Supplement of

Impacts of land use and land cover change and reforestation on summer rainfall in the Yangtze River basin

Wei Li et al.

Correspondence to: Jie Chen (jiechen@whu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Impacts of land use/cover change and reforestation on summer rainfall for the Yangtze River Basin

Wei Li1,2, Lu Li3, Jie Chen1,2, Qian Lin1,2, Hua Chen1,2

1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
2Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
3NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, 5238, Norway

Corresponding to: Jie Chen (jiechen@whu.edu.cn)

Supplement

Table S1. The percentages of land use classes under four scenarios after resampling.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Cropland (%)</th>
<th>Forest (%)</th>
<th>Grassland (%)</th>
<th>Water and wetland (%)</th>
<th>Urban (%)</th>
<th>Unused land (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990 scenario</td>
<td>28.67</td>
<td>44.37</td>
<td>24.63</td>
<td>0.58</td>
<td>0.06</td>
<td>1.69</td>
</tr>
<tr>
<td>2010 scenario</td>
<td>28.12</td>
<td>45.02</td>
<td>24.60</td>
<td>0.69</td>
<td>0.45</td>
<td>1.12</td>
</tr>
<tr>
<td>20% scenario</td>
<td>22.97</td>
<td>49.85</td>
<td>24.83</td>
<td>0.69</td>
<td>0.54</td>
<td>1.12</td>
</tr>
<tr>
<td>50% scenario</td>
<td>14.76</td>
<td>57.53</td>
<td>25.32</td>
<td>0.69</td>
<td>0.58</td>
<td>1.12</td>
</tr>
</tbody>
</table>
Figure S1. The biases of (a) latent heat flux (%), (b) sensible heat flux (%) and (c) PBL height (%) between the 2010 scenario and observed data. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.
Figure S2. The changes in (a) average summer rainfall (mm), (b) 90th percentile summer rainfall (mm/day) and (c) 99th percentile summer rainfall (mm/day) between the 2010 scenario and 1990 scenario in ALL-YRB and PDG-YRB area.
Figure S3. The changes in maximum 1-, 3-, 5-day rainfall between the 2010 scenario and 1990 scenario in ALL-YRB and PDG-YRB area.
Figure S4. The probability distribution functions of summer rainfall in 2010 and 1990 scenarios in (a) ALL-YRB and (b) PDG-YRB; The changes in multiyear-averaged summer monthly rainfall between the 2010 scenario and 1990 scenario in (c) ALL-YRB and (d) PDG-YRB.
Figure S5. The changes in (a-b) 2m air temperature (°C) and (c-d) surface skin temperature (°C) between the 20% scenario and 2010 scenario, and between the 50% scenario and 2010 scenario. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.
Figure S6. The changes in (a-b) upward moisture flux at the surface (kg/m²) between the 20% scenario and 2010 scenario, and between the 50% scenario and 2010 scenario. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.
Figure S7. The changes in (a-b) 10m wind (m s\(^{-1}\)) between the 20\% scenario and 2010 scenario, and between the 50\% scenario and 2010 scenario. The stippling regions show statistically significance of changes identified by t-test at a 5\% significance level.
Figure S8. The bias of (a) average summer rainfall (mm), (b) 90th percentile summer rainfall (mm/day) and (c) 99th percentile summer rainfall (mm/day) between the 2010 scenario and observed data, and (d) the qq-plot of observed rainfall versus simulated rainfall. The stippling regions show statistically significance of bias identified by t-test at a 5% significance level.
Figure S9. (a) The biases of average summer temperature (°C) between the 2010 scenario and observed data, the stippling regions show statistically significance of bias identified by t-test at a 5% significance level.; (b) The qq-plot of observed temperature versus simulated temperature; (c) The basin-averaged summer temperature processes of observation, ERA5 and 2010 scenario.
Figure S10. The changes in (a-b) short wave radiation (W/m2) between the 20% scenario and 2010 scenario, and between the 50% scenario and 2010 scenario. The stippling regions show statistically significance of changes identified by t-test at a 5% significance level.