
Hydrol. Earth Syst. Sci., 25, 4995–5011, 2021
https://doi.org/10.5194/hess-25-4995-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Sequential data assimilation for real-time probabilistic flood
inundation mapping
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Center for Complex Hydrosystems Research, Department of Civil, Construction, and Environmental Engineering,
University of Alabama, Tuscaloosa, AL, USA

Correspondence: Keighobad Jafarzadegan (kjafarzadegan@ua.edu)

Received: 30 March 2021 – Discussion started: 18 May 2021
Revised: 3 August 2021 – Accepted: 9 August 2021 – Published: 16 September 2021

Abstract. Real-time probabilistic flood inundation mapping
is crucial for flood risk warning and decision-making dur-
ing the emergency period before an upcoming flood event.
Considering the high uncertainties involved in the modeling
of a nonlinear and complex flood event, providing a deter-
ministic flood inundation map can be erroneous and mis-
leading for reliable and timely decision-making. The conven-
tional flood hazard maps provided for different return periods
cannot also represent the actual dynamics of flooding rivers.
Therefore, a real-time modeling framework that forecasts the
inundation areas before the onset of an upcoming flood is
of paramount importance. Sequential data assimilation (DA)
techniques are well known for real-time operation of phys-
ical models while accounting for existing uncertainties. In
this study, we present a DA hydrodynamic modeling frame-
work where multiple gauge observations are integrated into
the LISFLOOD-FP model to improve its performance. This
study utilizes the ensemble Kalman filter (EnKF) in a mul-
tivariate fashion for dual estimation of model state variables
and parameters where the correlations among point source
observations are taken into account. First, a synthetic exper-
iment is designed to assess the performance of the proposed
approach; then the method is used to simulate the Hurricane
Harvey flood in 2017. Our results indicate that the multivari-
ate assimilation of point source observations into hydrody-
namic models can improve the accuracy and reliability of
probabilistic flood inundation mapping by 5 %–7 %, while it
also provides the basis for sequential updating and real-time
flood inundation mapping.

1 Introduction

The on-time, accurate, and reliable characterization of an up-
coming flood event is imperative for proper decision-making
and risk analysis. A well-calibrated hydrologic model cou-
pled with reliable weather forecast models can be used to
generate the streamflow forecast (Clark and Hay, 2004; Cuo
et al., 2011; Habets et al., 2004). While streamflow forecast-
ing during flood events is indispensable, the critical step for
flood risk analysis is to estimate the flood inundation areas
corresponding to the forecasted streamflow of a potential up-
coming event. Hydrodynamic models are common tools used
to simulate the physics of a river system and predict the spa-
tiotemporal distribution of water surface elevation (WSE).
The predicted WSE can be simply converted to water depth
and inundation area by overlaying it with a high-resolution
digital elevation model (DEM; Merwade et al., 2008; Teng
et al., 2017). Since floods happen in a short period and at a
certain location, it is often not possible to find an appropri-
ate remote sensing image that covers those inundated areas
during the flood period. This is the main reason that research
on flood inundation mapping is mostly limited to post-event
analysis where specific study areas with available remote
sensing data are used as test beds.

The Federal Emergency Management Agency (FEMA) is
the leading agency in the USA that provides flood hazard
and risk maps over the Contiguous United States (CONUS).
While these maps display flood-prone areas corresponding
to specific return periods (e.g., 100- and 500-year events),
they are not always reliable for an upcoming flood event.
For example, FEMA 100- and 500-year flood hazard maps
covered only one-third and half, respectively, of the inun-
dated areas induced by Hurricane Harvey in Harris County,
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Texas (Pinter et al., 2017). The National Water Center Inno-
vators Program proposed the idea of real-time flood inunda-
tion mapping across the USA in 2015 (Maidment, 2017). It
highlighted the importance of event-based flood inundation
mapping where a model uses the forecasted river discharge
to estimate the inundation areas corresponding to a specific
flood just before the onset of the event. Compared to the
traditional flood hazard mapping, real-time flood inundation
mapping is more informative and beneficial for emergency-
response-related decision-making.

In real-time flood inundation mapping, the model takes
advantage of forecasted forcing data and generates inunda-
tion areas corresponding to an upcoming flood event. Pro-
viding these maps ahead of time is extremely valuable for
building a robust flood warning system. Data assimilation
(DA) is an effective approach commonly used to improve the
performance of real-time hydrologic forecasting by updating
the model state variables and parameters when new observa-
tion becomes available (Moradkhani et al., 2019). The inte-
gration of DA with physical models is highly advantageous
as it enables accounting for different sources of uncertain-
ties involved in model predictions. These include (1) forc-
ing data uncertainty due to the limitation of measurements
and spatiotemporal representativeness of the data (Alemo-
hammad et al., 2015; Kumar et al., 2017), (2) parameter un-
certainty due to equifinality and non-uniqueness of parame-
ters (Abbaszadeh et al., 2018; Leach et al., 2018), (3) model
structural uncertainty due to the imperfect representation and
conceptualization of a real system (Abbaszadeh et al., 2019;
Pathiraja et al., 2018; Zhang et al., 2019), and (4) initial and
boundary condition uncertainty (DeChant and Moradkhani,
2014; Lee et al., 2011).

Probabilistic forecasting and uncertainty quantification us-
ing DA have been the core of modeling in the atmospheric
and oceanic sciences (e.g., Anderson and Anderson, 1999;
Courtier et al., 1993). Later, the hydrologic community
started to utilize this approach to account for the uncertain-
ties involved in different layers of model predictions and pro-
vide a more accurate and reliable estimation of soil mois-
ture (Gavahi et al., 2020; Pauwels et al., 2001; Reichle et
al., 2002; Xu et al., 2020), streamflow (Moradkhani et al.,
2005b), snow (Sheffield et al., 2003; Slater and Clark, 2006),
and other hydrologic variables. Despite these advances in
hydrologic studies, the application of data assimilation in
conjunction with hydrodynamic models has received little
attention in the literature. The characterization of uncer-
tainty in hydrodynamic models for probabilistic flood in-
undation mapping has been mostly limited to Monte Carlo
sampling (Ahmadisharaf et al., 2018; Aronica et al., 2012;
Domeneghetti et al., 2013; Neal et al., 2013; Papaioannou
et al., 2017; Pedrozo-Acuña et al., 2015; Purvis et al., 2008;
Savage et al., 2016) and generalized likelihood uncertainty
estimation (GLUE; Aronica et al., 2002a; Romanowicz and
Beven, 2003).

The effectiveness and application of assimilating remotely
sensed data (e.g., Soil Moisture Active Passive, SMAP) into
hydrologic models have been vastly investigated in the liter-
ature (Abbaszadeh et al., 2020; Azimi et al., 2020; Lievens
et al., 2017). However, given the small scale of the hydro-
dynamic modeling process, the spatiotemporal resolution of
current satellite products is not adequate for assimilating into
these models. Due to the short duration of floods, satellite
data with a subdaily timescale and spatial resolution less than
the river width (e.g., 100 m) is recommended. Since remote
sensing products do not provide such high spatiotemporal
resolution data for hydrodynamic models, the research on
hydrodynamic data assimilation is limited in the literature.
Some studies have limited their analyses to large rivers with
a width of above 1 km (e.g., studies of the Nile and Amazon
rivers; Brêda et al., 2019). However, since the width of the
majority of rivers is less than 100 m, these studies cannot be
practically used in many regions.

Several studies used higher-resolution synthetic Surface
Water and Ocean Topography (SWOT) data to evaluate the
performance of assimilation techniques (Durand et al., 2008;
Munier et al., 2015; Pedinotti et al., 2014; Yoon et al., 2012).
While these works provided important information about
the assimilation of satellite data into hydrodynamic mod-
els, their applications are only limited to synthetic experi-
ments, making them impractical for real case studies. Some
studies have implemented indirect methods to estimate WSE
from flood extents generated by high-resolution Synthetic
Aperture Radar (SAR) satellite data (Giustarini et al., 2011;
Hostache et al., 2010; Matgen et al., 2010a; Neal et al., 2009).
This approach can provide high-resolution data that are suit-
able for the majority of rivers. However, the reliability of this
data is concerning because the methods used to convert the
flood extent to WSE pose additional errors that downgrade
the quality of the final observed data for assimilation prac-
tices. Besides these issues, the major drawback of remote
sensing data assimilation pertains to their coarse temporal
resolutions. To efficiently monitor the flood dynamics, the
assimilation process should be performed at a daily/hourly
timescale; however, the revisit frequency of satellites used for
capturing the WSE ranges from a week to a month. There-
fore, there is a significantly low chance to capture multi-
ple real-time remote sensing images for the majority of in-
undated catchments during flood events. In the most opti-
mistic scenario, assimilation of satellite data is only limited
to one/two updates during the simulation period, which may
not be sufficient for reliable probabilistic flood inundation
mapping.

Application of DA in hydrodynamic modeling can be ei-
ther river monitoring or flood inundation mapping. The goal
of hydrodynamic data assimilation for river monitoring is to
track variations in the channel roughness and bathymetry in
the long run. Therefore, the weekly/monthly satellite data can
be well assimilated into the models as the channel character-
istics do not change on a daily basis. On the other hand, flood
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inundation mapping needs an hourly/daily track of WSE be-
cause floods happen rapidly and affect the river dynamics on
a short timescale. The literature indicates that those studies
that assimilated data into hydrodynamic models have been
mostly designed for river monitoring (Brêda et al., 2019; Du-
rand et al., 2008; Yoon et al., 2012b). To capture the daily dy-
namics of the rivers for real-time flood inundation mapping,
the discharge and water stage values measured at the gauge
stations can be assimilated into the hydrodynamic models.
Xu et al. (2017) performed a particle filtering (PF) approach
to assimilate the water stage data from six gauges into a hy-
drodynamic model. In order to calculate the particle weights
in the filtering process, they assumed that gauge observa-
tions are independent. In this study, however, we consider
interconnections among the gauge stations and apply a multi-
variate ensemble Kalman filter (EnKF) to a two-dimensional
(2D) hydrodynamic model for better characterization and
quantification of uncertainty and further improving the ac-
curacy of model simulations.

Advancing the probabilistic hydrodynamic modeling with
DA techniques is a necessary step to fill the gap between hy-
drology and hydrodynamics. To address this problem, this
study aims to explore the capability of a standard sequen-
tial DA technique, namely the EnKF, for real-time proba-
bilistic flood inundation mapping. Past studies that used the
DA in conjunction with hydrodynamic models, have mostly
focused on the quantification of uncertainty in one or two
hydrodynamic variables; e.g., Giustarini et al. (2011) and
Hostache et al. (2018) only investigated the uncertainty in
the upstream flow and rainfall, respectively, and Yoon et
al. (2012) focused on the uncertainty of river bathymetry
while ignoring the roughness parameter uncertainty. In ad-
dition, the main application of the DA hydrodynamic mod-
eling framework has been in river monitoring at long-term
or water stage forecasting during the flood events (Brêda et
al., 2019; Matgen et al., 2010; Xu et al., 2017). However,
this study takes one step further and proposes a DA hydrody-
namic modeling framework for real-time probabilistic flood
inundation mapping while accounting for major sources of
uncertainties involved in the model simulations including hy-
drodynamic model parameters (channel roughness and river
bathymetry), forcing data (river boundary conditions), and
state variable (water depth). Additionally, unlike past works
that assimilated either discharge or water stage into the hy-
drodynamic model, this study performs a multivariate DA
to incorporate the observed values of both variables into the
hydrodynamic model for a reliable simulation of inundation
area.

2 Data and study area

In this study, we simulate the Hurricane Harvey flood,
one of the worst natural disasters in the history of the
USA that caused more than USD 120 billion (https://

www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf, last ac-
cess: 30 August 2021) in damages. The Hurricane Harvey
storm hit Texas on 25 August 2017, caused massive precip-
itation for 6 continuous days, and resulted in extreme flood-
ing conditions in Houston and the surrounding areas. Given
the considerable uncertainties in the hydrologic and hydro-
dynamic processes of such an extreme flood, a determinis-
tic modeling approach with fixed inputs provides erroneous
simulations that are highly different from observations. To
account for the uncertainties involved in different layers of
flood simulation, this study implements a DA hydrodynamic
modeling framework and provides probabilistic flood inun-
dation maps.

Figure 1a shows the study area that consists of four main
channels (blue lines) and eight tributaries (red lines). The
study area is located in the state of Texas (Fig. 1b) in the
middle of the San Jacinto watershed (Fig. 1c), a highly de-
veloped basin (USGS HUC 6 no. 120401) with an area of
10 400 km2. The main channels simulated in the study are
around 106 km, draining into three HUC 8 watersheds; the
spring (no. 12040102), West Fork San Jacinto River (no.
12040101) and East Fork San Jacinto River (no. 12040103).
The drainage areas of the channels are relatively flat, with an
average slope of 0.62 %, and the soil is mostly impermeable
due to the high rate of recent developments in this region.
The upstream and downstream boundary conditions (purple
points) are provided from the daily streamflow in four United
States Geological Survey (USGS) gauges (nos. 08068090,
08068500, 08068740, and 08068780) and water stage time
series at the downstream gauge (no. 08069500). The daily
streamflow discharge in two internal gauges (green points;
nos. 08068800 and 08069000) and water stage time series in
the second internal gauge are the observations that have been
assimilated into the LISFLOOD-FP model. Internal gauges
refer to those stations located between upstream and down-
stream of the simulated river system. Figure 1b and c presents
the geographic location of the study area within the state
of Texas and San Jacinto watershed, respectively. To set up
the LISFLOOD-FP model, we use a DEM with 120 m spa-
tial resolution resampled from one arc second (30 m) USGS
National Elevation Dataset (NED). Such a coarse-resolution
DEM alleviates the computational intensity of the proposed
probabilistic hydrodynamic modeling framework. It should
be noted that the subgrid solver used for simulation of flood
has the advantage of accepting narrow rivers with a width
of less than 120 m, while the cell sizes are 120 m. In this
study, the DA hydrodynamic modeling framework is paral-
lelized and performed on the University of Alabama High-
Performance Computing cluster.
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Figure 1. (a) Study area with all gauges, rivers, and tributaries. (b) Geographic location of San Jacinto watershed within the state of Texas.
(c) Geographic location of the study area within San Jacinto watershed (© NHDPlus and USGS).

3 Methods

3.1 Flood inundation model

The flood inundation model used in this study is LISFLOOD-
FP (Bates and De Roo, 2000), a raster-based 2D hydrody-
namic model that simulates the spatiotemporal distribution
of WSE over the study area. The model solves the momen-
tum and continuity equations (Saint-Venant equations) as fol-
lows:

∂Q

∂x
+
∂A

∂t
= 0 (1)

1
A

∂A

∂t
+

1
A

∂
(
Q2

A

)
∂x

+ g
∂h

∂x
− g

(
S0− Sf

)
= 0, (2)

where Q is the flow rate at a given cross section with the
area of A in the main channel, x denotes the location along

the channel, t represents time, S0 and Sf are channel bed and
friction slopes, and g is the gravitational acceleration.

We use the subgrid channel solver, the most recently de-
veloped numerical scheme that considers friction and water
slope, as well as local acceleration components, in the shal-
low water equations (Neal et al., 2012). This solver is ad-
vantageous for large-scale and efficient modeling as it uti-
lizes coarse-resolution DEMs along with channel widths that
are smaller than DEM resolution. Since DA hydrodynamic
modeling requires hundreds of model simulations, this solver
helps reduce the computational burden of each simulation
and enables the implementation of probabilistic flood in-
undation mapping within a DA framework. To set up the
model, we assume rectangular cross-section areas and a uni-
form roughness for both channel and floodplain. Given the
low sensitivity of LISFLOOD-FP to the floodplain rough-
ness (Hall et al., 2005; Horritt and Bates, 2002), this param-
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eter is assumed a constant value. However, the uncertainty
of channel roughness is taken into account within the as-
similation framework. We also consider the uncertainty of
bathymetry by defining an offset parameter that uniformly
lowers the DEM values of the river channels. In addition to
model parameters (channel roughness and bathymetry), the
upstream and lateral fluxes entered the river system as the
boundary conditions of the model are other main sources of
uncertainty in the assimilation framework.

The upstream boundary conditions are generated from
four USGS gauge stations (Fig. 1). To estimate the lateral
fluxes, we calculate the deficit in the system by subtracting
the upstream from downstream flows and then distributing
the deficit among river tributaries based on their drainage ar-
eas (Please refer to Jafarzadegan et al. (2021) for detailed in-
formation about the calculation of lateral flows in this study
area). In Sect. 3.3, we will further discuss the procedure we
used to initialize the model parameters and river boundary
conditions.

3.2 Ensemble Kalman filter (EnKF)

Moradkhani et al. (2005a) provided a comprehensive de-
scription of the EnKF formulation for dual estimation of state
and parameters in hydrologic models. Here we briefly de-
scribe the EnKF formulation for the multivariate assimilation
of point source water stage and discharge data into a hydro-
dynamic model. For a more effective assimilation process,
both types of interconnections between observations, namely
the spatial correlation of a single observation (discharge or
water stage) among different gauges and the correlation be-
tween both observations at a single gauge, are taken into ac-
count in the EnKF equations. The EnKF is used to simultane-
ously estimate model states and parameters. For this purpose,
the parameters should be treated similarly to the state vari-
ables, with a difference that parameter evolution is generated
artificially.

Let us assume a DA hydrodynamic modeling framework
with l parameters (p = 1,2, . . ., l), m states (s = 1,2, . . .,m),
and n observations (j = 1,2, . . .,n). The following EnKF
equations are described in accordance with the flowchart
shown in Fig. 2. In the EnKF, parameter samples can be gen-
erated by adding the noise of τ it with covariance σ θt to the
prescribed parameters.

θ i−t+1 = θ
i+
t + τ

i
t

τ it ∼N
(
0,σ θt

)
. (3)

Using θ i−t+1 and forcing data, a model state ensemble and pre-
dictions are generated, respectively.

xi−t+1 = f
(
xi+t ,u

i
t ,θ

i−
t+1

)
+ωit

ωit ∼N
(
0,σ xt

)
(4)

ŷit+1 = h
(
xi−t+1,θ

i−
t+1

)
+ νit+1

νit+1 ∼N
(

0,σ ŷt+1

)
, (5)

where xt , ut , θt , and ŷt are the vector of the uncertain state
variables, forcing data, model parameters, and model predic-
tion at time step t , respectively. ωt and vt represent the model
state and prediction errors due to the imperfect modeling.
Most often, ωt and νt are assumed to be white noises with
mean zero and covariance σ xt and σ ŷt+1, respectively. In addi-
tion, the two noises ωt and νt are assumed to be independent.

Then we update the parameter ensemble members using
the standard Kalman filter equation as follows:

θ i+t+1 = θ
i−
t+1+K

θ
t+1

(
yit+1− ŷ

i
t+1

)
, (6)

where ŷit+1 and yit+1 are the model prediction and observa-
tions, respectively, and Kθ

t+1 ∈ R
l×n is the Kalman gain ma-

trix for correcting the parameter trajectories obtained by the
following:

Kθ
t+1 = σ

θy

t+1
[
σ
yy

t+1+R
′

t+1
]−1

, (7)

where σ θyt+1 ∈ R
l×n is the cross-covariance matrix of the pa-

rameter ensemble and prediction ensemble (Eq. 6). Unlike
other studies, and for more realistic characterization of ob-
servation and model errors, here the correlation between the
errors associated with n observation data are accounted for
during the assimilation process. Therefore, the covariance
matrix R′t ∈ Rn×n is a nonzero matrix, such that the values in
the diagonal represent the error variance associated with each
observation data (Rt+1) and all elements below/above the
main diagonal denote the cross-covariance between different
observations (Eq. 9). σ yyt+1 ∈ R

n×n is also a similar covari-
ance matrix with the inclusion of error correlation between
the model simulations (Eq. 8).

σ
θy

t+1(p,j)=
1
N

N∑
i=1

[(
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[
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])
·(
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])]
(8)
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])]
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(9)
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1
N

N∑
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ŷit+1(j)−E

[
ŷt+1 (j)
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·(
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E
[
θ−t+1
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=

1
N

N∑
i=1

θ i−t+1 (11)

E
[
ŷt+1

]
=

1
N

N∑
i=1

ŷit+1. (12)

Now using the updated parameter, the new model state tra-
jectories (state forecasts) and prediction trajectories are gen-

https://doi.org/10.5194/hess-25-4995-2021 Hydrol. Earth Syst. Sci., 25, 4995–5011, 2021



5000 K. Jafarzadegan et al.: Sequential data assimilation for real-time probabilistic flood inundation

Figure 2. Schematic of the DA hydrodynamic modeling framework for real-time probabilistic flood inundation mapping. The green boxes
represent the state variables, where their updated values are fed into the LISFLOOD-FP model and provide a probabilistic flood inundation
map at the forecast mode (blue box). The black boxes highlight the physical model, and the orange boxes represent the Kalman equations
used for updating the parameter and state variables by the EnKF.

erated as follows:

xi−t+1 = f
(
xi+t ,u

i
t ,θ

i+
t+1

)
+ωit

ωit ∼N
(
0,σ xt

)
(13)

ŷit+1 = h
(
xi−t+1,θ

i+
t+1

)
+ νit+1

νit+1 ∼N
(

0,σ ŷt+1

)
. (14)

The model states ensemble is similarly updated as follows:

xi+t+1 = x
i−
t+1+K

x
t+1

(
yit+1− ŷ

i
t+1

)
(15)

yit+1 = y
i
t+1+ η

i
t+1

ηit+1 ∼N (0,Rt+1) , (16)

where Kx
t+1 ∈ R

m×n is the Kalman gain for correcting the
state trajectories and is obtained by the following:

Kx
t+1 = σ

xy

t+1
[
σ
yy

t+1+R
′

t+1
]−1

. (17)

where
∑xy

t+1 ∈ R
m×n is the cross-covariance matrix of states

ensemble and prediction ensemble (Eq. 16).

σ
xy

t+1(s,j)=
1
N

N∑
i=1

[(
xi−t+1(s)−E

[
x−t+1(s)

])]
·(

ŷit+1(j)−E
[
ŷt+1(j)

])]
(18)

E
[
x−t+1

]
=

1
N

N∑
i=1

xi−t+1. (19)

In this study, the water depth along the channel is the
only state variable (m= 1). The channel roughness and
bathymetry are two model parameters (l = 2) and three point
source observations, including water discharge at gauge 1
and 2, as well as water stage at gauge 2 (n= 3), are assimi-
lated into the LISFLOOD-FP model. Therefore, the Kalman
gains used to update the model parameters and states (Eqs. 5
and 15) are 2× 3 and 1× 3 matrices that take advantage of a
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multivariate point source assimilation while considering the
downstream correlation between discharge observations and
the correlation between water stage and discharge at gauge
2.

3.3 DA hydrodynamic modeling framework

Figure 1 illustrates the flowchart of the proposed DA hy-
drodynamic modeling framework used for real-time proba-
bilistic flood inundation mapping. In this study, the EnKF is
performed based on an ensemble size of 100. The bound-
ary conditions, including four upstream flows, seven lat-
eral fluxes, and downstream flows, are perturbed with added
white noises sampled from a normal distribution with a mean
zero and relative error of 20 %. The errors are assumed to be
heteroscedastic, meaning that their values are proportional
to the flow magnitude. Pelletier (1988) conducted a litera-
ture review on the uncertainty of recorded flow at rivers and
demonstrated that the error varies in the range 8 %–20 %.
Later, Di Baldassarre and Montanari (2009) found that the
uncertainty of extreme flows can exceed to 25 % due to ex-
trapolating the rating curves. To characterize uncertainty in
the initial condition, namely water depth, we add a white
noise with a mean zero and standard deviation of 1 m. In
this study, using the proposed EnKF-based multivariate as-
similation approach, three point-scale observations, i.e., dis-
charge at USGS gauges 1 and 2, as well as water stage at
gauge 2, are incorporated into the LISFLOOD-FP model to
rectify its state variables and parameters and, hence, provide
more accurate and reliable flood inundation maps. First, the
LISFLOOD-FP model is forced with the upstream, down-
stream, and lateral flow ensembles. To initialize the state
variables in the system, the simulated water depth values
at the ending day of the warm-up period (the initial condi-
tion for the first day of the model simulation) are perturbed
by adding a white noise with a mean zero and standard de-
viation of 1 m. It is worth mentioning that the error terms
used for the observed flows and the initial water depth are
determined through a manual tuning to achieve the most re-
liable predictions during the simulation. The model parame-
ters (i.e., channel roughness and bathymetry) are initialized
using the Latin hypercube sampling method and evolved dur-
ing the assimilation process. The ensemble of water depth
values predicted by the model for the next time step, to-
gether with observations, namely water stage and discharge
at gauges, are used in the multivariate Kalman equation to
update the model parameters. The LISFLOOD-FP model is
run for the second time with the updated parameters, and the
second multivariate Kalman equation uses the predicted wa-
ter depth with observations to update the ensemble of water
depth in the system. The ensemble of updated water depth
(state), bathymetry, and channel roughness (parameters) are
used within the LISFLOOD-FP to predict an ensemble of
water depth for the next time step. The predicted water depth
is simply converted to a probabilistic flood inundation map.

Using this data assimilation framework, we can generate 1 d
forecast of probabilistic flood inundation maps which would
be highly beneficial for real-time flood warning and decision-
making.

The simulation period of the LISFLOOD-FP model is set
up for 45 d from 30 July to 12 September 2017 and the entire
month of July is used as a warm-up period. The model time
step and the Courant number are set to 1 s and 0.7, respec-
tively, and the model is simulated at a daily scale. The water
depth generated for the end of July is used as the initial condi-
tion of the model. To account for the uncertainty of channel
roughness and bathymetry, we sample these variables from
uniform distributions ranging from [0, 0.1] and [39, 42] m,
respectively. The bathymetry parameter is the elevation of
the channel bed at the upper location of the channel. The
offset parameter is calculated by subtracting this value from
DEM at the upper location. Then, the bathymetry vector that
includes the channel bed elevation for all channel cells is gen-
erated by subtracting the offset from DEM values along the
channel. It should be noted that the range of uniform dis-
tribution for channel roughness is chosen based on previous
studies (Aronica et al., 2002b; Bales and Wagner, 2009; Di
Baldassarre et al., 2009; Horritt, 2006; Pappenberger et al.,
2008), while the error range assumed for the bathymetry is
mostly determined based on expert judgment and trial and
error. Since the real magnitude and distribution of these er-
rors have not been fully understood in the literature, their es-
timated values may not be physically correct terms, and their
estimation is ill-posed, according to Renard et al. (2010).

3.4 Experimental design

To assess the effectiveness and robustness of the proposed as-
similation framework for probabilistic flood inundation map-
ping, we design two experiments. In the first experiment,
we perform DA hydrodynamic modeling on a synthetic case
study where we assume the model is perfect and has no er-
ror. In this approach, we set the model parameters (channel
roughness and bathymetry), initial state (water depth), and
boundary condition flows to fixed values and run the model
to generate discharge and WSE across the gauges within the
study area. These predicted values are assumed as benchmark
observations. This synthetic analysis ensures that the assim-
ilation process performs well, and the model parameters end
up converging to predefined values. In the second experi-
ment, we implement the proposed assimilation framework
on a real case study, where the observed discharge and WSE
data that are recorded from the USGS gauges during Hurri-
cane Harvey are assimilated into the model. In both exper-
iments, we implement an open-loop (OL) simulation where
the model is run without an assimilation. The WSE and flood
extent maps generated by OL are compared with the results
provided by the EnKF in the synthetic and real case studies.
Considering the severe flood condition during the hurricane,
we aim to investigate the extent to which the multivariate
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DA hydrodynamic modeling framework improves the model
simulation and flood inundation mapping skill.

3.5 Validation strategy

As mentioned before, the convergence of uncertain model
parameters toward truth in the synthetic experiment demon-
strates the performance of DA hydrodynamic modeling
framework. To provide a robust analysis of each assimilation
run, it is necessary to assess the model performance through
multiple deterministic, i.e., Kling–Gupta efficiency (KGE)
and root mean square error (RMSE), and probabilistic, i.e.,
normalized root mean square error ratio (NRR) and reliabil-
ity, measures. The four performance measures used in this
study, namely KGE, RMSE, NRR, and reliability, are calcu-
lated using Eqs. (20)–(23), respectively.

KGE= 1−

√((Covyt y′t
σσ ′

)
− 1

)2

+
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)
− 1

)2
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Reliability= 1−
2
T

T∑
t=1

∣∣∣∣ZtT −Ut
∣∣∣∣ , (23)

where yt and y′t are the observed and simulated values, re-
spectively. The KGE varies from −∞ to 1, such that a value
of 1 indicates a perfect fit between observed and simulated
values. The pairs of (µ,σ ) and (µ′,σ ′) represent the first
two statistical moments (means and standard deviations) of
yt and y′t , respectively. RMSE is the square root of the mean
of the square of all of the errors between the predicted and
observed values.

NRR (DeChant and Moradkhani, 2012) is calculated to
measure the ensemble spread and assess how confidently the
ensemble mean is statistically distinguishable from the en-
semble spread. Reliability (Renard et al., 2010b) is a measure
of the fit of the Q–Q quantile plot to a uniform distribution.
A value of 1 is exactly uniform, and a value of 0 is the farthest
possibility from uniform. For the description of the zt and Ut
calculation, we refer the reader to Renard et al. (2010b).

The above four performance measures assess the dynamic
behavior of DA hydrodynamic modeling framework at two
specific points. Moreover, to spatially evaluate the behav-
ior of the proposed framework, we compare the maximum
probabilistic flood inundation maps (union of probabilistic
maps over the simulation period) with the observed flood-
plain map delineated aftermath of Hurricane Harvey. The

receiver operating characteristic (ROC) graph is a common
tool for validating probabilistic classifiers (Fawcett, 2006).
Consider a deterministic flood map as a binary map where 1
and 0 represent flooded and non-flooded cells, respectively.
First, a threshold in the range of [0, 1] is used to convert the
probabilistic map to a binary deterministic map. This means
all cells with the probability of inundation less than a given
threshold are converted to 0 and other cells are set to 1. The
binary map is compared with the reference map, and the rate
of true positive (rtp) and false positive (rfp) are calculated
using Eqs. (24) and (25) as follows (Jafarzadegan and Mer-
wade, 2017):

rtp=
True positive instances

total positives
(24)

rfp=
False positive instances

total negative
, (25)

where true and false positive instances represent the total
number of flooded cells in the reference map that are pre-
dicted as flooded and non-flooded cells, respectively. Total
positives and negatives are total flooded and non-flooded
cells in the reference map. This process is repeated, and a
set of points (rfp.rtp) is generated corresponding to different
thresholds. The ROC graph connects the points in the rfp–
rtp space, and the area under the curve (AUC) represents the
performance of the probabilistic classifier (Fawcett, 2006).
In this study, we use AUC to compare the performance of the
OL simulation with the EnKF for probabilistic flood inunda-
tion mapping. The fit (F ) index is another performance mea-
sure widely used to compare two deterministic flood extent
maps in the literature (Alfieri et al., 2014; Bates and De Roo,
2000; Sangwan and Merwade, 2015; Tayefi et al., 2007).

F =
True positive instances

Total positives+False positives
× 100. (26)

In addition, we calculate the underprediction and overpre-
diction flood indices (UFI and OFI, respectively) introduced
by Jafarzadegan et al. (2018) to compare probabilistic flood
maps against deterministic reference maps as follows:

UFI=
∑N
i=1 (1−Pi)

N
× 100 i ∈ Fl (27)

OFI=

∑M
i=1

(
Pj
)

M
× 100 j ∈ NFl, (28)

where Fl and NFl denote the flooded and non-flooded regions
in the reference map, and i and j are indicators of cells lo-
cated within these regions. N and M are the total number
of cells in the Fl and NFl regions, and Pi and Pj denote the
probability of inundation for cells i and j derived from the
probabilistic flood maps.
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4 Results

4.1 Experiment 1: synthetic case study

We conduct the synthetic experiment to ensure the useful-
ness and effectiveness of the proposed DA hydrodynamic
modeling framework. Figure 3a presents uncertainty bound
evolution of the parameters in the LISFLOOD-FP model
(i.e., channel roughness and bathymetry) for 45 d assimila-
tion of synthetic observations (i.e., discharge at gauges 1 and
2 and water stage at gauge 2). It is worth mentioning that
the uncertainty of bathymetry shown in Fig. 3 corresponds to
the channel bed elevation at the upper location of the chan-
nel. As seen, both parameters converge smoothly to the cer-
tain region in parameter space where the uncertainty bounds
stabilize. While the uncertainty bound associated with the
bathymetry becomes stabilized at the early stage of the as-
similation process, for the channel roughness, the uncertainty
bound is stabilized toward the end of the assimilation period.
It is also evident from Fig. 3a that the bathymetry is a more
identifiable parameter compared to the channel roughness as
it shows the fastest convergence with a minimum degree of
uncertainty. However, the channel roughness is less identifi-
able with the slowest convergence. In Fig. 3b, the first day
(t = 1) includes all 100 ensemble members of parameters,
and day 30 corresponds to the highest discharge and water
stage of flooding when the model parameters reach the high-
est improvement and come closer to the true value. Figure 3b
shows that both model parameters are converging toward the
true values as the assimilation proceeds. This indicates the
efficacy and usefulness of the proposed DA hydrodynamic
modeling framework developed in this study.

4.2 Experiment 2: real case study

In the real experiment, we assimilate the discharge and water
stage readings from two USGS gauges into the LISFLOOD-
FP model. We also run the OL simulation and calculate the
ensemble mean to predict the discharge and water stage at
these two gauges. Figure 4 presents a comparison of simu-
lated discharge (Fig. 4a and b) and water stage (Fig. 4c and
d), with observations using both OL and our EnKF-based ap-
proach. Figure 4a and c are the prior estimates of discharge
and water stage, while Fig. 4b and d show their posterior dis-
tributions that reflect the updated variables after assimilat-
ing the observations into the model. It is worth mentioning
that, although prior distributions represent the results before
assimilating new observations into the model, their values
are dependent on the initial conditions updated from obser-
vations in the previous time step. Since forecasting (1 d lead
time) is the main objective of DA hydrodynamic modeling
framework, we specifically focus on the behavior of priors.
As can be seen, the simulated peak discharge by the OL is
highly overestimated by around 200 m3 s−1, while assimilat-
ing the observations improves the results so that their differ-

Figure 3. Temporal evolution of the LISFLOOD parameters for the
synthetic experiment during Hurricane Harvey using the EnKF. (a)
Temporal evolution of model parameter predictive intervals (shaded
areas) corresponding to the 95, 75, 68, and 10 percentile. (b) Tem-
poral evolution of particle positions in the model parameter space at
6 different days during the hurricane. The black stars at the end of
each parameter subplot represent the true parameter values.

ence with the observation is less than 50 m3 s−1 at the peak
of the flood (KGE= 0.76 and RMSE= 40.9 m3 s−1). In con-
trast, the simulated water stage in Fig. 4c and d is under-
estimated by OL by around 2 m at the peak. Compared to
the OL, using the developed EnKF approach raises the peak
of water stage at peak and reduces the errors significantly
(KGE= 0.96 and RMSE= 0.5 m). The accurate estimates
of prior discharge and water stage confirm the applicability
of the proposed assimilation framework in the forecast mode
when real-time flood warning and decision-making is the pri-
ority. The NRR measure for the prior discharge and water
stage is 1.17 and 0.65, showing that the uncertainty bound
is underestimated and overestimated, respectively. The reli-
ability of both variables is above 70 % since the uncertainty
bounds encompass the observations for almost the entire sim-
ulation period.

Figure 5 illustrates the prior and posterior distributions of
discharge and water stage for the days at the beginning, peak,
and end of the Hurricane Harvey flood. For all 3 d, the uncer-
tainty bounds of both discharge and water stage are narrowed
down by assimilating the observations so that posterior dis-
tributions are more precise compared to the priors. For the
days at the beginning and end (26 August and 1 Septem-
ber), the mean of prior distributions is substantially shifted
toward truth in the posterior distributions. Figure 5 reveals
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Figure 4. Simulation results of LISFLOOD-FP for the real experiment during Hurricane Harvey using the EnKF and open loop. (a) Prior
simulated discharge at gauge 1. (b) Posterior simulated discharge at gauge 1. (c) Prior simulated water stage at gauge 2. (d) Posterior
simulated water stage at gauge 2. The shaded areas represent the predictive interval of simulated discharge and water stage by EnKF.

that our developed approach provides more accurate and re-
liable posterior discharge and water stage distributions com-
pared to prior distributions where the simulations are either
overestimated or underestimated. It is noted that, on 28 Au-
gust (day of flood peak), although the prior distributions ac-
curately represent the observation, they have a wide uncer-
tainty bound. After correcting/updating the model state vari-
ables and parameters, as posterior distributions show, the un-
certainty bound is reduced, while the ensemble mean remains
closer to the observation.

4.3 Probabilistic flood inundation mapping

In this section, we account for the uncertainties involved in
flood modeling and generate real-time probabilistic flood in-
undation maps. Since the majority of flooding conditions oc-
curred within 6 d, from 27 August–1 September, we display
the spatial distribution of water depth in this period and pro-
vide probabilistic flood inundation maps using both OL and
our developed approach (Figs. 6 and 7). Figure 6 represents
the first 3 d of Hurricane Harvey, which corresponds to the
upper limb of the flood hydrograph. On 27 August, the ma-
jor difference between the OL and EnKF appears in the re-
gions around the upstream of the lower channel, where the
EnKF provides a more reliable prediction of the inundated
area. Moving toward the peak of the flood on 29 August,

the OL generates a large region of uncertain cells around the
banks of the upper channel, while both the extent and density
of uncertain values in the probabilistic maps generated by the
EnKF is smaller during the peak of Hurricane Harvey.

Figure 7 shows the probabilistic inundation areas in the
last 3 d corresponding to the lower limb of the flood hydro-
graph. The discrepancies between the OL and EnKF flood
maps increase, showing that performing DA is more effec-
tive in improving the inundation mapping skill from peak to
ending point of the flood hydrograph. A large number of in-
undated cells generated by the OL vanish after the peak of
Hurricane Harvey, which results in a set of scattered discon-
tinuous maps in 31 August and 1 September. On the other
hand, the probabilistic maps generated by the EnKF main-
tain their continuous shapes so that the probability of inunda-
tion is reduced without changing the extent. The merit of the
EnKF in improving the flood inundation areas at the lower
limb of the flood hydrograph agrees with the results in Fig. 4c
and d, where the EnKF widens the simulated water stage hy-
drographs and removes the lag difference that exists between
the open loop and observations.

Finally, to quantify the performance of EnKF and OL for
generating a spatial distribution of water depth over the do-
main, we illustrate the ROC graphs, the AUC values, and fit
indices in Fig. 8. To calculate these measures, we ignore the
temporal distributions and only report the maximum inunda-
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Figure 5. Prior and posterior distribution of discharge (top row) and water stage (bottom row) for the days at the beginning (26 August),
peak (28 August), and end (1 September) of Hurricane Harvey using the EnKF.

Figure 6. Probabilistic flood inundation maps generated by OL and
EnKF techniques to simulate the upper limb of the Hurricane Har-
vey flood hydrograph from 27 to 29 August.

Figure 7. Probabilistic flood inundation maps generated by OL and
EnKF techniques to simulate the lower limb of the Hurricane Har-
vey flood hydrograph from 30 August to 1 September.
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tion maps that represent the union of flooded areas over the
entire period of Hurricane Harvey. Comparing the EnKF and
OL in Fig. 8a, the EnKF line (blue) is closer to the northwest
of the rfp–rtp space, where its AUC is 5 % higher than the OL
approach. In Fig. 8b, each point represents the F indices for
the OL and the EnKF approaches corresponding to a given
threshold. Using 100 thresholds that range from [0.01, 1], the
probabilistic maps are converted to 100 deterministic maps,
and the F indices are calculated. The position of scatters
above the dashed line confirms that the EnKF outperforms
the OL. In addition to these measures, the [UFI, OFI] indices
calculated for OL and EnKF approaches are [30.3, 0.26] %,
and [23.4, 0.4] %, respectively. The low values of OFI for
both approaches (< 1 %) show that the simulations mostly
underestimate the flood inundation areas. In addition, com-
paring the indices of both approaches reveal that the EnKF
reduces the overall underestimation by around 7 %.

5 Discussion and conclusions

The main motivation in this study is to propose a DA hy-
drodynamic modeling framework for real-time probabilistic
flood inundation mapping. Considering the coarse spatiotem-
poral resolution of satellite data for capturing the WSE, as-
similating them into the hydrodynamic models may not be
a practical solution for an upcoming flood event. On the
other hand, the availability of daily discharge and WSE data
at gauge stations is a great opportunity to establish a mul-
tivariate DA hydrodynamic modeling framework that up-
dates the initial condition of modeling at daily scale and
forecast the flood inundation areas at 1 d lead time. Here,
we used the EnKF data assimilation method in conjunction
with a hydrodynamic model to account for different sources
of uncertainties involved in different layers of model simu-
lations, including the boundary conditions, model parame-
ters, and initial condition, and generate real-time probabilis-
tic flood inundation maps. To further enhance the perfor-
mance of the developed framework, the discharge and water
stage at two different gauges are simultaneously assimilated
into the LISFLOOD-FP model. The multivariate EnKF ap-
proach considers the correlation between discharge at two
gauges and between discharge and WSE at one gauge using
a modified covariance matrix and Kalman gain equation.

In the synthetic experiment, we examined the convergence
of model parameters toward truth and found that the pro-
posed DA hydrodynamic modeling framework can be suc-
cessfully used to improve the accuracy and reliability of
model predictions while accounting for uncertainties asso-
ciated with model parameters. The channel roughness coeffi-
cient varied more rapidly than the bathymetry during the tem-
poral evolutions of these parameters showing the better iden-
tifiability of this parameter. The validation results of the real
experiment revealed that the assimilation with the EnKF ap-
proach improves the model predictions across temporal and

spatial scales (i.e., discharge and water stage time series at
gauges and flood maps showing the maximum water depth
over the simulation period). These improvements are more
pronounced during the falling limb of the flood hydrograph
where the EnKF widens the simulated hydrograph and re-
moves the existing lag compared to the observations. Simi-
larly, the simulated flood inundation maps confirm that the
OL provides discontinuous scattered maps during the flood
recession period, while the EnKF provides a more accurate
representation of the inundation areas. The validation results
also demonstrate that the EnKF reduced the underestimation
by 7 % and outperformed the OL approach by around 5 % for
probabilistic flood inundation mapping.

For real-time flood inundation mapping, timely decision-
making is of paramount importance. The time between the
issuance of the warning and the occurrence of the flood is
typically a short period of less than a day. Additionally, the
flood waves propagate, inundate the affected regions, and
cause damages rapidly. Thus, the main requirement for real-
time probabilistic inundation mapping is to develop a fast and
efficient modeling framework that is beneficial for decision-
makers and emergency managers. Considering the high com-
putational expense of hydrodynamic models and the need
for generating a multitude of simulations in the probabilis-
tic fashion, this study uses a coarse-resolution 120 m DEM
to maintain the efficiency of the modeling and meet the re-
quirements for practical benefits. In this study, the DA hydro-
dynamic modeling framework is executed on the University
of Alabama High-Performance Computing (UAHPC) clus-
ter. Considering the ensemble size of 100, we submit a job
array with 100 cores, where each core is assigned to a specific
member of the DA hydrodynamic modeling simulation. The
efficient hydrodynamic model setup with coarse-resolution
DEM helps simulate Hurricane Harvey and generate proba-
bilistic results in 4–5 h (∼ 4 h for the hydrodynamic simula-
tion and ∼ 20 min for the DA). Applying this computation-
ally efficient framework is highly beneficial, especially for
the emergency response agencies (e.g., FEMA), insurance
companies, water centers, and other private companies that
need to forecast the inundation areas and take timely deci-
sions a few hours before the onset of floods.

The coarse DEM used in this study cannot perfectly rep-
resent the watershed topography and bathymetry and can be
the main reason for underestimation of inundation areas (F
index less than 80 %). Savage et al. (2016) investigated the
impacts of DEM resolution on the accuracy and efficiency
of probabilistic flood inundation maps generated with the
LISFLOOD-FP model. They demonstrated that models with
resolutions less than 50 offer little gain in performance yet
are more than an order of magnitude computationally expen-
sive, which can become infeasible when undertaking proba-
bilistic analysis. They also found that the reliability of flood
maps deteriorates at resolutions coarser than 100 m. Consid-
ering the medium scale of our study (> 100 km river) com-
pared to the reach scale (∼ 10 km river) of the work by Sav-
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Figure 8. The receiver operating curves (ROCs) indicating the performance of OL and EnKF techniques for probabilistic flood inundation
mapping.

age et al. (2016), here we slightly increased their suggested
threshold for the DEM and demonstrated that the accuracy of
results is still acceptable.

The simulation of an extreme flooding condition such as
Hurricane Harvey with a simplified model setup (i.e., using
a coarse DEM, assuming uniform roughness coefficient for
channel and floodplain, and estimating bathymetry by low-
ering DEM with one parameter) is prone to lose accuracy.
The results obtained from the simulation of the real experi-
ment demonstrated that, despite using a simplified efficient
modeling setup, we can still simulate the discharge, water
stage, and inundation areas for an extreme flood event with
an acceptable accuracy while accounting for uncertainties in-
volved in model predictions. This shows that assimilating the
gauge data into a simplified model setup improves the ac-
curacy and provides an efficient probabilistic framework for
real-time flood inundation mapping that considers potential
sources of uncertainties in different layers of modeling.

The time dependency that exists between the upstream and
downstream gauges along a channel can affect the perfor-
mance of multivariate assimilation with those gauges. For fu-
ture studies, using a more advanced DA technique that fully
characterizes the model structural uncertainty (Abbaszadeh
et al., 2019) and considering the time lag dependency be-

tween multiple gauges can improve the performance of mod-
eling and provide more realistic assimilation of the hydro-
dynamic models. Another limitation of this study is the
simple assumptions made for perturbing the initial condi-
tion (water depth), parameters (channel roughness and river
bathymetry), and observations (WSE and discharge). More
investigation on the physically meaningful distribution of
these values can enhance the performance of the DA hydro-
dynamic modeling framework in future studies. A joint as-
similation of the point source gauges and remotely sensed
data can also improve the reliability and accuracy of the
results. Finally, proposing a DA hydrodynamic modeling
framework that considers the DEM and channel width uncer-
tainty can provide a more comprehensive uncertainty quan-
tification for probabilistic flood inundation mapping in future
studies.

An advantage of the proposed DA hydrodynamic mod-
eling framework is its generic format so that other studies
can follow the flowchart in Fig. 2 and use the information in
Sects. 3.2 and 3.3 to set up the hydrodynamic model and the
EnKF algorithm, respectively. To properly apply this frame-
work to other studies, first, the point source observations
of WSE and discharge should be available at daily/subdaily
scales. Second, the modeler should have access to high-
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performance computing facilities for parallel simulation of
ensemble members. Third, the hydrodynamic model should
be sequentially executed within the DA algorithm. The mod-
eler should check the hydrodynamic model manual and make
sure that the outputs and initial conditions can be updated in
a sequential manner. Taking these three considerations into
account, the proposed DA hydrodynamic modeling frame-
work can be applied to any other study areas that are prone
to frequent flooding and provide a robust and generic tool for
real-time probabilistic flood inundation mapping.
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