



## Supplement of

### Impacts of land use and land cover change and reforestation on summer rainfall in the Yangtze River basin

Wei Li et al.

Correspondence to: Jie Chen (jiechen@whu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

# Impacts of land use/cover change and reforestation on summer rainfall for the Yangtze River Basin

Wei Li<sup>1,2</sup>, Lu Li<sup>3</sup>, Jie Chen<sup>1,2</sup>, Qian Lin<sup>1,2</sup>, Hua Chen<sup>1,2</sup>

<sup>1</sup>State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China

<sup>5</sup> <sup>2</sup>Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China <sup>3</sup>NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, 5238, Norway

Corresponding to: Jie Chen (jiechen@whu.edu.cn)

### Supplement

| Scenarios     | Cropland (%) | Forest (%) | Grassland (%) | Water and wetland (%) | Urban (%) | Unused land (%) |
|---------------|--------------|------------|---------------|-----------------------|-----------|-----------------|
| 1990 scenario | 28.67        | 44.37      | 24.63         | 0.58                  | 0.06      | 1.69            |
| 2010 scenario | 28.12        | 45.02      | 24.60         | 0.69                  | 0.45      | 1.12            |
| 20% scenario  | 22.97        | 49.85      | 24.83         | 0.69                  | 0.54      | 1.12            |
| 50% scenario  | 14.76        | 57.53      | 25.32         | 0.69                  | 0.58      | 1.12            |

#### Table S1. The percentages of land use classes under four scenarios after resampling.



Figure S1. The biases of (a) latent heat flux (%), (b) sensible heat flux (%) and (c) PBL height (%) between the 2010 scenario and observed data. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.



Figure S2. The changes in (a) average summer rainfall (mm), (b) 90th percentile summer rainfall (mm/day) and (c) 99th percentile summer rainfall (mm/day) between the 2010 scenario and 1990 scenario in ALL-YRB and PDG-YRB area.



20 Figure S3. The changes in maximum 1-, 3-, 5-day rainfall between the 2010 scenario and 1990 scenario in ALL-YRB and PDG-YRB area.



Figure S4. The probability distribution functions of summer rainfall in 2010 and 1990 scenarios in (a) ALL-YRB and (b) PDG-YRB;

25 The changes in multiyear-averaged summer monthly rainfall between the 2010 scenario and 1990 scenario in (c) ALL-YRB and (d) PDG-YRB.



Figure S5. The changes in (a-b) 2m air temperature (°C) and (c-d) surface skin temperature (°C) between the 20% scenario and 2010 scenario, and between the 50% scenario and 2010 scenario. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.



Figure S6. The changes in (a-b) upward moisture flux at the surface (kg/m<sup>2</sup>) between the 20% scenario and 2010 scenario, and

35 between the 50% scenario and 2010 scenario. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.



Figure S7. The changes in (a-b) 10m wind (m/s) between the 20% scenario and 2010 scenario, and between the 50% scenario and

40 2010 scenario. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.



Figure S8. The bias of (a) average summer rainfall (mm), (b) 90th percentile summer rainfall (mm/day) and (c) 99th percentile summer rainfall (mm/day) between the 2010 scenario and observed data, and (d) the qq-plot of observed rainfall versus simulated rainfall. The stippling regions show statistically significance of bias identified by t-test at a 5% significance level.



Figure S9. (a) The biases of average summer temperature (°C) between the 2010 scenario and observed data, the stippling regions
show statistically significance of bias identified by t-test at a 5% significance level.; (b) The qq-plot of observed temperature versus simulated temperature; (c) The basin-averaged summer temperature processes of observation, ERA5 and 2010 scenario.



Figure S10. The changes in (a-b) short wave radiation (W/m2) between the 20% scenario and 2010 scenario, and between the 50%

55 scenario and 2010 scenario. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.