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Abstract. Despite showing great success of applications in
many commercial fields, machine learning and data sci-
ence models generally show limited success in many sci-
entific fields, including hydrology (Karpatne et al., 2017).
The approach is often criticized for its lack of interpretabil-
ity and physical consistency. This has led to the emergence
of new modelling paradigms, such as theory-guided data sci-
ence (TGDS) and physics-informed machine learning. The
motivation behind such approaches is to improve the physi-
cal meaningfulness of machine learning models by blending
existing scientific knowledge with learning algorithms. Fol-
lowing the same principles in our prior work (Chadalawada
et al., 2020), a new model induction framework was founded
on genetic programming (GP), namely the Machine Learn-
ing Rainfall–Runoff Model Induction (ML-RR-MI) toolkit.
ML-RR-MI is capable of developing fully fledged lumped
conceptual rainfall–runoff models for a watershed of inter-
est using the building blocks of two flexible rainfall–runoff
modelling frameworks. In this study, we extend ML-RR-
MI towards inducing semi-distributed rainfall–runoff mod-
els. The meaningfulness and reliability of hydrological in-
ferences gained from lumped models may tend to deterio-
rate within large catchments where the spatial heterogene-
ity of forcing variables and watershed properties is signifi-
cant. This was the motivation behind developing our machine
learning approach for distributed rainfall–runoff modelling
titled Machine Induction Knowledge Augmented – System
Hydrologique Asiatique (MIKA-SHA).

MIKA-SHA captures spatial variabilities and automati-
cally induces rainfall–runoff models for the catchment of in-
terest without any explicit user selections. Currently, MIKA-
SHA learns models utilizing the model building components
of two flexible modelling frameworks. However, the pro-

posed framework can be coupled with any internally coher-
ent collection of building blocks. MIKA-SHA’s model in-
duction capabilities have been tested on the Rappahannock
River basin near Fredericksburg, Virginia, USA. MIKA-SHA
builds and tests many model configurations using the model
building components of the two flexible modelling frame-
works and quantitatively identifies the optimal model for the
watershed of concern. In this study, MIKA-SHA is utilized
to identify two optimal models (one from each flexible mod-
elling framework) to capture the runoff dynamics of the Rap-
pahannock River basin. Both optimal models achieve high-
efficiency values in hydrograph predictions (both at catch-
ment and subcatchment outlets) and good visual matches
with the observed runoff response of the catchment. Further-
more, the resulting model architectures are compatible with
previously reported research findings and fieldwork insights
of the watershed and are readily interpretable by hydrol-
ogists. MIKA-SHA-induced semi-distributed model perfor-
mances were compared against existing lumped model per-
formances for the same basin. MIKA-SHA-induced optimal
models outperform the lumped models used in this study in
terms of efficiency values while benefitting hydrologists with
more meaningful hydrological inferences about the runoff
dynamics of the Rappahannock River basin.

1 Introduction

Understanding the underlying environmental dynamics oc-
curring within watersheds is an essential and fundamental
task in hydrology. Hydrological models play a key role in
capturing the discharge dynamics of watersheds. Irrespec-
tive of considerable advances over past decades, there is still
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some scope to advance the state of the art in hydrological
knowledge to fully describe the functioning of a watershed
in a rainfall event owing to the highly complex, interdepen-
dent, and nonlinear behaviours of governing physical phe-
nomena. So far, no hydrological model structure can perform
equally well over the entire range of problems (Fenicia et al.,
2011; Beven, 2012a). This leads to different research direc-
tions seeking different hydrological models based on differ-
ent modelling strategies (Beven, 2012b). Hydrological mod-
els are expected not only to have good predictive power but
also to be interpretable in capturing relationships among the
forcing terms and catchment response which may lead to the
advancement of scientific knowledge (Babovic, 2005, 2009;
Karpatne et al., 2017). Ideally, the final goal of any successful
hydrological model must be based on a physically meaning-
ful model architecture along with a good predictive perfor-
mance.

It is often observed that simple data-driven models outper-
form the theory-driven models, such as physics-based and
conceptual models, in terms of prediction accuracy in many
hydrological applications (Nearing et al., 2020). At the same
time, the machine learning models are heavily criticized for
the lack of interpretability of induced models (often referred
to as the black box paradigm). As a result of the lack of in-
terpretability, the contribution from data-driven models, such
as machine learning models, to scientific advancement is
minimal. This hindered achieving the level of success that
machine learning models achieved in the commercial do-
main (Karpatne et al., 2017). Incorporating available sci-
entific knowledge to guide learning algorithms to generate
more physically reliable and consistent models will be an ef-
fective way to improve the explicability of machine learn-
ing models. This concept is presently recognized as a new
modelling paradigm in the machine learning community as
physics-informed machine learning (Physics Informed Ma-
chine Learning Conference, 2016) or theory-guided data sci-
ence (Karpatne et al., 2017).

In this contribution, following the above-mentioned mod-
elling paradigm, we introduce a novel model induction en-
gine called Machine Induction Knowledge Augmented –
System Hydrologique Asiatique (MIKA-SHA) for the au-
tomatic induction of semi-distributed rainfall–runoff models
for an area of concern. This work is motivated by the suc-
cess of our previously introduced (Chadalawada et al., 2020)
model induction toolkit titled Machine Learning Rainfall–
Runoff Model Induction (ML-RR-MI). ML-RR-MI is capa-
ble of inducing fully fledged lumped conceptual rainfall–
runoff models. We use the term “hydrologically informed
machine learning” to show that the existing body of hydro-
logical knowledge is used to govern the machine learning al-
gorithms to induce rainfall–runoff model configurations that
are consistent with basic hydrological understanding. The
proposed framework uses genetic programming (GP) as its
learning algorithm, whereas the model building modules of
two flexible rainfall–runoff modelling frameworks, namely

FUSE (framework for understanding structural errors; Clark
et al., 2008) and SUPERFLEX (Fenicia et al., 2011; Kavetski
and Fenicia, 2011), represent the elements of existing hydro-
logical knowledge.

By being a theory-guided data science (TGDS) approach,
the top priority of MIKA-SHA remains as the induction of
readily interpretable rainfall–runoff models with high pre-
diction accuracy. However, the specific objectives of the cur-
rent study involve (1) utilizing GP for semi-distributed model
induction by incorporating spatial heterogeneities of catch-
ment properties and climate variables into the rainfall–runoff
modelling and (2) adopting a quantitative model selection ap-
proach to select an optimal model with appropriate complex-
ity to represent runoff dynamics of the catchment of inter-
est instead of the “the simpler the better” paradigm used in
ML-RR-MI. The approach addresses common hydrological
issues, such as equifinality, subjectivity, and uncertainty, in
the context of semi-distributed modelling and machine learn-
ing. This study is a part of the larger ongoing research effort
of using hydrologically informed machine learning for auto-
matic model induction.

The following is how the rest of the text is organized. Sec-
tion 1 provides a brief discussion on the background behind
the development of the MIKA-SHA toolkit. The proposed
model induction framework is introduced in Sect. 2. An ap-
plication of the proposed framework is given in Sect. 3, fol-
lowed by a discussion on research findings in Sect. 4. The
last section (Sect. 5) presents the conclusions of the current
study. Additional details are given in the Appendix.

1.1 Uniqueness of the place

Considering the uniqueness of the place is an important as-
pect of hydrological modelling (Beven, 2020). The spatio-
temporal heterogeneity of landscape characteristics, such as
topography, bedrock geology, soil types, land use, and cli-
mate variables, forces each watershed to behave uniquely. In
general, this variability is scale dependent. More heterogene-
ity can be observed in both surface and subsurface levels in
higher scales, such as at the catchment scale. Namely, there
is a possibility that macro-scale patterns of catchments are
governed by heterogeneity (Nearing et al., 2020). The use of
flexible/modular modelling frameworks and distributed mod-
elling concepts are two available toolsets for incorporating
spatial heterogeneity into the model building phase.

The majority of hydrological models are developed using a
generic model configuration that provides reasonable results
across a relatively wide spectrum of catchments and mete-
orological conditions (known as fixed models). At the same
time, it is quite improbable for a model to perform equally
well in completely different climates and geological regions.
In contrast to fixed models, modular modelling frameworks
provide more flexibility in the model development by allow-
ing the hydrologist to customize the model structure to suit
the intended task. Instead of a single hypothesis available in
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fixed models, model building components of these modular
modelling frameworks can be structured diversely to evalu-
ate multiple hypotheses on watershed functioning. The high
degree of transferability of flexible modelling frameworks is
an aiding factor in proceeding in the direction of a unified hy-
drological theory at a watershed level. Simultaneously, due to
the dynamic modularity and high level of granularity of mod-
ular modelling frameworks, constructing a suitable model for
the watershed of concern may require significant effort and
expert knowledge. Hence, a hydrologist with novice knowl-
edge would be required to test many model structures before
selecting an optimal model that is time demanding and com-
putationally intensive. Consequently, it hinders the opportu-
nity to use the flexible modelling frameworks to their full
potential.

In addition to incorporating spatial heterogeneity in its
modelling process, if the modeller’s requirement lies within
the catchment (e.g. discharge at a particular location within
the catchment), then the only option would be to adopt a dis-
tributed model. At the early stages of distributed modelling,
the approach (fully distributed modelling) was constrained
due to the lack of data and computational power (Wood et
al., 2011; Beven, 2012b; Fatichi et al., 2016). Hence, it was
thought that this approach would gain success with the ad-
vancement of technology. However, until today, fully dis-
tributed models have not achieved the expected outcome
(Beven, 2020). This points out that the problem lies not only
in the lack of local information but is also due to the issues in
how processes are represented within the distributed model
(Beven, 2020). An effective alternative for fully distributed
models would be the semi-distributed models, where differ-
ent conceptual models are allocated to functionally distinct
catchment areas. In the semi-distributed modelling approach,
each model operates individually with no dependencies or in-
terconnections with others of the network (Boyle et al., 2001;
Fenicia et al., 2016). This and using conceptual models rather
than small-scale physics enable semi-distributed models to
be several orders simpler than fully distributed models.

1.2 Choice of the model

There is an overwhelming number of hydrological models
in practice. Selecting an optimal model from among suitable
competing models is not a trivial matter. According to Wain-
wright and Mulligan (2013), the optimal model is defined as
the model with enough complexity to explain the underly-
ing physical phenomenon. Ideally, optimal model selection
should be based on bias–variance tradeoff, as the more com-
plex models result in low bias and high variance, while sim-
pler models result in low variance and high bias in their pre-
dictions (Hoge et al., 2018). However, there is no clear-cut
definition for model complexity, and existing definitions dif-
fer across different disciplines (Guthke, 2017). In the context
of hydrology, model complexity is often defined based on
the process complexity and spatial complexity of the model

(Clark et al., 2016), where process complexity is a measure of
the number of hydrological processes explicitly represented
by the model, and spatial complexity is a measure of the de-
gree of model’s spatial discretization and their connectivity.

As per the survey conducted by Baartman et al. (2019),
most researchers believe selecting a model among compet-
ing models should be governed based on the question at hand
(i.e. suitability of a model to achieve research objectives).
However, Addor and Melsen (2019) have reported that the
choice of model in hydrological applications is often based
on familiarity with the model (i.e. based on legacy rather than
adequacy). The inherent model complexity is frequently as-
sessed concerning either the number of model parameters,
the number of state variables, or the number of physical pro-
cesses included or computational complexity, and the choice
of such matrix to measure complexity is often subjective
(Baartman et al., 2019). One possible alternative to measur-
ing model complexity would be through the analysis of time
series complexity of resulting output signatures of the models
based on information theory and pattern matching (Sivaku-
mar and Singh, 2012). Regardless of the matrix used to mea-
sure the model complexity, model parsimony should be a part
of that as unwarranted complexity may lead to overfitting and
high uncertainty (Guthke, 2017).

1.3 Machine learning in water resources

Machine learning, or data science in general, has become an
irreplaceable tool not only in commercial but also in many
scientific fields, with advancements in computing power and
data acquisition through remote sensing and geographical in-
formation systems (Yaseen et al., 2015). Especially within
the last 2 decades, there has been an increase in data sci-
ence model applications, such as machine learning models,
in hydrological modelling (Yaseen et al., 2015). Evolutionary
computation (EC), support vector machines (SVMs), artifi-
cial neural networks (ANNs), wavelet–artificial intelligence
models (W–AI), and the fuzzy set are the most popular data
science techniques in hydrological modelling (Yaseen et al.,
2015). Each of these techniques has its strengths and weak-
nesses. The scope of this paper does not discuss different
data-driven methods in detail. Alternatively, interested read-
ers may refer to the textbook by Hsieh (2009) and review
articles by the ASCE Task Committee on the Application of
Artificial Neural Networks in Hydrology (2000), Oyebode
and Adeyemo (2014), Yaseen et al. (2015), and Mehr et
al. (2018). Machine learning models have shown encourag-
ing performances in a range of water resource applications
because of their capability to handle noise complexity, non-
stationarity, nonlinearity, and dynamism of data (Yaseen et
al., 2015). Certainly, if we are only interested in better fore-
casting results, then the machine learning models might be
the preferred choice over the conceptual or physics-based
models (provided no data scarcity) due to their better pre-
dictive capability (Nearing et al., 2020). A machine learning
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model also has the advantage of requiring much less human
effort to design and train than a theory-based model (Nearing
et al., 2020).

Data-driven techniques have made it possible to develop
implementable models with high prediction accuracy, us-
ing the available data, with limited dependence on domain
knowledge. At the same time, this very nature of data-driven
models has become the main point of criticism, especially
in scientific fields including hydrology. They are regularly
quoted as being black box models where the user has a lim-
ited understanding of how models generate their forecasts.
There are two main reasons for the limited success of data-
driven models in scientific fields (Karpatne et al., 2017). The
first reason is the data scarcity for the model training, making
it harder to extrapolate model predictions beyond the avail-
able labelled data. The second reason is associated with the
objectives of scientific discovery, where the final goal is not
only to have actionable models but also to convey a mecha-
nistic awareness of underlying operations that may lead to the
advancement of scientific knowledge. However, data-driven
models, like deep learning (DL) models, have demonstrated
better hydrograph forecasts even in ungauged basins (one of
the most challenging tasks in hydrological modelling) over
the conventional methods (Kratzert et al., 2019).

Not recognizing the potential of machine learning mod-
els in hydrological modelling has been identified as a dan-
ger to the hydrological modelling community (Nearing et
al., 2020). Nearing et al. (2020) argue that machine learn-
ing models can identify catchment similarities by produc-
ing good performances even for the watersheds that were
not utilized for training those models. This illustrates ma-
chine learning model capabilities in developing basin-scale
theories that traditional models could not do so well. Fur-
thermore, the authors refuse the most frequent critique on
machine learning models (difficulties in interpretation) by
arguing that even the accuracy of process representation in
physics-based models is questionable owing to their poorer
forecasting accuracies, so criticizing machine learning mod-
els only is unfair and meaningless. Despite having huge po-
tential within machine learning models, state-of-the-art ma-
chine learning capacities have not yet been thoroughly ex-
plored in hydrological modelling (Shen et al., 2018). Nearing
et al. (2020) expect that even distributed hydrological models
are likely to be established primarily utilizing machine learn-
ing soon. Interestingly, recent studies like Nevo (2020) and
Xiang and Demir (2020) have already explored the potential
of DL in distributed streamflow and flood prediction, respec-
tively. Beven (2020) emphasizes the significance of DL mod-
els’ interpretability and proposes a more explicit integration
of process information with DL models. Furthermore, he
highlights that machine learning models should also consider
issues, such as equifinality, parameter and data uncertainties,
which are common in conventional modelling approaches.

1.3.1 Genetic programming (GP)

Genetic programming is an evolutionary computation (EC)
algorithm (Koza, 1992) inspired through the basic principle
of Darwin’s evolution theory. The symbolic form of indi-
vidual solution representation (known as parse trees) distin-
guishes GP from the other EC methods. GP is a form of su-
pervised machine learning that allows computer programmes
to be generated automatically. The ability of GP to gener-
ate explicit mathematical expressions of input–output rela-
tionships distinguishes it from other machine learning tech-
niques. As a result, GP is referred to as a grey box data-driven
mechanism, which differentiates it from the other black box
data-driven approaches like ANNs (Mehr et al., 2018). Other
than that, GP has become a powerful machine learning ap-
proach due to its conceptual simplicity, parallel processing
capability, and ability to obtain a near-global or global solu-
tion.

GP generates its solutions (GP individuals) by arranging
mathematical functions, input variables, and random con-
stants. These are known as the building blocks of the GP al-
gorithm. The algorithm begins with a collection of randomly
generated candidate solutions for the problem to be solved.
The performance of each candidate is then assessed using a
user-defined objective function. Following that, genetic op-
erators, including mutation and crossover, are performed on
current generation GP individuals to produce offspring for
the next generation. The procedure for selecting parent in-
dividuals for breeding guarantees that more fit individuals
have a better chance of being chosen. The new set of off-
spring becomes the candidate solutions in the next genera-
tion. This process is repeated until the algorithm meets its
termination criteria (usually a maximum number of genera-
tions). The candidate solutions evolve towards the global op-
timum when the GP algorithm curtails the error margin be-
tween the simulated values of its individuals and measured
observations (Babovic and Keijzer, 2000).

GP has been utilized extensively in water resources,
including rainfall–runoff modelling (Babovic and Keijzer,
2002; Babovic et al., 2020), meteorological data analysis
(Bautu and Bautu, 2006), streamflow forecasting (Meshgi et
al., 2014, 2015; Karimi et al., 2016), soil moisture estima-
tion (Elshorbagy and El-Baroudy, 2009), water quality simu-
lations (Savic and Khu, 2005), sediment transport modelling
(Babovic and Abbott, 1997; Safari and Mehr, 2018), reser-
voir operations (Giuliani et al., 2015), and groundwater sim-
ulations (Datta et al., 2014).

1.3.2 Physics-informed machine learning

While the community frequently admires theory-based mod-
els (physics-based and conceptual models) owing to their ex-
plicability, which may serve to understand watershed func-
tioning better, they often experience poorer predictive power
than data science models. At the same time, simplistic appli-
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cations of data-driven models, which often result in higher
prediction accuracy than theory-based models, may suffer se-
rious difficulties with interpretation as they are unable to pro-
vide basic hydrological insights (Chadalawada et al., 2020).
This dichotomy led to the evolution of two major communi-
ties in water resources engineering, namely those who work
with theory-based modelling and those who deal with ma-
chine learning techniques, which appear to be working quite
separately (Todini, 2007; Sellars, 2018).

One promising way to bridge the gap between theory-
based and machine learning modelling communities would
be to couple the current hydrological understanding to gov-
ern machine learning models (Babovic and Keijzer, 2002;
Babovic, 2009). This recent paradigm is presently referred
to as physics-informed machine learning (Physics Informed
Machine Learning Conference, 2016) or theory-guided data
science (TGDS; Karpatne et al., 2017). This paradigm in-
tends to simultaneously address the limitations of data sci-
ence and physics-based models (primarily the lack of inter-
pretability of data science models and poorer predictive capa-
bilities of physics-based models) and to generate physically
consistent and more generalizable models. According to the
taxonomy presented by Karpatne et al. (2017), there are five
different approaches to incorporating scientific knowledge
into data science models. They are (1) theory-guided de-
sign of data science models, (2) theory-guided learning of
data science models, (3) theory-guided refinement of data
science outputs, (4) learning hybrid models of theory and
data science, and (5) augmenting theory-based models us-
ing data science. To bring together scientific knowledge and
data science techniques, a typical physics-informed data sci-
ence model might use one or more of the approaches men-
tioned above. Only a few explainable artificial intelligence
utilizations in hydrological modelling have been reported in
the past (Cannon and Mckendry, 2002; Keijzer and Babovic,
2002; Fleming, 2007). However, there is an increasing trend
of adopting TGDS models for recent water resource applica-
tions (Mcgovern et al., 2019), such as hydroclimatic model
building (Snauffer et al., 2018), automated model building
(Chadalawada et al., 2020), and hydrologic process simula-
tion (Solander et al., 2019).

Physics-informed GP

While physics-informed machine learning is a relatively new
modelling paradigm, there have been attempts over the past
2 decades to blend the hydrological understanding with the
basic GP framework to improve the physical consistency of
induced models. Past research, such as Babovic and Kei-
jzer (1999, 2002) and Keijzer and Babovic (2002), used the
definitions of units of measurement to bias the search pro-
cess of the GP algorithm to induce dimensionally correct ex-
pressions (a so-called dimensionally aware GP). The authors
examined two different approaches, namely a coercion ap-
proach (i.e. a soft constraint on dimensional correctness) and

a strongly typed approach (i.e. a hard constraint on dimen-
sional correctness) and found out that the coercion approach
may be more appropriate for scientific discovery. More im-
portantly, the dimensionally aware GP expressions were able
to provide additional insights into the underlying problem.
Babovic et al. (2001) utilized the dimensionally aware GP to
derive hydraulic formulas from measured data and reported
that GP-induced expressions are quite similar to those iden-
tified by human experts with similar or improved accuracy.
In a separate study (Baptist et al., 2007; Babovic, 2009), di-
mensionally aware GP was used to identify expressions to
describe resistance induced by vegetation and found that GP-
induced expressions were superior to the expressions derived
by domain experts.

Another augmented version of GP was used by Selle
and Muttil (2011) to identify predominant processes in hy-
drological system dynamics. A reservoir model, a cumula-
tive sum and delay function, and a moving average oper-
ator were incorporated as basic hydrological insights into
the GP function set by Havlicek et al. (2013) to develop a
rainfall–runoff prediction programme called SORD (Solve
Or Die). They achieved superior performances in the pre-
diction accuracy with SORD than with ANNs and GP with-
out the above-mentioned special functions. GP was utilized
by Chadalawada et al. (2017) to induce the most suitable
reservoir configuration for a catchment of interest, using
a customized function set with conceptual modelling con-
cepts extracted from the Sugawara tank model architecture
(Sugawara, 1979). Previously, we introduced (Chadalawada
et al., 2020) an automated hydrologically informed lumped
rainfall–runoff model induction toolkit, based on GP, titled
Machine Learning Rainfall–Runoff Model Induction toolkit.

2 Methodology

Chadalawada et al. (2020) introduced a new hydrologically
informed rainfall–runoff model induction toolkit (ML-RR-
MI) based on GP for developing lumped conceptual hy-
drological models utilizing model building components of
FUSE and SUPERFLEX frameworks. The unique feature of
ML-RR-MI is that it uses the existing body of hydrological
knowledge to govern the GP algorithm to generate physically
consistent models with high prediction accuracies. The build-
ing components of the two flexible modelling frameworks are
used to incorporate hydrological knowledge with ML-RR-
MI’s learning algorithm. These building blocks are incorpo-
rated as purpose-built functions (named as FUSE and SU-
PERFLEX) into the function set of ML-RR-MI along with
basic mathematical functions.

Successful applications of the ML-RR-MI toolkit moti-
vated the present research to extend its modelling capabilities
towards distributed hydrological modelling. Although apply-
ing the ML-RR-MI toolkit is more meaningful for small
catchments due to its lumped watershed representation, there
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is no strict catchment size limitation for using it. However,
with the increase in basin sizes, the meaningfulness of the
lumped values decreases. Hence, the inferences made on the
basis of a lumped model may be accurate but not reason-
able or realistic. Due to the limited success and higher-order
complexity of fully distributed models, the semi-distributed
modelling concept is used for the current study, where a net-
work of functionally distinguishable conceptual models from
flexible modelling frameworks is developed to represent the
watershed dynamics. As a result of the higher granularity and
flexibility provided by the flexible modelling frameworks,
even with a lumped application, one can try thousands of
possible model architectures for a catchment of interest. This
may rise to millions of possible model combinations in the
context of semi-distributed modelling, which makes it almost
impossible to test them manually.

Furthermore, selecting a model configuration without test-
ing alternative model configurations would become highly
subjective and require considerable expert knowledge and
time. Upon a review of 1500+ peer-reviewed articles, Ad-
dor and Melsen (2019) reported that selecting a hydrolog-
ical model is frequently based on legacy factors such as
prior experience, habit, easiness, and the popularity of the
model rather than adequacy factors like appropriateness of
the model to achieve research objectives. A semi-distributed
model choice based on a subjective model selection may in-
troduce biased research findings. Therefore, we see a neces-
sity to automate the model building phase to overcome these
limitations. Henceforth, our machine learning approach for
rainfall–runoff modelling, titled Machine Induction Knowl-
edge Augmented – System Hydrologique Asiatique (MIKA-
SHA), captures spatial variabilities and automatically in-
duces rainfall–runoff models for the catchment of interest
without any explicit user selections.

GP has been selected as the machine learning technique
here due to its ability to generate an explicit mathemati-
cal relationships among independent (forcing) and depen-
dent (response) variables. Therefore, incorporating hydro-
logical knowledge can be done more explicitly with GP than
with other black-box-type machine learning techniques. Yet,
when considering most state-of-the-art GP utilizations in wa-
ter resources (Oyebode and Adeyemo, 2014; Mehr et al.,
2018), GP is still utilized as a short-term prediction mech-
anism that is analogous to ANN applications. In our contri-
bution, we test the full potential of GP by developing fully
fledged rainfall–runoff models. As MIKA-SHA relies on GP,
there is no requirement for predefinition of a model structure
(hypothesis on catchment runoff dynamics). Instead, identi-
fying an appropriate model structure is part of the machine
learning framework, meaning that GP simultaneously opti-
mizes model structure and model parameters. Here hydro-
logical insights are introduced through integrating process
understanding by including model building components from
existing flexible modelling frameworks into the function set
of the GP algorithm. As per the classification presented by

Karpatne et al. (2017), our framework falls under the hybrid
TGDS category. Currently, MIKA-SHA learns models uti-
lizing the model building components of two flexible mod-
elling frameworks. However, the proposed framework can be
coupled with any internally coherent collection of building
blocks. R (R Core Team, 2018) programming language has
been used to implement MIKA-SHA.

2.1 MIKA-SHA workflow

The workflow diagram of the MIKA-SHA is given in Fig. 1.
Details about each module of MIKA-SHA (data preprocess-
ing, model identification, model selection, and uncertainty
analysis) are given in the sequel.

2.1.1 Data preprocessing

The data preprocessing stage includes quality checking of
forcing terms (precipitation, potential evaporation, and tem-
perature) and runoff data, identification of subcatchments
and hydrologic response units (HRUs) through watershed
delineation, preparation of subcatchment-averaged forcing
terms vectors, and setting algorithmic parameters (e.g. num-
ber of generations, population size, number of independent
runs, etc.). In general, there are no specific rules to select the
appropriate algorithmic settings. However, the chosen set-
tings eventually decide the computational time and demand.
MIKA-SHA uses QGIS (quantum geographic information
system) software (QGIS.org, 2020) to prepare the required
digital elevation maps (DEMs), land use maps, geological
maps, and soil maps for watershed delineation. Then, the
SWAT+ plugin of QGIS software is used for the watershed
delineation. HRUs can either be identified based on the to-
pography, soil type, land use, and geology or a combination
of different landscape types of the catchment of interest.

2.1.2 Model identification

At the model identification stage, the GP-based machine
learning framework of MIKA-SHA optimizes both model
structure and parameter values of candidate solutions which
involve the following steps.

Step 1. A set of candidate model structures (semi-
distributed model structures made from the purpose-built
functions, basic mathematical functions and random con-
stants) are randomly generated to capture the watershed’s
runoff dynamics (known as the initial population). These
model structures (GP individuals) may differ from each other
in terms of model structural components and parameter val-
ues. MIKA-SHA consists of three different initialization pro-
cedures, namely (i) the full method (all individuals have the
maximum allowable initial tree depth), (ii) the grow method
(individuals of different tree depths up to the maximum al-
lowable initial tree depth are possible), and (iii) the ramped
half-and-half method (individuals are generated both using
the full method and grow method in equal proportions).
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Figure 1. Workflow diagram of MIKA-SHA.

Step 2. The performance of each candidate model structure
is evaluated on a user-defined multi-objective criterion. The
non-dominated sorting genetic algorithm II (NSGA-II; Deb
et al., 2002) is used to found the multi-objective optimization
scheme of MIKA-SHA. Each individual in the population is
evaluated on each objective function separately. MIKA-SHA
utilizes parallel computation at this stage to reduce computa-
tional time.

Step 3. Each individual is assigned a non-domination rank
and a crowding distance value based on the objective func-
tion values. The ranks are identified based on the Pareto op-
timality concept. For example, all the individuals with non-
domination rank two are dominated by individuals with rank
one. However, individuals with rank two are not dominated
by any other individuals with a higher rank (the lower the
rank, the better the individual). On the other hand, crowding
distance measures how an individual is located relative to the
other individuals of the same rank (the more the distance, the
better the individual, and the more diversity there is).

Step 4. Individuals are selected for a mating pool to create
offspring using the tournament selection mechanism (a user-
defined number of individuals are chosen randomly. If they
have different ranks, then the individual with the lowest rank
is selected. If all of them have the same rank, then the individ-
ual with the highest crowding distance is selected). The se-

lection mechanism ensures that individuals with higher per-
formance values in terms of the objective functions used have
a higher chance of selection.

Step 5. Genetic operators, mainly crossover (two parent in-
dividuals are divided and recombined to form two offspring)
and mutation (sub-tree of a parent individual is randomly
substituted with another sub-tree) are applied to parent in-
dividuals to create the child population. Then, Step 2 is fol-
lowed for the child population.

Step 6. Both the parent population and child population are
combined, and Step 3 is followed. Individuals are selected
for the next parent population from the combined popula-
tion using non-domination ranks and crowding distance val-
ues (e.g. individuals with lower ranks proceed first into the
next generation until the population size is reached).

Step 7. Steps 2 to 6 are repeated until the algorithm reaches
the maximum number of generations. Rank one individuals
of the final generation are saved into a different file.

Step 8. Steps 1 to 7 are repeated for a user-defined number
of independent runs to cover the solution space to a greater
extent. The model identification stage’s output consists of a
set of non-dominated models (Pareto optimal models) based
on the selected objective criteria.
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2.1.3 Model selection

By nature, the GP algorithm drives its total population to-
wards the global or near-global solution, which results in a
set of possible solutions instead of one solution. In the con-
text of rainfall–runoff model induction, such possible solu-
tions may represent different model structures (different hy-
potheses about catchment dynamics). Identifying the best-
performing model from the Pareto front of non-dominated
solutions for a watershed of interest is not a trivial matter.
Hence, it is often required to use a model selection scheme
to select the optimal model from the competing models. The
model selection stage of MIKA-SHA starts with the best
models of each independent run derived through the GP
framework at the model identification stage. The quantitative
optimal model selection process is streamlined as follows.

Step 1. Evaluation of performance using the same multi-
objective criterion on validation data for all identified models
from the model identification stage.

Step 2. Re-identification of Pareto optimal models based
on calibration and validation fitness performances.

Step 3. Calculation of the standardized signature index
sum (SIS) of each Pareto optimal model.

Standardized signature index sum (SIS)

The SIS value is a comparative performance metric that
quantifies a model’s capability to capture the observed flow
duration curve (FDC) relative to other competitive models
(Ley et al., 2016). A model with a negative SIS value indi-
cates an above-average capability to capture observed FDC
and vice versa. In SIS calculations, both observed and simu-
lated FDCs are divided into four flow regimes based on flow
exceeding probabilities and the absolute difference in ob-
served and simulated cumulative discharges in each region
is calculated. Then, four separate Z-score values (represent-
ing four regions) are assigned to each model based on the
standard deviation and mean of all models considered. The
algebraic sum of those four Z-score values becomes the SIS
value of the model.

Zsa =
|xsa| − xa

σa
(1)

SISa = ZsFHV+ZsFMV+ZsFMS+ZsFLV, (2)

where |xsa| is the modulus of the signature index, where s is
the model, a is FDC signature based on flow exceeding prob-
ability (FEP; FHV – FEP less than 2 %; FMV – FEP between
2 % and 20 %; FMS – FEP between 20 % and 70 %; FLV
– FEP greater than 70 %), x is the value, Z is the standard
score, and xa and σa are the average and standard deviation
of |xsa|.

Step 4. Selection of Pareto optimal models with SIS scores
below zero over the calibration and validation periods.

Step 5. Identification of unique model structures (referred
to as competitive models) from the models in Step 4. If there

is more than one model with the same model structure, the
model with the most negative SIS value is selected.

Step 6. Ranking of competitive models separately accord-
ing to three relative measures, namely cross-sample entropy
value (Cross-SampEn), dynamic time warping (DTW) dis-
tance, and model parsimony (the lower the value, the better
the performance, and the lower the rank). The model with the
lowest sum up rank is identified as the optimal model for the
catchment in consideration.

Cross-sample entropy value (Cross-SampEn)

Cross-SampEn value is a derivation of the commonly used
sample entropy value (Richman and Moorman, 2000). Sam-
ple entropy is a complexity measure of data series which has
its origin in information theory. The sample entropy value
gives an idea about the complexity of the data series based on
the information content in a mathematical way. The Cross-
SampEn value also follows the same concept but is used
to measure the correlation between two series by matching
patterns from one series with another. A low Cross-SampEn
value indicates that the two series are more similar to each
other. More details about Cross-SampEn can be found in
Delgado-Bonal and Marshak (2019).

Dynamic time warping (DTW) distance

DTW distance (Sakoe and Chiba, 1978) is a similarity mea-
sure between two time series, including the warping of their
time axes to find the optimal temporal alignment between the
two. DTW distance is derived as an alternative to the com-
monly used Euclidean distance. Thus, two identical time se-
ries with a small-time shift may end up with a large Euclidean
distance and may be considered as two dissimilar time series.
The DTW method captures them as two similar time series
as it ignores the shift in the time axes. A low DTW distance
indicates more similarity between the two time series com-
pared. Details and applications of the DTW method can be
found in Salvador and Chan (2007), Giorgino (2009), and
Vitolo (2015).

Model parsimony

Here, the model parsimony is evaluated in terms of each
model’s number of associated model parameters. One model
is considered more parsimonious than another model if the
number of model parameters of the former is lower than the
latter.

2.1.4 Uncertainty analysis

Once the optimal model is identified for the catchment
of interest, the generalized likelihood uncertainty estima-
tion (GLUE) approach (Beven and Binley, 1992) is used to
perform its sensitivity and uncertainty analysis as described
below.
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Step 1. A random subset of model parameters of the iden-
tified optimal model structure is uniformly changed within
their parameter range (in this case, between 0 and 1 as all pa-
rameter ranges are normalized within the MIKA-SHA frame-
work), while keeping the remaining model parameters at
their calibrated values (parameter values determined in the
model identification stage). Then, the performance of the pa-
rameter set is evaluated using a user-defined objective func-
tion (likelihood estimator). If the model parameter set pro-
vides an objective function value greater than the likelihood
threshold, the parameter set (known as a behavioural model),
its objective function value, and the simulated discharge are
recorded.

Step 2. The above step is repeated until the number of be-
havioural models reaches a user-defined value. Each time,
the number of parameters to change and which parameters to
change are randomly chosen from a uniform distribution.

Step 3. For each time step, simulated discharge values of
all behavioural models are sorted in ascending order. Then, a
weight is assigned to each model (objective function value it-
self can be used as the weight). Finally, the cumulative proba-
bility distribution function (CDF) of the weights is calculated
at each time step.

Step 4. For each time step, a relationship diagram is ob-
tained by taking CDF as the x axis and simulated discharge at
the y axis. From the diagram, corresponding simulated dis-
charge values of the 95 % and 5 % quantile of CDF are se-
lected as the upper and lower bounds of the 90 % confidence
band.

Step 5. The percentage of measured streamflows of the cal-
ibration period, which fall inside the 90 % confidence band,
is used to measure the uncertainty estimation capability of
the selected optimal model (i.e. check whether the chosen
model’s parameter uncertainty is capable or not to account
for total output uncertainty).

Step 6. If the uncertainty estimation capability is satisfac-
tory (above a user-defined percent value), then the model per-
formance of the optimal model is tested for an independent
time frame (testing period) which is not used in model se-
lection or identification stages. If the uncertainty estimation
is not satisfactory, then all the above steps will be repeated
with the next best competitive model.

Step 7. Sensitivity scatterplot diagrams are constructed for
every model parameter using the parameter values of be-
havioural models. The shape of the scatterplot (the x axis –
normalized parameter range; the y-axis – objective function
values) is used to identify the degree of sensitivity of each
model parameter.

MIKA-SHA has been developed by following good prac-
tices to handle general modelling issues related to both hy-
drological modelling and machine learning. Multi-objective
optimization is used to ensure that the selected models per-
form better in many flow characteristics instead of fitting to
a particular segment of measured flow. The automated and
quantitative approach of the toolkit ensures no direct human

involvement (no subjectivity in model induction or selec-
tion, except for setting algorithmic parameters). Model per-
formance is evaluated on different absolute and relative per-
formance measures. A model performing well in many per-
formance measures may suffer less from equifinality (model
performs for the right reasons). To prevent overfitting, the
optimal model selection process considers performances of
both calibration and validation periods. Furthermore, model
parsimony is considered in the model selection stage as more
complex models are more susceptible to overfitting and over-
parameterization. Parallel computing significantly reduces
overall computation time since purpose-built functions take
much longer to compute than basic mathematical functions.
The more stable fixed-step implicit Euler’s method is used to
solve partial differential equations.

2.2 Purpose-built functions

Incorporating existing hydrological knowledge is done by
adding purpose-built functions into the function set of
the GP-based optimization framework (model identifica-
tion stage) of the MIKA-SHA toolkit. At present, there
are two different model building block libraries in MIKA-
SHA, namely the SUPERFLEX library and the FUSE library.
Functional argument values of purpose-built functions decide
on the structure and corresponding parameter values of in-
duced rainfall–runoff models.

2.2.1 SUPERFLEX library

The SUPERFLEX library of MIKA-SHA includes the model
building components of popular SUPERFLEX (Fenicia et
al., 2011; Kavetski and Fenicia, 2011) flexible rainfall–runoff
modelling framework. The SUPERFLEX framework allows
hydrologists to test many different hypotheses about the
functioning of the watershed of interest using the model
building components (reservoirs, junctions, and lag func-
tions) available in the framework. The water storages within
the catchment, such as soil moisture, interception, groundwa-
ter, snow, and their release of water, are represented through
reservoir units. Junction elements conceptualize the merg-
ing and splitting of different fluxes in catchment dynamics
(e.g. Hortonian flow and evaporation). Channel routing (de-
lays in flow transmission) is described using lag functions.
A number of constitutive functions are available to describe
lag function characteristics and the storage–discharge rela-
tionships of storage units (reservoirs). SUPERFLEX appli-
cations in rainfall–runoff modelling are found in van Esse
et al. (2013), Fenicia et al. (2014, 2016), and Molin et
al. (2020). Within MIKA-SHA, a purpose-built function
named SUPERFLEX assembles these generic components in
a meaningful and guided manner to induce different rainfall–
runoff model structures.
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Figure 2. Parse tree representation of the distributed function of MIKA-SHA.

2.2.2 FUSE library

The FUSE library of MIKA-SHA consists of model build-
ing components of framework for understanding structural
errors (FUSE; Clark et al., 2008) modular rainfall–runoff
modelling framework. FUSE was developed to examine the
effect of model structural differences on rainfall–runoff mod-
elling. FUSE conceptualizes the functioning of a catch-
ment using a two-zone model architecture with an unsat-
urated zone (upper soil layer) and a saturated zone (lower
soil layer). The model building modules of FUSE involve
the choice of upper and lower soil configurations and pa-
rameterization for different hydrological processes, such as
evaporation, percolation, interflow, surface runoff, and base-
flow. The modeller has the freedom to select these model
building modules from four rainfall–runoff models (TOP-
MODEL, ARNO/VIC, SACRAMENTO, and PRMS), which
are known as FUSE parent models. For more details and ap-
plications of FUSE, please refer to Clark et al. (2011) and Vi-
tolo (2015). Inside the MIKA-SHA FUSE library, a purpose-
built function named FUSE integrates model building deci-
sions of the FUSE framework to develop different rainfall–
runoff model configurations.

In the present contribution, a new function called “dis-
tributed” has been incorporated into the GP function set
along with FUSE, SUPERFLEX and other mathematical
functions. The distributed function represents the induced
semi-distributed models (GP individuals) within the frame-
work. The parse tree demonstration of the distributed func-
tion is shown in Fig. 2. As it can be seen, the distributed
function uses either FUSE or SUPERFLEX functions as its
function arguments, depending on the selected model inven-
tory library by the user. The length of the function argu-

ments of the distributed function relies on the count of HRUs
within the watershed. The distributed function assigns sep-
arate model structures to each HRU, and HRUs within the
same subcatchment share the same forcing variables. The last
two arguments of the distributed function are the lag param-
eters used to route HRU outflows into the subcatchment out-
lets (Lag_HRU) and subcatchment outflows into the catch-
ment outlet (Lag_Sub). Here, the routing module is based
on a two-parameter gamma distribution with the shape pa-
rameter equal to 3 (Clark et al., 2008). Nodes from depth
equal to 2 to depth equal to maximum allowable tree depth
are the function arguments of either FUSE or SUPERFLEX
functions. For more details on FUSE and SUPERFLEX func-
tions, such as function arguments and parse tree representa-
tions, please refer to Chadalawada et al. (2020).

2.3 Performance measures

MIKA-SHA consists of a performance measures library, in-
cluding the most widely adopted performance matrices. The
explanatory power of the performance measure used to as-
sess the prediction accuracy of the model simulations has a
direct impact on the optimal model selection (Chadalawada
and Babovic, 2017). In the present study, we have selected
four absolute performance measures, namely volumetric ef-
ficiency (VE; Criss and Winston, 2008), Kling–Gupta effi-
ciency (KGE; Gupta et al., 2009), Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe, 1970), and log Nash–Sutcliffe effi-
ciency (logNSE; Krause et al., 2005) from the MIKA-SHA’s
performance measures library to evaluate the simulated dis-
charge values against the measured discharge values. The
four selected objective functions are sensitive to different re-
gions of measured and simulated runoff signatures, and their
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Figure 3. Rappahannock River basin at Fredericksburg, Virginia, USA (map was generated through SWAT+ plugin in QGIS software using
USGS EarthExplorer’s Shuttle Radar Topography Mission DEM data).

details are given in Table 1. The four selected objective func-
tions are used in the multi-objective optimization scheme of
MIKA-SHA.

3 Application of MIKA-SHA

This section aims to demonstrate how MIKA-SHA works
through one case study using a watershed in the USA.
MIKA-SHA was applied to induce two optimal semi-
distributed models for the watershed, using SUPERFLEX
and FUSE model inventory libraries independently.

3.1 Study area

The Rappahannock River basin at Fredericksburg, Virginia
(Fig. 3), was selected to test the semi-distributed model-
induction capabilities of MIKA-SHA. Rappahannock River
basin is an intermediate-scale area (ISA) river basin, with
a drainage area of 4134 km2, located in the southeastern
quadrant of the USA. Basin details are summarized in Ta-
ble 2. Digital elevation data (DEM) of the Rappahannock
River basin at 30 m resolution were obtained from the United
States Geological Survey (USGS) EarthExplorer’s Shuttle
Radar Topography Mission (SRTM) data (USGS EarthEx-
plorer, 2020). The entire basin was split into three subcatch-

ments for the current application. The topography of the re-
gion was used to identify HRUs, and three HRUs, namely,
Hill (slope band %> 10), Floodplain (slope position thresh-
old= 0.1), and plateau (slope band %< 10), were selected.
The HRU details are given in Table 3.

In total, 15 years (1 January 1987 to 31 December 2001)
of forcing terms and discharge data of the Rappahannock
River basin were utilized for model spin-up (1 January–
31 December 1987), calibration (1 January 1988–31 Decem-
ber 1992), validation (1 January 1993–31 December 1997),
and testing (1 January 1998–31 December 2001). Daily
catchment average potential evaporation, temperature, and
streamflow data were downloaded from the MOPEX data set
(USGS ID 1668000; MOPEX, 2021). The spatial distribution
of daily precipitation data was taken into account and lumped
at the subcatchment scale. Precipitation data were down-
loaded from the Daymet data set (Daymet, 2020), which pro-
vides daily weather parameters (resolution of 1 km× 1 km)
over North America. The time series diagrams of precipita-
tion, potential evaporation, temperature, and streamflow of
the Rappahannock River basin are displayed in Fig. 4. Addi-
tionally, hydrometeorological data of subcatchment 1 and 2
are available in the CAMELS data set (USGS IDs 1667500
and 1664000, respectively; Newman et al., 2015). Even
though MIKA-SHA only utilizes runoff at the catchment
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Figure 4. Forcing terms and streamflow data of Rappahannock River basin.

outlet for model training (calibration period), it can predict
runoff at every subcatchment outlet. Therefore, once MIKA-
SHA identifies the optimal models, their internal prediction
capabilities are assessed using the observed runoff data of
subcatchment 1 and 2. Once the relevant data are processed,
the user can set the algorithmic parameters of MIKA-SHA.

Table 4 summarizes the algorithmic setting of MIKA-SHA
used in the current study.
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Table 1. Absolute performance measures used in the current study.

Name Equation Sensitivity Optimum

Volumetric efficiency (VE) VE= 1−

∣∣∣∣∣ N∑t=1
(Qot−Qst)

∣∣∣∣∣
N∑
t=1

Qot

Water balance 1

N– time steps; Qot– observed streamflow;
Qst – simulated streamflow

Kling–Gupta efficiency (KGE) KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2 Flow variability 1

r – linear correlation coefficient; α = σs
σo

; β = µs
µo

;
σ – standard deviation; µ – mean

Nash–Sutcliffe efficiency (NSE) NSE= 1−

N∑
t=1

(Qot−Qst)
2

N∑
t=1

(
Qot−Qot

)2 High flows 1

Qot – Average of measured discharge values

Log Nash–Sutcliffe efficiency (logNSE) logNSE= 1−

N∑
t=1

(logQot−logQst)
2

N∑
t=1

(
logQot−logQot

)2 Low flows 1

log – Natural logarithm

Table 2. Basin details.

Parameter Details

Drainage area 4134 km2

Outlet coordinates 38.3222◦, −77.5181◦

Subcatchment area % Sub 1 – 29.2 %; sub 2 – 38.8 %; sub 3 – 32.0 %
Floodplain/upslope 20.3%/79.7%
Annual average discharge 378 mm yr−1

Annual average potential evaporation 921 mm yr−1

Annual average temperature 12.46 ◦C
Annual average precipitation 1030 mm yr−1

Average slope 0.03035
Average elevation 198.9 m
Length from subcatchment outlet to catchment outlet along the main river Sub 1 – 60.6 km; sub 2 – 47.8 km; sub 3 – 0 km
Vegetation type/soil type Mixed forest/silt loam and clay loam

Table 3. Area percentages of topography-based HRUs.

Subcatchment Hill Floodplain Plateau
(%) (%) (%)

1 45.2 20.6 34.2
2 44.6 23.9 31.5
3 19.0 15.6 65.4

3.2 Results

3.2.1 MIKA-SHA models induced using SUPERFLEX
library

Adhering to the methodology given in Sect. 2, the model
architecture presented in Fig. 5 (hereinafter referred to as
MIKA-SHA_SUPERFLEX) was identified to capture the
runoff response of the Rappahannock River basin. The hill-
side structure of the MIKA-SHA_SUPERFLEX consists of
four reservoirs, i.e. a fast-reacting reservoir (FR), an unsat-
urated reservoir (UR), a slow-reacting reservoir (SR), and a
riparian reservoir (RR). The hillside model structure also in-
cludes a half-triangular delay function associated with SR.
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Table 4. Algorithmic settings of MIKA-SHA used in the current study.

Option Setting

Number of independent runs 40
Size of population 2000
Termination criteria Generation number= 50
The randomized method used for initialization Ramped half-and-half method
Purpose built functions/mathematical functions SUPERFLEX; FUSE; distributed /+, −, /, ∗

Input variables – SUPERFLEX Precipitation, temperature, and potential evaporation
Input variables – FUSE Precipitation and potential evaporation
Dependent variable Streamflow
Objective functions used NSE; VE; logNSE; KGE
Normalized range of random constants 0 to 1
Depth of parse trees – initial/maximum SUPERFLEX – 3/5; FUSE – 2/5
The mating pool selection strategy Tournament selection with four competitors at once
Genetic operator probability – mutation constant/tree/separation/node 0.5/0.5/0.3/0.3
Genetic operator probability – crossover 0.7
Count of CPUs used for parallel computation 40 units
Level of parallel computation Performance evaluation level
Likelihood threshold – GLUE NSE= 0.6 (Beven and Freer, 2001)
Behavioural models – GLUE 5000
Satisfactory uncertainty estimation threshold 60 %

Figure 5. MIKA-SHA_SUPERFLEX model configuration (P – precipitation; E – evaporation; Q – total discharge; RR – riparian reservoir;
SR – slow-reacting reservoir; FR – fast-reacting reservoir; UR – unsaturated reservoir; L – half-triangular lag function).

The discharge of the UR incorporates a modified logistic
curve function relationship with its storage. The storage–
discharge relationships of both RR and SR are linear, while
FR has a power function relationship. The model struc-
ture representing the floodplain consists only of a UR with
a power function storage–discharge relationship. The sec-
ond link from the top of the floodplain model structure
represents the runoff generation through infiltration excess
overland flow. The plateau area model structure of MIKA-
SHA_SUPERFLEX is based on a three-reservoir configu-
ration with a UR, an FR, and an SR. The power function
governs the storage–discharge relationships of both UR and
FR of the plateau area model structure, while the storage–
discharge relationship of SR is linear.

The performance matrix over the calibration, validation,
and testing phases of MIKA-SHA_SUPERFLEX is given in
Table 5. The high-efficiency values of all four absolute per-

formance measures suggest that MIKA-SHA_SUPERFLEX
is competent in capturing the catchment dynamics of
the Rappahannock River basin. More importantly, MIKA-
SHA_SUPERFLEX is capable of predicting discharge at two
subcatchment outlets satisfactorily. Throughout the calibra-
tion, validation, and testing phases, the model behaves con-
sistently. As a result, we may anticipate no overfitting prob-
lems with training data (calibration data). Figure 6 illustrates
the simulated hydrograph of MIKA-SHA_SUPERFLEX
along with the observed hydrograph of the watershed. As can
be seen, the simulated discharge signature matches the ob-
served discharge signature reasonably well. It is noteworthy
that MIKA-SHA_SUPERFLEX underestimates the peak dis-
charges in some instances. Figure 7 illustrates the observed
FDCs of the watershed and the simulated FDCs of MIKA-
SHA_SUPERFLEX for calibration, validation, and testing
periods. Modelled FDCs nearly follow the measured FDCs
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Figure 6. Simulated hydrograph of MIKA-SHA_SUPERFLEX with the observed hydrograph of the basin.

Figure 7. Simulated FDCs of MIKA-SHA_SUPERFLEX with the observed FDCs of the basin.

both in medium- and high-flow regimes but diverge slightly
at low-flow regimes.

Uncertainty analysis reveals that 60.2 % of the measured
streamflow data of the calibration period lie inside the 90 %
uncertainty bands of MIKA-SHA_SUPERFLEX, which is
higher than the threshold set for the current study (60 %).
Hence, it is assumed that the MIKA-SHA_SUPERFLEX’s
parameter uncertainty alone sufficiently estimates the total
output uncertainty. Out of the 37 model parameters included
in MIKA-SHA_SUPERFLEX, 13 model-sensitive parame-
ters can be recognized by analysing the shapes of sensi-
tivity scatterplots. A total of five of them are associated
with the hillside model structure (D_R, D_F, Ce, Tlag, and
Beta_Qq_UR). The floodplain model structure consists of
two model-sensitive parameters (Ce and D_S), while the

plateau area model structure includes four model-sensitive
parameters (Beta_Qq_UR, Ce, Smax_UR, and K_Qb_FR).
Furthermore, the two lag parameters of the distributed func-
tion are also identified as being model-sensitive parame-
ters (lag_HRU and lag_Sub). The sensitivity scatterplots and
the model parameter details of MIKA-SHA_SUPERFLEX
are provided in the Appendix.

3.2.2 MIKA-SHA models induced using FUSE library

The identified optimal semi-distributed model for the Rap-
pahannock River basin, using the FUSE library of MIKA-
SHA, is shown in Fig. 8 (hereinafter referred to as MIKA-
SHA_FUSE). Hillside, floodplain, and plateau area model
structures of MIKA-SHA_FUSE, consisting of the same
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Table 5. Performance matrix of MIKA-SHA_SUPERFLEX.

Outlet Efficiency (calibration/validation/testing)

KGE NSE logNSE VE

Catchment 0.83/0.82/0.83 0.74/0.66/0.82 0.76/0.73/0.74 0.65/0.57/0.61
Subcatchment 1 0.73/0.69/0.89 0.55/0.55/0.79 0.67/0.67/0.73 0.60/0.53/0.59
Subcatchment 2 0.72/0.72/0.86 0.60/0.44/0.74 0.68/0.67/0.70 0.57/0.51/0.56

Figure 8. MIKA-SHA_FUSE model configuration (P – precipitation; E – evaporation; qb – base flow; qsx – surface flow; q12 – percolation;
Zuz and Zlz – depth of unsaturated zone and saturated zone; S1 and S2 – unsaturated zone and saturated zone water content; ST

2 – tension
water content; SFA

2 and SFB
2 : free water content in the primary and secondary baseflow storages; qA

b and qB
b – baseflow from the primary and

secondary baseflow storages; 2wlt, 2fld, and 2sat – soil moisture at wilting point, field capacity, and saturation).

upper-zone configuration identical to FUSE parent model
ARNO/VIC/TOPMODEL, a single-state soil reservoir. Like
in the FUSE parent model of SACRAMENTO, the lower-
layer architecture of the hillside model structure has a tension
reservoir with two parallel tanks. The floodplain model struc-
ture incorporates a lower-zone configuration, like the FUSE
parent model of TOPMODEL, with an unlimited size reser-
voir with power recession. In comparison, the lower-zone
configuration of the plateau area model structure consists of
single fixed-size storage, similar to the ARNO/VIC model.
Surface flow from all three model structures is developed as
saturation excess overland flow and is described using the
flux equations in the FUSE parent model of TOPMODEL.
Both hillside and plateau area model structures have the same
percolation mechanism, allowing water to percolate from the
field capacity to saturation, and is described using the flux
equations of the FUSE parent model of PRMS/TOPMODEL.
In contrast, percolation in the plateau area is controlled by the
saturated zone’s moisture amount as in the SACRAMENTO
model. A root weighting evaporation model is used in hill-
side and floodplain model structures, while a sequential evap-
oration model is used in plateau area model structure. Inter-
flow and routing are not allowed in any model structure of
MIKA-SHA_FUSE.

The performance matrix of MIKA-SHA_FUSE is pre-
sented in Table 6. According to the high efficiencies, the sim-
ulated discharge of MIKA-SHA_FUSE shows a good match
with the observed discharge data. Furthermore, MIKA-
SHA_FUSE performs consistently over the calibration, vali-
dation, and testing periods. MIKA-SHA_FUSE also demon-
strates reasonable prediction accuracy for the two subcatch-
ment outlets. Furthermore, the simulated hydrograph (Fig. 9)
of MIKA-SHA_FUSE can capture the observed flow signa-
ture of the watershed reasonably well. Simulated FDCs of
MIKA-SHA_FUSE are presented in Fig. 10, along with the
observed FDCs of the catchment. The simulated FDC at the
calibration stage nearly follows the observed FDC and de-
viates slightly in validation and testing periods. According
to the uncertainty analysis, 82.1 % of the measured stream-
flows of the calibration period lie between the 90 % uncer-
tainty bands of MIKA-SHA_FUSE. This high-percentage
value suggests that the parameter uncertainty of MIKA-
SHA_FUSE alone sufficiently estimates the total output un-
certainty. Out of the total 34 model parameters of MIKA-
SHA_FUSE, 11 model-sensitive parameters can be identi-
fied. Among them, four are related to hillside model struc-
ture (fracten, rtfrac1, percexp, and percfrac), three are re-
lated to floodplain model structure (maxwatr_1, rtfrac1, and
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Figure 9. Simulated hydrograph of MIKA-SHA_FUSE with the observed hydrograph of the basin.

Figure 10. Simulated FDCs of MIKA-SHA_FUSE with the observed FDCs of the basin.

loglamb), and two are associated with the plateau area model
structure (fracten and maxwatr_2). The two lag parame-
ters (lag_HRU and lag_Sub) are the remaining two model-
sensitive parameters. Please refer to the Appendix for Sen-
sitivity scatterplots and model parameter details of MIKA-
SHA_FUSE.

3.2.3 Lumped vs. distributed

This section compares the optimal semi-distributed mod-
els identified by MIKA-SHA (MIKA-SHA_SUPERFLEX
and MIKA-SHA_FUSE) with the lumped models cali-
brated/induced for the same Rappahannock River basin.
First, two widely used conceptual rainfall–runoff models,
namely the Xinanjiang model (Zhao, 1992) and the HY-

drological MODel (HYMOD; Wagener et al., 2001), are
calibrated in the lumped setting (catchment averaged forc-
ing terms from the MOPEX data set are used) to predict
the basin’s catchment outflow using a non-machine learn-
ing approach. Model codes of both Xinanjiang and HY-
MOD models were obtained from the Modular Assessment
of Rainfall–Runoff Models Toolbox (MARRMoT) frame-
work (Knoben et al., 2019), where model codes of 46 ex-
isting hydrological models are provided. In total, two hy-
drological models were calibrated using the dynamically di-
mensioned search (DDS) algorithm (Tolson and Shoemaker,
2007) with the same model spin-up and calibration periods.
DDS is a single-objective global search optimization algo-
rithm that has been used in many hydrological modelling
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Table 6. Performance matrix of MIKA-SHA_FUSE.

Outlet Efficiency (calibration/validation/testing)

KGE NSE logNSE VE

Catchment 0.87/0.79/0.79 0.77/0.66/0.76 0.81/0.78/0.77 0.68/0.60/0.58
Subcatchment 1 0.73/0.71/0.86 0.61/0.54/0.80 0.73/0.77/0.79 0.64/0.58/0.64
Subcatchment 2 0.81/0.74/0.80 0.68/0.47/0.72 0.77/0.78/0.77 0.62/0.57/0.58

Table 7. Performance matrix of Xinanjiang model and HYMOD model.

Model Efficiency (calibration/validation/testing)

KGE NSE logNSE VE

Xinanjiang 0.55/0.51/0.61 0.49/0.42/0.56 0.70/0.68/0.65 0.57/0.51/0.44
HYMOD 0.65/0.60/0.65 0.57/0.52/0.63 0.39/0.51/0.36 0.50/0.47/0.36

Figure 11. ML-RR-MI_SUPERFLEX and ML-RR-MI_FUSE model configurations (P – precipitation;E – evaporation;Q – total discharge;
SR – slow-reacting reservoir; FR – fast-reacting reservoir; UR – unsaturated reservoir; L – half-triangular lag function; qb – base flow; qsx
– surface flow; q12 – percolation; Zuz and Zlz – depth of unsaturated zone and saturated zone; S1 and S2 – unsaturated zone and saturated
zone water content; 2wlt, 2fld, and 2sat – soil moisture at wilting point, field capacity, and saturation).

studies (Shafii and Tolson, 2015; Becker et al., 2019; Spieler
et al., 2020). In this study, the DDS algorithm was used with
NSE as the objective function. A total of 10 iterations of the
DDS algorithm with 5000 model evaluations per one itera-
tion were utilized with each model. The parameter set which
gives the highest NSE over the calibration period was iden-
tified as the optimum parameter set. For the comparison pur-
pose, VE, KGE, and logNSE values of each model (using the
optimum parameter set identified with NSE) were also cal-
culated. The performance matrix of two calibrated models
is presented in Table 7. According to the efficiency values,
both the Xinanjiang and HYMOD models perform poorly
for the Rappahannock River basin compared to MIKA-SHA-
induced semi-distributed models.

Next, our previously introduced GP-based ML-RR-MI
toolkit was used to induce optimal lumped models for the
same Rappahannock River basin using SUPERFLEX and
FUSE libraries. ML-RR-MI was run using the same settings
given in Table 4. In contrast to the MIKA-SHA, once the
ML-RR-MI identifies the competitive models, the most par-
simonious model in terms of the number of model param-
eters is recognized as the optimal model. The model con-
figurations of the two optimal models identified by ML-
RR-MI with SUPERFLEX library (hereinafter referred to
as ML-RR-MI_SUPERFLEX) and FUSE library (hereinafter
referred to as ML-RR-MI_FUSE) are shown in Fig. 11. ML-
RR-MI_SUPERFLEX is similar to the plateau area model
structure of MIKA-SHA_SUPERFLEX regarding the reser-
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Table 8. Performance matrix of ML-RR-MI_SUPERFLEX and ML-RR-MI_FUSE.

Model Efficiency (calibration/validation/testing)

KGE NSE logNSE VE

ML-RR-MI_SUPERFLEX 0.88/0.82/0.65 0.77/0.66/0.76 0.80/0.77/0.67 0.68/0.60/0.54
ML-RR-MI_FUSE 0.82/0.78/0.69 0.67/0.60/0.67 0.78/0.77/0.75 0.63/0.58/0.51

voir units and storage–discharge relationships. Addition-
ally, ML-RR-MI_SUPERFLEX consists of a half-triangular
lag function with SR. Interestingly, ML-RR-MI_FUSE’s
upper- and lower-layer architectures and percolation mech-
anism are similar to the plateau area model structure of
MIKA-SHA_FUSE. In contrast, surface runoff of ML-RR-
MI_FUSE is controlled by the upper layer, and the evapo-
ration module is root weighting as in FUSE parent model
ARNO/VIC. Furthermore, routing is also allowed in ML-
RR-MI_FUSE.

The performance matrix of ML-RR-MI_SUPERFLEX
and ML-RR-MI_FUSE is given in Table 8. In contrast to the
two fixed conceptual models (Xinanjiang and HYMOD), two
optimal lumped models identified by ML-RR-MI demon-
strate higher prediction capabilities. MIKA-SHA_FUSE
model outperforms the ML-RR-MI_FUSE model in all
four objective functions over the calibration, validation,
and testing periods. However, the ML-RR-MI_SUPERFLEX
model outperforms or performs the same as the MIKA-
SHA_SUPERFLEX model in the calibration and validation
periods. Yet, the MIKA-SHA_SUPERFLEX model outper-
forms ML-RR-MI_SUPERFLEX in all objective functions
over the testing period. As per the workflow of both MIKA-
SHA and ML-RR-MI, calibration and validation periods are
used in the optimal model identification process. Therefore,
the performance in the testing period demonstrates the out-
of-sample performance of induced models.

4 Discussion

4.1 MIKA-SHA_SUPERFLEX

Among the three model structures of MIKA-
SHA_SUPERFLEX, the hillside model structure has
the most complex configuration in terms of reservoir units
and model parameters. Furthermore, the hillside model
structure is correlated with the majority of model-sensitive
parameters, and runoff per unit area is also highest in the
hillside model structure. Therefore, runoff generation from
the hillside structure is a significant component of the
total runoff of MIKA-SHA_SUPERFLEX. This is quite
meaningful due to the higher topographic gradients in
upper subcatchments (subcatchment 1 is 23.4 m km−1 and
subcatchment 2 is 30.3 m km−1) of the Rappahannock River
basin.

On the other hand, the plateau area model structure has
the lowest runoff generation per unit area (i.e. highest stor-
age). We find this behaviour of the plateau area model struc-
ture reasonable as a more subsurface-oriented delayed re-
sponse may be expected in the plateau area due to milder
slopes which may result in higher residence times (water
may have more time to reach deeper soil layers). Further-
more, most of the catchment area of the Rappahannock basin
consists of moderately permeable silty loam and clay loam
soils which may also encourage vertical drainage. Conceptu-
ally, SRs are used to represent the slow runoff components
like groundwater flow. SRs in both the hillside and plateau
area model structures have linear storage–discharge relation-
ships. Interestingly, it is reported that (Fenicia et al., 2006)
linear reservoirs best describe the slow flow dynamics of
groundwater movement. Furthermore, the inclusion of sta-
ble baseflow components (SRs in both hillside and plateau
area model structures) in the model configuration of MIKA-
SHA_SUPERFLEX is reasonable because the main river
channel of the basin can be categorized as a perennial river
where a continuous groundwater supply is required to sustain
water throughout the year.

The floodplain model structure of MIKA-
SHA_SUPERFLEX has a relatively simple model ar-
chitecture with only one reservoir. The floodplain area is
expected to be saturated or nearly saturated and contin-
uously connected with the stream. In earlier FLEX and
SUPERFLEX applications (Savenije, 2010; Fenicia et al.,
2016), where the model selection for each HRU was based
on expert judgement, a simple linear reservoir model was
identified as being sufficient enough to represent quick
runoff responses of riparian zones. Consistent with this in
the current application, MIKA-SHA also identified a simpler
model with one reservoir to capture the runoff dynamics
of floodplains. However, the UR in the floodplain model
structure has a power function relationship between its
discharge and storage. As mentioned earlier, infiltration
excess overland flow is included as a runoff component of
the floodplain model structure. Often floodplains consist of
soil types with poor permeabilities and, hence, may cause
quick runoff generation mechanisms like infiltration excess
overland flow. The constitutive functions of FRs and URs in
MIKA-SHA_SUPERFLEX are nonlinear, which may help
capture the nonlinear and threshold-like response of runoff
generation.
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4.2 MIKA-SHA_FUSE

The hillside model structure of MIKA-SHA_FUSE has
the highest runoff generation per unit area (approximately
2.1× plateau area runoff generation), followed by the flood-
plain model structure (about 1.6× plateau area runoff gen-
eration). Interestingly, a similar order was observed with
MIKA-SHA_SUPERFLEX. Similar to the hillside model
structure of MIKA-SHA_SUPERFLEX, the hillside model
structure of MIKA-SHA_FUSE has the most complex model
configuration in terms of the number of model parameters
and is associated with most of the model-sensitive parame-
ters. Hence, it is clear that runoff generation from the hill-
side model structure dominates the total runoff generation of
MIKA-SHA_FUSE, which is logical due to the high topo-
graphic relief of the basin. Furthermore, a high runoff gen-
eration in the floodplain model structure is meaningful due
to high water table levels in floodplains, resulting in quick
runoff generation mechanisms like saturation excess over-
land flow. Comparatively, lower percolation can be expected
in the floodplain model structure as its percolation is con-
trolled by the moisture content in the lower zone (percolation
is higher when the lower zone is dry). This is in line with
the characteristics of floodplains, which remain saturated or
nearly saturated most of the time.

On the other hand, a comparatively lower runoff contribu-
tion from the plateau area model structure is reasonable as
more vertical drainage can be expected than lateral drainage
in plateau areas due to milder slopes and moderately per-
meable soil types. As per the calibrated model parameters
and model-sensitive parameters, runoff from the plateau area
model structure is dominated by the subsurface flow com-
ponent. Lower-layer reservoirs of both the floodplain and
plateau area model structures consist of nonlinear storage–
discharge relationships (baseflow), which may help them
capture the nonlinear runoff response of the Rappahannock
River basin. In contrast, baseflow from the hillside model
structure is generated through two parallel linear reservoirs.

4.3 Model induction capability of MIKA-SHA

The proposed MIKA-SHA toolkit incorporates spatial het-
erogeneity in catchment properties and forcing terms into
the model building phase and induces representative semi-
distributed rainfall–runoff models based on measured data
to capture the discharge response of the watershed of inter-
est. In comparison to the lumped model performances pre-
sented in Sect. 3.2.3, two optimal semi-distributed models,
identified by MIKA-SHA with FUSE and SUPERFLEX li-
braries, achieve higher efficiency values, especially for the
testing period. The difference in efficiency values is signif-
icant between MIKA-SHA-induced semi-distributed mod-
els and two fixed lumped hydrological models (Xinanjiang
and HYMOD). MIKA-SHA-induced semi-distributed mod-
els may achieve higher-efficiency values than fixed hydro-

logical models used in this study due to (i) the flexibility
offered by modular modelling frameworks for customizing
the model structure in contrast to the single model structure
in fixed hydrological models, (ii) the incorporation of spatial
heterogeneity in catchment properties and climate variables,
and (iii) the capability of the GP based machine learning
framework to optimize both model structure and parameters
over the non-machine learning method.

Even though the two fixed lumped models could not
achieve satisfactory performance, two lumped models in-
duced by our previously introduced ML-RR-MI toolkit per-
formed well in capturing the Rappahannock River basin
runoff response. This demonstrates the capability of lumped
models to perform satisfactorily, even for large catchments
with substantial spatial heterogeneities. However, the infer-
ences gained through a lumped model for a large watershed
may be limited, and the lumped representation may not re-
flect the physical reality in runoff generation. As seen with
MIKA-SHA_SUPERFLEX and MIKA-SHA_FUSE, the in-
ferences made through the semi-distributed models are much
more meaningful and compatible with catchment character-
istics. On top of that, MIKA-SHA-induced models have a
unique advantage over the lumped models for predicting dis-
charge inside the watershed (at subcatchment outlets).

In this study, the spatial heterogeneity of the catchment
was incorporated into the model building process based on
the topography (i.e. three HRUs, namely hills, floodplain,
and plateau, were identified based on the topography of
the area). The results obtained based on topography-based
HRUs, such as achieving higher-efficiency values for the ab-
solute performance measures and obtaining a good visual
equivalent between measured and modelled hydrographs,
suggest that the topography of the catchment may have a
strong impact on runoff generation. This illustrates another
potential utilization of MIKA-SHA when using the toolkit to
identify the runoff drivers of a catchment of interest. For ex-
ample, one can also define the HRUs based on either the ge-
ology or soil type of the catchment of interest and use MIKA-
SHA to identify optimal model configurations. This way, one
can determine the relative dominance of runoff drivers to-
wards the total catchment runoff response.

One of the major issues with machine learning models is
the overfitting of the model to its training data set. However,
the optimal model selection strategy used in MIKA-SHA,
which considers both calibration and validation model per-
formances, ensures the selected optimal model performs sat-
isfactorily – and not only in the training period (more gener-
alizability). Deterministic semi-distributed modelling would
require or rely on a large number of model parameters, by
comparison, and a smaller number of model parameters are
sensitive to the total model performance. Furthermore, the
values of two lag parameters associated with the distributed
function (lag_HRU and lag_Sub) were found to be crucial
in achieving high model performances. As the research find-
ings of MIKA-SHA demonstrate a logical match with pre-
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viously reported research findings and fieldwork insights, it
may be safe to assume that MIKA-SHA is capable of han-
dling the equifinality phenomenon satisfactorily (i.e. selected
optimal models perform for the right reasons). Additionally,
the quantitative model selection scheme of MIKA-SHA en-
sures that the selected optimal model has the appropriate
complexity to describe the dominant runoff-generation pro-
cesses of the catchment instead of selecting an optimal model
only based on model parsimony.

More importantly, both MIKA-SHA_SUPERFLEX and
MIKA-SHA_FUSE share similarities among their model
configurations, such as model outflows dominated by the
runoff generated through hillside model structures, having
the most complex configurations for hillside model struc-
tures, and demonstrating more subsurface-type delayed re-
sponses by plateau area model structures. Furthermore, find-
ing a reasonable match between the model structural com-
ponents of optimal models and the catchment characteris-
tics was possible. The consistency and compatibility demon-
strated by the MIKA-SHA in capturing similar runoff dy-
namics across different model inventories show that the
toolkit is capable of extracting information from data, mak-
ing it feasible to depend on the derived model configurations
beyond just statistical confidence.

5 Conclusions

In this contribution, we introduce Model Induction Knowl-
edge Augmented-System Hydrologique Asiatique (MIKA-
SHA) for learning semi-distributed models, where the spatial
distributions of catchment properties and climate variables
are taken into account. MIKA-SHA utilizes existing hydro-
logical knowledge to guide the machine learning algorithm,
which eventually results in physically meaningful hydrolog-
ical models that can be readily interpretable by domain spe-
cialists. In the current study, background hydrological knowl-
edge is blended with the machine learning algorithm through
the model building components of flexible rainfall–runoff
modelling frameworks.

Results of this study indicate that the consideration of spa-
tial distributions of forcing data and catchment properties
gives more meaningful insights regarding the environmen-
tal dynamics occurring within the watershed. MIKA-SHA’s
unique and distinct feature is that it can be combined with
any internally coherent set of building blocks reflecting the
hydrological knowledge elements. Furthermore, it uses ge-
netic programming to optimize both model architecture and
model parameters simultaneously. This approach enables hy-
drologists to utilize flexible modelling frameworks to their
full potential by trying many hypotheses before selecting an
optimal model. By automatically identifying optimal model
structures for a catchment of interest that relies on adequacy
instead of legacy, MIKA-SHA can serve as an alternative to
the conventional subjective model selection. MIKA-SHA is
expected to be most valuable in circumstances where there
may be a lack of experimental insights regarding the catch-
ment of interest or a lack of expert knowledge.

We see machine learning algorithms as having great po-
tential in hydrological modelling. However, simplistic black-
box-type data-driven models may contribute to developing
accurate models with severe interpretation difficulties that
may not advance hydrological understanding. Thus, the most
promising way forward would be to integrate current hy-
drological understanding with learning algorithms to gen-
erate physically consistent and more generalizable models.
This was the driving force behind the proposed MIKA-SHA
framework’s development, which has been founded on both
machine learning and hydrological theories. As a result, we
anticipate that current research will reinforce the connection
between two important but traditionally separate communi-
ties in water resources, i.e. those operating with machine
learning and those dealing with theory-based modelling. Fi-
nally, we foresee that more theory-guided machine learning
research in hydrological modelling will be geared towards
automated model building and knowledge discovery.
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Appendix A

Table A1. Model parameter details of ML-RR-MI_SUPERFLEX and MIKA-SHA_SUPERFLEX.

Model parameter (unit/range/symbol)∗ ML-RR-MI MIKA-SHA_SUPERFLEX

SUPERFLEX Hill Flood Plateau

K in Q=K · (S) from RR (t−1/0.05–4/K_Qq_RR) – 0.476 – –
Fraction of inflow to RR (no units/0–1/D_R) 0.003 0.083 – –
K in Q=K · Sα of FR (mmα t−1/0.0001–10/K_Qq_FR) 10 1.790 – 1.084
K in Q=K · S from FR to SR (t−1/0–4/K_Qb_FR) 1.86 4 – 4
Smoothing parameter for E of FR (no units/0.01–2/m_E_FR) 1.679 0.815 – 0.262
α in Q=K · Sa of FR (no units/0.1–10/α_Qq_FR) 9.745 7.394 – 7.394
Portion of inflow from QUR to SR (no units/0–1/D_F) 0.273 0.093 0 0
Evaporation multiplying parameter (no units/0.1–2/Ce) 0.795 2 0.935 1.015
Base of rising limb of half-triangular lag (t/1–10/Tlag) 2.415 2.368 – –
Portion of rainfall to FR (no units/0–1/D_S) 0.09 – 0.02 –
Runoff coefficient parameter of UR (no units/0.001–0/β_Qq_UR) 2.942 4.559 10 5.989
Maximum reservoir capacity (mm/0.1–1000/Smax_UR) 159.7 114.8 159.3 191.8
Smoothing parameter for E of UR (no units/0.01–5/Beta_E_UR) 0.010 0.138 0.355 0.201
State initial factor (no units/0–0.1/SiniFR_UR) 0.073 0.046 0.062 0.072
Parameter of modified logistic curve (no units/0.1–0.2/mu_Qq_UR) – 0.155 – –
K in Q=K · Sα of SR (mmα t−1/1× 10−7–0.6/K_Qq_SR) 0.146 0.046 – 0.060
Smoothing parameter E of SR (no units/0.001–1/m_E_SR) 0.193 0.001 – 0.192
Infiltration excess threshold (mm t−1/0.1–1× 107/P_ED_max) – – 0.1 –
Infiltration excess flow smoothing factor (mm t−1/0.001–10/m_P_ED) – – 10 –

Time delay – HRU to subcatchment outlet (t/0.01–5/lag_HRU) – 1.570
Time delay – subcatchment to catchment outlet (t/0.01–5/lag_Sub) – 0.404

∗ For more details, please refer to Fenicia et al. (2016).
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Figure A1. Sensitivity scatterplots of MIKA-SHA_SUPERFLEX.
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Table A2. Model parameter details of ML-RR-MI_FUSE and MIKA-SHA_FUSE.

Model parameter (unit/range/symbol)∗ ML-RR-MI_FUSE MIKA-SHA_FUSE

Hill Flood Plat.

Maximum total storage in upper soil layer (mm/25–500/maxwatr_1) 142.6 165.1 250.5 121.0
Maximum total storage in lower soil layer (mm/50–5000/maxwatr_2) 745.7 2399.4 3739.5 995.5
Fraction total storage as tension storage (no units/0.05–0.95/fracten) 0.467 0.685 0.495 0.573
Fraction storage in first baseflow reservoir (no units/0.05–0.95/fprimqb) – 0.95 – –
Percolation rate (mm d−1/0.01–1000/percrte) 94.8 214.2 – 192.1
Percolation exponent (no units/1–20/percexp) 16.52 11.05 – 11.10
Fraction of percolation to tension storage (no units/0.05–0.95/percfrac) – 0.858 – –
Range of the baseflow rate (no units/0.001–1000/baserte) 662.1 – 380.2 139.9
Baseflow exponent (no units/1–10/qb_powr) 4.753 7.708 3.785 7.205
Baseflow depletion rate – first reservoir (d−1/0.001–0.25/qbrate_2a) – 0.002 – –
Baseflow depletion rate – second reservoir (d−1/0.001–0.25/qbrate_2b) – 0.223 – –
Mean value – log-transformed topographic index (m/5–10/loglamb) 6.129 8.957 9.176 6.418
Shape para – topo index gamma distribution (no units/2–5/tishape) 2.284 2.134 3.201 3.621
Range of the fraction of roots in the upper layer (no units/0.05–0.95/rtfrac1) 0.721 0.634 0.878 –
SAC percolation multiplier for dry soil layer (no units/1–250/sacpmlt) – – 71.6 –
SAC percolation exponent for dry soil layer (no units/1–5/sacpexp) – – 4.193 –
Time delay in runoff (day/0.01–5/time delay) 2.548 – – –
ARNO/VIC model “b” exponent (no units/0.001–3/axv_bexp) 0.048 – – –

Time delay – HRU to subcatchment outlet (day/0.01–5/lag_HRU) – 1.332
Time delay – subcatchment to catchment outlet (day/0.01–5/lag_Sub) – 0.207

∗ For more details, please refer to Clark et al. (2008, 2011).
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Figure A2. Sensitivity scatterplots of MIKA-SHA_FUSE.
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1. United States Geological Survey (USGS) EarthExplorer’s
Shuttle Radar Topography Mission (SRTM) data, available at
https://earthexplorer.usgs.gov/ (last access: 20 March 2020)
(USGS EarthExplorer, 2020).

2. MOPEX data set, available at https://www.nws.noaa.gov/
ohd/mopex/mo_datasets.htm (last access: 12 February 2021)
(USGS ID 1668000; MOPEX, 2021).

3. Daymet data set, available at https://daymet.ornl.gov/ (last ac-
cess: 20 March 2020) (Daymet, 2020).

4. CAMELS data set, available at (USGS IDs 1667500
and 1664000; Newman et al., 2015).
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