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Abstract. The National Aeronautics and Space Administra-
tion (NASA) Soil Moisture Active-Passive (SMAP) mission
characterizes global spatiotemporal patterns in surface soil
moisture using dual L-band microwave retrievals of horizon-
tal (TBh) and vertical (TBv) polarized microwave brightness
temperatures through a modeled mechanistic relationship be-
tween vegetation opacity, surface scattering albedo, and soil
effective temperature (Teff). Although this model has been
validated against in situ soil moisture, there is a lack of sys-
tematic characterization of where and why SMAP estimates
deviate from the in situ observations. Here, we assess how the
information content of in situ soil moisture observations from
the US Climate Reference Network contrasts with (1) the
information contained within raw SMAP observations (i.e.,
“informational random uncertainty”) derived from TBh, TBv,
and Teff themselves and with (2) the information contained
in SMAP’s dual-channel algorithm (DCA) soil moisture esti-
mates (i.e., “informational model uncertainty”) derived from
the model’s inherent structure and parameterizations. The
results show that, on average, 80 % of the information in
the in situ soil moisture is unexplained by SMAP DCA soil
moisture estimates. Loss of information in the DCA model-
ing process contributes 35 % of the unexplained information,
while the remainder is induced by a lack of additional ex-
planatory power within TBh, TBv, and Teff. Overall, retrieval
quality of SMAP DCA soil moisture, denoted as the Pear-
son correlation coefficient between SMAP DCA soil mois-
ture and in situ soil moisture, is negatively correlated with
the informational uncertainties, with slight differences across
different land covers. The informational model uncertainty
(Pearson correlation of−0.59) was found to be more influen-
tial than the informational random uncertainty (Pearson cor-

relation of −0.34), suggesting that the poor performance of
SMAP DCA at some locations is driven by model parame-
terization and/or structure and not underlying satellite mea-
surements of TBh and TBv. A decomposition of mutual in-
formation between TBh, TBv, and DCA soil moisture shows
that on average 58 % of information provided by TBh and
TBv to DCA estimates is redundant. The amount of informa-
tion redundantly and synergistically provided by TBh and TBv
was found to be closely related (Pearson correlations of 0.79
and −0.82, respectively) to the retrieval quality of SMAP
DCA. TBh and TBv tend to contribute large redundant infor-
mation to DCA estimates under surfaces or conditions where
DCA makes better retrievals. This study provides a baseline
approach that can also be applied to evaluate other remote
sensing models and understand informational loss as satel-
lite retrievals are translated to end-user products.

1 Introduction

Accurate information on soil moisture is of great importance
for understanding various biophysical processes in hydrol-
ogy, agronomy, and ecosystem sciences (Bassiouni et al.,
2020; Uber et al., 2018). The poor spatial representativeness
of in situ soil moisture sensors, combined with their labor-
intensive installation and maintenance, impedes the appli-
cation of these sensors to understand large-scale ecosystem
phenomena (Babaeian et al., 2019; Petropoulos et al., 2015).
Spaceborne passive microwave remote sensing has been de-
veloped as a reliable method to estimate surface soil mois-
ture at large scales (Wigneron et al., 2017). It leverages the
large discrepancies in dielectric properties between liquid
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water and dry soil that result in a high dependency of soil
dielectric constants on soil moisture (Njoku and Entekhabi,
1996). Various microwave frequencies have been available
to date, amongst which the L-band microwave frequencies
were found to be desirable for soil moisture estimations be-
cause they can sense soil moisture at a relatively deeper
layer (∼ 5 cm) and can provide greater vegetation penetra-
tion power (Mohanty et al., 2017). Though microwave re-
mote sensing has been investigated for decades, significant
uncertainties still exist in both microwave radiometry and in
the algorithms used to translate microwave observations to
soil moisture estimates (Gruber et al., 2020).

Passive L-band remote sensing soil moisture estimation
uses a radiometer to measure surface emission intensity,
which is proportional to the brightness temperature (Wang
and Qu, 2009). The brightness temperature is linked to soil
moisture and vegetation opacity through the “tau-omeg”
emission model and parameterized by soil and vegetation
functions (Jackson et al., 1982; Mo et al., 1982). The “tau-
omega” model rationale has been adopted by the National
Aeronautics and Space Administration (NASA) Soil Mois-
ture Active-Passive (SMAP) mission, which is one of the
Earth observation missions dedicated to estimating soil mois-
ture at L-band microwave frequency (Entekhabi et al., 2010).
The SMAP mission implemented two primary algorithms:
(1) the single-channel algorithm (SCA) that uses one polar-
ized brightness temperature as the primary input to retrieve
soil moisture and (2) the dual-channel algorithm (DCA) that
retrieves soil moisture and vegetation opacity simultaneously
by taking the polarized brightness temperature information
in the both horizontal and vertical directions (O’Neill et.al.,
2020a). There is strong interest in the DCA approach be-
cause of its independent estimation of vegetation opacity in
lieu of the specified vegetation climatology employed by the
SCA (O’Neill et.al., 2020a). Other L-band-focused satellite
mission such as Soil Moisture and Ocean Salinity (SMOS)
retrieves both soil moisture and vegetation optical depth by
using numerous brightness measurements for different inci-
dence angles (Kerr et al., 2012). Additionally, it has been
suggested that using a time-integrated vegetation opacity, as
is employed in the multi-temporal dual-channel algorithm
(MT-DCA) for instance (Konings et al., 2016), improves the
estimates of soil and vegetation state. These contrasting ap-
proaches, as well as other studies on SMAP’s temporal polar-
ized ratio algorithm (TPRA) (Gao et al., 2020) and regular-
ized dual-channel algorithm (RDCA) (Chaubell et al., 2020),
suggested there is still uncertainty about how SMAP obser-
vations of horizontal and vertical brightness temperature can
best be translated into estimates of surface properties. Al-
though SMAP can provide spatially explicit soil moisture es-
timates that have been shown to be useful for understanding
a set of ecohydrological problems (Dadap et al., 2019; Feld-
man et al., 2018), the soil moisture retrievals are still subject
to a significant amount of uncertainty due to the imperfec-
tion of the model and the forcing datasets. It is also important

to consider how the amount of duplicate information carried
within a set of observations limits the number of independent
parameters to be inferred (Konings et al., 2015). Therefore,
it is critical to diagnose and quantify the causality of the un-
certainty caused by the SMAP algorithm to improve the soil
moisture and vegetation opacity retrieval quality.

SMAP soil moisture products have been extensively vali-
dated against well-calibrated in situ soil moisture using un-
biased root mean square error (ubRMSE), bias, RMSE Pear-
son correlation coefficients, and the triple collocation method
at “core” and “sparse” validation sites (Chan et al., 2016;
Chen et al., 2017; Colliander et al., 2017; Zhang et al., 2019).
These validation investigations found that SMAP met the re-
quired accuracy target (ubRMSE, 0.04 m3 m−3) on average,
while there exist some locations where the performance of
SMAP did not meet the expected performance. All these val-
idation studies were focused on finding the general uncer-
tainty of SMAP (which is the deviation of SMAP soil mois-
ture from the in situ or reference soil moisture) and cannot di-
agnose and differentiate where the uncertainty arises. Indeed,
the causality of uncertainty of SMAP soil moisture may arise
from two aspects: (1) the uncertainty due to the inaccuracies
from forcing the datasets and (2) the uncertainty due to poor
model structure and parameterizations. In addition, the as-
sessment metrics used in these evaluation studies are either
heavily dependent on in situ soil moisture or additional refer-
ence datasets, which does not allow for SMAP to be validated
in some remote and inaccessible areas.

The challenges faced by previous SMAP evaluation in-
vestigations can be resolved by leveraging two information
quantities: (1) Shannon’s entropy (Shannon, 1948), which
is the amount of information required to fully describe a
random variable, and (2) mutual information (Cover and
Thomas, 2005), which represents the amount of information
of knowing one variable given the knowledge of another or
a set of random variables (Gong et al., 2013) first leveraged
against these information quantities to partition overall un-
certainty in the hydrological modeling process into two cat-
egories: (1) random uncertainty that arises by incomplete-
ness of an exploratory variable and/or inherent stochastic-
ity of forcing datasets and (2) model uncertainty that is con-
tributed by poor model parameterization or formulation. The
random uncertainty is not resolvable for the given system, as
it is only related to the probability distributions of the forc-
ing data itself, while the model uncertainty is reducible by a
better model parameterization.

Given that both horizontal and vertical polarized bright-
ness temperatures are measured by SMAP, it is unclear how
each polarization contributes information to the overall per-
formance of the DCA. Recent research on partial informa-
tion decomposition has provided tremendous opportunities
for understanding the nuanced interactions among different
variables and model structure. Initially proposed by Williams
and Beer (2010) and further advanced by Goodwell and Ku-
mar (2017), this approach has been used to understand en-
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vironmental processes that link two source variables with
a target variable by partitioning multivariate mutual infor-
mation into unique, redundant, and synergistic components.
The unique information represents the amount of information
shared with the target variable from each individual source
variable separately (Finn and Lizier, 2018). Synergistic infor-
mation is the information provided to the target, while both
source variables act jointly (Kunert-Graf et al., 2020). Re-
dundant information is the overlapping information that both
source variables redundantly provide to a target (Wibral et
al., 2017). Information partitioning brings new insight by un-
ambiguously characterizing the interdependencies between
source variables and a target variable without any underlying
assumption (Goodwell et al., 2018).

The overall objective of this study is to demonstrate that
by assessing how information flows through satellite algo-
rithms from raw retrievals to end-user products, we can illu-
minate areas where improvements can be made and diagnose
instances where algorithm estimates are expected to be un-
certain. In this study, we focus on (1) quantifying the random
uncertainty and model uncertainty in SMAP’s DCA and un-
derstand how these uncertainties are related to DCA retrieval
quality and (2) exploring how the partial information com-
ponents between SMAP DCA soil moisture and horizontally
polarized and vertically polarized brightness temperature can
be used to indicate overall DCA soil moisture retrieval per-
formance.

2 Material and methods

2.1 In situ soil moisture

The US Climate Reference Network (USCRN) is a system-
atic and sustained network that is operated and maintained
by the National Oceanic and Atmospheric Administration
(NOAA) to support climate-impact research with continu-
ous high-quality field-observed soil moisture, soil tempera-
ture, and wind speed at different temporal scales (Diamond
et al., 2013). The USCRN provides soil moisture observa-
tions at five different standard depths (5, 10, 20, 50, and
100 cm) in 114 locations of the contiguous US (CONUS)
(Bell et al., 2013). These in situ datasets have been used for
a wide variety of research, such as drought evaluation and
satellite soil moisture validation (Bell et al., 2015; Leeper
et al., 2017). The hourly soil moisture (beta version prod-
uct) datasets at a depth of 5 cm were collected from 58 (15
croplands, 32 grasslands, 5 shrublands, 2 savannas, 4 mixed)
selected USCRN stations (Fig. 1 and Table S1 in the Sup-
plement) based on the availability of in situ soil moisture
datasets and the data quality of SMAP pixels in the study
period of 31 March 2015 to 10 December 2020.

2.2 SMAP Level-2 datasets

In this study, we acquired the water-body-corrected horizon-
tally polarized brightness temperature (TBh), vertically po-
larized brightness temperature (TBv), soil effective tempera-
ture (Teff), DCA soil moisture, and fraction of land cover at
each selected USCRN station from the SMAP Level-2 Ra-
diometer Half-Orbit 36 km EASE-Grid Soil moisture, ver-
sion 7 data product (O’Neill et al., 2020b) in the same period
as the USCRN soil moisture at every station. The extracted
data series were filtered by the internal quality flags of TBh
(“tb_qual_flag_h”), TBv (“tb_qual_flag_v”), and DCA (“re-
trieval_qual_flag_option3”) as provided in SMAP data files.
We retain data points at a particular SMAP observation time
when they all simultaneously pass quality control and fall
within their corresponding valid ranges (e.g., 0 ∼ 330 K for
TBh and TBv, 253.15–313.15 K for Teff, > 0.02 m3 m−3 for
DCA soil moisture) as specified in the SMAP documenta-
tion (Chan, 2020). On average, the number of data points
across all the sites is 1090, with a minimum of 225 and a
maximum of 1651. DCA retrieves soil moisture based on the
“tau-omega” model (Jackson et al., 1982; Mo et al., 1982),
which is a well-known radiative transfer-based soil mois-
ture retrieval algorithm in the passive microwave soil mois-
ture community. It requires the brightness temperatures as
the main inputs and soil effective temperature as an ancillary
input and is parameterized based on overlaying vegetation
and soil surface information (Njoku and Entekhabi, 1996).
The DCA iteratively feeds the “tau-omega” model with ini-
tial guesses of soil moisture and vegetation optical depth.
The retrieved soil moisture is assumed to be close to the real
value when the estimated brightness temperatures are simi-
lar to the satellite-observed brightness temperature (Konings
et al., 2017; O’Neill et al., 2020a). Compared to the SCAs,
the DCA uses a different polarization mixing factor function
and different values of vegetation single scattering albedo
(O’Neill et al., 2020a).

The SMAP fraction of the land-cover data field provides
the fraction of the top three dominant land covers that were
classified by the International Geosphere–Biosphere Pro-
gramme (IGBP) ecosystem surface classification scheme at
each pixel (Chan, 2020). The IGBP classified land surface
into water, evergreen needleleaf forest, evergreen broadleaf
forest, deciduous needleleaf forest, deciduous broadleaf for-
est, mixed forest, closed shrublands, open shrublands, woody
savannas, savannas, grasslands, permanent wetlands, crop-
lands, urban and built-up, croplands/natural vegetation mo-
saics, snow and ice, and barren (Seitzinger et al., 2015).
In this study, the land cover of the study site was classi-
fied as the most dominant land cover if the fraction of the
most dominant land cover was greater than 50 %. Other-
wise, the land cover of the study site is classified as the
“mixed” land cover. Furthermore, the study sites that are
dominated by woody savanna were classified as savannas,
by closed/open shrublands that were classified as shrublands,
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Figure 1. Spatial distribution of selected USCRN stations classified by land covers.

and by cropland/natural vegetation mosaics that were classi-
fied as croplands. Sites meeting specified data requirements
and their associated land-cover classification are shown in
Fig. 1. Additionally, the 500 m leaf area index (LAI) of each
site was obtained from NASA’s Moderate Resolution Imag-
ing Spectrometer (MODIS) mission (Myneni et al., 2015;
ORNL DAAC, 2018) and averaged in time. Within each site
the mean and standard deviation of LAI of all pixels within
each SMAP pixel were calculated as a measure of vegetation
biomass and variability.

2.3 Information-based uncertainty partitioning

The fundamental quantity of information theory is Shan-
non’s entropy (Shannon, 1948), which represents the amount
of information required to fully describe a random variable
(Cover and Thomas, 2005). Shannon’s entropy is the basic
building block of computing mutual information and the in-
formational uncertainties. The entropy of a single random
variable is defined as

H(X)=−
∑
x∈X

p(x)log2p(x), (1)

where p(x) is the probability mass function of random vari-
able X. The estimation of p(x) often involves discretizing
the values of X into a set of bins, and then the p(x) of a
specific bin is computed by dividing the total number of data
points within a specific bin by the total of number of data
points of X. The number of bins in this study is estimated by
the Freedman–Diaconis binning method (Freedman and Di-

aconis, 1981). The entropy calculated by Eq. (1) is in unit of
bits.

A previous study has indicated that this method (Eq. 1)
may underestimate the true entropy (Paninski, 2003). There-
fore, we leveraged the simple Miller–Madow-corrected en-
tropy estimator (Zhang and Grabchak, 2013), and we also
normalized the entropy to remove the bias that may cause
the heterogeneity in length of available datasets across all sta-
tions. We acknowledge that there exist several entropy esti-
mation methods. However, we select the Miller–Madow cor-
rection based on its simplicity and effectiveness. The cor-
rected and normalized entropy is then expressed as

HCN(X)=
H (X)+ K−1

2n

log2n
, (2)

where HCN(X) is the Miller–Madow corrected and normal-
ized entropy of random variable X (hereafter entropy), H(X)

is the uncorrected entropy from Eq. (1), n is the number of
data points of X, and K is the number of non-zero proba-
bilities (bins containing more than one data point) based on
the fixed binned method (Freedman and Diaconis, 1981). In
this study, all entropies of single random variables in the later
equations (i.e., HCN(TBh), HCN(TBv), HCN(in situ), etc.) are
computed using the combination of Eqs. (1) and (2) with
the replacement of p(•) by their individual probability mass
functions.

The joint entropy (Cover and Thomas, 2005) is a critical
intermediate information quantity to calculate these informa-
tional uncertainties. It represents the amount of information
required to describe a set of random variables. The joint en-
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tropy for two random variables is defined as

H(X,Y )=−
∑
x∈X

∑
y∈Y

p(x,y)log2p(x,y), (3)

where p(x,y) is the joint probability mass function associ-
ated with X and Y that is estimated by the same method men-
tioned above. The same normalization and correction method
of Eq. (2) is applied to joint entropy of Eq. (3). The entropy
after the correction and normalization is formulated as

HCN(X,Y )=
H (X,Y )+ K−1

2n

log2n
, (4)

where HCN(X,Y ) is the corrected and normalized joint en-
tropy of a random variable associated with {X,Y }, H(X,Y )

is the uncorrected and unnormalized entropy from Eq. (3),
n is the number of data points that were used to cal-
culate the normalized joint entropy (hereafter joint en-
tropy), and K is the number of non-zero joint probabil-
ities based on the Freeman and Diaconis method (Freed-
man and Diaconis, 1981). All the joint entropies that are
associated with two or more random variables in the later
equations (i.e., HCN(in situ,DCA), HCN(TBh,TBv,DCA),
HCN(TBh,TBv,Teff, in situ, etc.) are computed using the com-
bination of Eqs. (3) and (4) with the replacement of p(•) by
their joint probability mass functions, respectively.

Generally, modeling efforts are focused on capturing the
information of a random variable of interest via other ex-
planatory variables through some physically or empirically
based models. However, most of the models, being con-
structed of natural processes, are not perfect, and the model
outputs are often not capable of capturing the exact relation-
ship between the available input variables and the variable of
interest (Gong et al., 2013). There exists a maximum achiev-
able performance of a model that describes the variable of
interest the best for a particular system given the available
datasets (Gong et al., 2013), yet the detailed structure of
this model is often unknown. Mutual information (Cover and
Thomas, 2005), for instance I (A;B), is a measure of the
amount information due to the knowledge of knowing either
random variable A or B in the function I (•;•). Mutual in-
formation between model inputs and in situ observations of
model output (hereafter in situ observations) can be used as
a useful and effective measure of the best-achievable perfor-
mance model because it links the model inputs and in situ
observations only through the joint and marginal probability
mass functions that do not involve any a priori model as-
sumptions (Gong et al., 2013).

The mutual information can be defined based on entropy
and joint entropy (Cover and Thomas, 2005). The mutual in-
formation between TBh and DCA and the mutual information
between TBv and DCA are computed as

I (TBh;DCA)=HCN(TBh)+HCN(DCA)−HCN(TBh,DCA)

(5)

and

I (TBv;DCA)=HCN(TBv)+HCN(DCA)−HCN(TBv,DCA).

(6)

The mutual information between in situ and DCA soil mois-
ture is computed as

I (DCA; in situ)= HCN(DCA)+HCN(in situ)

−HCN(DCA, in situ). (7)

The mutual information between DCA and in situ soil mois-
ture is calculated as

I (TBh,TBv;DCA)= HCN(TBh,TBv)+HCN(DCA)

−HCN(TBh,TBv,DCA). (8)

The mutual information between TBh, TBv, Teff, and in situ
soil moisture is computed as

I (TBh,TBv,Teff; in situ)= HCN(TBh,TBv,Teff)

+HCN(in situ)

−HCN(TBh,TBv,Teff, in situ).

(9)

We adopted the information uncertainty analysis by Gong
et al. (2013) and applied it to SMAP DCA. For a given
system in which the input and output are linked via math-
ematical functions, the mutual information between model
output and in situ observation can never exceed the en-
tropy of the in situ observations. Conceptually, the entropies
of model output and in situ observations can be consid-
ered two circles (of equal or unequal sizes), and the mu-
tual information between model output and in situ obser-
vation can be viewed as the overlapping area of these two
circles (Uda, 2020). Therefore, the maximum mutual infor-
mation shared between model output and in situ is the mini-
mum of the entropy of model output and in situ observations,
i.e., I (DCA, in situ)≤min[HCN(DCA),HCN(in situ)]. Intu-
itively, the overlapping area of two circles cannot be larger
than that of the smaller circle. Because we are focused on
representing the observed soil condition, the information
gap between in situ observations, HCN(in situ), and the mu-
tual information shared between in situ observations and
model output, I (DCA, in situ), is defined as informational
total uncertainty (ITot). This quantity describes how much of
the information within in situ observations, as measured by
HCN(in situ), is not captured by the estimator, as measured
by I (DCA, in situ). The mutual information between the in
situ observations and the available explanatory variables is
also always smaller than the entropy of in situ observations.
This information gap, defined as informational random un-
certainty (IRnd), is caused by the existence of inherent data
uncertainty of the explanatory variables and a lack of com-
plete explanatory variables to fully capture the information in
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the in situ observations (Gong et al., 2013). Furthermore, the
mutual information between model inputs and in situ obser-
vations should equal the mutual information between in situ
observations and model output if the model hypothesis com-
pletely captures the true relationship between model inputs
and in situ observations. However, it is commonly stated that
“All models are wrong” (Box, 1976), and model assumptions
typically cannot fully express the true relationship between
the explanatory variables and in situ observations. Hence,
the mutual information between model output and in situ ob-
servation is expected to be smaller than the mutual informa-
tion between model inputs and in situ observations (Gong
et al., 2013). This information gap, defined as informational
model uncertainty (IMod), is induced by poor model assump-
tion, formulations, and/or inappropriate model parameteriza-
tions. Therefore, the informational total uncertainty (ITot) is
the sum of the informational random uncertainty and infor-
mational model uncertainty come naturally given the explicit
definition of these informational uncertainties.

In this study, the explanatory variables of DCA are TBh,
TBv, and Teff. The in situ observation and model output are
in situ USCRN soil moisture and DCA soil moisture, respec-
tively. Leveraging Eqs. (7) and (9), the DCA informational
random uncertainty (IRnd), DCA informational model uncer-
tainty (IMod), and DCA total informational uncertainty (ITot)
calculated are calculated as

IRnd =HCN(in situ)− I (TBh,TBv,Teff; in situ) (10)
IMod = I (TBh,TBv,Teff; in situ)− I (DCA; in situ), (11)

and

ITot =HCN(in situ)− I (DCA; in situ)= IRnd+ IMod (12)

2.4 Partial information decomposition

The distinct informational contributions of TBh and TBv to
the DCA soil moisture are assessed through a decomposition
of the mutual information. This method partitions multivari-
ate mutual information to unique, redundant, and synergistic
components (Williams and Beer, 2010). The decomposed in-
formation components on the DCA model inputs and outputs
are expected to indicative of informational flow as model in-
puts are translated to end-user products, and these compo-
nents may have potential for evaluating model performance.
The partial information decomposition of I (TBh,TBv;DCA)

can be expressed as

I (TBh,TBv;DCA)= Uh(TBh;DCA)+Uv(TBv;DCA)

+R(TBh,TBv;DCA)

+ S(TBh,TBv;DCA), (13)

where Uh and Uv are unique information of TBh and TBv
shared with DCA, respectively. S and R are the synergis-
tic information and redundant information that TBh and TBv

shared with DCA estimates, respectively. All the decom-
posed components are non-negative real values (Williams
and Beer, 2010).

The mutual information between TBh and DCA and mutual
information between TBv and DCA are formulated as

I (TBh;DCA)= Uh(TBh;DCA)+R(TBh,TBv;DCA) (14)

and

I (TBv;DCA)= Uv(TBv;DCA)+R(TBh,TBv;DCA). (15)

In this approach, Uh, Uv, S, and R are unknowns in the sys-
tems of Eqs. (13)–(15). Goodwell and Kumar (2017) showed
that the R can be formulated as

R = Rmin+ Is× (RMMI−Rmin), (16)

where

Is =
I (TBh;TBv)

min {HCN (TBh) ;HCN(TBv)}
, (17)

RMMI =min[I (TBh;DCA),I (TBv;DCA)] , (18)

and

Rmin =max(0,−II). (19)

The interaction information (II) is TBh, TBv, and DCA and
can be computed as

II = I (TBh;DCA|TBv)− I (TBh;DCA)

=HCN(TBh,DCA)+HCN(TBv,DCA)

+HCN(TBh,TBv)−HCN(TBh)

−HCN(TBv)−HCN(DCA)−HCN(TBh,TBv,DCA).

(20)

It is important to note that we used the point-based in
situ soil moisture as the ground truth in this analysis. Due
to coarse spatial resolution of SMAP products, we acknowl-
edge that in situ soil moisture may not be able to represent
the spatially averaged soil moisture well. Although the nom-
inal sensing depth of L-band SMAP soil moisture is 5 cm,
the penetration depth was found to be even shallower in wet-
ter regions (Shellito et al., 2016). In fact, the L-band sens-
ing depth was found to be as little as ∼ 1 cm (Jackson et al.,
2012) and was found to vary with surface soil moisture con-
ditions (Escorihuela et al., 2010; Raju et al., 1995). The het-
erogeneity in each pixel relative to the in situ observations
together with the sensing depth disparity may influence the
results of this study and can bias the estimation of informa-
tional uncertainties. We also acknowledge the existence of
upscaling methods for matching the in situ soil moisture to
a satellite footprint (Crow et al., 2012). However, most of
upscaling methods are achieved with the assistance of ad-
ditional reference soil moisture datasets. This process intro-
duces additional pieces of information into the DCA system,
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making the separation of the uncertainty induced by the up-
scaling algorithm or additional dataset from other informa-
tional uncertainties much harder. Additionally, we used the
hourly in situ data to best match the SMAP DCA soil mois-
ture retrievals in time (within an hour). Based on current
technologies, it is difficult to find a reference dataset with
high frequency in the time domain and good spatial cover-
age. Here we consider the informational uncertainty caused
by the spatial mismatch and sensing depth mismatch between
in situ and DCA soil moisture to be part of the informational
random uncertainty (IRnd) because the DCA is essentially a
mathematical function and does not inherently require the in-
puts to be at a specific resolution. The spatial resolution is of-
ten the inherent attribute of the data. The reader should also
keep these in mind while interpreting and adopting the results
in this study.

3 Results

3.1 Information quantities and system informational
uncertainties

The estimated entropies across all the study sites are shown
in Fig. 2, while the mutual information quantities are shown
in Fig. 3. The brightness temperature entropies, HCN(TBh)

and HCN(TBv), generally follow the same pattern across
sites, with both having an average value of 0.37. Al-
though the patterns of HCN(TBh) and HCN(TBv) are simi-
lar, the HCN(TBh) is slightly more variable than HCN(TBv),
with the coefficients of variation (CVs) being 0.053 and
0.046, respectively. HCN(Teff) shares the same average with
HCN(TBh) and HCN(TBv), whereas the pattern of HCN(Teff)

is quite different (Fig. 2). On average, the HCN(in situ) is
0.35, while HCN(DCA) is 0.38. In general, HCN(DCA) fol-
lows the pattern of HCN(in situ), with the CV of HCN(DCA)

(0.064) being smaller than the CV of HCN(in situ) (0.081).
As shown in Fig. 4a, the entropies of the retrieved

brightness temperatures and DCA model output, HCN(TBh),
HCN(TBv), and HCN(DCA), are significantly correlated with
the entropy of in situ observations, HCN(in situ), while no
significant correlation is found between HCN(in situ) and
HCN(Teff). The HCN(DCA) has the strongest correlation
strength with HCN(in situ) compared with other entropy
quantities (Fig. 4a). As expected, the mutual information
quantities (Fig. 3) are shown to be generally smaller than the
entropy quantities (Fig. 2). On average, I (TBh,TBv;DCA) is
0.14, while I (DCA; insitu) and I (TBh,TBv,Teff; in situ) are
0.07 and 0.17 (Fig. 3), respectively. I (TBh,TBv,Teff; in situ)

and I (TBh,TBv;DCA) are significantly correlated (0.58 and
−0.30) with HCN(in situ), while no significant correlation is
found for I (DCA; in situ) and HCN(in situ) (Fig. 4b).

It is noticeable that there exists a large information gap be-
tween HCN(in situ) in Fig. 2 and I (TBh,TBv,Teff; in situ) and
I (TBh,TBv,Teff; in situ) and I (DCA; in situ) in Fig. 3. These

information gaps confirm the existence of informational ran-
dom uncertainty (IRnd) and informational model uncertainty
(IMod) in the SMAP DCA system. When calculating infor-
mational quantities on a site-by-site basis and then averaging,
the SMAP DCA explains 20 % of the HCN(in situ), leaving
80 % of the HCN(in situ) that is unexplained (Table 1) as in-
formational total uncertainty (ITot); 35 % of the ITot is caused
by IMod, while the rest is induced by IRnd. The information
uncertainties vary slightly across different land covers. On
average across sites, the SMAP DCA system is capable of
capturing more information of HCN(in situ) at croplands and
savannas (Table 1). Shrublands have the largest absolute IRnd
(0.21) than other land covers, while savannas have the largest
proportion of IRnd to ITot (Table 1). IMod in absolute value is
greater in shrublands, grasslands, and croplands, with grass-
lands having the largest proportion of IMod to ITot (Table 1).
When lumping all the datasets together and recalculating in-
formational quantities, we observe that SMAP DCA captures
10 % of the information in the in situ soil moisture and the
proportion of IMod to ITot is larger.

The relationship between different informational uncer-
tainties and the Pearson correlation coefficients between in
situ soil moisture and SMAP DCA soil moisture, a com-
monly adopted relative model evaluation metric in SMAP
studies (Chan et al., 2016; Colliander et al., 2017), was eval-
uated. The ITot, IMod, and IRnd are shown to be related to
how well the SMAP DCA soil moisture is correlated with in
situ soil moisture (Fig. 5a–c). ITot is found to be negatively
correlated (r =−0.69, Fig. 5a) with the Pearson correlation
between in situ soil moisture and SMAP DCA soil mois-
ture. Similarly, IMod and IRnd are also shown to be negatively
(−0.59 and −0.34, respectively) related to the Pearson cor-
relation between in situ soil moisture and SMAP DCA soil
moisture, with IMod being more influential than IRnd (Fig. 5b
and c). These negative relationships are consistent with gen-
eral expectations since SMAP tends to capture more infor-
mation about the in situ soil moisture (i.e., lower ITot, IMod,
and IRnd) when it retrieves high-quality datasets (higher cor-
relation between in situ soil moisture and SMAP DCA soil
moisture).

3.2 Partial information decomposition of DCA

The partial information decompositions were assessed on
a site basis and are shown in Fig. 6. The fractional con-
tribution of each component to that site’s mutual informa-
tion between brightness temperatures and DCA estimates,
I (TBh,TBv;DCA), was also calculated and is given in Ta-
ble 2. Generally, the majority of I (TBh,TBv;DCA) is re-
dundantly (R) shared by TBh and TBv, which is about
0.08 (58 % of I (TBh,TBv;DCA)) on average (Table 2). The
mean values of unique information of TBh(Uh) and syner-
gistic information (S) of TBh and TBv are 0.024 (18 % of
I (TBh,TBv;DCA)) and 0.018 (14 % of I (TBh,TBv;DCA)),
respectively (Table 2). Compared to other decomposed in-
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Figure 2. Entropies of horizontally polarized brightness temperature (TBh), vertically polarized brightness temperature (TBv), in situ soil
moisture, DCA soil moisture, and soil effective temperature (Teff) across the study sites. The sites are ordered by longitude (west to east).

Figure 3. Mutual information between horizontally polarized brightness temperature (TBh), vertically polarized brightness temperature
(TBv), soil effective temperature (Teff), and in situ soil moisture; mutual information between horizontally polarized brightness temperature
(TBh), vertically polarized brightness temperature (TBv), and DCA soil moisture; mutual information between DCA soil moisture and in situ
soil moisture. See Fig. 2 caption for site ordering.
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Figure 4. Entropy of in situ soil moisture against the entropies of DCA soil moisture, horizontally polarized brightness temperature (TBh),
vertically polarized brightness temperature (TBv), and soil effective temperature (Teff) (a) and mutual information quantities (b).

Table 1. The number of informational uncertainties in percentage. The values in the table are the average of each land cover. The values in
“Overall” are the averages of all the sites. The “Lumped” field is computed using all available datasets.

Land cover Informational random Informational model Informational total Number of
uncertainty, IRnd uncertainty, IMod uncertainty, ITot Sites

(and its % of ITot) (and its % of ITot) (and its % of HCN(in situ))

Shrublands 0.21 (68 %) 0.10 (32 %) 0.31 (87 %) 5
Grasslands 0.18 (63 %) 0.11 (37 %) 0.28 (81 %) 32
Croplands 0.18 (66 %) 0.10 (34 %) 0.28 (78 %) 15
Savannas 0.16 (73 %) 0.06 (27 %) 0.22 (64 %) 2
Mixed 0.19 (68 %) 0.09 (32 %) 0.28 (79 %) 4
Lumped 0.14 (46 %) 0.17 (54 %) 0.32 (90 %) 58
Overall 0.18 (65 %) 0.10 (35 %) 0.28 (80 %) 58

formation components, Uv is the smallest, with its mean
being 0.013 (10 % of I (TBh,TBv;DCA)). Savannas have
the highest absolute and fraction of R (0.101, 78 % of
I (TBh,TBv;DCA)) (Table 2). In general, the DCA system is
mainly dominated by R, as indicated by both site-wise de-
composition and when lumping all datasets together (45 %
of I (TBh,TBv;DCA)), and S is consistently the lowest (Ta-
ble 2).

Through this analysis, it is shown in Fig. 7 that there are
strong relationships between SMAP DCA retrieval quality
and decomposed information components. In general, the
correlation strength between DCA and in situ soil moisture
is higher when Uh, Uv, and S are low and R is high. This
is demonstrated by a significant correlation of these compo-
nents with the Pearson correlation between in situ and DCA
soil moisture. The negative relationship between increasing S

and decreasing DCA quantity is the strongest of the decom-
posed components, though the positive relationship between

increasing R and decreasing DCA is of a similar correlation
strength. This indicates that R or S contains useful informa-
tion about DCA soil moisture quality.

4 Discussion

4.1 DCA informational uncertainties

The first objective of this study is to leverage information
theory to quantitatively decompose the informational total
uncertainty into informational random uncertainty and in-
formational model uncertainty in the DCA as an approach
to understand where retrieval uncertainties arise. This infor-
mation theory approach can provide new insight into SMAP
modeling diagnosis. It offers an opportunity to partition the
total informational uncertainty in the DCA into the uncer-
tainty due to the input datasets and the uncertainty due to
model structure and model parameterizations. This partition
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Table 2. The partial information decomposition components. The values in the table are the average of each land cover. The values in
“Overall” are the average of all the sites. The “Lumped” field is computed using all available datasets.

Land cover Unique information Unique information of Synergistic information Redundant information of Mutual information Number
of TBh(Uh) (and its % TBv(Uv) (and of TBh and TBv (S) (and TBh and TBv (R) (and (I (TBh,TBv;DCA)) of sites

I (TBh, TBv;DCA)) its % I (TBh,TBv;DCA)) its % I (TBh,TBv;DCA)) its % I (TBh,TBv;DCA))

Shrublands 0.034 (28 %) 0.019(16 %) 0.029 (25 %) 0.037 (31 %) 0.120 5
Grasslands 0.028 (20 %) 0.013 (10 %) 0.019 (14 %) 0.079 (56 %) 0.140 32
Croplands 0.018 (13 %) 0.013 (11 %) 0.014 (11 %) 0.089 (65 %) 0.134 15
Savannas 0.008 (7 %) 0.006 (5 %) 0.012 (10 %) 0.101 (78 %) 0.128 2
Mixed 0.013(11 %) 0.007 (6 %) 0.011 (9 %) 0.092 (74 %) 0.123 4
Lumped 0.014 (19 %) 0.019 (25 %) 0.008 (11 %) 0.034 (45 %) 0.076 58
Overall 0.024 (18 %) 0.013 (10 %) 0.018 (14 %) 0.080 (58 %) 0.135 58

process cannot be achieved by leveraging the common DCA
assessment metrics (Chan et al., 2016) (e.g., Pearson correla-
tion, ubRMSE) that only involve the DCA soil moisture and
in situ soil moisture.

The DCA model structure is inherently a hypothesis that
relates the input datasets to soil moisture based on prior phys-
ical knowledge. The DCA is thus a procedure of process-
ing the input dataset into estimates of soil moisture. Thus,
models, even those that perform the best, can only reduce
the available information in its inputs and are not capable
of adding new information about the “true” soil moisture.
Hence, there is no possibility of building a model that is
better than the one with the best-achievable performance of
the input data themselves (yet even achieving this theoreti-
cal limit is nearly impossible) (Gong et al., 2013). If, how-
ever, more freedom of available datasets to incorporate is
given, it is possible to build models that outperform the best-
achievable model performance by adding new explanatory
variables, which may lead to a family of models that have
completely different model structures. Based on Table 1,
we find that the DCA has more informational uncertainty
in shrublands than grasslands and croplands. This might be
due to stronger variability in vegetation for shrublands, while
grasslands and croplands tend to be more uniform and homo-
geneous. It is worth noting that these findings are based on
averaging our studied sites within different land-cover cat-
egories, and results may be different while comparing two
specific sites from different land covers. In addition, we find
that the proportion of informational uncertainty increases as
the data are lumped together relative to averaging these statis-
tics calculated on a site-by-site basis (Table 1). Treating all
the surfaces together as a whole does not reduce the infor-
mational total uncertainty because the lumping process con-
tains both “high-quality” and “low-quality” (as assessed by
the Pearson correlation between in situ and DCA soil mois-
ture) datasets. The uncertainties in these datasets may accu-
mulate while lumping them together and result in an increase
in total informational uncertainty.

The fraction that informational random uncertainty con-
tributes to the informational total uncertainty is quite signif-
icant (65 % on average) in this study. The informational ran-

dom uncertainty in the system may arise from the inherent
error due to calibration of TBh and TBv (Al-Yaari et al., 2017),
the mismatch in the scale of observations, and the presence
of water bodies (Ye et al., 2015). If poorly calibrated, the
soil moisture estimations can be exacerbated due to the error
propagation that hinders the correct information from being
expressed. Furthermore, SMAP attempts Teff to capture both
soil and canopy temperature because the differences between
canopy and soil temperature are minimized in the morning
and afternoon orbits. The Teff is computed based on a model
that uses the information from the average soil temperature
of the first layer and second layer of a land surface model for
SMAP soil moisture retrievals (O’Neill et al., 2020a). The
modeling processes may produce an erroneous Teff dataset
and hence contribute the informational random uncertainty
of DCA. Therefore, a better and robust calibration strategy
of TBh and TBv for the presence of water bodies and a com-
prehensive assessment of Teff may be needed to reduce some
of the information random uncertainty.

Informational model uncertainty contributes a non-
negligible portion to the informational total uncertainty
(35 % on average). This model uncertainty may arise from
poor model parameterizations, which may vary with site soil
moisture dynamics (HCN(in situ)). As shown in Fig. 4b, the
I (TBh,TBv,Teff; in situ) increases as the in situ soil moisture
is more dynamic, as reflected by high values of HCN(TBh)

and HCN(TBv). The raw observations (TBv, TBh, and Teff)
provide more available information to the system, whereas
such information is not properly captured by the algorithm,
as reflected by low correlation strength between HCN(in situ)

and I (DCA; in situ). Therefore, it is more likely to observe
large information model uncertainty where the soil moisture
is more dynamic, which may cause a low efficiency of DCA
to correctly transmit the available information. It is known
that DCA is parameterized with a set of surface and vege-
tation parameters such as vegetation single scattering albedo
(ω) and surface height standard deviation (s). These parame-
ter values are land cover dependent and are derived from past
studies as well as prior experience and some information dis-
cussions with experts, all of which could be biased and in-
accurate (O’Neill et al., 2020a). These parameter values are
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Figure 5. SMAP informational total uncertainty (a), SMAP in-
formational model uncertainty (b), and SMAP informational ran-
dom uncertainty (c) against Pearson correlation between in situ soil
moisture and DCA soil moisture.

also not differentiated by land-cover microwave polarization
directions and were assumed to be constant in time. It is pos-
sible that these parameters (such as ω) vary in time (Konings
et al., 2017) and shift during senescence or harvesting sea-
sons. It is observed that the proportion of the informational
model uncertainty is slightly smaller in shrublands (Table 1)
(here we do not include savannas in the discussion since this
land cover only has two sites), while these proportions are
larger in croplands and grasslands (Table 1). This might be

because the model parameterizations are more reasonable in
shrublands than other land covers. In addition, croplands and
grasslands may have seasonal harvesting and therefore may
be more subject to changes in these values, while shrublands
may not. Additionally, when averaging informational values
site by site, the informational random uncertainty is a larger
fraction of the total uncertainty, whereas when all data are
lumped together, the informational model uncertainty is a
larger fraction (Table 1). DCA parameters are different with
respect to each land cover, and the biases induced by these
parameters at each site may accumulate through the sys-
tem, resulting in a dominance in informational model uncer-
tainty over informational random uncertainty when all sites
are lumped together.

To summarize, this is the first attempt at leveraging a mu-
tual information approach to analyze the uncertainty compo-
nents in microwave remote sensing models. The results of
this study can be further used as guidance in assessing an
SMAP algorithm and can quantitatively identify where infor-
mation is lost in the process of SMAP soil moisture model-
ing. More broadly, this study, though focused on SMAP, can
be transferred and extended to analyze other remote sensing
algorithms. Over many decades, a lot of effort, resources, and
time have been devoted to the launch of numerous satellite
missions to retrieve the key environmental variables such as
evapotranspiration and vegetation biomass (Dubayah et al.,
2020; Hulley et al., 2017). Performing such an analysis on
these retrieval algorithms is expected to be beneficial in un-
derstanding the informational flow in these algorithms and
may provide insights to further improve the data retrieval ac-
curacy as well as make maximum use of data collected at
greater expense.

4.2 Model evaluation from another perspective

The second objective of this study was to demonstrate that
the partitioned information components contain useful infor-
mation about DCA model performance that does not depend
on in situ soil moisture and other ancillary datasets. We find
a strong linear relationship between redundant (R) and syn-
ergistic (S) information of the polarized brightness tempera-
tures and Pearson correlation between DCA and in situ soil
moisture. In general, it is more likely to observe higher R

and lower S (and Uh and Uv) in the less woody land cov-
ers such as croplands and grasslands, where the range of
brightness temperature may possibly be greater. These infor-
mation components were found to be marginally correlated
with factors such as vegetation density (the Pearson correla-
tions of average LAI with R, S, Uh, and Uv are 0.23, −0.38,
−0.54, and −0.19, respectively) and vegetation heterogene-
ity (the Pearson correlations of LAI standard deviations with
R, S, Uh, and Uv are 0.22, −0.39, −0.53, and −0.22, re-
spectively). Additionally, these informational components
were also found to be correlated with the mutual information
shared between brightness temperatures and DCA estimates
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Figure 6. Partial information decomposition components between horizontally (TBh) and vertically (TBv) polarized brightness temperature
and DCA soil moisture. See Fig. 2 caption for site ordering.

(the Pearson correlations of I (TBh;TBv; DCA) with R, S,
Uh, and Uv are 0.6, −0.27, 0.22, and −0.16, respectively),
the informational total uncertainty (the Pearson correlations
of ITot with R, S, Uh, and Uv are−0.75, 0.62, 0.55, and 0.68,
respectively), informational random uncertainty (the Pearson
correlations of IRnd with R, S, Uh, and Uv are −0.41, 0.30,
0.05, and 0.15, respectively), and informational model uncer-
tainty (the Pearson correlations of IMod with R, S, Uh, and
Uv are −0.62, 0.55, 0.66, and 0.74, respectively). This indi-
cates that these informational components in the DCA sys-
tem are not only physically driven by both vegetation density
and heterogeneity, but also other factors, such as how an al-
gorithm processes the information from TBh and TBv to pro-
duce the DCA outputs. It is more likely to observe higher R

and lower S in locations where vegetation is denser and more
heterogeneous, yet the correlations of these variables with
model quality (0.47 for mean LAI and 0.42 for the standard
deviation of LAI) are weaker than the correlations found be-
tween R and S and model quality shown in Fig. 7. The R and
S metrics in this study can thus not only integrate information
about how the surface vegetation density and heterogeneity
influence the algorithm performance, but also provide insight
into how effectively the DCA uses the information from TBh
and TBv.

Compared with other ancillary and in situ independent
metrics such as correlation strength between a Pearson corre-
lation of TBh with TBv and the Pearson correlation between in
situ and DCA soil moisture (0.67), the correlation strengths
of S and R with Pearson correlations of in situ and DCA soil

moisture are closer (0.79 and −0.82 for R and S). This sug-
gests that the complex nonlinear relationship between TBh
and TBv with DCA soil moisture is better captured by R

and S as compared to the direct correlation between the two
brightness temperatures themselves. Given the strength of
this relationship, the R and S hold the potential to be used
as a DCA evaluation metric that does not depend on in situ
measurement and an ancillary dataset. It is also useful for
SMAP DCA soil moisture users to have a rough estimation
of how high the quality (as characterized by the correlation
strength between DCA and in situ) of the obtained DCA soil
moisture is without actually knowing the in situ soil mois-
ture. However, this depends on specific user requirements for
data quality. In general, the DCA soil moisture tends to be
high in terms of retrieval quality (∼ 0.75 in Pearson corre-
lation) when the R is greater than 0.1 or S is smaller than
0.015. It is important to note that the decomposed informa-
tion components are dependent on the DCA parameteriza-
tions (e.g., ω, h) that may influence how the TBh and TBv are
probabilistically linked with the DCA and hence may alter
the partitioned information components.

4.3 Approach limitations

While we expect that this approach can be generalized to
analyze other remote sensing models, it may be difficult to
compute the joint probability density functions for models
with high-dimensional inputs. Difficulty in determining the
joint probability density functions hinders the estimation of
high-dimensional joint entropy and mutual information com-
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Figure 7. Partial information decomposition components between horizontally (TBh) and vertically (TBv) polarized brightness temperature
against Pearson correlation coefficient between in situ and DCA soil moisture.

ponents, and these are still open questions in the field of in-
formation theory. Although there exist serval data dimension
reduction techniques, these dimension reduction techniques
are mostly based on some assumptions (Xu et al., 2019).
In practice, most of the systems with high-dimension inputs
tend to be complex. Therefore, there is a strong risk of intro-
ducing additional uncertainty if one chooses an inappropriate
technique.

It is important to understand that the SMAP DCA sys-
tem retrieves soil moisture with the help of vegetation wa-
ter content climatology derived from the MODIS NDVI data
stream. This is specified as a set value for each location and
day of year combination and is used to estimate the unknown
vegetation optical depth (O’Neill et al., 2020a). The reader
should keep in mind that this study considers such data as
a dynamic time-varying parameter, and it is not treated as a
data input in this study. Adding NDVI as a data input would
result in I (TBh,TBv,Teff,NDVI; in situ) being larger than or
equal to I (TBh,TBv,Teff; in situ) in the calculation of IRnd,
and therefore IRnd would decrease. Since ITot only considers
DCA output and in situ data, it is not altered by adding dy-
namic parameters, and IMod would therefore increase. Thus,

consideration of additional dynamic parameters in this infor-
mational assessment would serve to shift uncertainties from
those attributed to the input data themselves to uncertainties
attributed to the model structure and parameterizations.

This study was conducted only at locations where in situ
soil moisture is readily available. It could be an interesting
topic to explore whether, and how, information-based uncer-
tainty analysis can be applied in the locations without in situ
soil moisture measurements. We would expect the informa-
tional uncertainty analysis to provide the estimates of ran-
dom and model uncertainties. The best performance we can
expect from this current uncertainty analysis is to use all the
available datasets we have, yet we believe that uncertainty
estimations of this approach should be stabilized given ade-
quate representative locations and data records.

5 Conclusions

This study differentiates and quantifies the uncertainty
sources in the SMAP DCA using information theory. We
found that on average DCA soil moisture explains 20 % of
the information in the in situ soil moisture, leaving 80 % un-
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explained. Among the unexplained information, 65 % is in-
formational random uncertainty that is caused by the inher-
ent stochasticity of the explanatory variables of SMAP DCA
and a lack of additional explanatory variables in the system,
while the rest of the informational uncertainty is caused by
inappropriateness of the assumption of DCA model structure
and parameterizations. We show that informational random
uncertainty contributes a larger proportion of the informa-
tional total uncertainty across different land covers. However,
the informational model uncertainty contributes more to to-
tal uncertainty when lumping all the datasets together. The
performance of SMAP DCA is negatively correlated with all
the information uncertainties, with the informational model
uncertainty being more reflective of overall SMAP DCA re-
trieval quality than the informational random uncertainty.

The decomposition of the mutual information has shown
that all decomposed components are significantly related to
the Pearson correlation between in situ and DCA soil mois-
ture, with the redundant and synergistic information being
the strongest. Good DCA model performance (as measured
by the Pearson correlation between in situ and DCA soil
moisture) is more likely to be found in locations where the re-
dundant information of brightness temperatures shared with
DCA soil moisture is high and is more dominant relative to
other components. The informational uncertainty decompo-
sition analysis opens a new window for SMAP algorithm un-
certainty diagnosis. SMAP DCA users may examine the R

and S components to have an approximate estimation of the
soil moisture data quality obtained when no in situ soil mois-
ture is readily available.
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