler and Wheater
(2002). For computational feasibility, we apply the approach
proposed by Serinaldi and Kilsby (2014), where a discrete-
continuous distribution with a single latent field is used
to simultaneously model the marginal precipitation occur-
rence, intensity on wet days, and the space–time depen-
dence. Specifically, we employ a combination of a latent non-
stationary Gaussian space–time random field and a gamma

distribution with parameters that vary in space and time, with
each model component estimated independently. The precip-
itation process at the RCM scale is described using a similar
statistical model, and the climate change signal is added to
the fine-scale model by relating the models at the two spatial
scales.

3.1 Marginal models for precipitation occurrence and
intensity

Denote precipitation occurrence in grid cell s ∈ {1,2, . . .,S}
at time t ∈ {1,2, . . .,T } by Ost = 1 if there is precipitation
and Ost = 0 otherwise, where S denotes the number of grid
cells and T the number of days in a given dataset. We fol-
low Kleiber et al. (2012) and relate the pattern of wet and
dry days to a latent Gaussian variable Wst with mean µst and
variance 1. Precipitation intensity Yst (i.e. the amount condi-
tional onOst = 1) is assumed to be gamma distributed with a
constant shape k and scale θst that varies over space and time,
following e.g. Chandler and Wheater (2002) and Yang et al.
(2005). Formally, we write

Wst = µst+ εst, εst ∼N(0,1), (1)
Ost = 1{Wst > 0}, (2)
Yst|Ost = 1∼ 0(k,θst). (3)

Precipitation processes often show different features depend-
ing on the time of the year, and neighbouring sites tend to
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share a similar precipitation climate. Such systematic varia-
tions are modelled by letting the parameters µst and θst of the
above distributions change smoothly across time and space.
We describe this through three additive components: a spatial
effect, a seasonal effect, and a linear climate change effect.
In particular, we set

µst = f
o
1 (cs)+ f

o
2 (t)+ f

o
3 (t), (4)

log(kθst)= f
g

1 (cs)+ f
g

2 (t)+ f
g

3 (t), (5)

where, in their simplest form, the three effect functions are
given by

f
ζ
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f
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3 (t)= β

ζ
3 y(t), (8)

for ζ ∈ {o,g}. Here, f1 models the spatially varying baseline
of the parameters, with cs being latitude, longitude, and mean
elevation of grid cell s. Seasonal changes are described by
f2, with d(t) returning the calendar day of time point t and
f3 capturing the potential linear trend, with y(t) returning
the calendar year normalized so that β3 describes a decadal
trend in the data. This modelling framework corresponds to
a GLM framework.

While the linear spatial effect function in Eq. (6) can cap-
ture the spatial variations in the occurrence at both spatial
scales as well as the intensity at the RCM scale, we find that
this model is too simple to capture the spatial variations in the
intensity across a catchment at the finer 1 km× 1 km scale.
At the finer scale, we thus expand Eq. (6) so that the co-
variate contribution varies smoothly in space (Wood, 2003),
expanding the model to a generalized additive model (GAM;
Wood, 2017). That is, we set for the two largest catchments
A (Gaulfoss) and E (Trangen)

f
g

1 (cs)= β
g

11+ s
g

1 (lats, lons)+ s
g

2 (elevs),

where s1 and s2 are smooth functions, and the slightly sim-
pler

f
g

1 (cs)= β
g

11+ s
g

1 (lats, lons)+β
g

14elevs

for the other catchments. This substantially improved the in-
sample fit for all the catchments. Alternatively, Kleiber et al.
(2012) propose spatially varying regression parameters.

To estimate the parameter µst of the latent Gaussian model
specified in Eqs. (4) and (6)–(8), we transform the data to
a binary dataset with ost = 1 if the observed value fulfils
yst > 0 and ost = 0 if yst = 0. We then estimate µst using
probit regression with P (ost = 1)=8(µst) and P (ost =

0)= 1−8(µst), where 8 denotes the cumulative distribu-
tion function (CDF) of the standard normal distribution. The

estimation is performed using the function glm() in the
statistical software R (R Core Team, 2019) separately for
each catchment and spatial scale. The parameters of the
gamma model are estimated using only the positive values
in the dataset, that is, only data where yst > 0. At the RCM
scale, the gamma model is a GLM and can be estimated us-
ing glm(). At the seNorge scale, we employ the function
bam() from the R package mgcv version 1.8–31 (https:
//cran.r-project.org/web/packages/mgcv/index.html, last ac-
cess: 3 February 2020) so that the smooth functions s1 and
s2 are given by thin plate regression splines as described in
Wood (2003). The complexity of the spatial baseline term f1
is determined by empirically assessing the spatial structure of
the average in-sample residuals over the spatial domain. Note
that for a linear modelling design as in Eqs. (6)–(8), glm()
and bam() will return identical estimates, ensuring consis-
tency in our estimation across the different datasets. Specifi-
cally, the inference methods return estimates of log(kθst) and
k, from which estimates of θst can easily be derived.

3.2 Space–time correlation structure

The marginal models for precipitation occurrence and inten-
sity defined in the previous section describe changes in the
marginal distributional properties across space and time. For
realistic simulations of daily precipitation fields, we addi-
tionally need to account for space–time correlations of indi-
vidual realizations. Here, for computational feasibility given
the dimensionality of our data, we follow the approach pro-
posed by Serinaldi and Kilsby (2014) and define a single la-
tent Gaussian process that drives the correlation in both oc-
currence and intensity. We further assume that spatial and
temporal correlations can be estimated separately, with the
parameters of each component allowed to vary over the year
to account for potential seasonality in the correlation struc-
ture. In practice, this is performed by obtaining independent
estimates for each calendar month and, subsequently, fitting
a smooth function of the type given in Eq. (7) to the monthly
estimates to obtain daily smoothly varying estimates. Fur-
thermore, the correlation models are estimated independently
for each catchment to account for differences between the
different climatic zones.

The estimation of the correlation structure within frame-
works with underlying assumptions of normality is compli-
cated by the shape of the precipitation distribution, with its
point mass in zero and the skewness of the positive part. To
account for this, Serinaldi and Kilsby (2014) propose to esti-
mate the Kendall rank correlation coefficient τ from the data
(Kendall, 1945) and, subsequently, transform τ into the Pear-
son correlation ρ by the identity ρ = sin(τπ/2). For the spa-
tial correlation structure, we use this approach to estimate the
correlation between all pairs of grid cells within a catchment
using the R function cor(). In the estimation procedure, ties
are removed from the data, which implies that the estimation
is only based on data pairs with two non-zero values or one
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zero and one non-zero value; see also the discussion in Seri-
naldi (2007). The R function fit.variogram() from the
R package gstat (Pebesma, 2004; Gräler et al., 2016) is
then employed to fit theoretical correlation functions to the
empirical correlations via fitting of the corresponding vari-
ogram functions. An empirical comparison of fits based on
the exponential, spherical, Gaussian, and Matérn correlation
models shows that the three-parameter Matérn model fits best
in all months for all the catchments.

The Matérn correlation between two grid cells with Eu-
clidean distance ‖h‖ at time point t is given by (e.g. Cressie
and Wikle, 2015)

C(‖h‖, t)= σ 2
0t1{‖h‖ = 0}

+ σ 2
1t {2

ν−10(ν)}−1
{‖h‖/αt }

νKν(‖h‖/αt ), (9)

where 0 is the gamma function andKν is the modified Bessel
function of the second kind. The nugget σ 2

0t , partial sill σ 2
1t ,

and range αt are assumed to vary over the year, while ν
is assumed constant. An optimal value of ν is chosen such
that the sum of squared errors of the fitted models over all
12 months is minimized. Then, a Matérn correlation func-
tion with a fixed value of ν is fitted again for each month
to obtain monthly estimates of σ1t and αt. Here, we assume
σ 2

0t+σ
2
1t = 1, so that the resulting matrix is a correlation ma-

trix.
In the literature, spatial dependencies in intensity and oc-

currence are commonly modelled separately assuming two
latent Gaussian fields, one driving the occurrence and the
other the intensity. For correlations in intensity, parametric
models include the exponential (Kleiber et al., 2012) and
power exponential (Wilks, 1998; Serinaldi and Kilsby, 2014)
models as well as the simple strategy of having constant in-
tersite correlation (Yang et al., 2005). Correlations in occur-
rence are more challenging to model, as appropriate trans-
formation from binary occurrence to marginal normality is
less straightforward. Wilks (1998) illustrates an empirical ap-
proach to find a link between the unobservable correlation
(from a Gaussian model) and observable but unknown corre-
lation (from a bivariate binary model) for each pair of sites.
Kleiber et al. (2012) use an exponential covariance function
in a similar approach. Yang et al. (2005) propose to model
the number of wet sites by a beta-binomial model and then
utilize empirical conditional probabilities to allocate the po-
sitions of wet sites.

Following Serinaldi and Kilsby (2014), we introduce the
short-term autocorrelation through temporal dependence in
the underlying spatial random field. Here, temporal correla-
tion is assumed to follow an autoregressive (AR) process of
order 1. At each grid cell, Kendall’s τ is calculated for each
month; the monthly value for the entire catchment is then
taken as the median value over all grid cells in the catch-
ment. Subsequently, a smooth function of the form in Eq. (7)
is fitted to the 12 monthly values to obtain smoothly changing
daily estimates ρ̂t = sin(τ̂tπ/2). Stochastic simulation mod-

els for precipitation commonly assume an autocorrelation of
order 1 (e.g. Evin et al., 2018; Kleiber et al., 2012). However,
it varies somewhat in how the autocorrelation is introduced
into the model. For example, Kleiber et al. (2012) include the
occurrence on the previous day as a covariate in the regres-
sion models for the mean of the latent field and the parame-
ters of the gamma intensity model.

To summarize, denote by εt = (ε1t , . . .,εSt ) the vector of
random noise defined in Eq. (1) in all the S grid cells at time
t . The random noise is assumed to follow a space–time cor-
relation structure of the form

ηt ∼N(0,6t), (10)

εt+1 = ρtεt +

√
1− ρ2

t ηt , (11)

where 6t is a Matérn correlation matrix and the correlation
coefficient ρt is obtained as described above.

3.3 Relating models from two spatial scales

Marginal models outlined in Sect. 3.1 are fitted to the coarser
RCM-scale data for both the training and test periods, where
the significance of coefficients is tested at the 0.05 level. In
particular, for data from the test period, we incorporate the
training-period estimates of the coefficients into the three
model components in the following manner: (1) the base-
line f1 is fixed to be the sum of its estimated value and
the increment due to the estimated linear trend in the train-
ing period; (2) for the seasonality f2 and the potential linear
trend f3, we use the training-period coefficients as a refer-
ence and effectively estimate and test the significance of the
changes in these terms. In R, this could be done by using sev-
eral offset() terms in the model formula applied in the
glm() function. We opt for such a practice in the situation
where the test period directly follows the training period. In
addition, the temporal correlation at the coarser RCM scale
is estimated for both the training and test periods. The spatial
correlation is excluded in the estimation because for a given
spatial domain data at the coarser scale have lower spatial
dimensionality than data at the finer scale and thus do not
convey information on the finer-scale spatial structures.

The models outlined in Sects. 3.1 and 3.2 are fitted to the
finer seNorge scale data only for the training period. In order
to obtain model parameter estimates at the finer scale in the
test period, we need to relate the models at the two scales
so that model changes between the training and test periods
at the coarser scale can be used to infer model changes at the
finer scale. Specifically, we may update the mean of the latent
field µst in Eq. (1), the parameters of the gamma distribution
k and θst in Eq. (3), and the autocorrelation coefficient ρt in
Eq. (11), while the structure of the spatial correlation matrix
6t in Eq. (10) is assumed constant for the aforementioned
reason.

For µst and log(θst)= log(kθst)− log(k), we may update
each of the terms in Eqs. (4) and (5), respectively. Here, the
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Figure 3. seNorge estimates of the seasonality component in Eq. (7)
in the training period 1957–1986 for all catchments at both spa-
tial scales. Top: the estimated seasonality in the mean of the latent
Gaussian field µst estimated by probit regression. Bottom: the esti-
mated seasonality in the mean of the gamma distribution log(kθst)
estimated within a GLM/GAM framework.

seasonality Eq. (7) and the potential linear trend component
Eq. (8) ofµst (and similar for log(θst)) are adjusted so that the
average adjustment over all the time points in the test period
µa
s· fulfils

µa
s· = µ

tr
s·+

(
µte
r·−µ

tr
r·

)
,

where te indicates the test period, tr indicates the training
period, and s is a fine-scale grid cell located within a coarse-
scale grid cell r .

Figure 3 shows the training-period estimates of the sea-
sonality component given in Eq. (7). While the seasonality
patterns vary substantially across the different catchments as
well as between the two model parts, the estimates are very
consistent across the two spatial scales. We thus infer season-
ality components for the fine scale during the test period by
updating the fine-scale components from the training period
according to the estimated changes between the training and
test periods at the coarse scale. We see the same patterns for
the trend coefficient in Eq. (8); see Table 2. The trend coef-
ficient and the correlation coefficient ρt are thus updated in
the same manner as the seasonality component. Finally, the
shape parameter of the gamma distribution k may be updated
so that the ratio of the estimates in the training and test peri-

ods at the fine scale equals the ratio of the two estimates at
the coarser scale.

In Sect. 4 various versions of the method are compared,
where individual model components are either updated ac-
cording to information based on an RCM output or assumed
stationary over the entire time period.

3.4 Daily fine-scale precipitation generator

With the adjustments described above, the marginal models
and the space–time Gaussian random field together form a
precipitation generator for use on the fine-scale grid in the
test period. The parameters of the generator are obtained us-
ing seNorge data in the training period and adjusted based
on RCM data spanning both the training and test periods.
Assume we want to simulate data at all grid-cell locations
s ∈ {1, . . .,S} and time points t ∈ {1, . . .,T }, a total of S loca-
tions and T time points. Data simulation from the generator
consists of the following steps, with the superscript a indi-
cating adjusted parameter estimates.

1. For each time point t , spatially correlated but temporally
independent random vectors η∗t of size S are drawn from
the multivariate Gaussian distribution with mean vector
0 and correlation matrix 6̂t specified by the Matérn cor-
relation function, i.e. η∗t ∼N(0, 6̂t).

2. Temporal correlation is introduced by setting ε∗t+1 =

ρ̂a
t ε
∗
t +

√
1− (ρ̂a

t )
2 η∗t .

3. At grid cell s and time t , the probability of precipita-
tion is p̂ast =8(µ̂

a
st). The precipitation amount is set as

y∗st = 0 if8(ε∗st)≤ 1− p̂ast and y∗st = 0
−1((8(ε∗st)−(1−

p̂ast))/p̂
a
st; k̂

a, θ̂a
st) otherwise.

That is, as mentioned above, the fine-scale spatial correla-
tion structure described by 6̂t is the single part of the model
that is not adjusted based on information from the RCM.

3.5 Reference method

To assess the performance of the proposed method, we use
the empirical quantile delta mapping method as a reference.
The RCM outputs of approximately 12 km× 12 km resolu-
tion are first re-gridded to the 1 km× 1 km seNorge grid us-
ing bilinear interpolation, as implemented in the R package
akima version 0.6–2 (Akima and Gebhardt, 2016). Wet-day
correction is applied prior to bias correction of precipitation
amount, as RCM outputs tend to give more rainy days than
the observed ones (Frei et al., 2003). Specifically, a thresh-
old value is determined such that the wet-day frequency in
the re-gridded RCM dataset is equal to that in the seNorge
dataset for the training period; precipitation values below the
threshold value are set to zero for both the training and test
periods. Correction of precipitation amount in the test pe-
riod is carried out using the empirical quantile delta mapping
method proposed by Cannon et al. (2015), where the relative
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Table 2. The estimated trend coefficient in Eq. (8) for each catchment based on data from 1957 to 1986 for µst in the probit model (left) and
log(θst) in the gamma model (right). Estimates are given for both 1 km seNorge data and seNorge data upscaled to 12 km resolution.

µst log(θst)

seNorge seNorge seNorge seNorge
Catchment 1 km× 1 km 12 km× 12 km 1 km× 1 km 12 km× 12 km

Gaulfoss 0.002 0.002 −0.003 −0.004
Aamot 0.009 0.011 0.046 0.045
Krinsvatn 0.035 0.036 0.023 0.020
Oeyungen 0.020 0.019 0.045 0.047
Trangen 0.001 0.000 0.038 0.039
Veravatn 0.051 0.049 0.016 0.018
Dillfoss 0.022 0.020 −0.026 −0.025
Hoeggaas 0.010 0.010 −0.024 −0.023
Kjeldstad −0.003 −0.003 0.013 0.013

Table 3. Integrated quadratic distance (IQD) values comparing simulated and seNorge distributions over all days in 1987–2005. The results
are averaged over all 1 km× 1 km grid cells in each catchment. The simple method seNorge uses the daily values over the period 1957–1986
as a prediction, WGs assumes trends estimated for 1957–1986 continue in 1987–2005, WG1.1 and WG2.1 include seasonality and trend
estimates from RCM1 and RCM2, respectively, in the gamma model, while for WG1.2 and WG2.2, RCM information is included in both the
gamma model and the probit model. Results of the reference method are denoted EQM1 for RCM1 and EQM2 for RCM2. The best method
for each catchment is indicated in bold.

Catchment seNorge WGs WG1.1 WG2.1 WG1.2 WG2.2 EQM1 EQM2

Gaulfoss 3.46 3.99 2.87 3.10 3.91 2.97 3.73 2.80
Aamot 2.23 1.64 2.90 2.37 2.37 2.86 2.67 2.33
Krinsvatn 8.18 1.94 3.02 1.96 2.54 1.79 12.27 7.62
Oeyungen 5.52 5.94 7.14 7.46 4.90 6.44 11.20 4.91
Trangen 9.37 5.56 5.12 5.50 6.12 5.49 10.72 7.84
Veravatn 11.26 2.66 2.37 2.24 2.77 2.22 15.45 8.12
Dillfoss 5.17 6.59 4.73 4.27 6.97 4.23 5.58 3.05
Hoeggaas 2.65 5.84 3.54 3.21 6.15 3.17 3.21 1.46
Kjeldstad 6.96 6.71 4.32 4.00 6.51 3.96 7.38 3.50

Overall 4.88 4.50 3.60 3.65 4.61 3.54 5.82 3.83

changes in the precipitation quantiles projected by an RCM
from the training period to the test period are explicitly pre-
served. For individual seNorge grid cells, the method is ap-
plied to pooled daily data for each calendar month to ensure
an unbiased seasonal cycle and computational efficiency, al-
though this might lead to potential continuity issues at the
turn of the month. The method belongs to the class of widely
used empirical quantile mapping methods (EQMs), and we
will refer to it as such in the following.

3.6 Evaluation methods

Evaluation and comparison of the different approaches are
performed by comparing various aspects of the resulting
datasets. For an overall ranking of the approaches, we em-
ploy the proper evaluation metric integrated quadratic dis-
tance (IQD) that compares the full distributions of observed
and modelled precipitation (Thorarinsdottir et al., 2013).
That is, denote by F the empirical cumulative distribu-

tion function (ECDF) of seNorge precipitation over all time
points in the test set at a given grid cell and by G the corre-
sponding ECDF from one of the modelling approaches. The
distance between F and G as measured by the IQD is then
given by

d(F,G)=

+∞∫
−∞

(F (x)−G(x))2dx.

The overall performance of the model at a catchment is
then calculated as the average IQD over all grid cells in the
catchment area, with a lower value indicating a better per-
formance. The IQD fulfils the property that the true data-
generating process is expected to obtain an IQD value of 0
when compared against ECDFs based on data samples of any
size. It is thus an appropriate metric for ranking competing
methods (Gneiting and Raftery, 2007; Thorarinsdottir et al.,
2013). For the WG approach, we can easily obtain a precise
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Table 4. Estimated changes in the trend coefficient in Eq. (8) between the training period 1957–1986 and the test period 1987–2005, for µst
in the probit model (left) and log(θst) in the gamma model (right). Estimates for three different data sources at 12 km resolution are shown:
upscaled seNorge data and two RCM outputs.

µst log(θst)

Catchment seNorge RCM1 RCM2 seNorge RCM1 RCM2

Gaulfoss 0.026 −0.022 0.000 0.034 0.040 0.025
Aamot 0.000 −0.018 0.013 −0.081 0.034 0.013
Krinsvatn −0.014 −0.044 0.000 −0.043 0.037 0.014
Oeyungen 0.019 −0.044 0.000 −0.103 0.021 0.021
Trangen 0.080 −0.012 0.000 −0.012 0.020 0.000
Veravatn −0.093 −0.029 0.000 0.039 0.018 0.023
Dillfoss −0.021 −0.033 0.000 0.069 0.031 0.028
Hoeggaas 0.000 −0.033 0.000 0.057 0.039 0.034
Kjeldstad 0.039 −0.022 0.000 0.038 0.040 0.040

approximation of the marginal distribution in each grid cell
by simulating multiple realizations from each daily distribu-
tion. For the EQM approach, however, the marginal distribu-
tion in a grid cell is estimated by combining one value for
each day in the time period of interest.

For an improved understanding of the behaviour of the
models, we further perform several empirical diagnostics. To
analyse the marginal distributions at each grid cell, we com-
pare means of daily precipitation, wet-day frequency given
by the number of wet days, wet-day intensity as measured
by the mean and standard deviation of the precipitation on
wet days only, and representation of heavy precipitation as
measured by the 95th percentile of positive precipitation. Di-
agnostics of the temporal data structure are performed by as-
sessing dry–wet temporal patterns and seasonal patterns of
temporal autocorrelation coefficients, while empirical func-
tions of Pearson’s correlation as a function of distance are
used to perform spatial data diagnostics.

4 Results

We perform model inference using data from 1957 to 1986
and infer climate change effects by comparing the coarse-
scale RCM data from the two time periods 1957–1986 and
1987–2005. Simulations of fine-scale precipitation for the
test set 1987–2005 are then compared against the seNorge
data for the test period 1987–2005.

We consider three versions of the WG method, where we
include varying degrees of climate change information de-
rived from the RCM data. A stationary version, denoted by
WGs, assumes that trends estimated for the seNorge data in
the training period continue into the test period, with the re-
maining model components fixed at their estimates in the
training period. That is, no RCM information is used. A ver-
sion denoted by WG1.1 and WG2.1 for RCM information
derived from RCM1 and RCM2, respectively, includes cli-
mate change information from the RCM in the seasonality

and trend components of the gamma model for precipitation
amount on wet days. Finally, a version denoted by WG1.2
and WG2.2 for RCM information derived from RCM1 and
RCM2, respectively, includes climate change information
from the RCM in the seasonality and trend components of
both the gamma model and the probit model for precipitation
occurrence. The various WG methods are compared against
the reference method in Sect. 3.5 denoted EQM1 and EQM2
derived from RCM1 and RCM2, respectively, as well as a
simple method that uses the empirical distributions of the
fine-scale seNorge data in the training period directly as pre-
dictions for the corresponding empirical distributions of the
fine-scale seNorge data in the test period.

4.1 Marginal performance

We evaluate the marginal performance of the simulations by
comparing empirical distributions of simulations and obser-
vations over all time points in the test set. Specifically, we
compare the empirical distribution of the seNorge data in ev-
ery 1 km× 1 km grid cell to simulations for that same grid
cell using the IQD. The average IQD values over all grid
cells in each catchments are given in Table 3. Overall, the
WG methods that include RCM information perform better
than the stationary approach, which again outperforms using
the historical data directly. The WG simulations have bet-
ter performance than the EQM for both RCM1 and RCM2.
The best-performing simulation is WG2.2, where both the
gamma model for precipitation amount and the probit model
for the wet frequency are updated with climate change in-
formation from RCM2. The EQM based on RCM2 performs
quite well, while the EQM based on RCM1 yields the worst-
performing simulations.

The IQD values in Table 3 vary substantially across the
simulation methods for individual catchments. To investigate
this further, we take a closer look at the trend coefficient esti-
mates, as the estimated changes in seasonality are quite stable
across catchments for a given RCM and model component
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Figure 4. Relative bias in various marginal summary statistics at the 1 km× 1 km scale in the largest catchment, Gaulfoss. The observed
seNorge data in the training period 1957–1986, the stationary WGs simulation, and three simulations using climate change information from
RCM2 are compared against the seNorge data in the test period 1987–2005.

(results not shown). The estimates of the trend coefficient
in Eq. (8) based on the seNorge training data from 1957 to
1986 are given in Table 2 in Sect. 3.3 above. For the probit
model, the trend estimates are positive in all but one catch-
ment, the small inland catchment Kjeldstad, where a small
negative trend is estimated. As a result, the probability of
precipitation is expected to increase over time. The rate of
the increase varies substantially for the different catchments,
ranging from 0.001 in Trangen to 0.051 in Veravatn. For the
gamma distribution, the trend coefficient estimates are highly
varying across catchments, with negative estimates for three
catchments and positive estimates for six catchments, indi-
cating no consistent trend pattern in the amount of daily pre-

cipitation on wet days. When fitting these models to the RCM
data in the training period, we found insignificant trend es-
timates for the probit model in seven catchments based on
RCM1 and five based on RCM2, while the number of cases
for the gamma model is six based on RCM1 and four based
on RCM2.

The estimated changes in trend coefficients at the
12 km× 12 km scale between the training and test periods
are listed in Table 4. The zeros in the table indicate that
the changes are not significantly different from 0 at the
0.05 level. The seNorge estimates for the probit model are
mostly positive, corresponding to a higher trend estimate in
the test period than the training period. The estimates based
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Figure 5. Average annual precipitation (a) in the period 1957–2005 and the digital elevation map (b), both at the 1 km× 1 km scale in the
catchment Gaulfoss.

Figure 6. Empirical spatial correlation of precipitation amount at the catchment Gaulfoss for each month of the year. Results are shown
for the seNorge data in the test period 1987–2005 (red dots) and for the EQM simulation based on RCM2 (cyan dots). The Matérn spatial
correlation estimated with the WG method based on seNorge data in the training period 1957–1986 is indicated in grey, with the width of the
bar indicating the spread of the daily estimates within the month.

on RCM1 are consistently negative, while no change is es-
timated based on RCM2 except for Aamot. For the gamma
model, approximately as many positive and negative values
are observed, while estimates in all catchments are positive
by both RCMs. Note that the stationary simulation WGs as-
sumes the same trends in the training and test periods, corre-
sponding to values of 0 in Table 4.

The simulations WGs, WG1.1, and WG2.1 share the same
probit model for precipitation occurrence, while the gamma
model for the precipitation amount differs. For the gamma
model, five catchments have a strong positive climate change
signal according to the upscaled seNorge data, where both
RCMs project a change in the same direction. Looking at the

IQD values in Table 3, we see this translates directly into
lower IQD values compared to the WGs simulations. IQD
values are higher than WGs in the three catchments clos-
est to the coast (Aamot, Krinsvatn, and Oeyungen), where
both RCMs project a positive change against the observed
negative change. For Trangen, WG2.1 and WGs have sim-
ilar IQD values because they both apply no change in the
trend. In general, both RCMs provide useful climate change
information for the gamma model, which makes the overall
performance of WG1.1 and WG2.1 better than WGs.

A similar effect can be seen when comparing the IQD val-
ues for Gaulfoss, Trangen, and Kjeldstad based on the sim-
ulations WG1.1 and WG1.2. While these two simulations
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Figure 7. Empirical spatial correlation of precipitation amount at the catchment Kjeldstad for each month of the year. Results are shown
for the seNorge data in the test period 1987–2005 (red dots) and for the EQM simulation based on RCM2 (cyan dots). The Matérn spatial
correlation estimated with the WG method based on seNorge data in the training period 1957–1986 is indicated in grey, with the width of the
bar indicating the spread of the daily estimates within the month.

share the same gamma model, WG1.1 assumes a stationary
probit model and WG1.2 applies climate change information
from RCM1 to the precipitation occurrence. Here, the cli-
mate change estimates from RCM1 are negative, going in
the opposite direction to the seNorge data, and accordingly
WG1.2 is worse than WG1.1, which assumes no change in
the trend. The negative change applied in WG1.2 in Hoeg-
gaas can also relate to the reduced performance compared
with WG1.1. In Veravatn and Dillfoss, however, the esti-
mates based on RCM1 are in the same direction as the ob-
served ones, but this somehow does not translate into a better
performance of WG1.2. For Aamot, where no change is es-
timated by the seNorge data, a negative change by RCM1
seems to make WG1.2 better than WG1.1, and a positive
change by RCM2 makes it the only catchment where WG2.2
is worse than WG2.1. In the other catchments, WG2.2 is
slightly better than WG2.1 given that they both apply no
change in the trend of the probit model; this indicates that
the changes in the seasonality projected by RCM2 are gen-
erally reasonable, and only the effect seems limited in most
catchments.

Further analysis of the marginal performance of four of
the simulations as well as the seNorge reference is shown
in Fig. 4 for the largest catchment, Gaulfoss, while the cli-

matology and elevation information is given in Fig. 5. The
leftmost plot in Fig. 4a shows that the frequency of wet days
for the seNorge data is generally lower in the training period
than the test period. This again results in a significant bias
in the overall mean (see Fig. 4b), while the general corre-
spondence between the amount distributions on wet days is
quite good. Here, the IQD value is 3.46 for seNorge, 3.99 for
WGs, 3.10 for WG2.1, 2.97 for WG2.2, and 2.8 for EQM2.
WG2.1 and WG2.2 share the same distribution for the pre-
cipitation amount on wet days, and given that RCM2 projects
zero change in the trend of the probit model, performance of
the two simulations is different solely due to the different sea-
sonality, which again is minimal; see Fig. 4a. While EQM2
has the lowest IQD value, it appears that this method over-
estimates the wet frequency (see Fig. 4a), the spread on wet
days (Fig. 4d), and thus also the 95th percentile on wet days
(Fig. 4e). However, the IQD score is less sensitive to these
errors than to the erroneous overall mean.

4.2 Spatial and temporal correlation structure

The spatial correlation structure at the 1 km× 1 km scale
cannot be inferred from the 12 km× 12 km RCM data, and
we thus assume that the fine-scale spatial correlation esti-
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Figure 8. Proportion of different 2 d dry–wet patterns for the seNorge data in the training period 1957–1986 and the test period 1987–2005
as well as for six different simulations of the test period. The results are aggregated over all grid cells in the catchments Gaulfoss (a) and
Oeyungen (b). Dry days are indicated with 0 and wet days with 1. For ease of interpretation, horizontal dashed lines are drawn at the levels
of the test set.

mated based on the training data also holds for the test data.
This is assessed in Fig. 6 for the largest catchment, Gaulfoss,
and in Fig. 7 for the smallest catchment, Kjeldstad. The
Matérn correlation function estimated based on the training
data appears to capture the overall structure of the test data,
indicating no large deviations in spatial structure between
the two time periods. However, there are some smaller de-
viations, indicating smaller changes in the seasonal pattern
of the spatial structure. In particular, the estimated correla-
tion is slightly higher than that observed in February and
somewhat lower in autumn, especially at Kjeldstad. For both
catchments, the largest spread of the daily estimates of the
correlation function is in the spring months of April and May.

The spatial structure of the EQM simulation differs some-
what from that of the data. The correlation is too strong in
the winter months of December, January, and February and
too weak in June. It further appears that the EQM is more
successful in modelling the spatial correlation of the data
from the larger catchment Gaulfoss than the data from the
small catchment Kjeldstad, whose area of 144 km2 is approx-
imately 5 % of the area of Gaulfoss at 3084 km2.

In order to assess the temporal correlation structure of the
various simulations, first consider the 2 d dry–wet patterns
shown in Fig. 8. For the inland catchment Gaulfoss, the pro-

portions of 2 consecutive dry days and 2 consecutive wet
days is approximately equal in the training set, while the test
set has fewer instances of 2 consecutive dry days, with a cor-
responding increase in 2 consecutive wet days. The propor-
tions of 2 consecutive dry or wet days for the simulations
are mostly in between the values for the seNorge training
and test sets, except for EQM2, which has the highest fre-
quency of wet days; see also Fig. 4a. At the coastal catch-
ment Oeyungen, nearly 50 % of all the 2 d patterns observed
in the training period, and over 50 % in the test set, are 2
consecutive wet days. Here, all the simulations yield a lower
proportion of 2 consecutive wet days than the observed test
data, while the proportions of pairs with 1 wet day and 1 dry
day is higher. The results shown here for the WG method
are based on a single simulation for each model version. We
found that these results may vary slightly between realiza-
tions from the same model (results not shown). In addition,
we have compared the sequencing of dry days generated by
different methods and found that the distribution of dry spells
is similar across all simulations for a given catchment, where
the majority consist of the short-term cases and a drought
event longer than 2 weeks is rare (results not shown).

The temporal correlation applied in the daily fine-scale
precipitation generator for the test period is assessed in
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Figure 9. Smoothly changing daily estimates of the correlation coefficient ρt in Eq. (11) for each catchment, estimated based on the seNorge
data in the training period 1957–1986 (green dotted lines), inferred by adding the climate change information from RCM1 (cyan dashed
lines) and RCM2 (purple dashed lines) for the test period 1987–2005, and as a reference the values estimated based on the seNorge data in
the test period 1987–2005 (red solid lines).

Fig. 9. As described in Sect. 3.2, the short-term autocorre-
lation of the WG model is introduced through the temporal
dependence in the underlying spatial random field. Data at
both spatial scales have the same temporal dimensionality,
and we thus assume that the fine-scale temporal correlation
coefficients ρt can be updated by the changes projected by an
RCM between the training and test periods. Estimates based
on seNorge data in the training period indicate higher tempo-
ral dependence in spring and winter and lower dependence
in summer. In the test period, dependence becomes lower in
spring and summer and higher in October and November.
The changes in spring are generally not realistically projected
by RCMs, except for RCM2 in Trangen, while the changes in
summer and early winter are better captured by RCM2 than
RCM1 in most catchments.

5 Conclusions and discussion

This paper proposes a two-step stochastic downscaling and
bias-correction approach for future projection of daily pre-
cipitation. In a first step, a stochastic weather generator for
a high-resolution grid is developed using a historical grid-
ded observation-based data product. In a second step, the

weather generator is inferred for a future climate by using
only the projected changes between a historical reference pe-
riod and a future period based on a coarser-scale RCM. In
the current application, the observation-based data product
is available on a 1 km× 1 km grid, and the climate change
information stems from an RCM on a 12 km× 12 km grid.
In this setting, there appears to be good correspondence be-
tween catchment-scale seasonality and linear trend patterns
at the two spatial resolutions, making the transformation of
information between the two scales feasible.

The WG approach is applied to data from nine hydro-
logical catchments in central Norway, with each study area
ranging in size from approximately 1000 to 5500 km2 and
compared against an EQM and a simple persistence refer-
ence method. The methods are trained on daily data from
1957 to 1986 and tested on out-of-sample data from 1987
to 2005. Based on an evaluation of the resulting marginal
distributions, the WG method overall outperforms the EQM
approach, both in terms of the IQD score and based on em-
pirical assessment of marginal summary statistics. However,
all the simulation methods show large variations in the per-
formance between individual catchments. The WG method
furthermore yields realistic temporal and spatial correlation
structures.
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The historical RCM runs used here are available until
2005, and the observation-based data are available from
1957, yielding a dataset with 49 years of data. With 30 years
of data used to train the models, this leaves only 19 years
of data for the out-of-sample evaluation. With only 19 years
of data in the test period, we may expect to see some ef-
fects of natural variability when comparing the seNorge data
product and the largely free-running RCMs. Looking at the
linear trend coefficient in the probit model, it seems that
the seNorge data upscaled to 12 km resolution are generally
able to capture the change where there are proportionally
more wet days in the test period than in the training period,
while the RCM data either project strong negative changes
or simply no change in most catchments. For the gamma
model, however, both RCMs seem to have projected correct
changes in the trend and seasonality. Overall, we see that all
versions of the WG method yield better performance than
the marginal persistence reference method based on seNorge
data from 1957 to 1986, and including RCM information im-
proves upon the stationary WG approach. Furthermore, the
transparent way in which the RCM information is included
in the WG simulations allows for a direct assessment of this
information and its plausibility (Maraun et al., 2017).

In our case study, the training and test periods are two
consecutive time periods. However, in climate change impact
studies, there is commonly a large gap of the order of decades
between the historical period and the future period of inter-
est. In this case, it may be necessary to expand our proposed
model to also account for large-scale climate oscillation or
teleconnection patterns, such as the El Niño–Southern Oscil-
lation (ENSO) and the Indian Ocean Dipole (IOD), partic-
ularly in regions where rainfall climatologies are dominated
by such patterns (e.g. Wu et al., 2003; Andreoli and Kayano,
2005). In such cases, specific components of the model, e.g.
the spatial correlation structure, may need to be estimated
depending on both seasonal variation and oscillation modes.
To assess this, the parameter estimation procedure can be ex-
tended to obtain separate estimates for both months and os-
cillation modes. The series of parameter estimates can then
be assessed for seasonal and oscillation dependence using
standard regression techniques.

While the application in this paper focuses on climate pro-
jections, the modelling framework proposed here provides a
more general approach to computationally efficient stochas-
tic downscaling of precipitation. Other potential applications
include seasonal and decadal weather and climate predic-
tions. The availability of computationally efficient downscal-
ing methods is especially important in settings where large
ensembles are needed in order to achieve prediction skill; see
e.g. Smith et al. (2019).
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