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Abstract. Environment and Climate Change Canada has ini-
tiated the production of a 1980–2018, 10 km, North Amer-
ican precipitation and surface reanalysis. ERA-Interim is
used to initialize the Global Deterministic Reforecast Sys-
tem (GDRS) at a 39 km resolution. Its output is then dynami-
cally downscaled to 10 km by the Regional Deterministic Re-
forecast System (RDRS). Coupled with the RDRS, the Cana-
dian Land Data Assimilation System (CaLDAS) and Precip-
itation Analysis (CaPA) are used to produce surface and pre-
cipitation analyses. All systems used are close to operational
model versions and configurations. In this study, a 7-year
sample of the reanalysis (2011–2017) is evaluated. Verifica-
tion results show that the skill of the RDRS is stable over
time and equivalent to that of the current operational system.
The impact of the coupling between RDRS and CaLDAS
is explored using an early version of the reanalysis system
which was run at 15 km resolution for the period 2010–2014,
with and without the use of CaLDAS. Significant improve-
ments are observed with CaLDAS in the lower troposphere
and surface layer, especially for the 850 hPa dew point and
absolute temperatures in summer. Precipitation is further im-
proved through an offline precipitation analysis which allows
the assimilation of additional observations of 24 h precipita-
tion totals. The final dataset should be of particular interest
for hydrological applications focusing on transboundary and
northern watersheds, where existing products often show dis-
continuities at the border and assimilate very few – if any –
precipitation observations.

1 Introduction

Atmospheric reanalysis datasets are invaluable tools allow-
ing for better understanding and analysis of global and re-
gional water cycles by integrating data assimilation tech-
niques with state-of-the-art numerical models of the at-
mosphere and Earth’s surface observations of the water
and energy cycle. Indeed, this was one of the main ob-
jectives in the design and the development of recent re-
analysis datasets such as National Aeronautics and Space
Administration (NASA) Modern-Era Retrospective analy-
sis for Research and Applications (MERRA) (Bosilovich
et al., 2008, 2011; Rienecker et al., 2011; Takacs et al.,
2016), European Centre for Medium-Range Weather Fore-
casts (ECMWF) interim reanalysis (ERA-Interim) (Dee
et al., 2011) and ECMWF reanalysis fifth generation (ERA5)
(Hersbach et al., 2020).

Data assimilation is the process by which a system state
estimated by a model is merged with observations of that sys-
tem, in order to adjust the trajectory of the model (Fletcher,
2017). More specifically, a gridded numerical model output
(commonly referred to as the background or trial field) is
combined with observations of all kinds, through advanced
mathematical methods constrained by the laws of physics in
order to obtain a gridded representation (generally referred to
as an analysis) as close as possible to the true state which the
numerical model intends to predict and observations intend
to measure.
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Atmospheric reanalysis datasets are generally obtained by
performing data assimilation of atmospheric observations ev-
ery few hours and integrating a numerical weather predic-
tion (NWP) model between analysis times. The NWP model
itself relies on a land-surface scheme to represent energy,
mass and momentum exchanges occurring at the Earth’s sur-
face. Most reanalyses are designed to provide optimal results
for large-scale atmospheric fields, sometimes at the price of
degradation of surface prediction skill and bias (Albergel
et al., 2013; Fujiwara et al., 2017). In addition, reanalyses
often do not assimilate any observations of precipitation and
of the land-surface state but instead only provide short-term
forecasts of these variables.

Another limitation of existing atmospheric reanalyses is
that their spatial resolution can be too coarse to be fully
suited for land-surface applications at the regional scale
(Marke et al., 2011), even for the most recent and ad-
vanced ones such as ERA5 (Hersbach et al., 2020) or the
North American Regional Reanalysis (NARR; Mesinger
et al., 2006), which have a resolution of approximately
30 km. In order to obtain predictions at the scale required
for many land-surface and hydrological modelling applica-
tions, higher-resolution atmospheric forcing and land-surface
model outputs are necessary. For example, in regions of
France showing high precipitation variability, Lobligeois
et al. (2014) note a significant improvement in streamflow
simulations when gridded rainfall is provided to a hydrolog-
ical model at a resolution of 8 km or better. In studies con-
ducted in China, Shrestha et al. (2002, 2006) report better hy-
drological simulation results when the number of grid cells
per watershed is at least 10, meaning that 30 km resolution
would only be appropriate for watersheds of size 1000 km2

or larger. Nevertheless, Tarek et al. (2020) report satisfactory
results over North America when using ERA5 precipitation
and temperature to drive a lumped hydrological model, even
for watersheds of less than 1000 km2 in size (although the
skill does increase with watershed size).

As a consequence, separate and complementary land-
surface reanalyses have been developed by both NASA and
ECMWF where the above-mentioned atmospheric reanaly-
ses are directly used to force advanced land-surface mod-
els in an open-loop manner and at higher horizontal reso-
lution. Considering that precipitation is one of the most in-
fluential forcings for land-surface processes, precipitation is
generally adjusted and locally rescaled based on observation
datasets such as the Global Precipitation Climatology Project
pentad – GPCP v2.1 (Adler et al., 2003). Such datasets, in-
cluding MERRA-Land (Reichle et al., 2011), ERA-Interim-
Land (Balsamo et al., 2015) and ERA5-Land (Muñoz Sabater
et al., 2018) are shown to improve surface prediction when
compared to the underlying original reanalysis. However,
with the exception of a simple precipitation adjustment, data
assimilation of neither surface nor remotely sensed observa-
tions is involved in the process. Going one step further, op-
timal interpolation was used by Soci et al. (2016) to create

reanalyses of temperature, humidity and precipitation over
Europe at high spatial resolution (5.5 km) and over a short
historical period (2007–2010) by combining short-term fore-
casts of an operational NWP model with in situ observations
using the MESCAN analysis system. This approach is in-
teresting but difficult to apply over a long historical period,
since the outputs from the same NWP model would not be
available.

The main objectives of this paper are (1) to present a strat-
egy for the production, at relatively low computing cost, of
high-resolution surface and precipitation regional reanalyses
which includes two-way coupling between the land data as-
similation system and the NWP model, as well as assim-
ilation of precipitation observations, and (2) to evaluate a
North American reanalysis based on the Global Environmen-
tal Multiscale (GEM) model (Côté et al., 1998a, b; Girard
et al., 2014), obtained using the proposed methodology and
currently under production at the Canadian Centre for Mete-
orological and Environmental Prediction (CCMEP) of Envi-
ronment and Climate Change Canada (ECCC).

The desired outputs from this system are hourly time se-
ries, available on a ∼ 10 km regular grid of the main me-
teorological variables that are required in order to operate
surface and hydrology models: near-surface air temperature,
near-surface air humidity, surface pressure, wind speed and
direction, incoming infrared flux at the surface, downward
solar flux at the surface, and finally precipitation.

One of the important motivations for the production of
this reanalysis is, for ECCC, to better support the Inter-
national Joint Commission (IJC), which prevents and re-
solves disputes related to transboundary watersheds cov-
ered by the Canada–US Boundary Waters Treaty. Too of-
ten, North American climate datasets show discontinuities at
the Canada–US border (Gronewold et al., 2017). By cover-
ing seamlessly all of North America, this product is expected
to facilitate hydrometeorological and hydroclimatic studies
involving transboundary watersheds in North America.

1.1 Open-loop land-surface simulations as an
alternative to reanalysis land-surface data

The approach used by ERA5-Land, MERRA-Land and
ERA-Interim-Land of running a land-surface model in open
loop with adapted meteorological forcing data is fairly com-
mon in the land-surface and hydrology modelling commu-
nity (Albergel et al., 2013; Muñoz Sabater et al., 2018),
i.e. surface models are often integrated in an open-loop man-
ner forced by some kind of atmospheric gridded datasets in
order to predict the state of the land surface. There are sev-
eral major advantages to this approach: (1) atmospheric forc-
ing can be improved through postprocessing, (2) horizontal
resolution can be increased without a prohibitive computa-
tional cost, and (3) a more recent land-surface scheme, or
perhaps more adapted to the problem at hand, can be used.
While convenient and relatively straightforward, results from
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this approach are fully dependent on both the forcing data
quality and the abilities of the land-surface model when used
with this specific forcing dataset to reproduce the processes
of interest. No observations are directly involved other than
those used to produce the atmospheric forcing. Thus the
land-surface model errors can grow over time since the land-
surface model is allowed to drift without the constraints from
surface observations. These errors can be caused by limita-
tions of the land-surface scheme but also by an imbalance
between the atmospheric forcing obtained from a reanaly-
sis product and the surface feedback predicted by the land-
surface model when a different horizontal resolution or dif-
ferent model is used.

1.2 Dynamical downscaling of reanalysis data to
improve horizontal resolution

The resolution limitation of existing reanalysis products can
be overcome through dynamical downscaling, using either a
limited-area NWP model or a regional climate model. This is
once again fairly common in the literature; see for example
Yoshimura and Kanamitsu (2008) and Giorgi (2019). Such
models, when initialized and/or forced at their boundaries
with reanalysis data have been shown to perform properly
and can improve results (Lucas-Picher et al., 2013; Chikhar
and Gauthier, 2014). When the objective is to generate high-
resolution datasets covering periods of more than a few years,
this approach is generally preferable to the use of archived
outputs from operational analysis and/or forecasting systems.
Indeed, although operational analyses and forecasts can be
more skilful than reanalyses, these datasets are not consis-
tent in time; i.e. their time and space resolution and quality
evolve as a function of operational implementations, prevent-
ing their usage for long-term applications where consistency
is required (Smith et al., 2014).

The atmospheric model used for dynamical downscaling
generally relies on a land-surface model sufficiently different
from the one used as part of the lower-resolution reanalysis
system. As a result, it cannot be initialized from land-surface
state variables provided with the reanalysis. The usual so-
lution to this problem is to continuously integrate the land-
surface model, cycling the land-surface state variables after
the end of each atmospheric model run. Again, the land-
surface model is allowed to drift with time. Furthermore, be-
cause the land-surface model interacts with the atmospheric
model in a dynamical downscaling experiment, the atmo-
spheric model itself can drift with time. It will be shown that
this feature of the standard approach to dynamical downscal-
ing of reanalyses can lead to significant atmospheric model
errors and biases.

1.3 Avoiding land-surface and atmospheric model drift
through land-surface data assimilation

Land-surface model drift can be controlled through the use
of a land-surface data assimilation system (Carrera et al.,
2015). At the same time, the surface analyses provided by
such a system can be used to better initialize an atmospheric
model used for dynamical downscaling if the same land-
surface model is used by the land-surface data assimilation
system and the atmospheric prediction system. The dynam-
ically downscaled atmospheric forcing can furthermore be
used as input to the land-surface data assimilation scheme,
thus ensuring consistency between the surface predictions
performed as part of the assimilation and forecast cycles.
The computing cost of such an approach is higher than that
of running an open-loop simulation, but still much less than
that of a complete atmospheric and land-surface reanalysis
(Fairbairn et al., 2017). It will be shown that coupling a land-
surface data assimilation scheme with a limited area NWP
model for dynamical downscaling is well worth the effort as
it leads to significantly improved near-surface atmospheric
and land-surface predictions.

1.4 Structure of the paper

The present study documents a methodology for increas-
ing the resolution of a reanalysis product through dynami-
cal downscaling while avoiding model drift near the surface
through land-surface data assimilation. Two versions of this
reanalysis are introduced and evaluated: a preliminary ver-
sion with a horizontal resolution of 15 km is used to assess
the impact of the land-data assimilation system over the pe-
riod 2010–2014, and a second version with a horizontal reso-
lution of 10 km is compared over the period 2010–2017 to the
operational NWP system which was in operation at CCMEP
over the same time period. This atmospheric reforecast and
land-surface reanalysis covers the whole North America and
the Arctic Ocean, and the evaluation is performed over Mex-
ico, the United States of America and Canada. In Sect. 2,
the methodology followed to obtain such a product is pre-
sented, along with the observational datasets involved in
land-surface and precipitation data assimilation. Verification
metrics used throughout the paper are also introduced. In
Sect. 3, the added value of surface data and precipitation as-
similation versus more standard dynamical downscaling ap-
proaches is assessed both from a surface perspective and with
regards to the free atmosphere, based on the 15 km configura-
tion of the reanalysis. Section 4 focuses on the evaluation of
precipitation, temperature dew point from the 15 and 10 km
configurations, relying on surface and streamflow observa-
tions. A discussion and conclusion follow.
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Figure 1. Scheme illustrating the main components of the method
followed to produce a land-surface and precipitation reanalysis.

2 Data and method

When designing a reanalysis system, many decisions have
a significant impact on the resources and time required to
perform the reanalysis. Despite these constraints, horizontal
resolution must be sufficient to allow for an acceptable rep-
resentation of the hydrological cycle. Benedict et al. (2019)
suggest that 25 km is likely insufficient to represent the cli-
matic driver of the Mississippi river basin, but Deacu et al.
(2012) obtained satisfactory results when simulating the net
basin supplies of the Great Lakes basin at 15 km resolution.

Based on the results of Deacu et al. (2012), initial tests
aimed at fine-tuning the configuration of the reanalysis sys-
tem were performed at 15 km resolution. However, a resolu-
tion of 10 km was chosen for the production of a 1980–2018
reanalysis, in order to match the current resolution of the Re-
gional Deterministic Prediction System (RDPS) and of the
Regional Ensemble Prediction System (REPS) currently in
operation at CCMEP for short-term weather forecasting over
North America.

Having settled on a system operating at the meso-gamma
scale over North America, the system was designed in order
to provide all atmospheric forcing required to perform land-
surface and hydrological modelling at the regional scale and
to be coherent with in situ surface observations (e.g. precipi-
tation, absolute and dew point temperatures, and snow depth)
while avoiding the need for atmospheric data assimilation.

As illustrated in the left panel of Fig. 1, the global reanal-
ysis ERA-Interim (Dee et al., 2011) is used as initial atmo-
spheric conditions of the so-called Global Deterministic Re-
forecast System (GDRS) in order to produce a global refore-
cast at higher resolution than ERA-Interim. Then, following
a dynamical downscaling approach, the so-called Regional
Deterministic Reforecast System (RDRS) is applied, also ini-
tialized by ERA-Interim (Dee et al., 2011) but driven by the
GDRS, to produce a reforecast at higher resolution covering
the whole North America and Arctic Ocean. Both the GDRS
and RDRS are based on the GEM model (respectively on
global and regional configurations of GEM).

ERA-Interim, and not ERA5, is used for initializing the
GDRS and RDRS mainly because ERA5 was not available
during the development phase of this reanalysis project.

Surface initial conditions (sea surface temperature, sea
ice concentration and thickness, soil moisture, soil temper-
ature, and snowpack conditions) consistent with the driv-
ing data and the surface scheme of the atmospheric model
are also required. For the GDRS, initial land-surface con-
ditions are obtained from an a priori offline (open-loop) of
GEM’s land-surface model, GEM-Surf (Carrera et al., 2010;
Bernier and Bélair, 2012), directly forced by the near-surface
fields of the ERA-Interim reanalysis as well as the 3 h pre-
cipitation amounts (Gagnon et al., 2015). This offline sys-
tem relies on a version of the Interaction Soil–Biosphere–
Atmosphere (ISBA) land-surface scheme (Noilhan and Plan-
ton, 1989; Noilhan and Mahfouf, 1996) adapted for use in
the GEM model (Bélair et al., 2003a, b), as well as sea ice
and glacier schemes which are part of the GEM model itself.

To improve initial conditions of soil moisture, soil temper-
ature and snow depth, the RDRS is coupled with the Cana-
dian Precipitation Analysis (CaPA) (Mahfouf et al., 2007;
Lespinas et al., 2015; Fortin et al., 2015, 2018) and the Cana-
dian Land Data Assimilation System (CaLDAS) (Brasnett,
1999; Balsamo et al., 2007; Carrera et al., 2015) as detailed
hereafter.

In this section, the main aspects of the global and regional
atmospheric reforecasts, as well as the precipitation and sur-
face data assimilation systems, are presented. Then, observa-
tional datasets used for data assimilation as well as verifica-
tion metrics used throughout the paper are introduced.

In order to reduce the risk of discovering major issues with
the reanalysis after the fact, GDRS, RDRS, CaPA and CaL-
DAS configurations are kept as close as possible to docu-
mented configurations and currently operational versions of
these systems at CCMEP. More details on the configuration
of each component are given below.

2.1 Atmospheric model

Both GDRS and RDRS were based on the latest stable ver-
sion of the Global Environment Multiscale (GEM v4.8-LTS)
model (Côté et al., 1998b, a; Girard et al., 2014) at the
time of production. Their configurations, as summarized in
Tables 1 and 2, are closely related to the control mem-
ber of the Global and Regional Ensemble Prediction Sys-
tem (GEPS and REPS) (Li et al., 2008; Lavaysse et al., 2012;
Houtekamer et al., 2013; Gagnon et al., 2015; Lin et al.,
2016) as well as the Regional Deterministic Prediction Sys-
tem (RDPS) (Bélair et al., 2005; Mailhot et al., 2006; Caron
et al., 2016).

Two configurations of the RDRS were used in this study:
RDRS-15, having a horizontal resolution of 15 km (which is
based on REPS control member configuration), and RDRS-
10, having a horizontal resolution of 10 km (which is based
on RDPS configuration). RDRS-15 was nested in a configu-
ration of the GDRS, having a resolution of 50 km (GDRS-
50), and RDRS-10 in a configuration of the GDRS, hav-
ing a resolution of 39 km (GDRS-39). As will be explained
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Table 1. Dynamic kernel and physical parameterizations common to the GDRS and RDRS.

Model version Global Environmental Multiscale (GEM) model version 4.8-LTS

Formulation Hydrostatic primitive equations

Numerical technique Finite differences: Arakawa C grid in the horizontal and Charney–Phillips grid in the vertical
(Girard et al., 2013)

Time integration Implicit, semi-Lagrangian (3-D), 2 time levels (Côté et al., 1998b, a)

Independent variables x, y, η and time

Prognostic variables E–W and N–S winds, temperature, specific humidity and logarithm of surface pressure, liquid
water content, turbulent kinetic energy (TKE)

Initialization Diabatic digital filter (Fillion et al., 1995)

Radiation Solar and infrared using a correlated-k distribution (CKD) (Li and Barker, 2005)

Surface scheme Interaction Soil–Biosphere–Atmosphere (ISBA) surface scheme: mosaic approach with four types:
land, water, sea ice and glacier (Bélair et al., 2003a, b)

Deep convection Kain and Fritsch scheme (Kain and Fritsh, 1990; Kain and Fritsch, 1993)

Shallow convection Girard scheme calculates turbulent fluxes in partially saturated air (see in Mailhot et al., 1998).
Kuo Transient scheme (see Bélair et al., 2005)

Stable precipitation Sundqvist et al. (1989) scheme (see Pudykiewicz et al., 1992). For quantitative precipitation
forecast (QPF) evaluations, see Bélair et al. (2009).

Gravity wave drag Orographic: McFarlane (1987); McFarlane et al. (1986) with coefficient 8× 10−6

Non-orographic: Hines (1997a, b)

Low-level (orographic) Parameterized (Lott and Miller, 1997; Zadra et al., 2003) with coefficient 1.0
blocking

Turbulent mixing (vertical Turbulent kinetic energy: Benoit et al. (1989) and Bélair et al. (1999) for RDRS-15 and
diffusion) Bélair et al. (2005) for RDRS-10 except near the surface and in the upper troposphere. Prandtl

number taken to be 1.0. Includes Richardson number hysteresis (McTaggart-Cowan and Zadra, 2014)

Table 2. Main differences in the configuration of the GDRS and RDRS.

Prediction system GDRS-50 GDRS-39 RDRS-15 RDRS-10

Grid 800× 400 uniform Yin–Yang uniform 726× 556 rotated 960× 1080 rotated
lat–long lat–long

Horizontal resolution 0.45◦ (∼ 50 km) 0.35◦ (∼ 39 km) 0.1375◦ (∼ 15 km) 0.09◦ (∼ 10 km)

Vertical levels 45 45 48 80

Lid [hPa] 0.1 0.1 10 0.1

Lid piloting No No Yes No

Time step [s] 900 900 450 300

Surface analysis GEM-Surf forced GEM-Surf forced CaLDAS CaLDAS
by ERA-Interim by ERA-Interim

Time period covered 2010–2014 1980–2018 2010–2014 2000–2017 (1980–
2018 planned)
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later, the GDRS and RDRS are initialized at both 00:00 and
12:00 UTC. The following nomenclature will be used to refer
to a specific model configuration and initial time: AAAAZZ-
HH, where AAAA refers to the prediction system (either
GDRS or RDRS), ZZ to the initial time (either 00:00 or
12:00 UTC) and HH to the horizontal resolution. For exam-
ple, RDRS00-10 refers to the 00:00 UTC run of the 10 km
configuration of the RDRS. ZZ and/or -HH will be omitted
when obvious from the context or when the statement or con-
clusion applies independently of either the initial time or the
horizontal resolution.

The GDRS-50 features a global uniform latitude–
longitude grid with 800× 400 meshes of 0.45◦, while the
GDRS-39 features a Yin–Yang grid (Qaddouri and Lee,
2011), having a uniform resolution of 0.35◦ (having a to-
tal of 2× 835× 303 meshes). The GDRS features 45 stag-
gered hybrid vertical levels going from the surface up to
0.1 hPa (lid of the model). A 900 s time step is used. RDRS-
15 (resp. RDRS-10) features a limited area rotated uniform
latitude–longitude grid with 726× 556 (resp. 960× 1080)
meshes. The grid covers North America, adjacent oceans,
the whole Arctic Ocean and part of Europe and Siberia. A
450 s (resp. 300 s) time step is used. In the vertical, it fea-
tures 48 (resp. 80) hybrid staggered vertical levels going from
the surface up to 10 (resp. 0.1) hPa. In all configurations of
GDRS and RDRS, the first momentum level is at∼ 40 m and
the first thermodynamic level is at ∼ 20 m.

While similar, configurations of GDRS and RDRS are
adapted to their grid configuration: (a) a few parameters dif-
fer as required by the resolution change, (b) additional dif-
fusion is added at the pole of GDRS-50, (c) in RDRS-15,
an upper-boundary nesting procedure is used (McTaggart-
Cowan et al., 2011) in addition to the usual lateral bound-
ary nesting, and (d) in RDRS-10, a more advanced turbu-
lent kinetic energy (TKE) closure is used to take into account
boundary layer clouds (Bélair et al., 2005).

Concerning input geophysical fields (i.e. orography, sur-
face roughness length (except over water), subgrid-scale
orographic parameters for gravity wave drag and low-level
blocking, vegetation characteristics, soil thermal and hy-
draulic coefficients, and glaciers fraction), the same input
databases and processing methods are used in the GDRS
and RDRS as in the operational systems, albeit to produce
fields at a different resolution. They are derived from a va-
riety of recent geophysical databases using an in-house soft-
ware (GenPhysX v2.3.4; Zadra et al., 2008) and are fixed in
time.

Finally, both the GDRS and the RDRS are launched twice
a day (every 12 h at 00:00 and 12:00 UTC) and integrated for
24 h in an intermittent cycling manner. Both rely on the 37
pressure levels from ERA-Interim as initial atmospheric con-
ditions of the five main variables of GEM. To avoid the effect
of initial shock, a diabatic filtering procedure (Fillion et al.,
1995) is applied at the beginning of each integration, i.e. dur-
ing the first 6 h in the GDRS and the first 3 h in the RDRS.

Figure 2. Flowchart of the method followed to produce a land-
surface and precipitation reanalysis.

Thus, given the resolution jump, with the spin-up required
for some of the variables such as cloud and precipitation and
this filtering procedure, it was decided to avoid using the data
for the first 6 h following the beginning of the integration for
land-data assimilation purposes.

Outputs from GDRS-50 and RDRS-15 are available for
a 5-year test period (2010–2014), whereas outputs from
GDRS-39 are available for most of the period covered by
ERA-Interim (1980–2018). Outputs from RDRS-10 will be
produced for the same period by CCMEP and are already
available for 2000–2017 (1980–2018 planned).

2.2 Surface assimilation

The land-surface treatment (soil moisture, soil temperature
and snowpack conditions) differs notably between the GDRS
and RDRS. For the GDRS, as shown in Figs. 1 and 2, initial
conditions of each simulation are obtained from an a priori
offline simulation of the CCMEP land-surface model, GEM-
Surf (Carrera et al., 2010; Bernier and Bélair, 2012), directly
forced by ERA-Interim atmospheric variables.

For its part, the RDRS is coupled with CaLDAS (Balsamo
et al., 2007; Carrera et al., 2015), meaning that the latter
is driven by the RDRS which then uses the surface analy-
ses produced by CaLDAS as surface initial conditions for
the next integration as illustrated in Fig. 2. CaLDAS uses a
one-dimensional ensemble Kalman filter (EnKF) to estimate
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soil moisture and soil temperature and an optimal interpola-
tion (OI) scheme to estimate snow depth. In addition, con-
sidering that precipitation is one of the main drivers of sur-
face and soil processes, CaLDAS further relies on the Cana-
dian Precipitation Analysis (CaPA) (Mahfouf et al., 2007;
Lespinas et al., 2015; Fortin et al., 2018) system to provide
it with a 6 h precipitation analysis as input. CaPA relies on
an OI method similar to the one used for snow depth. In
all cases, an ensemble of analyses is obtained by perturb-
ing the meteorological inputs to the land-surface scheme, as
described by Carrera et al. (2015). The combination of CaPA
and CaLDAS configurations designed to initialize the GEM
model in its regional configuration is known as the Regional
Surface Analysis System (RSAS). All the analyses are per-
formed at the resolution of the background field for a subdo-
main covering the whole North America (co-located meshes
with RDRS). Furthermore, in order to avoid using data within
the spin-up period of the model, only data from the 6 to 18 h
reforecast lead time serves as background as shown in Fig. 2.

Figures 1 and 2 sum up this approach. Each RSAS analysis
cycle runs for 6 h, because precipitation and snow depth anal-
yses are only available every 6 h (analyses for all others land-
surface variables are available every 3 h). Hence, following
such an approach allows for combining surface observations
of temperature, humidity, snow depth and precipitation with
the first guess provided by the RDRS and GEM-Surf through
various OIs and a one-dimensional EnKF (Brasnett, 1999;
Balsamo et al., 2007; Carrera et al., 2015; Fortin et al., 2015).

2.3 Precipitation analysis

As already mentioned, CaPA (Mahfouf et al., 2007; Lespinas
et al., 2015) is the system used to produce gridded precipi-
tation analysis for 6 and 24 h accumulation periods. CaPA
combines precipitation observations with a background field
obtained from the short-term reforecast provided by the
RDRS through an OI method. It aims to correct the error
of the latter by spatially interpolating in a transformed space
(cubic-root transformation) the differences between the ob-
served values and the corresponding background values at
the station locations. Error statistics (standard deviations of
background errors and of observation errors and the charac-
teristic length scale) required to perform the OI are continu-
ously updated based on a temporally adaptive method, allow-
ing us to implicitly consider seasonal changes in precipita-
tion characteristics (and evolving model error). CaPA also in-
cludes an advanced quality control of observations (Lespinas
et al., 2015). Although the operational configuration of CaPA
assimilates radar quantitative precipitation estimates (Fortin
et al., 2015), no radar data are used in this study, due to the
availability and the complexity of accessing, processing and
controlling the quality of radar data for such a long period in
the past.

CaPA has been applied successfully in a number of stud-
ies, oftentimes demonstrating great capabilities. See Fortin

et al. (2018) for a recent literature review. It is currently op-
erational at CCMEP, providing near real-time precipitation
analysis over North America at 10 km resolution and over
most of Canada at 2.5 km resolution.

Given that precipitation is one of the most influential forc-
ing of land-surface processes, CaPA serves to provide CaL-
DAS with 6 h precipitation analysis as illustrated in Fig. 1.
For that sake, 1, 3 and 6 h precipitation accumulation obser-
vations from the different networks covering the whole North
America are assimilated. In order to represent the uncertainty
in both the background field and the observations, an ensem-
ble of CaPA 6 h analyses are actually generated in the process
(see Carrera et al., 2015, for more details). This precipitation
analysis will be later referred to as CaPA-6h.

Several precipitation observation networks, notably the
ones that are subject to the most advanced offline quality
control and adjustments (see Sect. 2.5), are, however, only
available for daily accumulations. As a result, these networks
cannot be used directly in the production of the reanalysis as
previously described. Hence, in order to take advantage of
such networks, CaPA is run again but for 24 h precipitation
accumulations in an a posteriori manner based on the first
guess provided by RDRS. More precisely, in order to prevent
users from using data in the spin-up period of the model, the
6 to 18 h forecast lead time from various sequential integra-
tions are used to build 24 h accumulations valid at 12:00 UTC
as illustrated in Fig. 3. The latter then serve as a background
field in order for CaPA to produce 24 h precipitation analy-
ses covering the whole domain and period of interest, later
referred to as CaPA-24h.

Strict quality control procedures are in place in both CaPA-
6h and CaPA-24h to avoid the assimilation of biased obser-
vations, and in particular wind-induced undercatch of solid
precipitation. If, based on a temperature analysis, solid pre-
cipitation is likely to have fallen in the gauge, wind speed
observations are used to determine if a precipitation observa-
tion should be assimilated. Different wind speed thresholds
are used depending on the network, the type of gauge and
whether the station is manned or automated (see Lespinas
et al., 2015, for more details on the quality control proce-
dure).

An important difference between CaPA-6h and CaPA-24h
is that the former is part of CaLDAS and thus contributes to
the initialization of the atmospheric model, whereas the latter
serves to improve the final precipitation product through a
postprocessing step that can be launched a posteriori once all
integrations of the atmospheric model have been performed.
Hence, it is possible to reprocess the final 24 h precipitation
product at a small computational cost if more precipitation
datasets (or datasets of better quality) become available.

For many environmental modelling applications, a 24 h
time step for a precipitation product is too coarse. In order
to provide users with realistic hourly precipitation rates and
accurate accumulations, the CaPA-24h precipitation analy-
sis has been disaggregated to an hourly time step using a
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Figure 3. Flowchart illustrating the approach to build 24 h accumulation and produce 24 h precipitation analysis at 12:00 UTC based on 6 to
18 h lead time RDRS outputs from integrations started at 00:00 and 12:00 UTC.

two-step procedure. Firstly, the CaPA-6h is disaggregated to
an hourly time step by linearly rescaling the atmospheric
model’s hourly precipitation rates in order to match the
6 h accumulations estimated by CaPA-6h. In cases where
the model precipitation is negligible but precipitation is ob-
served, a constant precipitation rate is assumed for that time
period. Secondly, the same procedure is applied to the CaPA-
24h precipitation analysis but using the disaggregated CaPA-
6h product as the reference. This same approach has been
applied to RDRS-15 and RDRS-10. The resulting datasets
are referred to as CaPA-1h in Fig. 1.

2.4 Snow analysis

The snow analysis follows closely the operational method
used at CCMEP. In the operational analysis, all state vari-
ables of the ISBA snow model (Bélair et al., 2003a) are cy-
cled, with the exception of snow depth, which is obtained
from an external analysis (Brasnett, 1999). This external
analysis uses an OI approach (Brasnett, 1999) to blend a first
guess of snow depth provided by the ISBA model. The two
main differences with the operational CCMEP analysis are
that the first guess comes from the ISBA model rather than
from a simpler degree-day model and that an ensemble of
analyses is produced, one for each CaLDAS member. Ran-
dom perturbations are added to the precipitation and temper-
ature fields that are provided to the external snow model in
order to obtain the background field for the analysis system.
No perturbations are added to the snow depth observations
themselves.

2.5 Surface observations used for assimilation and
verification

In order to produce a precipitation and land-surface reanal-
ysis, in addition to a background field coming from GEM
reforecasts, observations are required as input to the assimi-
lation procedure: observations for total precipitation accumu-

lation (1, 3, 6 and 24 h), 2 m a.g.l. (above ground level) abso-
lute and dew point temperatures, 10 m wind speed, and snow
depth. In the present study and in the forthcoming 1980–
2018 reanalysis, it was decided to only rely on surface obser-
vations and not remote sensing observations, such as satellite
or radar data. Indeed, the latter do not cover the whole period
of interest and were put aside mostly in order for the char-
acteristics of the reanalysis to be consistent in time. Further-
more, some datasets are only available for a small number of
years. For example, radar data are only used operationally in
the precipitation analysis since November 2014. As a result,
changes in the observing system will be more incremental
and not drastic. Instead, these datasets can be kept for quality
control and evaluation purposes.

For sample periods evaluated in the current study, ob-
servations from ECCC’s operational archive of data used
for NWP along with surface precipitation datasets from
ECCC’s climatic archive are used. Surface observations from
ECCC’s operational archive include all North American Sur-
face Synoptic Observations (SYNOP), Surface Weather Ob-
servations (SWOB), and METeorological Aerodrome Re-
ports (METAR), along with other more specific networks:
US Cooperative Observer Network (COOP) station data in
Standard Hydrological Exchange Format (SHEF) and ob-
servations from the Réseau météorologique coopératif du
Québec (RMCQ).

These operationally archived datasets cover at most
from 1992 to present and thus not the whole period of the
final reanalysis product. However, in addition to the pre-
operational observational archives from ECCC, it is planned
to further rely on the Integrated Surface Data (ISD, DS463.3
– http://rda.ucar.edu/datasets/ds463.3/, last access: 12 Febru-
ary 2019) (Lott et al., 2001) prior to 2000. This dataset is
mostly composed of stations available in ECCC’s operational
archive and a few additional datasets. However, DS463.3 has
been subject to additional offline automated quality control.

In order to improve the 24 h a posteriori precipitation
analysis, supplementary quality controlled observations were
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Table 3. Surface networks and variables used by CaLDAS and CaPA.

Network Domain covered Availability at Variables used Variables used Variables used
CCMEP by CaLDAS by CaPA-6h by CaPA-24h

METAR North America 1992–present T , Td P , T , ||U || P , T , ||U ||
SWOB North America 2013–present T , Td, Sd Not used P , T , ||U ||
SYNOP North America 1992–present T , Td, Sd P , T , ||U || P , T , ||U ||

AdjDlyRS Canada 1980–present Not used Not used P

RMCQ Province of Quebec 2011–present Not used Not used P , T , ||U ||
SHEF USA 1998–present Not used Not used P , T , ||U ||

T : temperature, Td: dew point temperature, Sd: snow depth, P : total precipitation, ||U ||: wind speed.

pulled from ECCC’s climate observations archive. These ob-
servations are available as part of the so-called Adjusted
Daily Rain and Snow (AdjDlyRS) observations dataset
(Wang et al., 2017). These observations were adjusted for
systematic errors and in particular undercatch and evapo-
ration caused by wind effects, gauge-specific wetting loss,
and for trace precipitation amounts. This recently released
dataset, which features 3346 stations, is considered one of the
most accurate sources of retrospective precipitation data in
Canada. AdjDlyRS stations are mainly based on manual sta-
tions from the Canadian synoptic network, which are known
as the most reliable observations. For this reason, stations
belonging to the AdjDlyRS dataset are not filtered out by
CaPA’s quality control for solid precipitation measurements.
Observations from all other datasets are subject to this pro-
cedure, which has been shown to considerably improve the
bias (Lespinas et al., 2015).

Table 3 summarizes the surface observation datasets used
by CaLDAS and those used by CaPA for the 6 h analysis cou-
pled to CaLDAS (CaPA-6h), as well as for the 24 h a poste-
riori precipitation analysis (CaPA-24h).

2.6 Additional surface observations used for evaluation
purposes

Additional surface observations were used in order to eval-
uate precipitation, snow, and runoff predicted by the RDRS.
For precipitation, two observation-based products were se-
lected. The first product comprises 24 h precipitation ac-
cumulations over the United States obtained from the Na-
tional Centers for Environmental Prediction’s Stage IV anal-
ysis. The Stage IV analysis is a national product mosaicked
from regional multisensor (radar+ gauges) precipitation es-
timates (MPEs) produced by the 12 River Forecast Centers
of the National Weather Service (Lin and Mitchell, 2005).
Its resolution of 4 km is better than that of the RDRS, and
thus is expected to provide more details about precipitation
over the United States than the RDRS, but it does not cover
neither Canada nor Mexico, and is not valid over water. The
second product is version 2.3 of the Global Precipitation Cli-
matology Project (GPCP), which is a global monthly prod-

uct available on a 2.5× 2.5◦ grid, and thus covers the whole
domain of interest, but at much lower resolution than the
RDRS. It merges gauge and satellite data into a seamless
product (Adler et al., 2003, 2018). For snow depth, density
and water equivalent, a comprehensive Canadian database of
snow surveys was selected (Brown et al., 2019).

For the evaluation of runoff, a Canada-USA transbound-
ary watershed was selected: the Lake Erie watershed. Lake
Erie, the tenth largest freshwater lake in the world by area,
straddles the Canada-US border. It is part of the Laurentian
Great Lakes system (Fortin and Gronewold, 2012), receiv-
ing water from Lake Michigan-Huron and draining into Lake
Ontario through Niagara Falls. Its level has been steadily in-
creasing since 2013, leading to frequent flooding in recent
years (Gronewold and Rood, 2019), and is thus the subject
of many studies looking at better predicting its water bal-
ance, such as the Great Lakes Intercomparison Project for
Lake Erie (GRIP-E; Mai et al., 2021). Its watershed, defined
as the land draining between Port Huron, at the outlet of Lake
Michigan-Huron, and Niagara Falls, covers and area of ap-
proximately 78 000 km2. Note that this watershed includes
lands that drain into Lake Erie through the smaller Lake St.
Clair. Inflows into Lake Erie from its watershed is not mea-
sured directly, but is estimated based on gauged tributaries
using the area-ratio method (Fry et al., 2013). Streamflow
gauge data were obtained from the United States Geological
Survey (USGS) and the Water Survey of Canada (WSC) over
the years 2010 through 2014 for 31 gauges located on rivers
that drain into Lake Erie. The gauges were selected by Mai
et al. (2021) as part of a hydrological model intercomparison
study.

2.7 Verification metrics

Various verification metrics are used throughout the paper to
evaluate prediction errors. LetXn be a prediction,On the ver-
ifying observation, and {εn =On−Xn,n= 1, . . . ,N} a set of
prediction errors. Commonly used metrics include the bias of
the error, the standard deviation of the error (or STDE), the
root mean square error (or RMSE) and the mean absolute
error (or MAE):
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whereO (resp. X) is the arithmetic mean of the observations
(resp. forecasts). Note that bias is defined as being positive
when the mean of the observations is larger than the mean of
the predictions. The ideal value for all of these scores is zero.

Streamflow predictions are compared to observations us-
ing the Nash–Sutcliffe efficiency (NSE):

NSE= 1−

N∑
n=1

(On−Xn)
2

N∑
n=1

(
On−O

)2 . (2)

The ideal value for NSE is one; values above zero indicate
better skill than climatology.

Precipitation predictions are compared to observations
mainly through categorical scores. For a given threshold T ,
the number of hits H , misses M and false alarms F are de-
fined as follow:

H = # {(On > T )∧ (Xn > T )} ,

M = # {(On > T )∧ (Xn ≤ T )} ,
F = # {(On ≤ T )∧ (Xn > T )} , (3)

where # denotes the cardinal of the ensemble. From H , M
and F , the probability of detection (POD), the false alarm
ratio (FAR), the frequency bias index (FBI) and the equitable
threat score (ETS) are defined as follow:

POD=H · (H +M)−1,

FAR= F · (H +F)−1,

FBI= (H +F) · (H +M)−1,

ETS= (H −Hc) · (H +M +F −Hc)
−1, (4)

whereHc = (H +F) ·(H +M)/N
2 is the number of hits ex-

pected by chance alone. The ideal value for FAR is zero, and
it is one for POD, FBI and ETS.

In addition to these categorical scores, the partial mean
of both observations and forecasts are compared in order to
assess bias as a function of precipitation intensity. The partial
mean (PM) of a sample {Xn,n= 1, . . . ,N} for a threshold T

is defined as the arithmetic mean of sample values that are
smaller or equal to T . As the threshold increases towards the
largest value of the sample, the partial mean converges to the
arithmetic mean of the sample. The ideal value of PM for a
forecast is the partial mean of the observations for the same
threshold.

3 Impact of surface assimilation

The impact of surface assimilation on the quality of the re-
analysis was assessed using the RDRS-15 configuration (see
Table 2). Although this version was run from 2010 to 2014,
the evaluations were carried out on much shorter periods,
more precisely the 2011 winter and 2011 summer periods,
as well as the years 2013–2014. It is worth noting that
the 2011 winter and 2011 summer have also been used by
CCMEP to evaluate and validate all the forecast and analysis
systems which were operational in 2015–2016, thus facilitat-
ing the comparison with the systems that were operational at
that time.

In the following subsections, RDRS is evaluated against
other reference experiments and datasets. As a general rule,
surface analyses are not directly evaluated since all available
observations were assimilated. The short-term forecasts that
are part of the surface reanalysis creation process are evalu-
ated instead. Evaluation of these short-term forecasts is also
important, because these data are often used to force offline
surface, hydrology and environmental models over long pe-
riods. The only exception to this rule is for precipitation. In
that case, the precipitation analysis itself is evaluated, using
a cross-validation procedure presented in detail by Lespinas
et al. (2015).

A main reference in these evaluations is the RDPS,
i.e. the operational regional weather forecasting system from
CCMEP. The horizontal resolution of RDPS has increased
over time but has remained at 10 km since October 2012. In-
deed, considering that both systems (RDRS and RDPS) are
based on the same atmospheric and surface models (GEM
plus ISBA), results of the reforecast are expected to be in line
with the latter and in particular should feature similar error
signatures. The objective is not to obtain better results with
RDRS than with RDPS, since RDPS is initialized with an in-
house analysis developed for the latter on its native vertical
coordinate and at higher resolution (both vertical and hori-
zontal) and is using more advanced data assimilation method
than what was used for ERA-Interim. The objective is rather
to obtain forecasts of comparable quality for earlier years,
with a system that can be more easily run from 1980 to the
present day.

In order to assess the impact of land data assimilation
on the quality of the resulting reanalysis, three RDRS-
15 configurations are compared to RDPS and to each
other: one in which surface initial conditions are pro-
vided by CaPA and CaLDAS (RDRS-15, also referred to
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RDRS+CaLDAS for clarity in the context of this compari-
son), one in which surface initial conditions are provided by
GEM-Surf running in open-loop mode and forced by ERA-
Interim (RDRS+Open-Loop), and one in which surface ini-
tial conditions are cycled, each run starting from a 12 h fore-
cast of surface conditions obtained from the previous run
of RDRS-15 (RDRS+Cycle). Surface initial conditions in
RDRS+CaLDAS and RDRS+Open-Loop benefit from the
assimilation (either through CaLDAS or ERA-Interim) of
surface observations. On the other hand, RDRS+CaLDAS
and RDRS+Cycle benefit from the fact that the same at-
mospheric model is used to drive the land-surface model in
analysis and forecast mode. Only RDRS+CaLDAS has both
features but is more costly to operate. RDRS+Open-Loop
is closer to the dynamical downscaling approach used in a
NWP context (with initial conditions coming from an inde-
pendent analysis), and RDRS+Cycle is close to the dynam-
ical downscaling approach used for regional climate mod-
elling (with initial conditions obtained from a previous cycle
of the limited area model).

Verifications are performed against radiosonde observa-
tions as well as surface observations from synoptic stations in
North America. Comparing these three systems at the initial
integration time would only inform us on the fit to observa-
tions of these systems, since these are not independent obser-
vations. Forecasts with lead times of 6 to 24 h are compared
instead.

3.1 Impact of surface assimilation on the free
atmosphere

In this first evaluation, results from the whole atmosphere
are evaluated against radiosonde balloon observations that
are launched twice a day (00:00 and 12:00 UTC) across the
whole North American subcontinent in order to assess upper-
air conditions. In particular, absolute temperature T , dew
point temperature Td, dew point depression T − Td, wind
speed ||U || and geopotential height Zgeop as a function of at-
mospheric pressure are evaluated. This methodology is stan-
dard at CCMEP and represents generally one of the very
first steps when evaluating atmospheric systems. The same
methodology is thus applied here. It is noteworthy that bal-
loon vertical height measurement has historically been based
on the environment pressure. Hence, each balloon’s mea-
surement is not located at the same height above ground
level (a.g.l.) or above sea level (a.s.l.) but rather reported at
standard pressure levels. As a result, comparisons with model
outputs are also done based on pressure levels. While such
an approach is convenient and straightforward for the free at-
mosphere, results obtained close to the surface have to be in-
terpreted with caution: the lowest measurement of each bal-
loon depends on the local surface pressure of its launching
location (which is strongly correlated with the height a.s.l.).
Thus, surface error is not only represented by the lower point

of the profiles but spanning across the bottom of the profile
(i.e. from 1000 up to 850 hPa).

Figure 4a shows comparison results for Febru-
ary/March 2011 and Fig. 4b shows results from the
same approaches for July and August 2011. Comparisons
are done after 24 h integration of the atmospheric model for
the whole North America and results from the runs starting
at 00:00 and 12:00 UTC are combined. In each of the panels
the curves on the left show the bias while the curves on the
right show the STDE.

GEM integrations that are initialized with surface open-
loop results forced by ERA-Interim (blue dashed–dotted
line) are compared with integrations initialized with the CaL-
DAS analysis produced with the coupled system (orange
continuous line). In both cases the atmosphere is initialized
directly with ERA-Interim. It is noteworthy that the coupled
system was run starting in January 2010 in order for the sur-
face fields and notably the root zone water content to be
properly initialized. In this figure, the operational RDPS re-
sults (2011 final cycles) are also shown as a reference (black
dashed line) since the forecast component (GEM) of this sys-
tem is very similar to the one used to produce the reanalysis.

The CCMEP analysis used to initialized the RDPS is much
closer to the upper-air observations than ERA-Interim (not
shown here), but this does not translate into a major advan-
tage for the RDPS in the STDE of the forecast after 24 h of
integration, as the weather systems have had time to evolve
during the integration.

From Fig. 4a, it can be seen that during the winter the
continuous orange lines and the dotted–dashed blue lines are
very close to one another. Hence, results are almost unaf-
fected by surface initialization, and only absolute tempera-
ture features small improvements (mostly for the bias) for
the coupled reforecast compared to the uncoupled one. In
the boundary layer, winter results are also generally in good
agreement with the operational RDPS, with the exception of
a warm bias and increased STDE of temperature and dew
point depression below 850 hPa, which are both seemingly
caused by initial surface conditions. The whole atmosphere is
also wetter (as illustrated by a negative bias in dew point de-
pressions) with a decreased wind modulus while the geopo-
tential height is closer to the observations than the RDPS for
both reforecast experiments, which is likely to be caused by
ERA-Interim initial condition.

During the summer on the contrary, Fig. 4b, important dif-
ferences between the two reforecast experiments can be ob-
served in the temperature and dew point depression between
RDRS+CaLDAS and RDRS+Open-Loop while both the
wind modulus and geopotential height are almost unchanged.
The coupled system, which is in very good agreement with
the operational RDPS, shows great improvements over the
open-loop initialized results, with an impact up to 700 hPa
on both the temperature and dew point depression. Indeed,
an important error develops in the uncoupled reforecast with
a local maximum at 900 hPa. The shape and curvature of
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Figure 4. Comparison of atmospheric results from operational RDPS (black dashed line), RDRS+Open-Loop (blue dashed–dotted line)
and RDRS+CaLDAS (orange continuous line) after 24 h integration against radiosonde for the whole North America (from left to right:
wind modulus, geopotential height, absolute temperature, dew point depression): (a) February and March 2011; (b) July and August 2011.
In each of the panels the curves on the left show the bias while the curves on the right show the STDE.

the bias for these two variables are also significantly differ-
ent from the coupled approach (with the latter being more
consistent with the RDPS): a warm dry bias develop above
1000 and up to 700 hPa in the uncoupled reforecast. These
increased errors could be due to an inconsistency caused by
the differences between GEM-Surf driven by ERA-Interim
and GEM.

By further exploring these scores in details for the various
run hours, lead times and geographical regions (not shown
here), these errors turned out to be clearly increasing during
summer afternoons inland, i.e. in places where convective in-
stabilities driven by the sun heated surface dominate the di-
urnal cycle. This points to a deficient liquid water content in
the soil at initialization, preventing a proper onset of latent
heat flux and evapotranspiration and causing the atmosphere
close to the ground to become too dry and hot in the open-
loop initialized experiment. Figure 4 thus clearly illustrates
the impact of land-surface and precipitation assimilation on
the whole atmosphere.

From this first evaluation, it can be concluded that the cou-
pled reforecast approach leads to atmospheric results which
are more in line with the operational model for both seasons.
They are always closer to the latter as well as observations
vertically across the atmosphere than results from the re-
forecast initialized by the open-loop approach. This shows
that the proposed approach is not only capable of perform-
ing properly in the boundary layer but also in the upper-
air, demonstrating that the use of high-quality global atmo-
spheric reanalysis such as ERA-Interim coupled with a land-
data assimilation system can alleviate some of the cost of
performing a regional reanalysis, since it is not necessary to
perform a costly atmospheric assimilation procedure in order
to obtain initial atmospheric conditions.

3.2 Impact of surface data assimilation on surface
fields

Following the above atmospheric comparisons, this section
aims to evaluate the very same winter and summer 2011
experiments but based on 2 m a.g.l. absolute and dew point
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temperatures as well as wind speed observations from
the SYNOP network in North America. Table 4 summa-
rizes the differences between RDRS+Open-Loop 24 h and
RDRS+CaLDAS integrations in terms of averaged RMSE
changes (in %) for various geographical subdomains. Cell
values are shown in bold when a difference of more than
10 % is observed. Negative values, corresponding to cases
where RDRS+CaLDAS is worse than RDRS+Open-Loop,
are underlined.

At the surface, the coupled reforecast approach almost al-
ways shows better results for absolute and dew point temper-
atures than simulations initialized with the open-loop regard-
less of the run hour or geographic domain. With the excep-
tion of integration starting at 00:00 UTC for the eastern USA
domain in winter, absolute and dew point temperatures from
RDRS+CaLDAS are always better by at least a couple of
percent, and these improvements go up to 23 % in the eastern
part of the USA for the summer. Generally, improvements
are larger in summer than in winter. Concerning the wind
modulus, differences are most of the time small. Nonethe-
less, wind modulus for USA domains in the summer show
improvements on the order of a couple of percent.

Similar differences are obtained for integrations initial-
ized at either 00:00 or 12:00 UTC. However, improvements
for dew point temperature tend to be larger in summer for
integrations initialized (and valid) at 00:00 UTC, i.e. in the
evening for North America.

Instead of relying on initial surface conditions from an
open-loop run, a second alternative to RDRS+CaLDAS is
considered in which initial conditions are obtained through
cycling: in the RDRS+Cycle experiment, GEM forecasts
are initialized at the surface from the output of the previ-
ous model run, without any form of land-data assimilation.
While this setup provides more consistency between the at-
mospheric and land-surface prediction, there is a risk of sur-
face model drift, especially when running over such a large
domain as North America. A longer model spin-up is also re-
quired in order for the root-zone water content to be properly
initialized. However, if this approach were sufficiently accu-
rate compared to RDRS+CaLDAS, it would be simpler to
set up and less costly to run.

This approach was thus applied for a period of more
than 2 years (2013–2015) and results obtained are illustrated
based on STDE and bias in Fig. 5. In order to summarize
2 years of data, monthly averages of bias and STDE are com-
puted, considering forecasts with lead times of 6 to 17 h.
These are the lead times typically recommended for con-
tinuous offline simulation of surface and hydrology models:
the first 6 h of each forecast is discarded to minimize model
spin-up issues, and the next 12 h from both the 00:00 and the
12:00 UTC runs are combined to obtain a continuous hourly
forcing dataset.

In that figure, the two plots present the STDE (top curves,
solid lines) and the bias (bottom curves, dashed lines) for ab-
solute temperature (top plot) and dew point temperature (bot-

Figure 5. Comparison of reforecast surface results from
RDRS+Cycle (blue) and RDRS+CaLDAS (orange) against
SYNOP observations in terms of STDE (top curves, solid lines)
and bias (bottom curves, dashed lines) computed based on monthly
intervals for the whole North America and the 2013–2014 years:
(a) absolute temperature; (b) dew point temperature. Results based
on a combination of 6 to 17 h lead time from integrations starting at
00:00 and 12:00 UTC.

tom plot). The blue curve (resp. orange curve) corresponds
to the RDRS+Cycle (resp. RDRS+CaLDAS) experiment.
We can see that the coupled approach is always better for
both the bias and STDE regardless of the season. The cycling
approach also features degraded results in comparison to the
RDRS+Open-Loop (not shown here). Most notably, during
the summer months, the approach where the surface is cy-
cled shows an important increase of the absolute temperature
bias along with an important decrease of dew point temper-
ature bias. This tends to point out that there is not enough
water available in the soil for evaporation causing a warmer
and dryer atmosphere close to the ground. Indeed, at these
resolutions and when relying on the cold-start diabatic filter
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Table 4. Summary of average changes (in %) of RMSE (against SYNOP observations) between RDRS+Open-Loop and RDRS+CaLDAS
for February and March 2011 and July and August 2011. For each season, two columns show results from 24 h integrations starting at either
00:00 or 12:00 UTC. Changes of more than 10 % are shown in bold; negative values are underlined.

RMSE change (%) 1 Feb 2011 to 31 Mar 2011
RDRS+Open-Loop 1 Jul 2011 to 31 Aug 2011

– RDRS+CaLDAS 00:00 UTC 12:00 UTC 00:00 UTC 12:00 UTC

Alaska plus Td 7.45 8.87 6.07 5.22
Canadian T 5.59 7.63 8.09 8.11
Arctic ||U || –0.10 –0.12 0.17 –0.01

Canada west Td 5.52 4.32 15.51 7.48
T 3.76 2.77 9.97 13.88
||U || –0.13 –0.11 0.91 2.05

Canada east Td 2.41 2.76 6.22 5.75
T 2.20 4.22 3.77 3.96
||U || 0.13 0.10 –0.12 –0.23

United States Td 15.86 14.24 22.35 21.32
of America T 5.84 5.20 10.33 10.66
west ||U || 0.42 1.02 1.23 2.41

United States Td 8.35 9.47 21.29 23.13
of America T –3.61 0.55 16.86 17.77
east ||U || 0.16 0.70 0.86 3.42

Canada Td 5.29 5.22 12.68 7.67
T 4.30 5.04 8.19 10.72
||U || –0.02 –0.03 0.40 0.89

United States Td 12.83 12.23 22.10 21.85
of America T 2.63 3.40 13.69 13.86

||U || 0.32 0.85 1.10 2.98

North America Td 6.88 6.82 15.20 11.73
T 3.60 4.45 9.34 11.30
||U || 0.00 0.06 0.49 1.22

for initialization, GEM requires a spin-up period of at least
6 h for its precipitations to reach a stable level. This deficit
of water can be partly explained by the fact that the surface
scheme implemented in GEM-Surf, i.e. ISBA, is recognized
not to properly retain soil moisture (Alavi et al., 2016). This
model deficiency is compensated by CaLDAS through posi-
tive increments in soil moisture. During winter, while results
from the coupled approach tend to be closer to the observa-
tions for both bias and standard deviation, differences are not
as important as for the summer season.

Results presented in the above two sections clearly show
the added value of the coupled approach with regards to the
surface layer and atmosphere. Results obtained are in line
with the operational model in the atmosphere. In the surface
layer, significant improvements are obtained in comparison
with the simpler and more standard open-loop or cycling ap-
proaches. It is based on these results that the production of
a 10 km configuration of the RDRS, coupled with CaLDAS,
was launched at CCMEP for the period 1980–2018. The next

section presents an evaluation of this product for surface vari-
ables, precipitation accumulations and streamflow.

4 Evaluation of the continuous hourly forcing dataset
over 2011–2017

The impact of surface and precipitation analysis on refore-
casts has been evaluated on short time periods in the previ-
ous section. An improvement of the reforecast is observed
when the RDRS is coupled with the RSAS analysis system
(based on CaPA and CaLDAS). The present section aims
to evaluate various aspect of the reanalysis over a longer
time period (2011–2014 for RDRS-15 and 2011–2017 for
RDRS-10) in order to better appreciate its quality. Compar-
ison against screen-level absolute and dew point tempera-
tures, wind speed, precipitation, and streamflow in situ obser-
vations are presented, followed by a comparison of precipita-
tion totals with other products available for North America.
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Furthermore, the evaluation is focused on the continuous
hourly forcing dataset recommended for offline simulation
of surface and hydrology models, which will be distributed
to stakeholders as the main outcome of this project. For abso-
lute temperature, dew point temperature, humidity, radiation,
wind speed and pressure, this dataset is obtained by combin-
ing RDRS forecasts with lead times of 6 to 17 h from both the
00:00 and the 12:00 UTC runs. For precipitation, the CaPA-
24h product, disaggregated to a hourly time step, is used (see
Sect. 2.3). The resulting datasets are referred to in this sec-
tion simply as RDRS-15 and RDRS-10 or else as RDRS-
15+CaPA-24h and RDRS-10+CaPA-24h when precipita-
tion or offline hydrological simulations are evaluated.

4.1 Absolute temperature, dew point temperature and
wind speed

This section focuses on the evaluation of the RDRS-15 and
RDRS-10 short-term forecasts (with lead times of 6 to 17 h)
against absolute and dew point temperature observations
from synoptic stations in North America. Initial surface con-
ditions for the RDRS-15 and RDRS-10 are provided in all
cases by CaLDAS. The performance of the RDPS which was
operational at the time is also shown as a reference.

Figure 6 presents the time evolution of the RMSE for
the RDRS-15 (continuous orange line), RDRS-10 (dashed–
dotted blue line) and RDPS products (black dashed line),
assessed against all SYNOP observations located in North
America. A monthly time interval is used to compute error
statistics. A clear annual cycle is observed, with errors being
generally larger in winter and spring, and smaller in sum-
mer and autumn. Errors in absolute temperature forecasts
(Fig. 6a) and dew point temperature forecasts (Fig. 6b) show
similar patterns. While RDRS-15 and RDRS-10 errors be-
have similarly, RDPS errors are larger for the earlier years.
Focusing on dew point temperature forecast errors (Fig. 6b),
it can be seen that the differences between RDPS and RDRS
errors become smaller starting in 2015 and are very similar
after mid-2016. For wind speed (Fig. 6c), RDPS and RDRS-
15 errors are very similar until the end of 2014, and slightly
smaller in winter for RDPS after this date.

The reduction of errors in RDPS forecasts (when com-
pared to both RDRS-15 and RDRS-10) at the end of 2014
and again in mid-2016 is likely the consequence of changes
to the operational version of RDPS. In fact, a major up-
grade to the data assimilation system was implemented on
18 November 2014 (Caron et al., 2015), and a major upgrade
to the GEM model was implemented on 7 September 2016
(Caron et al., 2016). After this date and until the end of the
evaluation period, the RDPS relied on the same version of
GEM as the RDRS.

When comparing RDRS-15 and RDRS-10 over the whole
North America, it can be noted that the 15 km configura-
tion of the system has slightly smaller errors than the 10 km
configuration for absolute and dew point temperatures and

Figure 6. Time series of RMSE (against SYNOP observations)
from operational RDPS (black dashed line), RDRS-10 (orange con-
tinuous line) and RDRS-15 (blue dashed–dotted line) computed
based on monthly intervals for the whole North America and the
2011–2017 years: (a) absolute temperature; (b) dew point temper-
ature; (c) wind speed. Results only based on a combination of 6 to
17 h lead time from integrations starting at 00:00 and 12:00 UTC.

slightly larger errors for wind speed, although the differences
are small in all cases and typically smaller than the differ-
ences between RDRS-15 and RDPS errors.

A regional evaluation of the performance of the RDRS is
presented in Table 5, which summarizes the average changes
in RMSE between RDRS-10 and RDRS-15 as well as be-
tween RDRS-10 and the operational RDPS by seasons and
geographical domains. Scores are again computed against
observations from the SYNOP network and based on fore-
casts with 6 to 17 h lead time. The time period for the evalu-
ation is restricted to 2011–2014, during which outputs from
all three systems are available.

It can be seen that over this period, i.e. prior to the upgrade
of the atmospheric data assimilation system and GEM model
version of the RDPS, RDRS-10 improves upon RDPS in
most regions and for most variables, notably for Alaska and
the Canadian Arctic, as well as western USA. Absolute and
dew point temperature forecasts are improved for all seasons
and all domains, with the sole exception of absolute temper-
ature in spring and summer for the eastern Canada domain.

https://doi.org/10.5194/hess-25-4917-2021 Hydrol. Earth Syst. Sci., 25, 4917–4945, 2021



4932 N. Gasset et al.: A 10 km North American reanalysis based on GEM

Table 5. Summary by seasons of average changes (in %) of RMSE (against SYNOP observations) between operational RDPS, RDRS-10
and RDRS-15 for 2011–2014 years. For each season, results are based on a combination of 6 to 17 h lead time from integrations starting at
00:00 and 12:00 UTC. Changes of more than 10 % are shown in bold; negative values are underlined.

RMSE change (%) RDPS – RDRS-10 RDRS-15 – RDRS-10

1 Dec 2010 to 28 Feb 2015-02-28 DJF MAM JJA SON DJF MAM JJA SON

Alaska plus Td 10.45 13.43 22.06 15.20 –2.04 –1.31 –0.87 –1.04
Canadian Arctic T 10.83 11.40 2.34 13.81 –1.70 –1.91 –2.52 –1.30

||U || –0.09 0.24 1.90 0.95 0.78 0.15 0.33 1.13

Canada west Td 12.78 14.71 6.76 7.60 –2.37 –0.85 0.96 –1.15
T 1.66 4.06 3.04 3.78 –5.16 –2.74 0.49 –2.07
||U || –0.47 0.97 0.84 0.73 0.40 0.52 1.34 1.12

Canada east Td 3.87 5.41 7.41 5.25 2.04 –1.56 –0.70 2.20
T 3.68 –12.29 –4.98 4.10 5.71 –6.40 –2.30 2.21
||U || –1.24 –1.05 0.52 0.07 4.43 2.49 1.99 4.13

USA west Td 21.08 13.50 4.53 15.05 –3.56 –2.16 –0.61 –2.76
T 24.79 10.73 9.79 21.10 –3.31 –3.90 –2.43 –1.47
||U || 2.00 1.52 1.35 1.84 1.89 0.06 0.64 1.24

USA east Td 3.99 3.49 0.79 3.35 –2.48 –1.70 –0.49 –1.96
T 8.31 5.24 6.59 9.06 –6.08 –2.68 –0.90 –3.05
||U || 0.28 0.59 1.39 1.27 1.49 2.23 1.92 3.04

Canada Td 8.57 11.18 9.58 7.69 –1.03 –1.13 0.36 –0.33
T 2.29 –1.28 0.01 5.07 –1.07 –4.04 –1.22 –0.84
||U || –0.91 –0.08 0.95 0.53 2.16 1.35 1.54 2.46

USA Td 13.47 10.00 3.12 10.74 –2.87 –1.94 –0.58 –2.40
T 17.35 8.70 8.95 16.89 –4.81 –3.28 –1.77 –2.18
||U || 0.92 0.90 1.20 1.48 1.60 1.29 1.44 2.27

Mexico Td 17.36 19.30 20.81 24.42 1.70 0.79 1.78 1.48
T 11.65 5.42 7.21 11.11 –2.90 –3.77 –2.19 –2.06
||U || –0.10 –0.70 –1.35 0.10 2.00 0.77 1.10 1.40

North America Td 10.51 11.15 7.70 9.03 –1.26 –1.22 0.03 –0.71
T 8.03 2.67 2.68 9.27 –1.78 –3.91 –1.24 –1.10
||U || –0.35 0.29 0.98 0.61 2.23 1.41 1.45 2.56

This degradation is caused mainly by errors in the sea sur-
face temperature (SST) obtained from ERA-Interim: indeed,
forecasts of similar skill are obtained for RDPS and RDRS
when using operational CCMEP SST analyses (not shown).
Improvements of more than 10 % are obtained in many cases.
They are shown in bold in Table 5. For example, a 24 % re-
duction of forecast error is obtained for dew point forecasts
over Mexico during the autumn season, and a 25 % reduction
of forecast error is obtained for absolute temperature fore-
casts over western USA during the winter season. RDRS-10
wind forecast errors are slightly better than RDPS forecasts
for all domains in the summer and autumn seasons, with the
exception of Mexico during the summer season. During win-
ter and spring, RDRS-10 wind forecasts are slightly better for
the USA and in particular for the western half of the USA but
slightly worse for Canada and Mexico. In all cases, differ-
ences in wind speed forecast errors do not exceed 2 %. When

comparing RDRS-10 and RDRS-15 forecasts, it can be seen
that RDRS-10 absolute and dew point temperature forecasts
are generally worse, with the exception of dew point tem-
perature forecasts over Mexico. On the other hand, RDRS-
10 wind forecasts are better than RDRS-15 forecasts for all
domains and seasons. All of the differences between RDRS-
10 and RDRS-15 RMSE are fairly small. The most impor-
tant RMSE change being −4 % for dew point temperature
(USA west domain, winter season), −6 % for absolute tem-
perature (Canada east domain, spring season), and +4 % for
wind speed (Canada east domain, winter season).

Overall, this evaluation suggests that RDRS-10 near-
surface forcing data should be competitive with recent RDPS
forcing data for driving surface, hydrology and environmen-
tal models, at least for absolute temperature, dew point tem-
perature and wind speed.
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Figure 7. Seasonal diurnal cycles of surface results from operational RDPS (black with square markers) and RDRS-10 (orange with round
markers) against SYNOP observations in terms of STDE (top curves, solid lines) and bias (bottom curves, dashed lines) for entire North
America over the period 2011–2017; from left to right: winter (DJF); spring (MAM); summer (JJA); autumn (SON); (a) absolute temperature;
(b) dew point temperature. Results are only based on the 6 to 17 h lead time from integrations starting at 00:00 UTC (filled markers) and
12:00 UTC (empty markers).

Although prediction skill is important for a reanalysis
dataset, it is also important to assess the diurnal reanalysis
bias, which is interesting by itself and also because it affects
the RMSE of the reanalysis. The diurnal STDE is also inter-
esting to assess, as it is equivalent to the RMSE of forecasts
from which the bias has been removed. Figure 7 shows, for
each season, the diurnal cycle of the bias and standard devi-
ation of the RDRS-10 and RDPS errors assessed against all
SYNOP observations located in North America. Each graph
is based on 7 years of data (2011–2017). The first row of
plots presents results for absolute temperature, and the sec-
ond row presents results for dew point temperature. Each col-
umn corresponds to a different season. Each plot contains
four curves: two for RDPS forecasts (in green) and two for
RDRS-10 forecasts (in orange). The top two curves (filled
lines) on each graph correspond to the STDE as a function
of time of day (in UTC), whereas the bottom two curves
(dashed lines) correspond to the bias. Model runs initialized
at 00:00 UTC (resp. 12:00 UTC) are used for hours 06:00,
09:00, 12:00 and 15:00 UTC (resp. 18:00, 21:00, 00:00 and
03:00 UTC), with results shown using filled (resp. empty)
markers.

In terms of standard deviation, RDRS-10 forecast errors
are generally smaller than RDPS forecast errors, especially
for 00:00 UTC forecasts valid from 06:00 to 15:00 UTC
(filled markers), and hence during the night and early morn-
ing in North America. The error signature of both systems is
fairly similar. In particular, errors are larger in winter than in
summer; they are larger during the night and early morning
during winter (forecasts issued at 00:00 UTC, filled mark-
ers) and generally larger during the afternoon and evening
in summer (forecasts issued at 12:00 UTC, empty markers).
The bias signature of both systems is similar for absolute
temperature (first row of plots). The RDRS-10 winter abso-
lute temperature bias is better than that of the RDPS for all
hours of the day. For other seasons, the bias is slightly worse
during the afternoon and evening hours and comparable dur-
ing the night and early morning. For dew point temperature,
the diurnal cycle of RDRS-10 and RDPS is very similar, but
the RDRS-10 bias curve is always above the bias curve of the
RDPS, which is an indication that the land-surface is wetter
in the RDRS-10. During the night and early morning, this
always corresponds to an improvement in the bias. During
the afternoon and evening hours, the RDRS-10 bias is gener-
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ally worse than the RDPS bias. Hence, environmental models
that are particularly sensitive to humidity might behave dif-
ferently when forced with RDRS-10 data compared to RDPS
data.

4.2 Precipitation

Two strategies were considered in order to assess the pre-
cipitation reanalysis skill and bias at both 15 and 10 km:
(1) seasonal accumulation maps were obtained for the CaPa-
24h reanalysis at both resolutions and visually compared to
Stage IV MPE (Lin and Mitchell, 2005) and GPCP (Adler
et al., 2003, 2018) for each season of the period 2010–2014,
and (2) verification scores routinely used for evaluating the
operational CaPA precipitation analysis were computed over
the same period for both reanalysis products but also for the
background field used for each product.

4.2.1 Seasonal accumulation

Figure 8 compares the seasonal accumulations of precip-
itation for the two versions of the CaPA-24h reanalysis
(at 15 and 10 km resolution) to the seasonal accumula-
tions of precipitation estimated from Stage IV MPE and
GPCP datasets. Each column corresponds to a season:
spring (MMA), summer (JJA), autumn (SON) and win-
ter (DJF). Each row presents accumulations for a different
product: (a) CaPA-24h based on RDRS-10, (b) CaPA-24h
based on RDRS-15, (c) Stage IV MPE and (d) GPCP. Of the
four products, only GPCP provides global coverage. How-
ever, it can be seen that the domain covered by both versions
of CaPA covers all of North America, including the coastal
oceans. Stage IV MPE is limited to the conterminous US plus
the Columbia river basin in British Columbia and the Rio
Grande basin in Mexico.

Over the oceans, large differences are observed between
the three products providing coverage: CaPA-24h is nearly
identical to its background field, since very few observations
are available to constrain the analysis. Thus, it is essentially
the RDRS precipitation accumulations that are shown over
the oceans in the first two rows of Fig. 8. It appears that
the RDRS-15 precipitation matches better the GPCP pre-
cipitation, but both RDRS-15 and RDRS-10 seem to over-
estimate precipitation, in particular over the Gulf Stream.
Difference over the ocean between RDRS-10 and RDRS-15
can be explained by the use of differing shallow convection
parametrization: while the latter is closer to observation, it
breaks conservation laws (Bélair et al., 2005). In the mean-
time, the overestimation of both approaches might be indica-
tive of an excess of evaporation at mid-latitude in the GEM
model, leading in turn to an excess of precipitation, as sug-
gested by the evaluation performed by Deacu et al. (2012)
over Lake Superior.

Over the USA, Stage IV and GPCP agree well for the
larger-scale features, with Stage IV MPE providing more

details. Even at 15 km, CaPA-24 also provides much more
details than GPCP and generally agrees well with Stage IV
MPE. However, CaPA-24h clearly lacks precipitation during
the summer months in the southeast of the US. This is an area
known for its strong convective storms in summer, and the
associated precipitation is likely not well captured in neither
the GEM model background field nor in the in situ observa-
tional dataset assimilated by CaPA. Over Canada, significant
differences are observed between GPCP and CaPA-24, both
in terms of precipitation accumulations and variability. This
is expected, as neither product relies on a dense precipita-
tion network (especially in northern Canada). Furthermore,
the CaPA reanalyses assimilate datasets that are not consid-
ered by GPCP (such as the RMCQ network in the province
of Quebec), as well as precipitation observations that have
been corrected for known biases (the AdjDlyRS dataset).

4.2.2 Scores

In addition to a visual comparison of CaPA-24h reanalyses
with reference precipitation products available over North
America, an objective verification was also performed. Eval-
uating precipitation analyses is, however, more challeng-
ing than evaluating precipitation forecasts, since indepen-
dent verification data are hard to come by, especially in re-
gions with already sparse networks like northern Canada.
One option is to rely on data-denial experiments. For CaPA
operational analyses and reanalyses, leave-one-out cross-
validation is routinely used, as it is a by-product of the in-line
quality control procedure (Lespinas et al., 2015). Verification
metrics generated by this procedure include the probability of
detection (POD), the false alarm ratio (FAR), the frequency
bias index (FBI) and the equitable threat score (ETS). It is
also useful to compare the partial mean (PM) of the observa-
tions with that of the analysis in order to assess quantitative
bias as a function of precipitation thresholds.

These different verification metrics are presented for each
season in Fig. 9. Each row corresponds to a season (DJF,
MAM, JJA and SON) and each column to a verification met-
ric. The x axis is the precipitation threshold (in mm d−1) for
which the verification metric is computed, and the y axis cor-
responds to the value of that metric. For POD, FAR, FBI
and ETS, four curves are shown on each graph. Continuous
(resp. dashed) lines present the verification metrics for the re-
analyses (resp. background field). Blue (resp. orange) curves
correspond to the 15 (resp. 10) km products. In the last col-
umn, the partial mean of the observations is shown in black.
It corresponds to the ideal value for the PM verification met-
ric. For FBI, the ideal value of one is also highlighted using
a black line.

As these are generally considered more accurate, verifica-
tion is performed against manual synoptic stations in the US
and Canada plus climate stations from the AdjDlyRS dataset.
Observations that do not pass the quality control of CaPA are
discarded from the verification dataset in all cases.
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Figure 8. Precipitation accumulation per seasons [mm/month] over years 2010–2014 for (a) CaPA-24h based on RDRS-10; (b) CaPA-24h
based on RDRS-15; (c) NOAA Multisensor Precipitation Estimates (Stage IV) 24 h analysis; and (d) Global Precipitation Climatology
Project (GPCP) monthly analysis.
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Figure 9. Comparison of CaPA-24h background field (dashed lines) and analyses (continuous lines) at 10 km (orange lines) and 15 km (blue
lines) against manual synoptic stations over years 2010–2014. Each row corresponds to a season (winter, spring, summer and autumn) and
each column to a score (probability of detection, false alarm ratio, frequency bias index, equitable threat score and partial mean). The x axis
is the precipitation threshold [mm d−1].

It is clear from this figure that both analyses are more skil-
ful (in terms of ETS) and less biased (both in terms of FBI
and PM) than their background field. False alarms (FAR) are
also significantly reduced in the reanalysis for all seasons and
thresholds. The probability of detection (POD) in winter for
thresholds of 2 mm d−1 or less is the only score for which
the reanalysis is worse than the background field. However,
given the improvements in the FAR, FBI and ETS, this is
deemed acceptable.

What is less clear is the added value of the 10 km com-
pared to the 15 km products: the POD is similar or slightly
improved, but the FAR is degraded, in particular for larger
precipitation thresholds. The FBI is higher at 10 km res-
olution, which results in a degraded categorical bias for
lower thresholds, but an improved categorical bias for higher
thresholds. The ETS is almost always slightly worse at 10 km
resolution. The PM is nearly identical at both resolutions. In

summary, the 10 km is slightly less skilful than the 15 km
reanalysis (as measured by the ETS), and this is due to an
increased ratio of false alarms.

In general, the degradation in the FAR and ETS of the
analysis when going from 15 to 10 km is not seen in the
background field (with the notable exception of higher pre-
cipitation thresholds in summer). Furthermore, in most cases
the difference in the scores of the two reanalyses is larger
than the difference in the scores of the two background fields,
which tends to be small. In spring, summer and autumn, the
POD, FBI and PM of the background field are, however, gen-
erally higher at 10 km, reflecting a worsening of the positive
precipitation bias already present at 15 km.

4.3 Snowpack

Snow depth and snow water equivalent (SWE) are of interest
for surface and hydrological prediction. They are both rou-
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Table 6. Bias, STDE, RMSE and MAE of snow density, snow water equivalent (SWE) and snow depth computed from 1 January 2014 to
31 January 2015 with the bug and with the fix for the bug identified in the RDRS (and in the operational RDPS) when estimating the maximum
value for snow density as a function of snow depth. Best score for each snow characteristic is shown in bold. Number of observations used
for the evaluation is shown in the last two columns.

Bias STDE RMSE MAE Number of obs.

Snow characteristic Unit bug fix bug fix bug fix bug fix bug fix

Snow density kg m−3 144 7 90 79 169 78 155 57 2779 2732
Snow depth cm −12 –10 18 16 22 19 14 12 4399 4388
SWE kg m−2 11 −20 67 43 68 54 52 34 4349 4338

tinely observed, but fewer automatic SWE measurements are
available. Furthermore, SWE is often reported only around
the 1st and 15th day of each month. In order to be able to
compare the skill and bias of these two properties, verifica-
tion was restricted to cases where both quantities were avail-
able in the Canadian historical snow survey database com-
piled by Brown et al. (2019). Only snow surveys taken at an
altitude within 300 m of the atmospheric model topography
were considered. The evaluation was performed over 1 Jan-
uary to 15 May 2014 and 15 November to 31 January 2015,
since no observations were available during the warm season.
Pairs of observations and corresponding analysis values were
obtained at each site for the 1st and 15th day of each month,
with a tolerance of ±6 d on the observation date in order to
maximize the number of measurements used for the evalua-
tion while avoiding over-representing the verification dataset
stations reporting more often than once every 2 weeks. In-
deed, manual snow survey sites are typically visited at most
twice per month. Bias, STDE, MAE and RMSE were then
computed for RDRS-10. While satisfactory results were ob-
tained for SWE and snow depth, the performance was rather
poor for snow density.

A code review revealed that an error had been introduced
in the GEM model when implementing the parameterization
for maximum snow density proposed by Bélair et al. (2003a).
Indeed, Eqs. (21) and (22) in Bélair et al. (2003a) are valid
for snow depth expressed in centimetres (cm), whereas snow
depth is expressed in metres (m) in both the paper and the
GEM code. In addition to being present in the reanalysis, this
bug impacts all operational NWP systems based on GEM as
of 2020. It will be corrected in future releases. In order to
assess the impact of the bug fix, the surface reanalysis was
relaunched for 2014.

Table 6 presents the bias, STDE, MAE and RMSE of
snow density, snow depth and SWE with and without this
bug fix. When using the correct implementation of the max-
imum snow density parameterization, the bias on snow den-
sity drops from 144 to only 7 kg m−3 and STDE is also low-
ered from 90 to 79 kg m−3. Consequently, RMSE is reduced
from 169 to 78 kg m−3. MAE is also considerably reduced
from 155 to 57 kg m−3. Modest improvements in snow depth
predictions are, however, observed for all metrics: differ-

ences range from a 2 cm improvement for bias, STDE and
MAE to a 3 cm improvement for RMSE. With the bug fix, the
bias of snow depth predictions is −10 cm, STDE is 16 cm,
MAE 12 cm and RMSE 19 cm. The impact on the bias and
skill of SWE predictions is more important than for snow
depth but not as important as for density. For SWE, the pos-
itive bias of 11 kg m−2 obtained with the bug becomes nega-
tive and slightly worse (−20 kg m−2) with the bug fix. STDE
is, however, improved from 67 to 43 kg m−2. The net effect
on RMSE is a reduction of the error from 68 to 54 kg m−2.
MAE is also improved with the bug fix from 52 to 34 kg m−2.

4.4 Streamflow

In a first attempt to assess the suitability of the dataset for hy-
drological prediction, the GEM-Hydro model (Gaborit et al.,
2017) was used to predict the inflows into Lake Erie. The
land-surface of the GEM-Hydro model was set up on a 10 km
grid, the routing was performed on a 1 km grid, and both
were calibrated using the RDRS-15+CaPA-24h forcing, us-
ing a methodology described in Mai et al. (2021), over the
years 2011–2014 (2010 used for spin-up).

Figure 10 shows a comparison of the simulated inflows
obtained when forcing the calibrated GEM-Hydro version
with three different datasets: RDRS-15+CaPA-24h, RDRS-
10+CaPA-24h and RDPS+CaPA-24h. Figure 10a shows
the daily inflows from January 2011 to December 2014 ob-
tained by aggregating the flows from all of the tributaries
draining directly into Lake Erie. Figure 10b presents the
same data as in Fig. 10a but ranked for lowest to highest
value and using a log scale. Figure 10c shows the cumulative
runoff over this 5-year period obtained for the observations
and the model by summing up the daily inflows, dividing by
the area of the watershed and converting units into metres.

The comparison between observed and modelled daily in-
flows (Fig. 10a) shows that GEM-Hydro is able to represent
the dynamics of the watershed in periods of both low and
high inflows for all three sets of forcing data. Nash–Sutcliffe
efficiency (NSE) values over 2011–2014 (2010 was used
for model spinup) for the three experiments are respectively
0.77 for RDRS-10+CaPA-24h, 0.78 for RDRS-15+CaPA-
24h and 0.77 for RDPS+CaPA-24h. It is not surprising to
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Figure 10. Comparison to observed Lake Erie inflows (grey dots) of GEM-Hydro simulations based on RDRS-10+CaPA-24h (continuous
orange line), RDRS-15+CaPA-24h (dashed–dotted blue line) and RDPS+CaPA-24h (dashed black line) forcing for years 2011–2014:
(a) daily inflows [m3 s−1]; (b) ranked daily inflows, log scale [m3 s−1]; and (c) cumulative inflow over the 5-year period [m].

obtain a slightly better NSE with the RDRS-15 forcing, since
they were used to calibrate the model. Figure 10b shows that
both low and high flows are negatively biased in all three
simulations, even if the RDRS-10+CaPA-24h dataset leads
to slightly higher flows at both ends of the spectrum. The
comparison between the observed and modelled cumulative
runoff (Fig. 10c) is useful in assessing the bias of the simula-
tions. It can be seen that better results are obtained in terms
of cumulative runoff with the RDRS-10+CaPA-24h forc-
ing, followed by RDRS-15+CaPA-24h. RDPS+CaPA-24h
leads to more biased predictions, on the order of 17 %, com-
pared to 12 % for RDRS-15+CaPA-24h and 8 % for RDRS-
10+CaPA-24h. Remaining simulation errors can be partly
explained by the presence of large agricultural and urbanized
areas in the watershed (Mai et al., 2021). In particular, tile
drains and impervious areas are not represented accurately
in the model.

This analysis of simulated streamflow provides some evi-
dence that the forcing data based on the RDRS can be useful
for hydrological prediction and in particular for transbound-
ary watersheds of North America. This is true even if the re-
analysis is only available for a historical period. Indeed, mod-
els relying on NWP outputs typically require calibration in
order to perform optimally, partly due to the errors/biases and

shortcomings of their input datasets. This is particularly true
for surface and hydrological models. Such a calibration can
only be performed based on historical datasets that ideally
have the same climatology as the product used to drive such
models in a forecasting context. However, archived datasets
from operational NWP models tend to evolve in time and
are usually not available for time periods long enough for
such a calibration exercise. Another important point worth
mentioning is that hydrological models are not only used to
predict future flows. For example, they can be used to pre-
dict past flows at ungauged locations, to infill missing data at
gauged locations, and to perform what-if scenarios to assess
the impact of climate change, land-use changes and reservoir
regulation changes.

5 Discussion and conclusion

This paper presents and evaluates a methodology for mini-
mizing the computational cost and the data processing bur-
den associated with the production of an atmospheric re-
analysis and still obtain consistent, high-quality and high-
resolution atmospheric, surface and precipitation fields. A fi-
nal precipitation analysis is then obtained in a postprocess-
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ing step in order to assimilate additional precipitation obser-
vations which significantly improves the quality – and local
relevance – of the precipitation analysis. The methodology
is used to obtain a first reanalysis based on the GEM model,
which is at the heart of the operational NWP system used by
the Meteorological Service of Canada. The reanalysis pro-
vides seamless coverage for all of North America and the
Arctic Ocean at 10 km resolution and hourly time step, and it
is of particular interest for hydrological applications in trans-
boundary watersheds sitting on the Canada–US border. Re-
sults obtained when forcing a hydrological model in order to
predict inflows into the Lake Erie watershed are encouraging.

5.1 Impacts of the land-data assimilation system on the
reanalysis quality and production strategy

The various numerical experiments have shown the impor-
tant role played by the land-data assimilation system in the
quality of the product not only at the surface but also for the
boundary layer. Indeed, using CaLDAS allows for better re-
sults for absolute and dew point temperatures in the boundary
layer (cf. Fig. 4) and at the surface (cf. Fig. 5). Initialized by
CaLDAS, the RDRS configuration of the GEM model pro-
vides better performance than the operational RDPS config-
uration (cf. Figs. 6 and 7).

Unfortunately, the use of CaLDAS increases the compu-
tational cost and forces the production to proceed sequen-
tially, thus limiting the ability to speed up production through
parallel processing to the point where sequential production
from 1980 to the present time would simply not have been
feasible. It was thus decided as a compromise to launch the
production in 3-year batches starting at the beginning of the
hydrological year (September), with the first 4 months being
only used for spin-up and thus discarded.

5.2 Skill, bias, local relevance and consistency of the
precipitation reanalysis

One of the advantages of the methodology proposed in this
paper is that the precipitation observations can both influ-
ence the surface and atmospheric fields (through the online
Kalman filter land-data assimilation system) and contribute
to the final, offline, optimal interpolation of precipitation
data. The offline precipitation analysis can include more data
(and in particular 24 h accumulations), and its computational
cost is small in comparison with the rest of the reanalysis
process. The final analysis can therefore be updated in post-
production as more data (or data of better quality) become
available and thus provide a better fit to specific in situ ob-
servations. Being faithful to specific in situ observations can
be of critical importance for many hydrological modelling
applications, e.g. when simulating past flood events.

The offline OI technique does have limitations, despite
having less bias and more skill than the short-term precipi-
tation forecasts provided by the RDRS and used as the back-

ground field for the analysis. Indeed, since only the precipita-
tion field is modified, this creates inconsistencies with other
variables, such as radiation and humidity, which can be detri-
mental for some land-surface modelling applications.

Another issue with the OI technique is the assumption that
the background field is unbiased, a hypothesis not verified for
RDRS precipitation which has been shown to be positively
biased. As distance to in situ stations increases, the OI-based
precipitation analysis converges to this biased background
field and is thus locally biased. A bias correction could be
applied to the background field before performing the OI, but
this requires us to first obtain the GEM model climatology.
This option will thus be evaluated once the production of the
first version of the reanalysis is completed for 2000–2018.

Finally, it was disappointing to realize that the precipita-
tion reanalysis was not of better quality at 10 km than at
15 km. The 10 km background field showed a similar skill
but more bias, and the 10 km reanalysis showed slightly less
skill and a similar bias. It should not be surprising that pre-
cipitation bias might be degraded when model resolution is
increased, as numerous factors can adversely impact bias of
precipitation forecasts in a NWP system, and in particular
the choice and tuning of subgrid convection and condensa-
tion parameterizations. The lack of improvement in model
skill with resolution could be real since the difference in
horizontal resolution between both RDRS configurations is
not huge, but it could also be that the synoptic and climatic
networks used for verification are not dense enough to cap-
ture improvements to precipitation fields. Finally, the fact
that a more skilful analysis is obtained when using a lower-
resolution background field is not uncommon when using an
OI method: a smoother background field can lead to inno-
vations that are more correlated in space and thus more effi-
ciently interpolated.

5.3 Horizontal resolution of the final analysis

Despite the fact that not all variables were improved when
resolution of the reanalysis was increased from 15 to 10 km,
a resolution of 10 km was nonetheless chosen for the produc-
tion of the 1980–2018 reanalysis, in order to match the reso-
lution of NWP systems currently in operation at CCMEP for
short-term weather forecasting over North America (RDPS
and REPS). Having the same resolution for the three sys-
tems (RDRS, RDPS and REPS) facilitates the computation
of anomalies (by comparing RDPS or REPS to the RDRS
climatology) and simplifies its application by end users who
make regular use of RDPS or REPS. The long-term plan for
the RDRS is to closely follow the RDPS in terms of GEM
model configuration and resolution and relaunch the reanal-
ysis whenever major changes are made to RDPS. It should
be emphasized that the degradations seen when increasing
the resolution from 15 to 10 km are small. Furthermore, the
gains obtained in terms of precipitation skill through the op-
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timal interpolation of precipitation observations largely com-
pensate for this small degradation (see Fig. 9).

5.4 Hydrological applications of the reanalysis dataset

The 15 km version of the reanalysis (RDRS-15) was initially
released in 2017 by ECCC and has since been used in mul-
tiple hydrological studies. For example, in a paper published
by Abaza et al. (2020), the precipitation and temperature
forcing data were used to initialize an ensemble hydrological
forecasting system for Lake Champlain and Richelieu River.
In open-loop mode, the hydrological model represented very
well the observed streamflow at the outlet of the lake, with
a NSE of 0.92 obtained for the model verification period.
The same dataset was also used for a hydrological model
intercomparison study performed over the Lake Erie water-
shed (Mai et al., 2021). Seventeen models of different com-
plexity (including traditional hydrological models as well as
machine learning models) were evaluated against 53 stream-
flow gauges (46 being used for calibration and 7 for vali-
dation). A more in-depth evaluation of the performance of
the HYPE hydrological model was furthermore presented by
Awoye et al. (2019). All models produced satisfactory simu-
lations. In particular, the machine learning models provided
excellent performance, and models calibrated at individual
stations performed surprisingly well at validation sites. A
limitation of this study is that only 5 years of data were avail-
able from RDRS-15. A follow-up study, relying on the 2000–
2017 RDRS-10 dataset, is already underway.

5.5 Known issue with snow depth, snow density and
snow water equivalent

As explained previously, a bug was identified during the
production of the 2000–2017 RDRS-10 reanalysis dataset.
This bug is related to the maximum value of snow den-
sity and impacts all operational configurations of the GEM
model, as well as the RDRS-15 reanalysis dataset. It has
since been corrected, and the production of the reanalysis
for the years 1980–2018 will be relaunched to include the
bug fix. Version control will be used to distinguish between
the different configurations of RDRS. RDRS-15, covering
years 2010–2014, will be known as version 1, the RDRS-10
dataset presented in this paper, covering years 2000–2017,
will be distributed as version 2.0. The RDRS-10 dataset with
the bug fix will be distributed as version 2.1 and will cover
years 1980–2018.

5.6 Dependency on ERA-Interim atmospheric
reanalyses

The methodology used for the reanalysis dataset proposed
in this paper requires the use of upper-air fields provided
by a lower-resolution global reanalysis. Although minimal
information is required – the data are only used at initial
time (00:00 and 12:00 UTC) and only for upper-air atmo-

spheric variables – this creates a dependency on an exter-
nal dataset. When the production of the 2000–2017 dataset
started, it was decided to rely on ERA-Interim, which has
since been discontinued. For the years 1980–1999 as well
as 2018, production will likely continue with ERA-Interim.
Tests are currently being performed on 2018 to assess the im-
pact of switching to a different data source for 2019–present.
Candidate upper-air fields include ERA5 and CCMEP oper-
ational upper-air analyses.

5.7 Future developments

Given the strong demand for the RDRS reanalysis data in
Canada ahead of the release of the dataset, we expect that the
product will be regularly updated in order to provide data for
recent years as well as to take advantages of future improve-
ments in each component of the RDRS, namely CaLDAS,
CaPA and GEM. We also expect that the strengths and weak-
nesses of the dataset that will be identified through ongoing
and future hydrological modelling applications of the dataset
will guide future developments of the reanalysis.

In particular, work has already started to improve the of-
fline precipitation analysis by including additional in situ ob-
servations not available at the time of production. It is also
planned to take advantage of a recent innovation in the op-
erational CaPA precipitation analysis, which now assimilates
IMERG data (Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement; Huffman et al., 2020). This pre-
cipitation product based on remote sensing information has
been shown to significantly improve the skill of the opera-
tional analysis in summer months, in particular in regions
of North America not covered by ground radar (Boluwade
et al., 2017). This is of particular interest since it would be
technically challenging to include Canadian radar data prior
to November 2014. IMERG products, on the other hand, are
readily available for assimilation in CaPA since June 2000
(Huffman et al., 2020).

Work also remains to be done in order to evaluate other
forcing and state variables, such as cloud cover, incoming
radiation and soil moisture. This is of particular importance
given their impact on the water and energy budget. We expect
to address this important issue in a future publication.

Finally, it should be noted that although the reanalysis
dataset presented in this paper was designed with hydrolog-
ical applications in mind, other uses are now envisioned, in-
cluding the reconstitution of high-impact events through fur-
ther dynamical downscaling of the reanalysis, the establish-
ment of a GEM model climatology to derive anomaly fore-
casts from RDPS outputs, and the use of the reanalysis for
driving atmospheric chemistry and air quality models in sup-
port of health studies and air emission regulation in Canada.
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Data availability. Selected output variables from RDRS-15 and
RDRS-10 are available through the Canadian Surface Prediction
Archive (CaSPAr, 2021, https://caspar-data.ca, Mai et al., 2020).
The RDRS-15 and RDRS-10 products are called “RDRS” and
“RDRS_v2” respectively. Once its production is complete, the
version of RDRS-10 covering years 1980–2018 and containing
the bug fix for maximum snow density will be available under the
name “RDRS_v2.1”. More details on how to retrieve data from
CaSPAr can be found at https://github.com/julemai/CaSPAr/wiki/
How-to-get-started-and-download-your-first-data (Mai, 2021).
The list of variables available can also be found under Mai (2021).
Additional variables, including upper-air fields, are available from
CCMEP upon demand (dps-client@ec.gc.ca).
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