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Abstract. A simple and effective two-step data assimilation
framework was developed to improve soil moisture repre-
sentation in an operational large-scale water balance model.
The first step is a Kalman-filter-type sequential state updating
process that exploits temporal covariance statistics between
modelled and satellite-derived soil moisture to produce anal-
ysed estimates. The second step is to use analysed surface
moisture estimates to impart mass conservation constraints
(mass redistribution) on related states and fluxes of the model
using tangent linear modelling theory in a post-analysis ad-
justment after the state updating at each time step. In this
study, we assimilate satellite soil moisture retrievals from
both Soil Moisture Active Passive (SMAP) and Soil Mois-
ture and Ocean Salinity (SMOS) missions simultaneously
into the Australian Water Resources Assessment Landscape
model (AWRA-L) using the proposed framework and evalu-
ate its impact on the model’s accuracy against in situ obser-
vations across water balance components. We show that the
correlation between simulated surface soil moisture and in
situ observation increases from 0.54 (open loop) to 0.77 (data
assimilation). Furthermore, indirect verification of root-zone
soil moisture using remotely sensed Enhanced Vegetation In-
dex (EVI) time series across cropland areas results in sig-
nificant improvements from 0.52 to 0.64 in correlation. The
improvements gained from data assimilation can persist for
more than 1 week in surface soil moisture estimates and 1
month in root-zone soil moisture estimates, thus demonstrat-
ing the efficacy of this data assimilation framework.

1 Introduction

Accurate estimation of soil moisture is fundamental to mon-
itoring and forecasting water availability and land surface
conditions under extreme events such as droughts, heatwaves
and floods (Ines et al., 2013; Sheffield and Wood, 2007; Tian
et al., 2019b). The spatial pattern of soil moisture can vary
significantly due to the heterogeneous spatial distribution of
rainfall and variability in soil properties, land cover type and
topography. Due to this large spatial variability, the utility
of ground-based, point-scale measurements is limited in esti-
mating soil water availability at continental scale. Soil mois-
ture estimates from land surface models are adversely af-
fected by the uncertainties of atmospheric forcing, model dy-
namics and model parameterization. Remotely sensed data
can provide spatially and temporally varying constraints on
the modelling of biophysical landscape variables that are
often superior to those achieved by a single static set of
model parameters. Data assimilation merges models and ob-
servations in a way that takes advantage of their respective
strength (e.g. uncertainty, coverage), resulting in improved
accuracy, coverage and ultimately forecasting capability.

The assimilation of satellite soil moisture (SSM) into land
surface and hydrology models has been repeatedly demon-
strated to improve model representation of soil water dynam-
ics, evapotranspiration and streamflow (De Lannoy and Re-
ichle, 2016; Draper et al., 2012; Kumar et al., 2009; Li et al.,
2012; Pipunic et al., 2008; Reichle and Koster, 2005; Ren-
zullo et al., 2014; Tian et al., 2017, 2019a; Crow and Yilmaz,
2014; Alvarez-Garreton et al., 2015; Crow and Ryu, 2009;
Baldwin et al., 2017; Patil and Ramsankaran, 2017; Wan-
ders et al., 2014b; Peters-Lidard et al., 2011; Su et al., 2014).
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Accurate knowledge of initial soil moisture states gained
from data assimilation contributes significantly to the skill
of flood forecasting, drought monitoring and weather fore-
casts (Bolten et al., 2009; Carrera et al., 2019; Wanders et al.,
2014b; Yan et al., 2018; Alvarez-Garreton et al., 2015). Wan-
ders et al. (2014a) found that the assimilation of remotely
sensed soil moisture in combination with discharge observa-
tion can improve the quality of the operational flood alerts,
both in terms of timing and in the exact height of the flood
peak.

Methods of assimilation are many and varied; however
commonalities exist between them. These commonalities are
such that, for any time step, the time-integrated first guess
(the forecast) of soil moisture states is adjusted by an amount
determined by the difference between observed and modelled
soil moisture (the innovation), which is weighted by the re-
spective error variances of modelled and observed quanti-
ties (the gain), to generate revised soil moisture states (the
analysis). At the end of this process, the revised model soil
moisture states are out of balance with the other stores and
fluxes, until the model integrates forward to the next time
step, whereupon water balance discontinuity is progressively
removed through model physics. Soil moisture is the linchpin
between atmospheric fluxes, surface water and groundwater
hydrology; thus it is important that any changes in modelled
state variables are not detrimental to other components of the
water balance. However, the assimilation of remotely sensed
soil moisture or total water storage data may lead to unde-
sired impacts on groundwater or evapotranspiration simula-
tions due to the mass imbalance or random error covariances
(Girotto et al., 2017; Tangdamrongsub et al., 2020; Tian et
al., 2017). Studies considering mass conservation in data as-
similation often require extra data sources such as evapotran-
spiration and runoff as constraints or without considering the
fluxes (Li et al., 2012; Pan and Wood, 2006).

From an operational water balance perspective, it is im-
portant that the method of data assimilation (i) be compu-
tationally efficient for routine, automated simulation over
the whole model domain; (ii) be robust to data gaps; and
(iii) make lasting positive improvements to future predictions
of soil water stores and fluxes. An additional constraint is
that if a data assimilation method is applied to an existing
operational system, then it ought to require minimal modi-
fication to the system framework and be as least disruptive
as possible to the model performance. Currently, there are
few operational continental water balance modelling systems
that provide near-real-time soil moisture estimates that have
been constrained through the assimilation of satellite obser-
vations, and mainly at a relatively coarse resolution. Some
recent examples include surface soil wetness observations
from the Advanced Scatterometer (ASCAT) active radar sys-
tem, on the meteorological operational satellite (MetOp), be-
ing assimilated into the Unified Model (Davies et al., 2005)
through nudging to provide soil moisture analysis at 40 km
globally (Dharssi et al., 2011). Additionally, ASCAT data are

used in the ECMWF (European Centre for Medium-Range
Weather Forecasts) Land Data Assimilation System through
a simplified extended Kalman filter approach (De Rosnay
et al., 2013) to provide near-real-time surface soil moisture
and root-zone soil moisture at 25 km resolution globally.
SMOS (Soil Moisture and Ocean Salinity) brightness tem-
peratures have been assimilated in ECMWF’s global NWP
(numerical weather prediction) system through the Surface
Data Assimilation System, based on the extended Kalman
filter, to produce soil moisture reanalysis at 40 km resolu-
tion (Muñoz-Sabater, 2015). Level-2 radiometer soil mois-
ture retrievals from the SMAP mission (Entekhabi et al.,
2010) have been assimilated into the real-time instance of
the NASA Land Information System (LIS) over the conter-
minous United States (CONUS) to produce hourly outputs at
0.03◦ resolution using the ensemble Kalman filter (Blanken-
ship et al., 2018). However, unlike the aforementioned sys-
tems where data assimilation is inherent in the system de-
sign, many operational water balance models, or catchment
hydrology models, are calibrated to observations a priori. In-
cluding data assimilation as an afterthought restrains the flex-
ibility of the system, thereby limiting the complexity of the
data assimilation scheme for operational use.

In this study, we develop a simple, computationally
efficient and effective data assimilation framework with
mass conservation for incorporating satellite soil moisture
products into an existing operational national water bal-
ance model. We demonstrate the application of the method
to the Australian Water Resources Assessment Landscape
model (AWRA-L), which provides daily water balance esti-
mates at ∼ 5 km resolution across Australia, with the assimi-
lation of satellite soil moisture from both SMOS and SMAP.
The proposed data assimilation framework is a two-step pro-
cess that requires minimal modification of the existing oper-
ational system. The first step is the sequential state updating,
with weightings between models and observations derived
from the triple collocation (TC) approach (Chen et al., 2018;
Crow and Van den Berg, 2010; Crow and Ryu, 2009; Crow
and Yilmaz, 2014; Yilmaz and Crow, 2014; Su et al., 2014).
The second step is to impart mass conservation constraints
on related states and fluxes such as root-zone soil water stor-
age, evapotranspiration and streamflow, thus improving the
accuracy of the water balance post assimilation. Accurate ini-
tial water balance conditions are of critical importance in the
forecasting of water availability and land surface water dy-
namics. However, few studies quantify how long the impacts
of data assimilation persist in the model system’s memory.
To explore the impacts of data assimilation on model predic-
tions, we quantified the persistence of the correction to key
model components with respect to open-loop simulations, to
illustrate the potential gains from data assimilation in im-
proving water balance forecasts.
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2 Materials

2.1 Australian water resources assessment modelling
system

The Australian Water Resources Assessment Land-
scape (AWRA-L) model (Van Dijk, 2010) underpins the
annual national water resource assessments and water use
accounts for Australia (Frost et al., 2018; Vogel et al.,
2021). The operational implementation of the AWRA-L
by the Australian Bureau of Meteorology provides daily
0.05◦ (approximately 5 km) national gridded water balance
estimates. The outputs from the operational AWRA-L have
been widely used in various agricultural applications and
natural resources risk assessment and planning, including
commodity forecasting, irrigation scheduling, flood and
drought risk analysis, as well as flood forecasting (Frost et
al., 2018; Hafeez et al., 2015; Nguyen et al., 2019; Van Dijk
et al., 2013; Van Dijk and Renzullo, 2011). The version of
the AWRA-L model used in the study was obtained from the
Community Modelling system (AWRA-CMS) and is freely
available from https://github.com/awracms/awra_cms (last
access: 1 September 2020).

AWRA-L is a one-dimensional grid-based model that sim-
ulates water balance for each grid cell across the modelling
domain by distributing rainfall influx into plant-accessible
water, soil moisture and groundwater stores and computing
outflux such as evapotranspiration, runoff and deep drainage.
The soil water column is partitioned into three layers (sur-
face: 0–10 cm, shallow: 10–100 cm, and deep: 1–6 m) and
simulated separately for two hydrological response units,
i.e. deep-rooted (trees) and shallow-rooted (grass) vegeta-
tion. The water storage for the surface-layer soil is termed S0,
while Ss is used for the shallow layer and Sd for the deeper
layer. In addition to the modelling of soil columns, the model
includes a surface water and a groundwater storage that are
simulated at each grid cell and conceptualized as a small
unimpaired catchment. In this study, we used forcing inputs
from the AWAP (Australian Water Availability Project) grid-
ded climate data, including daily precipitation, air tempera-
ture and solar exposure (Jones et al., 2009) and interpolated
site-based wind speed (McVicar et al., 2008). It is acknowl-
edged that the accuracy of the model estimates is limited in
regions with insufficient coverage in the ground-based obser-
vation network (e.g. rain gauges), which is the raw source of
AWAP-gridded data used to force the model. This is limited
to very remote and mostly uninhabited arid regions in Aus-
tralia.

2.2 Satellite soil moisture (SSM)

To maximize daily spatial coverage, we used two satellite soil
moisture products derived from passive L-band systems: the
Soil Moisture Active Passive (SMAP) product from NASA
(Entekhabi et al., 2010) and the product from the European

Space Agency’s (ESA’s) Soil Moisture and Ocean Salin-
ity (SMOS) mission (Kerr et al., 2001). The SMAP prod-
uct is the level-2 enhanced radiometer half-orbit 9 km EASE
grid soil moisture (Chan et al., 2018). The SMOS product
is the level-2 soil moisture product on a ∼ 25 km grid (Rah-
moune et al., 2013). Both SMAP and SMOS produce volu-
metric soil moisture estimates (in m3 m−3) of approximately
the upper 5 cm of soil. Available swath data for each product
covering Australia were collated for each 24 h period, ap-
proximating the AWRA-CMS operational time steps and re-
sampled to a regular 0.05◦ grid across the modelling domain
using bilinear interpolation from 2015 to 2019. The volumet-
ric soil moisture retrievals from both SMAP and SMOS were
converted into water storage units (mm) to be consistent in
units and soil depths with model estimates, using mean and
variance matching to remove the systematic bias. Figure 1
shows an example of daily composites of SMAP (Fig. 1a)
and SMOS (Fig. 1b) soil moisture retrievals in model units
compared to AWRA-L estimates of S0 (Fig. 1c). For re-
gions with sparse rain-gauge coverage such as central West-
ern Australia (Fig. 1c), AWRA-L modelled S0 persists as ze-
ros or very low values for the experiment period, reflecting a
deficiency in the gauge-based analysis of daily rainfall used
to drive model simulations. The result of mean and variance
matching in these gauge-sparse areas will flatten the vari-
ability of SSM time series to zero when using values of the
modelled S0 for these areas directly. To resolve this prob-
lem and fully leverage the information available in the SSM
products to fill the gaps in modelled outputs across the con-
tinent, we derived a set of coefficients for the mean and vari-
ance matching over the gauge sparse regions by sampling
modelled and SSM data from cells surrounding the gaps.
Specifically, we fitted a linear model between the maximum
SSM values through time and the coefficients for mean and
variance matching for each cell in neighbouring region. We
applied the derived linear relationship to estimate the corre-
sponding “slope” and “intercept” from the maximum SSM
values in the rainfall gaps. This provided a transformation of
the SSM into water storage units (mm) and ensures the as-
similation can effectively influence the spatial pattern of soil
moisture over the sparsely gauged regions.

2.3 Validation data

2.3.1 In situ measurements

Evaluation of the modelled soil water storages was made
against measurements from three soil moisture monitoring
networks in Australia from 2016 to 2018, namely OzNet
(Smith et al., 2012), CosmOz (Hawdon et al., 2014) and
OzFlux (Fig. 1d). AWRA-L model estimates of water storage
in surface soil layers were compared against in situ measure-
ments from the top 10 cm of soil across all three networks.
The depths of in situ measurements of root-zone moisture
varied across networks from 0–30 cm to 0–1 m. As such,
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Figure 1. Satellite soil moisture retrievals in model unit (mm) for (a) SMAP and (b) SMOS compared to (c) AWRA-L estimates of surface
soil water storage for 1 January 2019. (d) Locations of in situ soil moisture monitoring networks (CosmOz, OzNet and OzFlux), catchments
for streamflow validation and grid cells classified as cropland. The rectangular inset map provides a zoomed-in view of the OzNet network
region in south-eastern Australia.

AWRA-L soil water storages over the root zone were con-
structed by combining surface- and shallow-layer soil water
storage in the appropriate proportions to be consistent with
in situ measurement depth. OzFlux sites are also used for the
evaluation of AWRA-L evapotranspiration estimates, which
were calculated from accumulated latent heat flux measure-
ments at each location. In total, there are 45 sites for soil
moisture validation and 14 sites for evapotranspiration val-
idation. Streamflow observations for 110 catchments across
Australia have been used in the validation based on the qual-
ity and data availability (Fig. 1d).

2.3.2 Vegetation index

In water-limited regions like Australia, shallow-rooted veg-
etation normally responds quickly to soil water availabil-
ity, typically within a month. Consistency between root-zone
soil water storage and vegetation greenness may be consid-
ered an indirect independent verification of the simulation
of root-zone soil water dynamics (Tian et al., 2019a, b).
The 0.05◦ monthly Enhanced Vegetation Index (EVI) from

Moderate Resolution Imaging Spectroradiometer (MODIS,
MYD13C2 v6; Didan, 2021) was used to evaluate estimates
of monthly root-zone soil water storage (the sum of water
storage in surface layer (S0) and shallow layer (Ss) within
the AWRA-L soil column) over cropland regions of the conti-
nent. The EVI is used here to characterize vegetation dynam-
ics since it is less sensitive to atmospheric effects and canopy
background noise and has a greater dynamic range (i.e. less
likely to saturate) in areas of dense vegetation compared to
the Normalized Difference Vegetation Index (NDVI). The
choice of root-zone soil water storage at 0–1 m depth is
due to the average rooting depths varying from 30–80 cm
over the cropland areas in Australia (Donohue et al., 2012;
Figueroa-Bustos et al., 2018; Incerti and O’Leary, 1990). The
250 m land cover classification map from Geoscience Aus-
tralia (Lymburner et al., 2015) was resampled to 0.05◦ over
the model domain and used in the identification of cropland
areas.
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3 Method

3.1 Triple-collocation-based error characteristics

Triple collocation (TC) was developed as a method of quanti-
fying error characteristics in geophysical variables when the
true error structure is elusive. It was first applied to near-
surface wind data (Stoffelen, 1998) and later extensively ap-
plied to soil moisture (Chen et al., 2018; Crow and Yilmaz,
2014; Dorigo et al., 2017; McColl et al., 2014; Scipal et al.,
2008; Yilmaz and Crow, 2014; Zwieback et al., 2013; Crow
and Van den Berg, 2010; Su et al., 2014) and rainfall (Ale-
mohammad et al., 2015; Massari et al., 2017). The assump-
tion of this approach is that three independent data sets of
the same geophysical variable can be used to infer the er-
ror variances in each. Here we use TC as a way of infer-
ring error variances from our three independent estimates
of surface soil moisture, AWRA-L S0, SMAP and SMOS
from 2015 to 2019. These three collocated measurements
were assumed to be linearly related to the true value with
additive random errors. To ensure the errors from the three
independent sources were unbiased relative to each other,
SMAP and SMOS soil moisture retrievals were rescaled to
the reference model estimates (AWRA-L S0) using temporal
mean and variance matching. McColl et al. (2014) show that
the error variances (σ 2) of each data set can be calculated
from the temporal variance and covariance between data sets
respectively as

σ 2
x =

(
Qx,x −

Qx,yQx,z

Qy,z

)
, σ 2

y =

(
Qy,y −

Qx,yQy,z

Qx,z

)
and σ 2

z =

(
Qz,z−

Qz,yQx,z

Qx,y

)
, (1)

where x, y and z denote AWRA-L, SMAP and SMOS soil
moisture estimates respectively, and Q denotes temporal
variance and covariance between the data sets. These es-
timates of error variance are used in the determination of
the weighting of each data source in the data assimilation
(Sect. 3.2).

3.2 Sequential state updating

The data assimilation method used here is a time-sequential
updating of model state(s) given observations of relevant
model variables (Reichle, 2008). There are two key mod-
elling components in data assimilation: the dynamics opera-
tor, which describes the time integration of the system states
and fluxes, which in this study is the AWRA-CMS; and the
observation operator, which provides the mathematical map-
ping from state to observation space. The role of the obser-
vation operator is to perform a mapping between observation
and state space, as often observations are not directly com-
parable to model states.

The common state updating equation for sequential data
assimilation is written as

xa
t = x

f
t +Kt

[
yt −H

(
xf
t

)]
, (2)

which says that the best estimate of model state, known as
analysis (xa

t ), is equal to the first guess or forecast (xf
t ) plus a

weighted difference between observations, yt , and the model
equivalent to the observation, H(xf

t ), for that time step. In
this study, the AWRA-L model soil water storage in S0 for
shallow-rooted vegetation and deep-rooted vegetation at the
surface layer is updated directly through the sequential data
assimilation. Satellite surface soil moisture (SSM) products
from both SMOS and SMAP are used as the observations
to update the model simulation. The observation operator H
here is the aggregation of soil water storage estimates in
the top-soil layer for two land cover types, i.e. shallow-
rooted vegetation and deep-rooted vegetation. When both
SMAP and SMOS observations are available, Eq. (2) can
be written as a weighted linear combination of model esti-
mates (xf

t ) and satellite observations (ySMAP
t : SMAP obser-

vations, ySMOS
t : SMOS observations) as

xa
t =Kxx

f
t +Kyy

SMAP
t +Kzy

SMOS
t . (3)

The gain factor,K , contains the error variances (σ 2) for both
model estimates and observations and can be written as
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1
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1
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1
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σ 2
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+

1
σ 2
y
+

1
σ 2
z

, (4)

where x, y and z denote the AWRA-L, SMAP and SMOS
soil moisture retrievals respectively. If only one satellite ob-
servation is available for a time step, the gain factor is calcu-
lated using the error variance from the corresponding obser-
vation. If neither SMAP nor SMOS are available, the analy-
sis remains the same as the model forecast. Observation error
variance is often estimated through field campaigns (Draper
et al., 2009; Panciera et al., 2013), but these rarely represent
the spatial and temporal variability of errors in gridded satel-
lite products. Alternatively, data providers often specify error
estimates, but their magnitude can be overly optimistic. Here,
we applied the triple collocation approach (Sect. 3.1) to char-
acterize the temporal error variances of the model estimates
and the two satellite observations for each grid cell across
Australia. The analysis receives a higher contribution from
observations with smaller error variance (Eq. 2). Given the
relatively short time series (small number) of observations,
however, a single set of error variances is calculated for all
time. This results in spatially varying but temporally static
error variances (and thus gain weights) for each of the three
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sources (Fig. 2). We acknowledge the limitations of assum-
ing a temporally constant error variances, and future refine-
ments to the assimilation method will consider introducing
seasonally varying error variances.

3.3 Analysis increment redistribution (AIR)

The assimilation of satellite soil moisture temporarily vio-
lates mass conservation in the model through the analysis
update. The difference between the analysis, xa

t , and the fore-
cast, xf

t (known as the analysis increment), represents an
amount of water that has been added or subtracted from the
system that was not present at the start of model integration
for the given time step. In this study, we use the concept of
tangent linear modelling (Errico, 1997; Giering, 2000) to re-
distribute the analysis increment of surface soil water stor-
age, S0, to all the relevant model states and fluxes as a way
of maintaining mass (i.e. water) balance within each model
time step. This adjustment is applied after the sequential state
updating as the second step in the assimilation framework,
which we refer to as analysis increment redistribution (AIR).

The adjoint and tangent linear models were originally used
in variational data assimilation (Bouttier and Courtier, 2002)
and have been used to estimate the sensitivity of model out-
puts with respect to input (Errico, 1997). If we assume the
input perturbation here is the analysis increment after the
data assimilation (i.e. xa

t − x
f
t from Eq. 2), then the change

in other model outputs due to the change in inputs can be de-
termined through tangent linear modelling. Assuming model
variable b is related to the state variable x, the relationship
between them can be simply described as

b =M(x), (5)

where M denotes the model operator. The change in output
variable 1b at time step t due to the input change 1x can be
determined by

1bt =
∂M

∂xt
1xt . (6)

In this study, we applied the tangent linear modelling ap-
proach to correct the model forecast of soil water storage
for shallow-layer (Ss) and deep-layer soil water storage (Sd),
evapotranspiration (Etot) and total streamflow (Qtot) after
the state updating of surface soil moisture (S0) at each time
step. Note that this process ensures that the correction is
affecting all model states in proportion to their sensitivity
against changes in the S0. All the model equations regard-
ing the mass redistribution were derived using model equa-
tions (Frost et al., 2018; Van Dijk, 2010) and can be found in
Appendix A.

4 Results

4.1 Impact on surface soil water storage estimates

Error variances were derived using TC for AWRA-L model
estimates and the SSM products and showed that SMAP
soil moisture had smaller error variance than SMOS and
the model estimates for the majority of the grid cells over
the continent. This is consistent with other studies that have
shown SMAP provides the best-performing satellite soil
moisture product over the majority of applicable global land
pixels (Chen et al., 2018). Figure 2 shows the relative weight-
ings (derived from the TC error variances) of model esti-
mates, SMOS and SMAP soil moisture in the data assimi-
lation. The analysed surface soil water storage estimates (S0)
receive a greater contribution from SSM products, in par-
ticular SMAP observations, compared to model simulations
(Fig. 2). Figure 3 gives an example of the temporal change
in modelled S0 estimates before and after the assimilation
for 2017. The temporal dynamics of S0 estimates after the as-
similation has been highly adjusted towards SSM retrievals
and in consistency with in situ measurements.

AWRA-L model simulations are driven by gauge-based
rainfall analyses. As such the model has difficulty in ade-
quately simulating soil moisture patterns over regions lack-
ing in rain gauge coverage, such as Western Australia and
central Australia (Fig. 1c). Water storage simulations over
these regions default to zero; thus very little or no weight was
given to the AWRA-L estimates in these regions (Fig. 2a).
Figure 4 shows different spatial patterns of daily average
S0 estimates for December 2019 from model open loop (OL)
without data assimilation and with data assimilation through
TC-derived weighting (DA-TC). Data assimilation has the
effect of adding moisture to AWRA-L S0 simulations over
most gauge-sparse areas, as shown in Fig. 4c. Analysed
AWRA-L simulations of S0 are dominated by the satellite
SSM data as a result of TC weighting in the region, which
largely eliminates the erroneous artefacts associated with de-
ficient rainfall data forcing. Reduced water storage in the
surface layer of the soil column was found over the south-
east of Australia, particularly within the Murray–Darling
Basin. This suggests that AWRA-L OL simulations under-
estimated the severity of the drought experienced in the re-
gion in December 2019. The analysis increments of AWRA-
L S0(x

a
− xf) were compared with the difference between

in situ rainfall observations from OzFlux network, POzFlux,
and AWAP rainfall forcing, PAWAP (Fig. 5). The increasing
S0 simulations align with missing or underestimated rainfall
events in the AWAP rainfall forcing (POzFlux

−PAWAP > 0)
and vice versa (Fig. 5). This supports the hypothesis that data
assimilation correctly distributes water into the system and
mitigates the impact of uncertainty in rainfall forcing.
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Figure 2. Gain weights for sequential data assimilation derived from triple collocation (TC), showing the relative contribution of the respec-
tive estimate in (a) AWRA-simulated surface soil water storage S0, (b) SMOS soil moisture and (c) SMAP soil moisture.

Figure 3. Time series of AWRA-L surface soil water storage estimates from open loop (OL) compared to estimates after data assimila-
tion (DA-TC) of SMAP and SMOS soil moisture retrievals at CosmOz monitoring site: Bennets (35.826◦ E, 143.004◦ S). Note that the in
situ soil moisture values are in volumetric units.

4.2 Impact on root-zone soil water storage and fluxes
estimates

If the analysis increment redistribution (AIR) is not applied,
the soil water storage in the surface layer (S0) is the only
state variable directly updated with SSM (DA-TC). Other
variables such as root-zone soil water storage, evapotranspi-
ration and streamflow are adjusted with model integration to
the next time step using the analysed S0 as the surface layer
initial condition. Therefore, the observed changes in those
variables following DA-TC (Fig. 6, centre column) are rel-
atively small when compared to model open-loop estimates
(Fig. 6, left column). For example, the OL soil water storage
of shallow-layer (Ss) estimates in those gauge-sparse regions
of Australia remain zero or very low due to the AWAP rain-
fall forcing. The predictions of Ss receive a relatively small
contribution from the analysed S0 since the analysis incre-
ment of S0 is small compared to the field capacity of Ss.

One known issue of sequential state updating is the tem-
porary break of water balance at each time step until the next
model integration. The proposed AIR approach (Sect. 3.2)
adjusts variables coupled with surface soil moisture after the
state updating at each time step. A significant difference in
the spatial patterns of Ss, Etot and Qtot after the mass re-
distribution (DA-TCAIR) can be seen in Fig. 6 (right col-
umn) compared to model open loop or forecasts after only

S0 updating. The changes in estimates of Ss and Etot over
coastal regions are relatively small due to more accurate rain-
fall forcing data with the dense network of rain gauges. Fi-
nally, the Qtot estimates after AIR are lower than the DA-
TC and OL. This reduction in streamflow over south-eastern
Australia and northern Australia is consistent with the re-
duced surface soil moisture in those regions (Fig. 4c).

4.3 Quantitative evaluation

Estimates of surface soil moisture, root-zone soil mois-
ture, evapotranspiration and streamflow after data assimi-
lation (DA-TC) and data assimilation with mass redistri-
bution (DA-TCAIR) were compared with time series of in
situ observations. We compared the model outputs after DA-
TC and DA-TCAIR separately to investigate the benefits
of maintaining mass balance in data assimilation. Pearson’s
correlation coefficients were computed from time series of
model estimates and observations between January 2016 and
December 2018 for each site. The distribution of correla-
tion coefficients for OL, DA-TC and DA-TCAIR is displayed
as boxplots in Fig. 7. Consistent, significant improvement
in modelled surface layer soil water storage estimates (S0)
was observed across all sites (Fig. 7a), with the single excep-
tion of an OzFlux site located in a tropical rainforest, where
microwave SSM retrievals are known to be typically poor
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Figure 4. Comparison of average daily surface soil water storage estimates (S0) for December 2019 from (a) model open loop (OL), (b) joint
assimilation of SMAP and SMOS with triple collocation (DA-TC) and (c) average change between daily estimates from DA-TC and OL.

Figure 5. Analysis increments of AWRA-L surface soil water storage (xa
S0
− xf

S0
) in comparison with the difference between in situ rainfall

observations and rainfall forcing from AWAP used in AWRA-L modelling (POzFlux
−PAWAP) for (a) Yanco site (34.989◦ E, 146.291◦ S)

and (b) Wombat Forest (37.422◦ E, 144.094◦ S).

(Njoku and Entekhabi, 1996). TC-based assimilation (DA-
TC) increases the correlation between in situ surface SM
measurements from 0.47 to 0.72 on average for CosmOz
sites, 0.54 to 0.69 for OzFlux sites and 0.56 to 0.77 for
OzNet sites compared to OL. This is a significant improve-
ment in AWRA-L simulations of surface soil moisture dy-
namics, with an increase in correlation of 0.23 on average
across all in situ sites.

Overall subtle improvements were observed across the
AWRA-L estimates of root-zone soil water storage, evapo-
transpiration and streamflow after the assimilation (DA-TC)
(Fig. 7b–d). This level of improvement is not surprising since

those variables were not directly updated through DA-TC
and are only influenced through the integration of the model
to the next time step. Degradation was found in root-zone
soil moisture estimation for a few OzFlux and OzNet moni-
toring sites. This is likely due to the break of water balance
in the assimilation, since the estimates followed by the sec-
ond step of AIR (DA-TCAIR) slightly increase the correla-
tion with in situ observations compared to model open loop
and the estimates after assimilation without mass redistribu-
tion (DA-TC). Moreover, the model estimates of root-zone
soil moisture from model OL are in good agreement with
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Figure 6. Averaged estimates of (a) shallow-layer (10–100 cm) soil water storage (Ss), (b) evapotranspiration (Etot) and (c) total stream-
flow (Qtot) for December 2019 from model open loop, data assimilation (DA-TC) and after the analysis increment redistribution (DA-
TCAIR).

in situ observations, with an average correlation above 0.8
(Fig. 7b), which leaves little room for improvement.

Although the corrections of other water balance esti-
mates from the analysis increment redistribution are rela-
tively small compared to direct state updating, they are im-
provements nevertheless. Slight improvements were found
similarly in streamflow estimates after the AIR (Fig. 7d).
Figure 8 shows an example of the OL estimates of stream-
flow, the analysed streamflow after the application of AIR
and the streamflow observations, Qtot obs. Also displayed
is the streamflow analysis increments, i.e. Qa

tot−Q
f
tot, for

each time step. The negative streamflow analysis increment
(Fig. 8) indicates that water is removed from the surface
water store after the assimilation of SSM and application
of AIR, which appears to compensate for the overall over-
estimate of OL simulations, in this example. Although the
change in streamflow due to the soil moisture data assim-

ilation is small compared to the disparity between model
and observed streamflow, the adjustment in the direction to-
wards observations highlights the importance of accurate an-
tecedent soil moisture conditions in the simulation of runoff
response. The joint assimilation of gauge-measured stream-
flow and satellite soil moisture retrievals into AWRA-L is
expected to improve the streamflow simulation.

A limited number of root-zone soil moisture monitoring
sites as well as the large spatial disparity between the point-
scale in situ measurements and modelling resolution (∼ 5 km
grid cell) represent substantial limitations for wide-area eval-
uation of root-zone soil moisture estimates. An indirect ver-
ification of AWRA-L simulations of root-zone soil moisture
was based on a comparison against satellite-derived EVI.
This provided an independent, albeit indirect, way of eval-
uating the impact of data assimilation over larger areas. We
calculated the correlation between time series of monthly av-
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Figure 7. Distribution of correlation statistics of AWRA-L water balance estimates against in situ measurements of (a) surface soil moisture,
(b) root-zone soil moisture, (c) evapotranspiration and (d) streamflow.

Figure 8. Changes in streamflow Qtot estimates after the analysis increment redistribution (DA-TCAIR) for a catchment in south-eastern
Australia (centre coordinates: 36.63◦ E, 147.43◦ S) compared to in situ streamflow observations (Qtot obs) and model open loop.

erage AWRA-L root-zone soil moisture estimates from OL,
DA-TC and DA-TCAIR against EVI for cropland across
Australia from 2015 to 2018. Cropland cover type was se-
lected based on the rooting depths of the dominant grass
species and wheat varieties in the area that have been shown
to have rooting depths spanning at least half the combined
soil depths (0–1 m) of the surface- and shallow-layer soil wa-
ter storage in AWRA-L. Figure 9a shows the relative change
in correlation between root-zone soil water storage simula-
tions from DA-TCAIR and those from model OL against EVI
data for cropland areas of Australia. Significant improve-
ments were found after the data assimilation and mass redis-
tribution for the vast majority of model grid cells (Fig. 9a).
The averaged correlation with EVI is 0.64 from DA-TCAIR

compared to 0.52 for model open loop. The root-zone soil
water storage estimates after the mass redistribution are sig-
nificantly improved over the cropland in Western Australia
and southern Australia, with more than 20 % increase in
correlation comparing to DA-TC without mass redistribu-
tion (Fig. 9b). This demonstrates that enforcing mass bal-
ances as part of the soil moisture data assimilation at each
time step is essential to improving the simulation of root-
zone soil water balance. Limited differences between DA-
TC and DA-TCAIR were found over cropland regions over
south-eastern Australia, likely due to the overall good per-
formance of AWRA-L OL root-zone soil moisture estimates
in those areas (Fig. 7b). The improved consistency with EVI
after data assimilation highlights the potential of improving
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agricultural planning with more accurate information of root-
zone soil water availability.

4.4 Implications for water balance forecasting

To quantify how long improvements in model state last in
AWRA-L simulations, we used OL and DA-TCAIR esti-
mates between 1 March 2018 and 28 February 2019. The
model states for each day over this 1-year period served
as initial conditions for 100 d AWRA-L simulations, from
which we calculated the number of days it took for the sim-
ulation from the analysed DA-TCAIR states to converge to
within ±5 % of those from OL. Results showed that data
assimilation can impact model states and fluxes for weeks
and sometimes up to 2–3 months (Fig. 10). The impacts of
data assimilation can persist in simulated S0 for as long as
a week over coastal regions and longer in central Western
Australia and northern Australia, with up to a month persis-
tence in winter and spring (Fig. 10a). There is less impact
on S0 simulations during wet season (summer–autumn) in
northern Australia since the S0 can saturate rapidly due to
the heavy rainfall. Overall, the longest persistence is found
in winter, with a continental average of 13 d; the shortest is
6 d on average in autumn and summer. The memory of initial
conditions in simulations of Ss can persist even longer due
to the slower response to rainfall variability and higher field
capacity (Fig. 10b). Summer persistence for Ss is the least,
with a continental average of 30 d; in winter this increased to
45 d.

On average, the impact of antecedent soil moisture con-
ditions on evapotranspiration simulations can persist for
1 week over coastal areas but for up to months in cen-
tral Western Australia (Fig. 10c). The continental average
varies from 13 to 20 d for each season. The areas with the
longest persistence are those areas with artefacts of zero rain-
fall in the forcing. This demonstrates that improvements in
AWRA-L estimates after SSM assimilation over regions with
sparse rain-gauge coverage can persist in the system for more
than 2 months. The impact on runoff varies from 1 week to
3 months over the continent (Fig. 10d). The majority of areas
impacted for more than 2 months are in locations of low rain-
fall and runoff. However, in areas of heavy runoff, e.g. north-
eastern Australia, there is between 1–2 weeks of persistence.

5 Discussion

In this study, we assimilated SMAP and SMOS data into
an operational AWRA-L water balance modelling system
through a simple sequential state updating approach, with
weightings derived using triple collocation approach (DA-
TC), followed by a post-adjustment for mass redistribu-
tion (DA-TCAIR). Previous data assimilation studies us-
ing the AWRA-L model opted for ensemble-based meth-
ods (Renzullo et al., 2014; Shokri et al., 2019; Tian et al.,

2017, 2019a, b). Ensemble-based methods rely on a priori
knowledge of uncertainty in forcing data and model error
variances to derive spatially and temporally varying gain
matrices at each time step. However ensembles often re-
quire post hoc correction such as state inflation (Anderson
et al., 2009) to achieve optimal performance and many mem-
bers (> 10) comprised of multiple model runs to infer sta-
tistically meaningful error variances, which can be compu-
tationally costly. In contrast, the proposed DA-TC and DA-
TCAIR framework is simple, effective and computationally
efficient and requires minimal modification in the current op-
erational system. The gain factor in the proposed assimilation
framework is temporally constant but spatially varying. It
is derived from the temporal covariances between modelled
and satellite-derived soil moisture for each grid cell across
the domain through the widely used triple collocation (TC)
method (Chen et al., 2018; Crow and Van den Berg, 2010;
Crow and Yilmaz, 2014; Yilmaz and Crow, 2014; Su et al.,
2014). The significant improvements in AWRA-L model sur-
face soil moisture estimation demonstrates the efficiency of
the proposed assimilation approach (Fig. 7a). A temporally
varying gain factor is considered for future improvement to
the approach once a longer time series of SMAP data is avail-
able.

Pan and Wood (2006) used mass redistribution in a two-
step constrained Kalman filter that required error covari-
ances derived from evapotranspiration and runoff observa-
tions. However, these observations are often not available
for continental-scale studies. Li et al. (2012) redistribute the
mass imbalance within soil layers during the assimilation but
without the updates of fluxes. Our proposed method based
on tangent linear modelling redistributes the mass change
across all the states and fluxes related to surface soil moisture
states without the need for extra observations. The analysis
increment redistribution (AIR) method conserves the mass
balance, thereby improving water balance estimates (Fig. 7);
in particular it can improve the root-zone soil moisture es-
timates over croplands (Fig. 9). Although the improvements
are limited, the streamflow estimates from the AIR are pre-
dominantly a better match to observations (Fig. 8). Model
physics limits the strength of coupling between an analysed
state and resulting fluxes (Kumar et al., 2009; Walker et al.,
2001). Thus, a small level of improvement in performance in
AWRA-L streamflow in response to soil moisture state up-
dating is not unexpected due to a weak coupling between
the states and fluxes. Calibration of model parameters using
satellite and in situ observations may lead to further improve-
ments.

Many studies have demonstrated the assimilation of satel-
lite soil moisture can improve model forecasts due to the cor-
rection for initial soil moisture conditions (Crow and Ryu,
2009; Pauwels et al., 2001; Scipal et al., 2008). Getirana et
al. (2020a, b) found that using initial conditions derived from
the assimilation of GRACE (Gravity Recovery and Climate
Experiment) total water storage observations can improve
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Figure 9. Comparison of vegetation index, EVI, with modelled root-zone soil moisture over cropland: (a) changes in correlations after data
assimilation (DA-TCAIR, rair) compared to model OL (ro) and (b) changes in correlations between DA-TCAIR and DA-TC.

Figure 10. Quantified impacts of data assimilation on forecasting AWRA-L state variables using the initial condition from DA-TCAIR:
average time period that the impact of data assimilation can persist in autumn (March–May 2018), winter (June–August 2018), spring
(September–November 2018) and summer (December 2018–February 2019) on (a) upper layer soil water storage S0, (b) lower layer soil
water storage Ss, (c) total evapotranspiration Etot and (d) total runoff Qtot.
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the seasonal streamflow and groundwater forecast due to the
long memory of groundwater and soil moisture. However,
few studies quantify how long the impacts of data assimila-
tion can persist in the model system’s memory for different
states. In this study, we found that the impact of different
initial conditions of root-zone soil water storage has a long
memory in the system, exceeding 2 months (Fig. 10b). The
constraints on the simulations of surface soil moisture, evap-
otranspiration and streamflow can persist 1–2 weeks due to
the high temporal variability. This highlights the potential
gains from data assimilation for agricultural planning and
flood forecasting, as a result of improved short-term water
balance forecasts.

6 Conclusion

In this study, we proposed a simple and robust framework
for assimilating SMAP and SMOS soil moisture products
into the operational Australian Water Resources Assess-
ment modelling system. The method involves the sequen-
tial (daily) updating of the model’s surface soil water storage
with satellite soil moisture observations using weights de-
termined through triple collocation (DA-TC). Furthermore,
we proposed an additional component to the data assimila-
tion, whereby the analysis increment of the upper layer soil
water storage is propagated into relevant model states and
fluxes as a way of maintaining mass balance (DA-TCAIR).
Evaluation against in situ measurements showed that simula-
tions of surface soil moisture dynamics is improved signifi-
cantly after TC data assimilation, with an average increase of
0.23 correlation units compared with open-loop simulations.
An evaluation of the root-zone soil moisture, evapotranspira-
tion and streamflow estimates showed that the TC-AIR ap-
peared to provide marginal, yet positive, improvement over
the TC data assimilation method alone. However, in an indi-
rect verification of modelled root-zone soil moisture against
satellite-derived EVI, DA-TCAIR was seen to provide signif-
icant improvement over the TC method alone. This demon-
strates that by enforcing mass balances as part of the SSM
data assimilation each time step, AWRA-L can better repre-
sent soil water dynamics such that it has greater consistency
with the observed vegetation response.

The assimilation of satellite soil moisture estimates to-
gether with the mass redistribution reduces the uncertain-
ties in model estimates resulting mainly from uncertain forc-
ing and model physics and provides temporally and spatially
varying constraints on model water balance estimates. For
example, the assimilation resolves the gaps in rainfall forc-
ing over Western Australia and central Australia. We demon-
strate that the impacts of data assimilation can persist in the
model system for more than a week for surface soil water
storage and more than a month for root-zone soil water stor-
age. This highlights the importance of accurate initial hydro-
logical states for improving forecast skill over longer lead
times. Hence, an operational water balance modelling sys-
tem, with satellite data assimilation, has strong potential to
add value for assessing and predicting water availability for
a range of decision makers across industries and sectors.
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Appendix A

For a complete understanding and description of the AWRA-
L model equations, please refer to Frost et al. (2018). Here
we only present those parts of the model equation related
to S0.

The analysis increments after the data assimilation can be
calculated as

1S0 = S
a
0 − S

f
0, (A1)

where Sa
0 denotes the analysed upper layer soil water stor-

age, and Sf
0 denotes the forecast, or initial estimate. The

change in S0 affects the drainage to the lower layer soil water
storage (D0) and interflow draining laterally from the upper
layer (QI0 ). The corresponding change in drainage to lower
layer soil water storage from the increment1S0 is calculated
as

1D0 = (1−β0)k0sat

( Sa
0

S0max

)2

−

(
Sf

0
S0max

)2
 , (A2)

1QI0 = β0k0sat

( Sa
0

S0max

)2

−

(
Sf

0
S0max

)2
 , (A3)

where k0sat and Smax are model parameters representing the
saturated hydraulic conductivity and maximum storage of the
upper soil layer, respectively. The proportion of overall top
layer drainage that is lateral drainage (β0) is given as

β0 = tanh
(
kββ

Sa
0

S0max

)
tanh

(
kζ

(
k0sat

kssat

− 1
)

Sa
0

S0max

)
, (A4)

where β and kβ are the slope radians and scaling factor, and
kζ is a scaling factor for the ratio of saturated hydraulic con-
ductivity. The revised lower layer soil water storage Sa

s is
then determined as

Sa
s = S

f
s +1D0. (A5)

The change in Ss will lead to the change in the shallow soil
water storage (Ds) and lateral interflow (QIs ). The soil water
storage in the lower layer is thus updated as

Sa
d = S

a
s +1Ds. (A6)

Similarly, the groundwater storage Sg will be adjusted with
the increment of deep soil layer drainage.

The total runoff (Qa
tot) should be updated as

Qa
tot =

(
1− e−kr

)(
Sf

r +Q
f
tot+1QIs +1QI0

)
, (A7)

where kr is a routing delay factor.

The surface water storage Sr should be updated accord-
ingly as

Sa
r = S

f
r +1QIs +1QI0 −1Qtot. (A8)

The total evapotranspiration change (1Etot) caused by the
changes in S0 and Ss can be updated as follows:

1Etot = δEs ·1S0+ δEt ·1Ss, (A9)

where Es is the evaporation flux from the surface soil
store (S0), and Et is the total actual plant transpiration. The
term δEs is given as

δEs = (1− fsat)Et_remδfsoile , (A10)

where fsoile is relative soil evaporation, and fsat is the frac-
tion of the grid cell that is saturated, and

Et_rem = E0− (Et− δEt) . (A11)

The term δEt is from the changes in root water uptake from
shallow and deep soil layers as

δEt = δUs+ δUd, (A12)

with

δUs = δUsmax

max
(
abs

(
δUsmax ,δUdmax

))
δUsmax + δUdmax

(A13)

δUd = δUdmax

max
(
abs

(
δUsmax ,δUdmax

))
δUsmax + δUdmax

(A14)

δUsmax =
Us0

wslim

δws, (A15)

δUdmax =
Ud0

wdlim

δwd, (A16)

where Usmax and Udmax are the maximum root water uptake
from the shallow soil store and from the deep soil store.
wslim and wdlim are the water-limiting relative water content
from the shallow and deep soil layer.

Finally,

δfsoile =
fsoilmax

w0lim

δw0, (A17)

where fsoilmax is the scaling factor corresponding to unlimited
soil water supply, with

δw0 =
1

S0max

, δws =
1

Ssmax

, and δwd =
1

Sdmax

, (A18)

where wz is the relative soil wetness of layer z, i.e. either 0,
s or d.
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Data availability. The Australian Water Resources Assessment
(AWRA) Community Modelling System (Frost et al., 2018) code
is freely available for download (https://github.com/awracms/awra_
cms, last access: 1 September 2021) (AWRA-CMS, 2021). The
SMAP product used here is the level-2 enhanced radiometer half-
orbit 9 km EASE-grid soil moisture from the US National Snow
and Ice Data Center (https://doi.org/10.5067/Q8J8E3A89923)
(O’Neill et al., 2020). The SMOS level-2 soil moisture prod-
uct is available from ESA’s SMOS online dissemination service
(https://smos-diss.eo.esa.int/oads/access/, last access: 1 Septem-
ber 2019) (ESA, 2019). The MYD13C2 EVI data are acces-
sible through the Land Processes Distributed Active Archive
Centre (https://doi.org/10.5067/MODIS/MYD13C2.061) (Didan,
2021). The National Dynamic Land Cover Dataset of Australia is
available from Geoscience Australia (http://pid.geoscience.gov.au/
dataset/ga/83868, last access: 1 August 2020) (Lymburner et al.,
2015).
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