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Abstract. Reference crop evapotranspiration (ETo) is cal-
culated using a standard formula with temperature, vapor
pressure, solar radiation, and wind speed as input variables.
ETo forecasts can be produced when forecasts of these input
variables from numerical weather prediction (NWP) models
are available. As raw ETo forecasts are often subject to sys-
tematic errors, statistical calibration is needed for improv-
ing forecast quality. The most straightforward and widely
used approach is to directly calibrate raw ETo forecasts con-
structed with the raw forecasts of input variables. However,
the predictable signal in ETo forecasts may not be fully im-
plemented by this approach, which does not deal with error
propagation from input variables to ETo forecasts. We hy-
pothesize that correcting errors in input variables as a pre-
cursor to forecast calibration will lead to more skillful ETo
forecasts. To test this hypothesis, we evaluate two calibra-
tion strategies that construct raw ETo forecasts with the raw
(strategy i) or bias-corrected (strategy ii) input variables in
ETo forecast calibration across Australia. Calibrated ETo
forecasts based on bias-corrected input variables (strategy ii)
demonstrate lower biases, higher correlation coefficients, and
higher skills than forecasts produced by the calibration using
raw input variables (strategy i). This investigation indicates
that improving raw forecasts of input variables could effec-
tively reduce error propagation and enhance ETo forecast cal-
ibration. We anticipate that future NWP-based ETo forecast-
ing will benefit from adopting the calibration strategy devel-
oped in this study to produce more skillful ETo forecasts.

1 Introduction

As a variable measuring the evaporative demand of the at-
mosphere, reference crop evapotranspiration (ETo) has been
widely used to estimate potential water loss from the land
surface to the atmosphere (Hopson and Webster, 2009; Liu
et al., 2019; Renard et al., 2010). Quantification of ETo
has been increasingly performed to support efficient water
use and water management (Mushtaq et al., 2019; Perera et
al., 2016). Forecasts of short-term ETo (days to weeks) are
highly valuable for real-time decision-making on farming ac-
tivities and water allocation to competing users (Djaman et
al., 2018; Kumar et al., 2012).

A plethora of methods with different statistical assump-
tions, dependence on observations, and requirements of
weather forecasts have been developed to predict future ETo
(Bachour et al., 2016; Ballesteros et al., 2016; Karbasi, 2018;
Mariito et al., 1993). ETo is affected jointly by tempera-
ture, vapor pressure, solar radiation, and wind speed (Ba-
chour et al., 2016; Luo et al., 2014). Prediction models using
these weather variables as inputs allow for representations
of atmospheric dynamics and often produce reasonable ETo
forecasts (Torres et al., 2011). The increasing availability of
weather and climate forecasts based on numerical models has
opened up new opportunities for ETo forecasting (Cai et al.,
2007; Srivastava et al., 2013; Tian and Martinez, 2014; Zhao
et al., 2019a). Forecasts of temperature, vapor pressure, solar
radiation, and wind speed from numerical weather prediction
(NWP) models/general circulation models (GCMs) could be
translated into ETo forecasts using the Food and Agriculture
Organization (FAO) ETo equation (Allen et al., 1998; Cai et
al., 2007).

Despite the advantages in modeling atmospheric dynam-
ics, flexibility in temporal and spatial scales (Pelosi et al.,
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2016), and high data availability (Er-Raki et al., 2010),
NWP/GCM-based raw ETo forecasts often demonstrate sys-
tematic errors (Turco et al., 2017). Limitations in model algo-
rithms, parameterization, and data assimilation often lead to
significant errors in raw forecasts of weather variables (Lim
and Park, 2019; Vogel et al., 2018). As a result, raw ETo
forecasts calculated directly with the raw forecasts of input
weather variables (e.g., temperature, vapor pressure, solar ra-
diation, and wind speed) typically demonstrate substantial
inconsistencies with observations (Medina and Tian, 2020;
Zhao et al., 2019a) and need to be calibrated to improve fore-
cast quality.

Effective calibration aims to correct errors in raw forecasts
and provide unbiased, reliable, and skillful calibrated fore-
casts. Theoretically, two different strategies could be adopted
to achieve this goal in the calibration of ETo forecasts. The
first strategy is to construct raw ETo forecasts directly with
the raw forecasts of the input variables and then calibrate the
derived ETo forecasts. This strategy lumps errors from the in-
put variables together in the raw ETo forecasts and corrects
the combined errors directly (Tian and Martinez, 2014; Zhao
et al., 2019a). This strategy is straightforward and thus has
been adopted by most existing calibrations of NWP/GCM-
based ETo forecasts. For example, Medina et al. (2018) used
a linear regression bias-correction method to calibrate ETo
forecasts from three NWP models and achieved significant
improvements in forecast quality. Medina and Tian (2020)
employed three probabilistic-based calibration methods to
calibrate ETo forecasts from multiple NWP models, and gen-
erated more skillful and reliable forecasts than using a sim-
ple regression bias-correction model. Another probabilistic
postprocessing method, the Bayesian joint probability (BJP)
model, was adopted to improve the accuracy and skills of
GCM-based ETo forecasts across multiple sites in Australia
(Zhao et al., 2019a, b).

Alternatively, ETo forecast calibration could start with cor-
recting errors in input variables. Raw forecasts of input vari-
ables could be improved first, and raw ETo forecasts could
then be constructed with the corrected input variables. After
that, the derived raw ETo forecasts could be further improved
through calibration. This strategy requires one more step than
the one using the raw input variables. With the improved in-
put variables, errors in the resultant raw ETo forecasts could
be significantly reduced (Nouri and Homaee, 2018; Perera
et al., 2014). However, there is no conclusion on whether
improving raw forecasts of input variables will eventually
add additional skills to calibrated ETo forecasts (Medina and
Tian, 2020).

Which calibration strategy produces more skillful cal-
ibrated forecasts is a critical question in NWP-based
ETo forecasting, but the answer remains unclear. Since
NWP/GCM-based ETo forecasting is increasingly conducted
to support water resource management, there is a need to in-
vestigate the necessity of correcting raw forecasts of the input
variables in ETo forecast calibration.

We hypothesize that reducing errors in input variables as
a precursor will enhance ETo forecast calibration and lead
to more skillful calibrated forecasts. To test this hypoth-
esis, we compare two calibration strategies that construct
raw ETo forecasts based on the raw (strategy i) or bias-
corrected (strategy ii) input variables in calibrating ETo fore-
casts across Australia. This study aims to fill a knowledge
gap in NWP-based ETo forecasting and develop a calibration
strategy to produce more skillful ETo forecasts.

2 Method

2.1 Reference data and forecasts

In this study, we use the ETo data derived from the Aus-
tralian Water Availability Project (AWAP)’s gridded data of
temperature, vapor pressure, and solar radiation (Jones et
al., 2007, 2014), as well as wind speed data developed by
Mcvicar et al. (2008), as observations for ETo forecast cal-
ibration. Weather forecasts from the Australian Community
Climate and Earth System Simulator G2 version (ACCESS-
G2) model are extracted as inputs for the calculation of raw
ETo forecasts. We modify the spatial resolution of ACCESS-
G2 forecasts using bilinear interpolation to match the AWAP
data’s grid spacing. The 3-hourly ACCESS-G2 forecasts dur-
ing April 2016–March 2019 are aggregated to the daily scale
to match the timeframe of the original site observations used
to generate the AWAP data. The ACCESS-G2 weather fore-
casts have a forecast horizon of 9 d. AWAP ETo during
April 1999–March 2019 is used for the training of the cal-
ibration model, and data during April 2016–March 2019 are
selected for forecast calibration and evaluation.

2.2 Calculation of ETo

We calculate ETo forecasts and AWAP ETo using the FAO56
equation (Allen et al., 1998):

ETo=
0.4081(Rn−G)+ γ

900
T+273u2(es− ea)

1+ γ (1+ 0.34u2)
, (1)

where ETo is the reference crop evapotranspiration
(mm d−1); 1 is the slope of the vapor pressure curve
(kPa ◦C−1); Rn is net radiation at the crop surface
(MJ m−2 d−1); G is soil heat flux density (MJ m−2 d−1); γ
is the psychrometric constant (kPa ◦C−1); T is average air
temperature (◦C); u2 is the wind speed at the height of 2 m
(m s−1); and es and ea are saturated and actual vapor pressure
(kPa), respectively.

In constructing raw ETo forecasts, temperature and solar
radiation are readily available from the ACCESS-G2 outputs.
To obtain the wind speed forecasts, we first use the forecasts
of zonal (u) and meridional (v) components to calculate wind
speed forecasts at 10 m, and we then estimate wind speed at
2 m using the equation recommended by FAO (Allen et al.,
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1998). In addition, we use the ACCESS-G2 forecasts of air
pressure and specific humidity to obtain the vapor pressure
forecasts.

2.3 Calibration of ETo forecasts

The calibration model used in this study is the Seasonally
Coherent Calibration (SCC) model, which is introduced in
detail in Sect. 2.3.2. For the calibration across Australia with
a spatial resolution of 0.05◦, we process 281 655 grid cells in
total. We apply the SCC model for ETo forecast calibration
to each grid cell and lead time separately.

We conduct four calibrations to evaluate how the two dif-
ferent strategies will affect the calibrated ETo forecasts (Ta-
ble 1 and Fig. S1). Our recent investigation suggests calibrat-
ing ETo anomalies, which are calculated as departures from
the climatological mean, could produce more skillful cali-
brated forecasts than calibrating ETo forecasts directly (Yang
et al., 2021b). As a result, in this study, we primarily focus
on calibrations based on ETo anomalies (calibrations 1 and
2). The comparison between calibrations 1 and 2 is to inves-
tigate whether the bias correction of input variables would
further improve ETo forecasts when the calibration is con-
ducted based on ETo anomalies and climatological mean.
We also conduct additional calibrations which postprocess
ETo forecasts directly (calibrations 3 and 4) to test whether
the contribution of improving input variables to ETo forecast
calibration, if there is any, will depend on how ETo forecasts
are calibrated (based on anomalies vs. based on ETo). Cal-
ibrations 3 and 4 will help evaluate the general applicabil-
ity of strategy ii to enhance NWP/GCM-based ETo forecast-
ing. Key steps of the four calibrations could be found in the
schematic diagram introducing how raw ETo forecasts are
constructed and how calibrations are conducted (Fig. S1). In
the main text, we primarily analyze results from calibrations
1 and 2. Improvements with the adoption of bias correction
to input variables in calibrations 3 and 4 are very similar to
calibrations 1 and 2 (see the Supplement). To avoid redun-
dancy, we mainly present results from calibrations 3 and 4 in
the Supplement.

2.3.1 Bias correction of input variables

In ETo forecast calibration employing strategy ii (calibra-
tions 2 and 4), we use a nonparametric quantile mapping
method (QUANT) to correct raw forecasts of the input vari-
ables. The QUANT method has been widely used in hydro-
logical and climatological investigations to correct bias in
raw forecasts (Boe et al., 2007). To use QUANT, we first
build up the empirical cumulative density function (CDF)
of both raw forecasts and AWAP data for each variable. We
then calculate the percentile of each record in raw forecasts
in their CDF. Next, these percentiles are used to search val-
ues in the corresponding AWAP data, which are then treated
as the bias-corrected forecasts.

2.3.2 Key steps of ETo forecast calibration using the
SCC model

After we construct the raw ETo forecasts, based on either
raw (calibrations 1 and 3) or bias-corrected (calibrations 2
and 4) forecasts of the input variables, we employ the SCC
model to further calibrate the ETo forecasts. For the calibra-
tions (calibrations 1 and 2) applying SCC to ETo anomalies,
the first step is to derive the climatological mean at the daily
scale using the 20-year AWAP ETo. Calibrations 3 and 4 skip
this step and apply the SCC model to ETo forecasts directly.
We use the method developed by Narapusetty et al. (2009)
and adopt trigonometric functions and harmonics to simulate
the annual cycle of AWAP ETo to derive the climatological
mean:

ycm (t)= a0+
∑H

j=1

[
aj cos

(
wj t

)
+ bj sin

(
wj t

)]
, (2)

where ycm (t) is the climatological mean of AWAP ETo at the
daily scale; H is the number of harmonics. We use H = 4
following Narapusetty et al. (2009); a0, aj , and bj are co-
efficients, estimated through minimizing the mean squared
differences between climatological mean and observations;
wj = 2πj/P , and P is the number of days in 1 year.

We then remove the climatological mean from both raw
ETo forecasts and AWAP ETo to generate anomalies. We cal-
ibrate the derived anomalies of raw ETo forecasts against
the anomalies of AWAP ETo using the SCC model. The
SCC model is composed of four key components, includ-
ing (i) a joint probability model to characterize the connec-
tion between raw forecasts and observations, (ii) reconstruc-
tion of seasonal patterns in raw forecasts based on the long-
term observations, (iii) reparameterization to obtain param-
eters for short-archived raw forecasts, and (iv) generation of
calibrated forecasts with the parameters and the joint model.
The SCC model has been introduced in detail in our site- and
continental-scale calibrations of NWP precipitation forecasts
(Wang et al., 2019; Yang et al., 2021a).

In this study, we use the Yeo–Johnson transformation
method to transform the anomalies of forecasts and refer-
ence data to approach a normal distribution (Yeo and John-
son, 2000):

x̂ =


(λx+ 1)

1
λ − 1, (x ≥ 0, λ 6= 0)

exp(x)− 1, (x ≥ 0, λ= 0)
−(λ− 2)x+ 1)

1
2−λ + 1, (x < 0, λ 6= 2)

−exp(−x)+ 1, (x < 0, λ= 2)

(3)

where λ is a transformation parameter; x refers to anomalies
of daily raw ETo forecasts or AWAP ETo (mm d−1); x̂ is the
transformed x.

We assume that the transformed anomalies of ETo fore-
casts (f (t)) and AWAP ETo (o(t)) are drawn from a bivariate
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Table 1. Four sets of ETo forecast calibrations.

Calibrations Construction of raw ETo forecasts Application of the SCC model

Calibration 1 Raw forecasts of input variables SCC calibration based on anomaly and climatological mean
Calibration 2 Bias-corrected forecasts of input variables SCC calibration based on anomaly and climatological mean
Calibration 3 Raw forecasts of input variables The SCC model applied directly to raw ETo forecasts
Calibration 4 Bias-corrected forecasts of input variables The SCC model applied directly to raw ETo forecasts

normal (BN) distribution:[
f (t) ,o (t)

]
∼ BN(f (t),o(t)|µf (m(t)),σ 2

f (m(t)),

µo(m(t)),σ
2
o (m(t)),ρ(m(t))), (4)

where m(t) returns the month k (k = 1 to 12) of daily fore-
casts or observations of day t ; µf (m(t)) and σf (m(t)) refer
to the marginal distribution’s mean and standard deviation of
f (t) in month m(t), respectively; µo(m(t)) and σo(m(t)) are
the mean and standard deviation of the marginal distribution
of o(t) in month m(t); ρ(m(t)) is the correlation between
f (t) and o(t) of month m(t).

With the long-term (20-year) AWAP ETo data, we can di-
rectly estimate µo(m(t)) and σo(m(t)) based on a maximum
likelihood optimization. Calculation of the mean (µf (m(t)))
and standard deviation (σf (m(t))) using the short-archived
raw ETo (3-year) forecasts is subject to significant sampling
errors. Instead, we indirectly estimate them using the follow-
ing linear regressions:

µf (k)= a+ bµo(k), (5)
σf (k)= c+ dσo(k), (6)
ρ(k)= r, (7)

where k refers to month of the year (k = 1 to 12); a, b, c, and
d are parameters characterizing the linear relationships; ρ(k)
denotes the correlation coefficient between anomalies of raw
forecast and AWAP ETo for each month; and r is the cor-
relation coefficient between anomalies of raw forecasts and
observations in the transformed space (Wang et al., 2019).

With the optimized parameters (means, standard devia-
tions, and correlations) for the BN distribution (Eq. 4), a con-
ditional distribution for o(t) for a given raw forecast (f (t))
is derived. From this conditional distribution, we randomly
draw 100 samples, which are treated as the calibrated en-
semble forecasts for that raw forecast. Finally, the calibrated
anomalies are back-transformed to their original space and
added back to the climatological mean to produce calibrated
ETo forecasts.

2.4 Evaluation of calibrated forecasts

We evaluate the performance of the calibrations using a
strict leave-one-month-out cross-validation, in which each
of the 36 months during April 2016–March 2019 and the
same month in the 20-year reference data (April 1999 to

March 2019) are left out in parameter inference. Optimized
parameters are then used to calibrate raw forecasts of this
specific month. This process is repeated until all 36 months
are processed. The cross-validation is to make sure that raw
forecasts used to generate calibrated forecasts are not used in
parameter optimization.

We also produce climatology forecasts based on the
monthly mean and standard deviation parameters of AWAP
ETo (Eq. 4). The randomly sampled climatology is used as
the baseline to evaluate the calibrated ETo forecasts. We
evaluate the calibrations by checking bias, temporal variabil-
ity, skill score, and reliability of the calibrated forecasts. We
conduct t tests to compare the performance of bias correc-
tion to input variables and the calibrations of ETo forecasts
(Tables S1 and S2). The evaluation metrics are further intro-
duced in detail as follows.

2.4.1 Bias

We evaluate bias of the raw and calibrated forecasts relative
to AWAP ETo using the following equation:

Bias=
1
T

∑T

t=1
(x(t)− y(t)), (8)

where “Bias” refers to the average difference between ETo
forecasts and AWAP ETo (mm d−1); T is total number
of days during the 3-year validation period (April 2016–
March 2019); x(t) is raw or calibrated forecasts of ETo
(mm d−1); and y(t) is the corresponding AWAP ETo of the
same period. Since bias measures the average difference be-
tween forecasts and observations and could be either possible
and negative, comparing biases of forecasts from different
calibrations directly will not demonstrate which calibration
has better performance. To solve this problem, we compare
the absolute bias of calibrated forecasts from different cal-
ibrations to evaluate how bias correction of input variables
affects the accuracy of calibrated ETo forecasts. Lower abso-
lute bias indicates smaller differences between forecasts and
AWAP ETo and therefore suggests better performances.

2.4.2 Temporal variability

We use the Pearson correlation coefficient (r) between raw
and bias-corrected forecasts of input variables and the cor-
responding AWAP data to evaluate how quantile mapping
improves the temporal patterns of the input variables. We
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also compare the r between raw ETo forecasts (calibrations
1 or 3) constructed with raw inputs and AWAP ETo vs. the r
between raw ETo forecasts (calibrations 2 or 4) constructed
with bias-corrected inputs and AWAP ETo. In the evaluation
of calibrated ensemble forecasts, we use the ensemble mean
of the 100 ensemble members to calculate r:

r =

∑n
t=1(x (t)− x)(y (t)− y)√∑n

t=1(x (t)− x)
2
√∑n

t=1(y (t)− y)
2
, (9)

where x(t) is raw or calibrated forecasts; x is the average of
x(t); y(t) is the corresponding AWAP ETo data of the same
period; and y is the average of y(t).

2.4.3 Skills of the raw and calibrated forecasts

We use the continuous ranked probability score (CRPS) to
measure skills in the raw and calibrated forecasts (Grimit et
al., 2006):

CRPS(t)=
∫
{F (t,x)−H (x− y (t))}2dx, (10)

CRPS=
1
T

∑T

t=1
CRPS(t) , (11)

whereF (t,x) is the cumulative density function of an en-
semble forecast, and y (t) is the observation at time t ; H
is the Heaviside step function (H = 1 if x− y (t)≥ 0 and
H = 0 otherwise); the overbar represents averaging across
the T days. For deterministic forecasts, CRPS is reduced to
absolute errors.

We further calculate the CRPS skill score (CRPSSS) to
measure the skills relative to climatology forecasts using the
following equation:

CRPSSS =
CRPSreference−CRPSforecasts

CRPSreference
× 100, (12)

where CRPSreference is the CRPS value of climatology fore-
casts ( %); CRPSforecasts refers to CRPS value of raw or cali-
brated forecasts.

In the calculation of CRPS skill score, both climatol-
ogy forecasts or the last observations (persistence) have
been used as reference forecasts (Pappenberger et al., 2015;
Thiemig et al., 2015). However, reference forecasts based on
persistence are more suitable for evaluating the performance
of forecasts shorter than 2 d. As a result, we choose climatol-
ogy forecasts as the reference, since errors in climate fore-
casts are similar among all lead times and thus could be used
to demonstrate the increasing errors in raw and calibrated
forecasts as lead time advances. For CRPSSS of calibrations
1 and 2, climatology forecasts from calibration 1 are used;
For CRPSSS of calibrations 3 and 4, climatology forecasts
from calibration 3 are used. Positive skill scores indicate bet-
ter skills than the climatology forecasts and vice versa. We
use percentage as the unit of CRPS skill score, so low skill
scores at long lead times will be converted from small deci-
mals to more readable percent.

2.4.4 Reliability

We evaluate the reliability of calibrated forecasts using the
probability integral transform (PIT) value calculated with the
following equation:

π (t)= F (t,x = y (t)) (13)

where F (t,x) is the cumulative density function of the en-
semble forecast, and y (t) is the AWAP ETo. For reliable
forecasts, π (t) follows a uniform distribution. We use the
α index (α) to summarize the reliability in each grid cell
with the following equation to check the spatial patterns of
forecast reliability (Renard et al., 2010):

α = 1−
2
n

∑n

t=1

∣∣∣∣π∗ (t)− t

n+ 1

∣∣∣∣ (14)

where π∗(t) is the sorted π(t), t = 1,2, . . . n in ascending
order, and n is the total number of days during April 2016–
March 2019. The α index measures the total deviation of cal-
ibrated forecasts from the corresponding uniform quantile.
Perfectly reliable forecasts should have an α of 1, and fore-
casts with no reliability would have an α of 0.

We further evaluate the reliability of calibrated ETo fore-
casts from calibration 2 using the reliability diagram (Hart-
mann et al., 2002), which assesses how well the predicted
probabilities of forecasts match observed frequencies. We
convert the calibrated ensemble ETo forecasts to forecast
probabilities exceeding three thresholds, including 3, 6, and
9 mm d−1. We pool forecasts of different grid cells, days,
and lead times together in the calculation of forecast proba-
bility. In the reliability diagram, perfectly reliable forecasts
would demonstrate a curve along the diagonal. A plotted
curve above the diagonal indicates underestimations and vice
versa.

3 Results

3.1 Quality of raw and bias-corrected input variables

Raw forecasts of the five input variables demonstrate sig-
nificant inconsistencies with the corresponding AWAP data
(Figs. S2–S6). In most parts of Australia, raw daily maxi-
mum temperature (Tmax) forecasts are lower than AWAP data
by 1–2 ◦C. Overpredictions in Tmax are only found in coastal
areas of northwestern Australia. The daily minimum temper-
ature (Tmin) is underpredicted by more than 1.5 ◦C in western
and central parts of Australia by the raw forecasts, but it is
overpredicted by ca. 1 ◦C in eastern and southern Australia.
Vapor pressure is underpredicted in western and central re-
gions by ca. 14 %, but it is overpredicted by ca. 6 % in coastal
areas of southeastern Australia by the raw forecasts. Raw
solar radiation forecasts are about 5 % higher than AWAP
data across Australia. Forecasted wind speed is higher than
the reference data by more than 1 m s−1 (or by ca. 63 %) in
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most parts of Australia. For each input variable, spatial pat-
terns of biases in raw forecasts are consistent across the nine
lead times, demonstrating systematic errors in the raw NWP
forecasts. According to our statistical test, overpredictions or
underpredictions in raw forecasts of the input variables are
statistically significant (P<0.05) for most lead times (Ta-
ble S1).

Raw forecasts of the input variables generally agree with
the AWAP data in temporal patterns during the study period,
but the r varies with variables (Figs. S7–S11). The two tem-
perature variables (Tmax and Tmin) have higher r (>0.9) than
the other three variables, and wind speed forecasts demon-
strate the lowest correlations with AWAP data. For all vari-
ables, the r decreases with lead time, indicating higher un-
certainties at long lead times in raw forecasts.

Quantile mapping effectively corrects biases in raw fore-
casts of the input variables. Through the bias correction, sig-
nificant overpredictions and underpredictions in raw fore-
casts of the five variables are significantly reduced, result-
ing in biases close to zero for all lead times across Aus-
tralia (Figs. S2–S6). In addition, quantile mapping also im-
proves the correlation between forecasts of input variables
and AWAP data (Figs. S7–S11). The most significant im-
provements are found in wind speed forecasts, in which the
r is improved by up to 0.2 in central and southern parts of
Australia. Forecasts of Tmax and solar radiation also demon-
strate higher r with the adoption of quantile mapping. Both
increases and slight decreases were found for vapor pressure
and Tmin, indicating less significant improvements in tempo-
ral patterns than other variables.

3.2 Quality of raw ETo forecasts constructed with raw
and bias-corrected input variables

Raw ETo forecasts constructed with the bias-corrected input
variables are much more accurate than those calculated with
raw forecasts of the input variables (Figs. 1 and S12). When
raw ETo forecasts are constructed with raw input variables,
biases in input variables are translated into errors in the raw
ETo forecasts, which demonstrate substantial positive biases
of 1 mm d−1 (ca. 12 % larger than AWAP ETo) in large ar-
eas of central and northern Australia. In the raw ETo fore-
casts constructed with bias-corrected input variables, biases
approach zero in most parts of Australia, except for inland
regions of Queensland, where biases are close to 0.3 mm d−1

(ca. 4 % larger than AWAP ETo). The remaining biases are
significantly lower than those in the raw ETo forecasts con-
structed with raw input variables (Table S2).

The adoption of quantile mapping to input variables also
improves the temporal patterns of raw ETo forecasts (Fig. 2).
Compared with the raw ETo forecasts constructed with
raw input variables, the raw ETo forecasts based on bias-
corrected inputs generally shows higher correlations with
AWAP ETo, particularly in northern Australia, where r is
improved by more than 10 %. However, due to the nonlinear-

ity in the calculation of ETo using the input variables, spa-
tial patterns of improvements in r (Fig. 2) does not resemble
improvements in any individual input variables (Figs. S7 to
S11). The improvements in r of raw ETo forecasts seem to
be contributed jointly by these input variables and their inter-
actions.

3.3 Bias in calibrated ETo forecasts

The calibration with the SCC model further reduces biases in
ETo forecasts (Fig. 3). The calibrated ETo forecasts from cal-
ibration 2 show low biases close to zero across all grid cells
and lead times. Overpredictions in Queensland in the raw
ETo forecasts calculated with the bias-corrected input vari-
ables are effectively corrected (Figs. 1, 3, and S12), leading
to lower biases in the calibrated forecasts. According to the
t test (Table S2), biases of calibrated forecasts at the first two
lead times are not significantly different from zero, indicating
the effective bias reduction through calibration 2. For the re-
maining seven lead times (days 3 to 9), the overall biases are
slightly higher than zero. The remaining biases in calibrated
forecasts reflect deviations of ETo during the evaluation pe-
riod (April 2016–March 2019) from the climatology during
April 1999–March 2019, since the SCC parameters are in-
ferred with the 20-year AWAP ETo (Eqs. 4 to 7).

Compared with the calibration constructing raw ETo fore-
casts with raw forecasts of input variables (calibration 1), the
postprocessing based on bias-corrected input variables (cal-
ibration 2) produces more accurate calibrated ETo forecasts
(Fig. 4). Specifically, calibrated ETo forecasts from calibra-
tion 2 demonstrate significantly smaller (P<0.05) absolute
biases than those of calibration 1 across large areas of north-
ern Australia, particularly in coastal regions of the Northern
Territory. Larger reductions in absolute bias in northern Aus-
tralia coincide with the improvements in the correlation be-
tween raw ETo forecasts and AWAP ETo (Fig. 2). However,
unlike the improvements in r for all lead times in raw ETo
forecasts, the improvements in absolute bias are more pro-
nounced at short lead times (days 1–3) than long lead times
(days 7–9). The uneven improvements across different lead
times may be caused by the significant intrinsic uncertain-
ties in forecasts, which have hindered the manifestation of
improvements to raw ETo forecasts at long lead times in cal-
ibrated forecasts.

3.4 Correlation between calibrated ETo forecasts and
AWAP ETo

We further examine the representation of ETo temporal vari-
ability by calibrated forecasts. The r between calibrated ETo
forecasts from calibration 2 and AWAP ETo demonstrates
high consistency in temporal variability (Fig. 5). The correla-
tion coefficient is mainly above 0.85 across Australia for the
first three lead times. With increases in lead time, r decreases
but remains above 0.75 in most grid cells, even at lead time 9.
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Figure 1. Bias in (three columns on the left) raw ETo forecasts constructed with raw forecasts of input variables and (three columns on the
right) raw ETo forecasts constructed with bias-corrected input variables.

Figure 2. The comparison between the correlation coefficient of raw ETo forecasts constructed with the bias-corrected inputs and AWAP
ETo vs. the correlation coefficient of raw ETo forecasts constructed with the raw inputs and AWAP ETo. The boxplot on the right summarizes
results across all grid cells.

Coastal areas of northern Australia have lower r values than
other regions of the country, demonstrating higher uncertain-
ties in ETo forecasts this area. Deficiencies in ACCESS mod-
els in simulating dynamics of tropical climate systems may
have resulted in the low r in northern Australia.

The adoption of bias correction to raw forecasts of input
variables results in better representation of ETo variability in
calibrated ETo forecasts (Fig. 6 and Table S2). Increases in
r are particularly significant for short lead times (Table S2).
Specifically, for the first three lead times, increases in r are
mainly around 2 % in central and northern parts of Australia,
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Figure 3. Bias in calibrated ETo forecasts from calibration 2, in which raw ETo forecasts are constructed with bias-corrected input variables.
Maps on the left show the spatial patterns of bias, and the boxplot on the right summarizes biases across all grid cells.

Figure 4. Differences in absolute bias between calibrated ETo forecasts from calibration 2 with calibration 1. Maps on the left show the
spatial patterns of difference in absolute bias, and the boxplot on the right summarizes results across all grid cells.

with more pronounced (>4 %) increases found in coastal re-
gions of the Northern Territory. For lead times 4 to 6, in-
creases in r values are mainly above 1 %. For the remaining
three lead times (7 to 9), increases in r are mainly located in
Northern Territory. Spatial patterns of r increases from cali-
bration 1 to calibration 2 are consistent across the nine lead
times.

Spatial patterns of improvements in r in calibrated ETo
forecasts (Fig. 6) are consistent with the improvements in

r of raw ETo forecasts with the adoption of bias correction
(Fig. 2), particularly for the short lead times. The improve-
ments in r of calibrated ETo forecasts (Fig. 6) may also lead
to more reasonable conditional distributions for a given raw
forecast (Eq. 4). As a result, regions showing improvements
in r in calibrated ETo forecasts (Fig. 6) often demonstrate
reductions in absolute bias (Fig. 4).
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Figure 5. The correlation coefficient between calibrated ETo forecasts from calibration 2 and AWAP ETo. Maps on the left show the spatial
patterns of r , and the boxplot on the right summarizes results across all grid cells.

Figure 6. Differences in the correlation coefficients between calibrated forecasts from calibration 2 and AWAP ETo vs. calibration 1. Maps
on the left show the spatial patterns of differences in r , and the boxplot on the right summarizes results across all grid cells.

3.5 Improvements in forecast skills

The calibration of ETo forecasts with the SCC model signif-
icantly improves forecast skills. The raw ETo forecasts cal-
culated with bias-corrected input variables demonstrate low
skills, even at short lead times (Figs. 7 and S13). Specifically,
for the first two lead times, central and southern Australia
show skills better than the climatology forecasts by 10 % to
20 %. However, in most parts of northern Australia, raw fore-

casts are worse than randomly sampled climatology. Skills in
raw ETo forecasts decrease quickly with lead time. Regions
with positive skills shrink substantially at lead times 3 and 4
and disappear at longer lead times. At lead time 9, skills of
raw forecasts are mainly below −40 %.

The calibration significantly improves forecast skills
across all lead times (Table S2). Calibrated ETo forecasts
from calibration 2 show CRPS skill scores above 35 % at lead
time 1 across Australia, and the skills are generally above
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Figure 7. CRPS skill score in the (three columns on the left) raw ETo forecasts calculated with bias-corrected input variables and (three
columns on the right) calibrated forecasts from calibration 2.

30 % at lead times 2 and 3. Since ETo forecasts have been
widely used to inform real-time decision-making for farm-
ing, high skills in calibrated ETo forecasts for the short lead
times are expected to be highly valuable for activities such as
irrigation scheduling. Although skills of calibrated forecasts
also decrease with lead time, they remain above zero at long
lead times (Figs. 7 and S13).

We further compare skills of calibrated ETo forecasts be-
tween calibrations 2 and 1 (Fig. 8). We achieve significant in-
creases (P<0.05) in CRPS skill scores with the adoption of
bias correction to input variables, particularly for short lead
times (Table S2). For the first three lead times, the CRPS skill
scores are increased by more than 4 % in northwestern and
eastern Australia, when input variables are bias corrected.
For lead times 4 to 6, the CRPS skill scores are increased
by 2 % in these regions of Australia. Although the differ-
ences become less noticeable at lead times 7 to 9, they are
generally above zero in most parts of Australia. Increases in
CRPS skill score across the nine lead times are in line with
improvements in absolute bias (Fig. 4) and correlation coeffi-
cient (Fig. 6), which all show more significant improvements
at short lead times than long lead times.

3.6 Reliability of calibrated ETo forecasts

The calibrated ensemble ETo forecasts from calibration 2
demonstrate high reliability (Fig. 9). In addition to correct-
ing bias, the SCC model converts deterministic raw forecasts
to ensemble forecasts, which use 100 ensemble members to
quantify forecast uncertainty. Figure 9 demonstrates highly

reliable ensemble spreads in calibrated forecasts across all
lead times. In most grid cells, the α index is over 0.9, in-
dicating reasonable representations of ETo uncertainties by
the ensemble spread, which is neither too narrow nor too
wide (Fig. 9). Calibrated forecasts from calibration 1, which
uses raw input variables, demonstrate similar reliability as
those from the calibration with bias-corrected input vari-
ables (calibration 2). Differences in α index of the calibrated
ETo forecasts from calibrations 1 and 2 are almost negligi-
ble (Fig. S14), as shown by the t test (Table S2), indicating
that bias-correcting raw forecasts of input variables does not
lead to significant changes in the reliability of calibrated ETo
forecasts.

The reliability diagram further confirms the consistency
between forecast probabilities and observed frequencies
(Fig. 10). The plotted curves based on three thresholds (3,
6, and 9 mm d−1) are mainly distributed along the 1 : 1 line,
further indicating the high reliability of calibrated ETo fore-
casts.

3.7 Results from calibrations 3 and 4

We also compare the bias, correlation coefficient, CRPS skill
score, and reliability of calibrated forecasts from calibrations
3 and 4 to evaluate whether we can obtain similar improve-
ments through the bias correction of input variables if we
conduct the ETo forecast calibration in a different way (with-
out using ETo climatological mean and anomalies). Results
show that the adoption of bias correction also leads to lower
bias, higher correlation coefficient, and higher CRPS skill
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Figure 8. Differences in CRPS skill score between the calibrated ETo forecasts from calibration 2 with those from calibration 1. Maps on
the left show the spatial patterns of difference in CRPS skill score, and the boxplot on the right summarizes results across all grid cells.

Figure 9. The α index of calibrated ETo ensemble forecasts from calibration 2. Maps on the left show the spatial patterns of the α index, and
the boxplot on the right summarizes results across all grid cells.

score in terms of magnitude, spatial patterns, and trend along
the lead times, when ETo forecasts are calibrated directly
(Figs. S15–S17). In addition, the α index was only slightly
different between calibrations 3 and 4 (Fig. S18). This addi-
tional comparison further confirms the general applicability
of strategy ii for enhancing NWP-based ETo forecasting.

3.8 Summary of results

Although the selected metrics measure different aspects
of forecast quality, they generally agree with each other
in demonstrating improvements in calibrated ETo forecasts
with the adoption of the strategy ii. As introduced in the
Method section, bias measures average differences; corre-
lation coefficient shows consistency between observations
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Figure 10. Reliability diagrams of calibrated ETo forecasts during April 2016–March 2019 with thresholds of 3, 6, and 9 mm d−1.

and forecasts in temporal variability; the CRPS skill score
measures the performance of the calibrated forecasts relative
to climatology forecast; the α index is an indicator show-
ing whether the distribution of calibrated forecasts is over-
confident or underconfident. As a result, these metrics may
differ from each other in magnitude when used to evaluate
different calibrations (Figs. 4, 6, 8, and S14). However, im-
provements in bias, correlation, and skills with the adoption
of bias correction to input variables are generally consistent
in spatial patterns. Compared with the other three metrics, α
index demonstrates less significant changes when input vari-
ables are bias corrected first (Table S2 and Fig. S14), mainly
because this index is less sensitive to changes in calibrated
forecasts than other metrics.

4 Discussion

4.1 Importance of improving forecasts of input
variables for NWP-based ETo forecasting

This investigation further highlights the importance of sta-
tistical calibration in NWP-based ETo forecasting (Medina
and Tian, 2020). According to an investigation across 40 sites
in Australia, raw ETo forecasts constructed with NWP out-
puts reasonably captured the magnitude and variability of
ETo, but forecast skills better than climatology were only
limited to the first six lead times (Perera et al., 2014). Our
investigation suggests that statistical calibration could sub-
stantially improve forecast skills and successfully extend the
skillful forecasts to lead time 9 across Australia. Findings
of this investigation agree well with the site-scale short-
term ETo forecasting based on GCM outputs (Zhao et al.,
2019a) in the improvements of forecast skills through sta-
tistical calibration. Calibrated forecasts from calibration 2
demonstrate similar skills as Zhao et al. (2019a) across three
Australian sites. Thanks to the capability of SCC in calibrat-
ing short-archived forecasts (Wang et al., 2019), we achieve
the improvements based on much shorter archived raw fore-

casts (3-year vs. 23-year) than Zhao et al. (2019a). Cali-
brated forecasts from calibration 2 also demonstrate low bi-
ases (0.32 %–0.95 %) comparable with calibrated ETo fore-
casts (0.49 %–0.63 %) based on the Bayesian model averag-
ing (BMA) model and weather forecasts from three NWP
models in the USA during 2014–2016 (Medina and Tian,
2020).

This investigation also contributes to filling a knowl-
edge gap in NWP-based ETo forecasting. Although previous
calibrations using raw forecasts of input variables to con-
struct the raw ETo forecasts (strategy i) for calibration of-
ten achieved significant improvements in skills, it is unclear
whether improving forecasts of input variables could further
enhance ETo forecast calibration (Medina and Tian, 2020).
How the raw ETo forecasts should be constructed represents
a critical knowledge gap in the area of NWP-based ETo fore-
casting (Medina and Tian, 2020). Results of this investiga-
tion provide strong evidence for the necessity of improving
input variables prior to constructing raw ETo forecasts. The
nonlinear and nonstationary behaviors of the input variables
used for ETo calculation have been reported (Paredes et al.,
2018). This study suggests that when raw input variables are
used to construct the raw ETo forecasts, complex interac-
tions among these variables may lead to errors in raw ETo
forecasts that could not be effectively corrected through sta-
tistical calibration. Bias correction of input variables could
help prohibit the propagation of errors from input variables
to ETo forecasts (Zappa et al., 2010), as evidenced by the
higher accuracy and higher skills in calibrated ETo forecasts
when input variables are bias corrected. In addition, a further
evaluation based on a different way of implementing the SCC
model demonstrates similar improvements in calibrated ETo
forecasts with the adoption of bias correction to input vari-
ables (calibrations 3 and 4). Results from calibrations 3 and
4 further confirm that additional skills have been added to
raw ETo forecasts through the bias correction of input vari-
ables, and the improvements to calibrated ETo forecasts tend
to be independent of calibration models. Consequently, we
anticipate that future NWP-based ETo forecasting could ben-
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efit from adopting this calibration strategy to produce more
skillful calibrated ETo forecasts.

4.2 Implications for forecasting of integrated variables
and future work

This investigation also provides valuable implications for the
forecasting of integrated variables, which are derived based
on multiple NWP/GCM variables. Variables such as drought
index (Zhang et al., 2017), bushfire danger index (Sharples
et al., 2009), and severe weather index (Rabbani et al., 2020)
are often derived by combining multiple weather variables
produced by NWP models. Our investigation suggests that
improving the input variables could effectively reduce error
propagation from inputs to integrated variables. This extra
step is proven to be particularly useful in reducing errors in
the integrated variables that could not be corrected through
calibration. We anticipate that this extra step could help im-
prove the predictability of integrated variables.

Although we have conducted thorough analyses on the
contribution of improving input variables to ETo forecast cal-
ibration, further investigations will be needed to validate the
robustness of findings in this study. First, we anticipate that
the ETo forecasts could be further improved if a more sophis-
ticated calibration model is applied to raw forecasts of the in-
put variables. In this study, we adopt a simple bias-correction
method to improve the input variables. Limitations of quan-
tile mapping have been reported in previous studies (Schepen
et al., 2020; Zhao et al., 2017). Our analyses demonstrate
that the raw ETo forecasts calculated with the bias-corrected
input variables still show low forecast skills, particularly at
long lead times (Fig. 7). If a more sophisticated calibration
method is employed to the input variables, error propagation
from input variables to ETo forecasts will likely be further re-
duced. As a result, we anticipate that the calibrated ETo fore-
cast will gain further improvements in forecast skills. An-
other advantage of correcting input variables with a sophisti-
cated model is that it will produce a set of skillful calibrated
weather forecasts. Well-calibrated forecasts of temperature,
vapor pressure, solar radiation, and wind speed could be use-
ful for forecast users such as crop modelers and bushfire
managers.

Second, the two calibration strategies should be tested us-
ing other NWP models. In this study, we use one NWP model
to investigate a critical knowledge gap in NWP-based ETo
forecasting. Additional investigations are needed to examine
whether improvements achieved with the adoption of calibra-
tion strategy ii will hold for ETo forecasting based on other
NWP models. Third, further investigations based on other
calibration models are needed to validate findings of this
investigation. Our analyses based on two different methods
(based on ETo anomalies vs. based on original ETo) demon-
strate similar improvements in calibrated ETo forecasts with
the adoption of bias correction to input variables. Additional
evaluations will be needed to verify whether forecast skills

will be improved using strategy ii but based on a different
calibration model. In addition, we use bilinear interpolation
to match the NWP forecasts and AWAP data. More sophisti-
cated remapping methods should be evaluated to understand
the impacts of forecast regridding on statistical calibration.

The applicability of the calibration strategy developed in
this study to seasonal ETo forecasting should be further in-
vestigated. Seasonal ETo forecasting based on GCM climate
forecast has been increasingly performed (Tian et al., 2014;
Zhao et al., 2019b). In these investigations, raw ETo forecasts
were also constructed directly with raw GCM climate fore-
casts. As a result, it is expected that these investigations have
suffered from error propagation from input variables to sea-
sonal ETo forecasts. Whether the calibration strategy (strat-
egy ii) developed in this study will be applicable to seasonal
ETo forecasting warrants further investigations.

5 Conclusions

NWP outputs have been increasingly used for ETo forecast-
ing to support water resource management. Statistical cal-
ibration plays an essential role in improving the quality of
ETo forecasts. However, it is unclear whether improving raw
forecasts of input variables is necessary for the calibration of
ETo forecasts. We aim to fill this knowledge gap through a
thorough comparison of two calibration strategies in the cal-
ibration of NWP-based ETo forecasts.

This investigation clearly suggests the necessity of im-
proving input variables as part of ETo forecast calibration.
With this extra step, the bias, correlation coefficient, and
skills of the calibrated ETo forecasts are all improved. Fur-
ther investigation indicates that the improvements tend to
be independent of the calibration method applied to ETo
forecasts. Forecasting the highly variable ETo is often chal-
lenging. This investigation addresses a common challenge in
NWP-based ETo forecasting and develops an effective cali-
bration strategy for adding extra skills to ETo forecasts. We
anticipate that future NWP-based ETo forecasting could ben-
efit from adopting this strategy to produce more skillful cal-
ibrated ETo forecasts. This strategy is also expected to be
applicable to enhancing the forecasting of other integrated
variables that are calculated using multiple NWP/GCM vari-
ables as inputs.

Data availability. Data used in this study are available by contact-
ing the corresponding author.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-4773-2021-supplement.

Author contributions. QY and QJW conceived this study. QJW de-
veloped the calibration model. QY took the lead in writing and

https://doi.org/10.5194/hess-25-4773-2021 Hydrol. Earth Syst. Sci., 25, 4773–4788, 2021

https://doi.org/10.5194/hess-25-4773-2021-supplement


4786 Q. Yang et al.: Bias-correcting input variables enhances forecasting of reference crop evapotranspiration

improving the article. All co-authors, including KH and YT, con-
tributed to discussing the results and improving this study.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Computations for this research were under-
taken with the assistance of resources and services from the Na-
tional Computational Infrastructure (NCI), which is supported by
the Australian Government. This research was supported by the
“Sustaining and strengthening merit-based access to National Com-
putational Infrastructure” (NCI) LIEF grant (LE190100021) and fa-
cilitated by The University of Melbourne.

Financial support. This research has been supported by the Aus-
tralian Research Council (grant no. LP170100922) and the Aus-
tralian Bureau of Meteorology (grant no. TP707466).

Review statement. This paper was edited by Nadia Ursino and re-
viewed by three anonymous referees.

References

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Irrigation
and drainage paper No.56, Crop evapotranspiration: guidelines
for computing crop water requirements, Food and Agriculture
Organization of the United Nations (FAO), Rome, Italy, 1998.

Bachour, R., Maslova, I., Ticlavilca, A. M., Walker, W. R., and Mc-
kee, M.: Wavelet-multivariate relevance vector machine hybrid
model for forecasting daily evapotranspiration, Stoch. Environ.
Res. Risk Assess., 30, 103–117, https://doi.org/10.1007/s00477-
015-1039-z, 2016.

Ballesteros, R., Ortega, F., and Angel, M.: FORETo: New software
for reference evapotranspiration forecasting, J. Arid Environ.,
124, 128–141, https://doi.org/10.1016/j.jaridenv.2015.08.006,
2016.

Boe, J., Terray, L., Habets, F., and Martin, E.: Statistical
and dynamical downscaling of the Seine basin climate for
hydro-meteorological studies, Int. J. Clim., 27, 1463–1655,
https://doi.org/10.1002/joc.1602, 2007.

Cai, J., Liu, Y., Lei, T., and Pereira, S. L.: Estimating reference evap-
otranspiration with the FAO Penman – Monteith equation using
daily weather forecast messages, Agric. For. Meteorol., 145, 22–
35, https://doi.org/10.1016/j.agrformet.2007.04.012, 2007.

Djaman, K., Neill, M. O., Owen, C. K., Smeal, D., Koudahe, K.,
West, M., Allen, S., Lombard, K., and Irmak, S.: Crop Evapo-
transpiration, Irrigation Water Requirement and Water Productiv-

ity of Maize from Meteorological Data under Semiarid Climate,
Water, 10, 1–17, https://doi.org/10.3390/w10040405, 2018.

Er-Raki, S., Chehbouni, A., Khabba, S., Simonneaux, V., Jar-
lan, L., Ouldbba, A., Rodriguez, J. C., and Allen, R.: Assess-
ment of reference evapotranspiration methods in semi-arid re-
gions: Can weather forecast data be used as alternate of ground
meteorological parameters?, J. Arid Environ., 74, 1587–1596,
https://doi.org/10.1016/j.jaridenv.2010.07.002, 2010.

Grimit, E. P., Gneiting, T., Berrocal, V. J., and Johnson, N.
A.: The continuous ranked probability score for circular
variables and its application to mesoscale forecast ensem-
ble verification, Q. J. Roy. Meteor. Soc., 132, 2925–2942,
https://doi.org/10.1256/qj.05.235, 2006.

Hartmann, H., Pagano, T. C., Sorooshian, S., and Bales, R.: Evaluat-
ing Seasonal Climate Forecasts from User Perspectives, B. Am.
Meteorol. Soc., 83, 683–698, 2002.

Hopson, T. M. and Webster, P. J.: A 1–10-Day Ensemble Forecast-
ing Scheme for the Major River Basins of Bangladesh: Forecast-
ing Severe Floods of 2003–07, J. Hydrometeorol., 11, 618–641,
https://doi.org/10.1175/2009JHM1006.1, 2009.

Jones, D. A., Wang, W., and Fawcett, R.: Climate Data for the Aus-
tralian Water Availability Project, Australian Bureau of Meteo-
rology, Melbourne, Australia, available at: https://trove.nla.gov.
au/work/17765777?q&versionId=20839991 (last access: 10 De-
cember 2019), 2007.

Jones, D. A., Wang, W., and Fawcett, R.: Australian Water
Availability Project Daily Gridded Rainfall, available at: http:
//www.bom.gov.au/jsp/awap/rain/index.jsp (last access: 10 Jan-
uary 2020), 2014.

Karbasi, M.: Forecasting of Multi-Step Ahead Reference Evap-
otranspiration Using Wavelet-Gaussian Process Regression
Model, Water Resour. Manag., 32, 1035–1052, 2018.

Kumar, R., Jat, M. K., and Shankar, V.: Methods to estimate irri-
gated reference crop evapotranspiration – a review, Water Sci.
Technol., 66, 525–535, https://doi.org/10.2166/wst.2012.191,
2012.

Lim, J. and Park, H.: H Filtering for Bias Correction in Post-
Processing of Numerical Weather Prediction, J. Meteorol.
Soc. Japan, 97, 773–782, https://doi.org/10.2151/jmsj.2019-041,
2019.

Liu, Y. J., Chen, J., and Pang, T.: Analysis of Changes in
Reference Evapotranspiration, Pan Evaporation, and Actual
Evapotranspiration and Their Influencing Factors in the North
China Plain During 1998–2005, Earth Sp. Sci., 6, 1366–1377,
https://doi.org/10.1029/2019EA000626, 2019.

Luo, Y., Chang, X., Peng, S., Khan, S., Wang, W., Zheng,
Q., and Xueliang, C.: Short-term forecasting of daily refer-
ence evapotranspiration using the Hargreaves-Samani model
and temperature forecasts, Agric. Water Manag., 136, 42–51,
https://doi.org/10.1016/j.agwat.2014.01.006, 2014.

Mariito, M. A., Tracy, J. C., and Taghavv, S. A.: Forecasting of ref-
erence crop evapotranspiration, Agric. Water Manag., 24, 163–
187, 1993.

Mcvicar, T. R., Niel, T. G. Van, Li, L. T., Roderick, M. L.,
Rayner, D. P., Ricciardulli, L., and Donohue, R. J.: Wind
speed climatology and trends for Australia, 1975–2006: Cap-
turing the stilling phenomenon and comparison with near-
surface reanalysis output, Geophys. Res. Lett., 35, 1–6,
https://doi.org/10.1029/2008GL035627, 2008.

Hydrol. Earth Syst. Sci., 25, 4773–4788, 2021 https://doi.org/10.5194/hess-25-4773-2021

https://doi.org/10.1007/s00477-015-1039-z
https://doi.org/10.1007/s00477-015-1039-z
https://doi.org/10.1016/j.jaridenv.2015.08.006
https://doi.org/10.1002/joc.1602
https://doi.org/10.1016/j.agrformet.2007.04.012
https://doi.org/10.3390/w10040405
https://doi.org/10.1016/j.jaridenv.2010.07.002
https://doi.org/10.1256/qj.05.235
https://doi.org/10.1175/2009JHM1006.1
https://trove.nla.gov.au/work/17765777?q&versionId=20839991
https://trove.nla.gov.au/work/17765777?q&versionId=20839991
http://www.bom.gov.au/jsp/awap/rain/index.jsp
http://www.bom.gov.au/jsp/awap/rain/index.jsp
https://doi.org/10.2166/wst.2012.191
https://doi.org/10.2151/jmsj.2019-041
https://doi.org/10.1029/2019EA000626
https://doi.org/10.1016/j.agwat.2014.01.006
https://doi.org/10.1029/2008GL035627


Q. Yang et al.: Bias-correcting input variables enhances forecasting of reference crop evapotranspiration 4787

Medina, H. and Tian, D.: Comparison of probabilistic post-
processing approaches for improving numerical weather
prediction-based daily and weekly reference evapotranspi-
ration forecasts, Hydrol. Earth Syst. Sci., 24, 1011–1030,
https://doi.org/10.5194/hess-24-1011-2020, 2020.

Medina, H., Tian, D., Srivastava, P., Pelosi, A., and Chirico,
G. B.: Medium-range reference evapotranspiration forecasts
for the contiguous United States based on multi-model
numerical weather predictions, J. Hydrol., 562, 502–517,
https://doi.org/10.1016/j.jhydrol.2018.05.029, 2018.

Mushtaq, S., Reardon-smith, K., Kouadio, L., Attard, S., Cobon,
D., and Stone, R.: Value of seasonal forecasting for sugar-
cane farm irrigation planning, Eur. J. Agron., 104, 37–48,
https://doi.org/10.1016/j.eja.2019.01.005, 2019.

Narapusetty, B., Delsole, T., and Tippett, M. K.: Optimal esti-
mation of the climatological mean, J. Climate, 22, 4845–4859,
https://doi.org/10.1175/2009JCLI2944.1, 2009.

Nouri, M. and Homaee, M.: On modeling reference crop evapotran-
spiration under lack of reliable data over Iran, J. Hydrol., 566,
705–718, https://doi.org/10.1016/j.jhydrol.2018.09.037, 2018.

Pappenberger, F., Ramos, M. H., Cloke, H. L., Wetterhall, F.,
Alfieri, L., Bogner, K., Mueller, A., and Salamon, P.: How
do I know if my forecasts are better? Using benchmarks in
hydrological ensemble prediction, J. Hydrol., 522, 697–713,
https://doi.org/10.1016/j.jhydrol.2015.01.024, 2015.

Paredes, P., Fontes, J. C., Azevedo, E. B., and Pereira, L. S.: Daily
reference crop evapotranspiration with reduced data sets in the
humid environments of Azores islands using estimates of actual
vapor pressure, solar radiation, and wind speed, Theor. Appl. Cli-
matol. Appl., 134, 1115–1133, 2018.

Pelosi, A., Medina, H., Villani, P., D’Urso, G., and Chirico, G. B.:
Probabilistic forecasting of reference evapotranspiration with a
limited area ensemble prediction system, Agric. Water Manag.,
178, 106–118, https://doi.org/10.1016/j.agwat.2016.09.015,
2016.

Perera, K. C., Western, A. W., Nawarathna, B., and George, B.:
Forecasting daily reference evapotranspiration for Australia us-
ing numerical weather prediction outputs, Agric. For. Meteorol.,
194, 50–63, https://doi.org/10.1016/j.agrformet.2014.03.014,
2014.

Perera, K. C., Western, A. W., Robertson, R. D., George, B.,
and Nawarathna, B.: Ensemble forecasting of short-term system
scale irrigation demands using real-time flow data and numer-
ical weather predictions, Water Resour. Res., 52, 4801–4822,
https://doi.org/10.1002/2015WR018532, 2016.

Rabbani, G., Yazd, N. K., Reza, M., and Daneshvar, M.:
Factors affecting severe weather threat index in urban ar-
eas of Turkey and Iran, Environ. Syst. Res., 9, 1–14,
https://doi.org/10.1186/s40068-020-00173-6, 2020.

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.:
Understanding predictive uncertainty in hydrologic modeling:
The challenge of identifying input and structural errors, Water
Resour. Res., 46, 1–22, https://doi.org/10.1029/2009WR008328,
2010.

Schepen, A., Everingham, Y., and Wang, Q. J.: On the
Joint Calibration of Multivariate Seasonal Climate Fore-
casts from GCMs, Mon. Weather Rev., 148, 437–456,
https://doi.org/10.1175/MWR-D-19-0046.1, 2020.

Sharples, J. J., Mcrae, R. H. D., Weber, R. O., and
Gill, A. M.: A simple index for assessing fire dan-
ger rating, Environ. Model. Softw., 24, 764–774,
https://doi.org/10.1016/j.envsoft.2008.11.004, 2009.

Srivastava, P. K., Han, D., Ramirez, M. A. R., and Islam, T.:
Comparative assessment of evapotranspiration derived from
NCEP and ECMWF global datasets through Weather Re-
search and Forecasting model, Atmos. Sci. Lett., 14, 118–125,
https://doi.org/10.1002/asl2.427, 2013.

Thiemig, V., Bisselink, B., Pappenberger, F., and Thielen, J.: A pan-
African medium-range ensemble flood forecast system, Hydrol.
Earth Syst. Sci., 19, 3365–3385, https://doi.org/10.5194/hess-19-
3365-2015, 2015.

Tian, D. and Martinez, C. J.: The GEFS-Based Daily Reference
Evapotranspiration (ETo) Forecast and Its Implication for Water
Management in the Southeastern United States, J. Hydrometeo-
rol., 15, 1152–1165, https://doi.org/10.1175/JHM-D-13-0119.1,
2014.

Tian, D., Martinez, C. J., and Graham, W. D.: Seasonal Predic-
tion of Regional Reference Evapotranspiration Based on Climate
Forecast System Version 2, J. Hydrometeorol., 15, 1166–1188,
https://doi.org/10.1175/JHM-D-13-087.1, 2014.

Torres, A. F., Walker, W. R., and Mckee, M.: Forecasting
daily potential evapotranspiration using machine learning and
limited climatic data, Agric. Water Manag., 98, 553–562,
https://doi.org/10.1016/j.agwat.2010.10.012, 2011.

Turco, M., Ceglar, A., Prodhomme, C., Soret, A., Toreti, A., and
Francisco, J. D.-R.: Summer drought predictability over Europe:
empirical versus dynamical forecasts, Environ. Res. Lett., 12,
084006, https://doi.org/10.1088/1748-9326/aa7859, 2017.

Vogel, P., Knippertz, P., Fink, A. H., Schlueter, A., and Gneiting,
T.: Skill of global raw and postprocessed ensemble predictions
of rainfall over northern tropical Africa, Weather Forecast., 33,
369–388, https://doi.org/10.1175/WAF-D-17-0127.1, 2018.

Wang, Q. J., Zhao, T., Yang, Q., and Robertson, D.: A Seasonally
Coherent Calibration (SCC) Model for Postprocessing Numer-
ical Weather Predictions, Mon. Weather Rev., 147, 3633–3647,
https://doi.org/10.1175/MWR-D-19-0108.1, 2019.

Yang, Q., Wang, Q. J., and Hakala, K.: Achieving ef-
fective calibration of precipitatioAn forecasts over a
continental scale, J. Hydrol. Reg. Stud., 35, 100818,
https://doi.org/10.1016/j.ejrh.2021.100818, 2021a.

Yang, Q., Wang, Q. J., and Hakala, K.: Working with anomalies
improves forecast calibration of daily reference crop evapotran-
spiration, J. Hydrol., in revision, 2021b.

Yeo, I. and Johnson, R. A.: A new family of power transforma-
tions to improve normality or symmetry, Biometrika, 87, 954–
959, 2000.

Zappa, M., Beven, K. J., Bruen, M., Cofino, A. S., Kok, K., Mar-
tin, E., Nurmi, P., Orfila, B., Roulin, E., Schroter, K., Seed, A.,
Szturc, J., Vehvilainen, B., Germann, U., and Rossa, A.: Propaga-
tion of uncertainty from observing systems and NWP into hydro-
logical models: COST-731 Working Group 2, Atmos. Sci. Lett.,
11, 83–91, https://doi.org/10.1002/asl.248, 2010.

Zhang, X., Tang, Q., Liu, X., Leng, G., and Li, Z.: Soil Moisture
Drought Monitoring and Forecasting Using Satellite and Climate
Model Data over Southwestern China, J. Hydrometeorol., 18, 5–
23, https://doi.org/10.1175/JHM-D-16-0045.1, 2017.

https://doi.org/10.5194/hess-25-4773-2021 Hydrol. Earth Syst. Sci., 25, 4773–4788, 2021

https://doi.org/10.5194/hess-24-1011-2020
https://doi.org/10.1016/j.jhydrol.2018.05.029
https://doi.org/10.1016/j.eja.2019.01.005
https://doi.org/10.1175/2009JCLI2944.1
https://doi.org/10.1016/j.jhydrol.2018.09.037
https://doi.org/10.1016/j.jhydrol.2015.01.024
https://doi.org/10.1016/j.agwat.2016.09.015
https://doi.org/10.1016/j.agrformet.2014.03.014
https://doi.org/10.1002/2015WR018532
https://doi.org/10.1186/s40068-020-00173-6
https://doi.org/10.1029/2009WR008328
https://doi.org/10.1175/MWR-D-19-0046.1
https://doi.org/10.1016/j.envsoft.2008.11.004
https://doi.org/10.1002/asl2.427
https://doi.org/10.5194/hess-19-3365-2015
https://doi.org/10.5194/hess-19-3365-2015
https://doi.org/10.1175/JHM-D-13-0119.1
https://doi.org/10.1175/JHM-D-13-087.1
https://doi.org/10.1016/j.agwat.2010.10.012
https://doi.org/10.1088/1748-9326/aa7859
https://doi.org/10.1175/WAF-D-17-0127.1
https://doi.org/10.1175/MWR-D-19-0108.1
https://doi.org/10.1016/j.ejrh.2021.100818
https://doi.org/10.1002/asl.248
https://doi.org/10.1175/JHM-D-16-0045.1


4788 Q. Yang et al.: Bias-correcting input variables enhances forecasting of reference crop evapotranspiration

Zhao, T., Bennett, J., Q.J., W., Schepen, A., Wood, A., Robertson,
D. E., and Ramos, M.-H.: How Suitable is Quantile Mapping For
Postprocessing GCM Precipitation Forecasts?, J. Hydrol., 30,
3185–3196, https://doi.org/10.1175/JCLI-D-16-0652.1, 2017.

Zhao, T., Wang, Q. J., and Schepen, A.: A Bayesian modelling ap-
proach to forecasting short-term reference crop evapotranspira-
tion from GCM outputs, Agric. For. Meteorol., 269–270, 88–101,
https://doi.org/10.1016/j.agrformet.2019.02.003, 2019a.

Zhao, T., Wang, Q. J., Schepen, A., and Griffiths, M.:
Ensemble forecasting of monthly and seasonal refer-
ence crop evapotranspiration based on global climate
model outputs, Agric. For. Meteorol., 264, 114–124,
https://doi.org/10.1016/j.agrformet.2018.10.001, 2019b.

Hydrol. Earth Syst. Sci., 25, 4773–4788, 2021 https://doi.org/10.5194/hess-25-4773-2021

https://doi.org/10.1175/JCLI-D-16-0652.1
https://doi.org/10.1016/j.agrformet.2019.02.003
https://doi.org/10.1016/j.agrformet.2018.10.001

	Abstract
	Introduction
	Method
	Reference data and forecasts
	Calculation of ETo
	Calibration of ETo forecasts
	Bias correction of input variables
	Key steps of ETo forecast calibration using the SCC model

	Evaluation of calibrated forecasts
	Bias
	Temporal variability
	Skills of the raw and calibrated forecasts
	Reliability


	Results
	Quality of raw and bias-corrected input variables
	Quality of raw ETo forecasts constructed with raw and bias-corrected input variables
	Bias in calibrated ETo forecasts
	Correlation between calibrated ETo forecasts and AWAP ETo
	Improvements in forecast skills
	Reliability of calibrated ETo forecasts
	Results from calibrations 3 and 4
	Summary of results

	Discussion
	Importance of improving forecasts of input variables for NWP-based ETo forecasting
	Implications for forecasting of integrated variables and future work

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

