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Abstract. Reliable estimates of missing streamflow values
are relevant for water resource planning and management.
This study proposes a multiple-dependence condition model
via vine copulas for the purpose of estimating streamflow
at partially gaged sites. The proposed model is attractive in
modeling the high-dimensional joint distribution by build-
ing a hierarchy of conditional bivariate copulas when pro-
vided a complex streamflow gage network. The usefulness
of the proposed model is firstly highlighted using a syn-
thetic streamflow scenario. In this analysis, the bivariate cop-
ula model and a variant of the vine copulas are also em-
ployed to show the ability of the multiple-dependence struc-
ture adopted in the proposed model. Furthermore, the evalua-
tions are extended to a case study of 54 gages located within
the Yadkin–Pee Dee River basin in the eastern USA. Both
results inform that the proposed model is better suited for in-
filling missing values. To be specific, the proposed multiple-
dependence model shows the improvement of 9.2 % on aver-
age compared to the bivariate model from the historical case
study. The performance of the vine copula is further com-
pared with six other infilling approaches to confirm its ap-
plicability. Results demonstrate that the proposed model pro-
duces more reliable streamflow estimates than the other ap-
proaches. In particular, when applied to partially gaged sites
with sufficient available data, the proposed model clearly
outperforms the other models. Even though the model is il-
lustrated by a specific case, it can be extended to other re-
gions with diverse hydro-climatological variables for the ob-
jective of infilling.

1 Introduction

Hydrological observation records covering long-term periods
are instrumental in water resources planning and manage-
ment, including the design of flood defense systems and irri-
gation water management (Aissia et al., 2017; Beguería et al.,
2019). However, available streamflow data are often limited
due to several situations like equipment failures, budgetary
cuts, and natural hazards (Kalteh and Hjorth, 2009). Missing
data are particularly observed in remote catchments where
equipment failures are repaired only after significant delays
following extreme events, which can be crucial for hydro-
logical frequency analysis. Hence, hydrologists often rely on
simulated sequences to infill missing data in partially gaged
catchments (Booker and Snelder, 2012) by using two primary
modeling approaches, such as (1) process-based models (i.e.,
estimating streamflow based on a conceptual understanding
of hydrological processes) and (2) transfer-based statistical
models (i.e., transferring information from gaged to ungaged
catchments; Farmer and Vogel, 2016). This paper focuses on
the latter, which estimates historical daily streamflow at inad-
equately and partially gaged sites by the means of a statistical
relationship.

Over the past few decades, a variety of statistical mod-
els, including simple drainage area scaling (Croley and Hart-
mann, 1986), the spatial interpolation technique (Pugliese et
al., 2014), a regression model (Beauchamp et al., 1989), and
flow duration curves (FDCs; Hughes and Smakhtin, 1996),
have been developed. In particular, the flow duration curve
method has been regarded as one of the most trustwor-
thy regionalization approaches (Archfield and Vogel, 2010;
Boscarello et al., 2016; Castellarin et al., 2004; Li et al.,
2010; Mendicino and Senatore, 2013). If the target watershed
is completely gaged, FDCs can be established using regres-
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sion models to regionalize the parameter sets of defined dis-
tributions (e.g., Ahn and Palmer, 2016a; Blum et al., 2017)
or to regionalize a set of primary quantiles (Cunderlik and
Ouarda, 2006; Schnier and Cai, 2014; Zaman et al., 2012).
On the other hand, if target watershed is poorly or partially
gaged, FDC models are built using the following four steps:
(1) estimating the non-exceedance probability for recorded
streamflow from the target watershed of interest, (2) select-
ing one or multiple donor watersheds for the target water-
shed, (3) transferring the time series of the non-exceedance
probability from the donor watersheds for missing stream-
flow values, and (4) converting corresponding streamflow
values back from the transferred non-exceedance probability.
When FDCs are utilized for partially gaged watersheds, how
the donor watersheds are selected (step 2) and how the prob-
abilities are transferred from the donor watersheds (step 3)
are fairly crucial in the FDC framework.

Many studies have developed diverse approaches for
steps 2 and 3 in FDC modeling. While the basic formula-
tion is that non-exceedance probabilities of the target site are
transferred by those at the single donor site, a weighted av-
erage of non-exceedance probability from the selected donor
sites has been suggested by Smakhtin (1999) instead. In ad-
dition, Farmer (2015) applied a kriging model to region-
alized daily standard (i.e., z scored) probabilities based on
non-exceedance probabilities from many donors in a region,
using the quantile function of a standard normal distribu-
tion. Although these studies are promising, the joint distri-
bution of non-exceedance probability between the target and
donor watersheds is modeled based on a Gaussian assump-
tion, which cannot properly permit different percentile val-
ues, such as extremes that have different spatial dependence
structures from donor sites. To circumvent this limitation,
Worland et al. (2019) suggested the copula theory after show-
ing that a unifying framework of copulas is equivalent to that
of FDC (i.e., estimations of the conditional probabilities at
the target watershed given known values at the donors).

Increasing attention has been received for copulas in the
field of hydrology, with applications in flood frequency anal-
ysis, drought risk analysis, and multi-site streamflow gener-
ations (Ahn and Palmer, 2016b; Ariff et al., 2012; Chen et
al., 2015; Daneshkhah et al., 2016; Fu and Butler, 2014).
Copulas are effective mathematical functions that are ca-
pable of combining univariate marginal distribution func-
tions of random variables into their joint cumulative distri-
bution function and allow the representation of diverse de-
pendence structures between these random variables corre-
sponding to their family members (Sklar, 1959). For exam-
ple, Fu and Butler (2014) showed that the Gumbel copula
performs well in representing multiple flooding characteris-
tics as compared to the other copulas from the Archimedean
family, namely the Clayton and Frank copulas. To estimate
streamflow (i.e., infilling missing data) at poorly and partially
gaged sites, Worland et al. (2019) have developed bivariate
copulas with an Archimedean copula but limited their appli-

cation to a single donor. Despite the limitation, their bivari-
ate copulas may be acceptable since the higher dimension of
copulas is not rich enough to model all possible mutual de-
pendencies among multi-site donors (see Karmakar and Si-
monovic, 2009, for details). Hao and Singh (2013) also de-
scribe that multivariate copulas are incapable of modeling
multi-site data exhibiting complex patterns of dependence.

However, if the theoretical limitation of a multivariate
copula is mitigated, dependency information from multiple
donor sites may allow more reliable predictions of region-
alized streamflow. Vine copulas, also known as pair cop-
ulas, offer a far more efficient way to construct a higher-
dimensional dependence (Bedford and Cooke, 2002; Joe,
2014). They have hierarchical structures that sequentially ap-
ply bivariate copulas as the local building blocks for con-
structing a higher-dimensional copula. The high flexibility of
vine copulas enables the modeling of a wide range of com-
plex data dependencies. In particular, Aas et al. (2009) have
popularized two classes of vine copulas, namely canonical
vines (C-vines) and drawable vines (Dvines), by allowing
diverse pair copula families, such as the bivariate Student
t copula and bivariate Clayton copula. After a seminal pa-
per, those two vines have been used in many fields, including
economics (Arreola Hernandez et al., 2017; Zimmer, 2015),
finance (Dissmann et al., 2013; Lu, 2013) and engineering
(Bhatti and Do, 2019; Erhardt et al., 2015; Xu et al., 2017).
Similarly, a few studies have used vine copulas in hydrologic
applications with diverse purposes (Daneshkhah et al., 2016;
Liu et al., 2015; Vernieuwe et al., 2015; Shafaei et al., 2017),
although they have not been introduced to infill missing data.

Based on the usefulness of vine copulas, Kraus and
Czado (2017) have developed a promising algorithm that se-
quentially fits such a Dvine copula model (MKraus). The algo-
rithm adds covariates to the model with the objective of max-
imizing a conditional likelihood and stops adding covariates
to the model when none of the remaining covariates can sig-
nificantly increase the model’s conditional likelihood. While
it is promising, one challenge that can arise, but has not been
previously discussed, is overfitting when covariates are cor-
related with each other. In this situation, the model may adopt
ineffective covariates, and this eventually leads to poor pre-
dictions. In particular, for the purpose of infilling, streamflow
values at the target site are often correlated by those of many
donors. Although the structure ofMKraus is potentially favor-
able to estimate streamflow, a modified model procedure is
required to determine the most influential covariates.

This study forwards two novel contributions to infill
missing data in the field of hydrology, i.e., (1) a Dvine
copula-based model is introduced to estimate streamflow for
poorly and partially gaged watersheds, and (2) the existing
model (MKraus) is further improved by incorporating a new
procedure to determine the optimal number of donor sites
(namely MDvine). First, synthetic data are generated to com-
pare MKraus and MDvine. In this analysis, bivariate copulas
(namely MBicop) are also employed to demonstrate the use-
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fulness of a high-dimensional joint dependence structure. Af-
terwards, a real infilling example is utilized to compare the
proposed vine-based model with six other streamflow trans-
fer models adopted in the literature.

2 Methodology

2.1 Dvine copulas

A copula C is a k-variate cumulative distribution function
on [0,1]k , with all uniform margins. The C can be under-
stood as a function that links the marginal cumulative dis-
tributions (F1, . . . ,Fk) to form a joint distribution F . The
C associated with joint distribution F is a distribution func-
tionC : [0,1]k→ [0,1], such that, for all streamflow vectors,
q = (q1, . . . , qk)T , C satisfies the following:

F (q1, . . ., qk)= C (F1 (q1) , . . ., Fk (qk)) , (1)

where C is unique if F1, . . . ,Fk are continuous.
Based on Sklar’s (1959) theorem, a multivariate distribu-

tion function is a composition of a set of marginal distribu-
tions; thus, Eq. (1) can be expressed in terms of densities, as
follows:

f (q1, . . ., qk)= [

k∏
i=1
fi (qi)]c (F1 (q1) , . . ., Fk (qk)) , (2)

where c is a k-dimensional copula density acquired by partial
differentiation of the copulaC (i.e., c(F1(q1), . . . ,Fk(qk)) :=
∂k

∂1···∂k
C(F1(q1), . . . ,Fk(qk))), and fi(·) is the marginal den-

sity corresponding to Fi(·).
Following Bedford and Cooke (2001), any copula density

c(F1(q1), . . . ,Fk(qk)) can be decomposed into a product of
k(k− 1)/2 pair copula densities. Aas et al. (2009) adopted
this idea and introduced the copula class of pair copula con-
structions (PCCs) known as vine copulas. These copulas are
suitable for modeling various dependency structures. Vine
structures established by k(k−1)/2 pair copulas are arranged
in k− 1 trees (Brechmann et al., 2013) and can be catego-
rized as C-vines and Dvines (Liu et al., 2015). This study
focuses on Dvines since they are more widely used in prac-
tice (Daneshkhah et al., 2016).

A Dvine is characterized by the ordering of its variables
(see Fig. 1). In the first tree, the dependence of the first
and second variables, of the second and third, and of the
third and fourth, and so on, is modeled using pair copulas.
In the second tree, the conditional dependence of the first
and third, given the second variable (i.e., c1,3|2(F (q1|q2),
F(q3|q2))), and the second and fourth, given the third (i.e.,
c2,4|3(F (q2|q3), F(q4|q3))), and so on, is modeled. Simi-
larly, the pairwise dependencies of two variables are mod-
eled in subsequent trees conditioned on those variables
which lie between the two variables in the first tree (e.g.,
c1,5|2,3,4(F (q1|q2,q3,q4), F(q5|q2,q3,q4))). The density of

Figure 1. Example of Dvine structures with five variables,
four trees, and 10 edges.

the k-dimensional Dvine can be computed as follows (Aas et
al., 2009):

f (q1, . . ., qk)=[

k∏
i=1
fi (qi)]×

k−1∏
j=1

k−j∏
j=1

cj,j+j |(j+1):(j+j−1)(
F
(
qj |qj+1, . . ., qj+j−1

)
,

F
(
qj+j |qj+1, . . ., qj+j−1

))
, (3)

where cj,j+j |(j+1):(j+j−1) indicates the bivariate copula den-
sities.

For the 5-dimensional Dvine copula, as an example in
Fig. 1, the corresponding vine distribution has the following
joint density:

f (q1, . . ., q5)=

[
5∏
i=1
fi (qi)

]
c12 · c23 · c34 · c45 · c13|2

· c24|3 · c24|3 · c35|4 · c14|23 · c25|34 · c15|234, (4)

where c1,2(F1(q1)F2(q2)) is simply denoted as c1,2.
As presented in Eq. (4), the conditional distribution

functions and conditional bivariate copulas are required in
vine copula modeling. The conditional distribution func-
tions F(qj |qj+1, . . . , qj+j−1), also known as h functions,
in Eq. (4) can be addressed using the pair copulas from
lower trees by using Eq. (5). Let qi be a conditional value
of qj+1, . . . , qj+j−1, and υ = {qj+1, . . . , qj+j−1qi is the
streamflow vector without qi used in the following recursive
relationship (Aas et al., 2009):

h(qj |υ) := F
(
qj |υ

)
=
∂Cji|υ

(
F
(
qj |υ

)
, F (qi |υ)

)
∂F (qi |υ)

, (5)

where the h function is associated with the pair copula Cji|υ .
More details about Dvines can be found in Bedford and

Cooke (2002) and Czado (2010, 2019).
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2.2 Algorithm of the Dvine copula-based
estimation (MDvine)

Following Kraus and Czado (2017), a two-step estimation
procedure is utilized for the prediction of the streamflow
value at the target watershed. The algorithm (MDvine) is de-
veloped using two library packages in the R programming
language (Bevacqua, 2017; Schepsmeier et al., 2015).

Let qk be the quantile of streamflow at the target water-
shed given the streamflow values q1, . . . , qk−1 from the donor
sites. In the first step, the marginal cumulative probabili-
ties Fk(qk) and Fj (qj ), j = 1, . . . , k−1, are estimated using
the semiparametric approach. To be specific, this study uses
the continuous kernel smoothing estimator (Geenens, 2014),
which is, given the observed streamflow q

ζ
i , ζ = 1, . . . , ξ

at the ith site, defined as F̂i(qi)= 1
nh

ξ∑
ζ=1

�(
qi−q

ζ
i

h
). Here,

�(qi) is the kernel function, with ω(·) being a symmetric
probability density function, and h is the parameter control-
ling the smoothness of the final estimate. In this study, a
Gaussian kernel is used for all ω(·). The estimated cumu-
lative probabilities are then employed to model the Dvine
copula in the second step.

Next, to easily estimate conditional streamflow values at
the target site, the Dvine copula is fitted with the fixed or-
der Fk(qk)−FI1(qI1)−FI2(qI2)− . . .−FIk−1(qIk−1), such that
Fk(qk) is the first node in the first tree, and the other or-
ders of donors (I1, . . . , Ik−1) are decided based on their cor-
relations to the target site (i.e., FI1(qI1) and showing the
greatest correlations to Fk(qk)). To build the Dvine copula
model, five bivariate copulas (Gaussian, Student t , Frank,
Gumbel, and Clayton) are considered as potential pair cop-
ulas (building blocks), although more families of Copulas,
such as extreme value copulas (EVCs), are desirable. The
five candidates may be sufficient to represent diverse depen-
dence structures. For example, a Gaussian copula is proper
when the non-exceedance probabilities between two water-
sheds are associated in the body of their distribution but are
not asymptotically dependent in the both tails. On the other
hand, a Gumbel copula may be appropriate for the situation
wherein the non-exceedance probabilities exhibit tail depen-
dence and where high flows are connected by same rainfall
events but low flows are not related (e.g., due to regulation;
Salvadori and De Michele, 2004). Details of the five bivariate
copulas are presented in the Supplement. Parameters for the
five bivariate copulas are estimated based on Kendall rank-
based correlation (ρτ ) between sites. The optimal bivariate
copula for each pair copula is determined based on the penal-
ized likelihood function (i.e., Akaike information criterion –
AIC).

The final number (χk) of donor sites is further optimized
under a cross-validation approach. In this approach, 80 % of
the regional data are employed for model fitting; the other
20 % are for testing. Again, this procedure is conducted five

times, and using a different set of data for testing each time.
As a measure for the model’s fit, the root mean squared error
(RMSE; Eq. 6) from observed streamflow at the target site is
utilized.

RMSEχk =

√√√√1
ξ

ξ∑
ζ=1

(
qk − q̂

χ
k

)2
. (6)

Finally, conditional streamflow values at the target site can
be estimated using the inverse form of the conditional distri-
bution function (i.e., Eq. 5). To depict the ideas, a trivariate
case (i.e., χ = 2) is considered here. Based on the stream-
flow values at the donor sites (q2, q3), q̂1 can be obtained
using the conditional distribution function h(q1|q2,q3). For
some fixed probabilities φ (e.g., φ = 0.1, . . . , 0.9), F1(q̂1) is
derived from C1|2,3 using an explicit function as follows:

C−1
1|2,3 (φ|F2 (q2) ,F3 (q3))= h

−1
1|2

(
h−1

1|32
(
φ|h2|1 (F2 (q2)

|F1 (q1))) |F1 (q1)) , (7)

where C−1
1|2,3 is the inverse of the copula function, given the

φ quantile curve of the copula (Liu et al., 2015; Xu and
Childs, 2013). Therefore, the φth copula-based conditional
quantile function of streamflow at the target site can be cal-
culated as follows:

q1 (φ|q2q3)= F
−1
1

(
C−1

1|2,3 (φ|F2 (q2) ,F3 (q3))
)

= F−1
1

(
h−1

1|2

(
h−1

1|32
(
φ|h2|1 (F2 (q2) |F1 (q1))

)
|F1 (q1)

))
. (8)

Similarly, for the k-dimensional case, the φth copula-based
conditional quantile function can be calculated, along with
streamflow, at the k−1 donor sites. To acquire an estimate at
the target site, 1000 samples from uniform distribution over
the interval [0, 1] are generated using Monte Carlo simula-
tions. In this study, the mean value of these generations is
regarded as the best estimate.

3 Application

This study first explores the performance of MDvine under a
synthetic example. In this analysis, MBicop and MKraus are
also employed to show the usefulness ofMDvine. ForMBicop,
the optimal bivariate copula is selected based on the AIC,
while the five bivariate copulas (Gaussian, Student t , Frank,
Gumbel, and Clayton) are considered as its potential candi-
dates. A brief description of two additional models are pre-
sented in the Supplement. After that, those three models are
used for a real application to 54 stream gages located in a re-
gion of the eastern USA by estimating streamflow in partially
gaged locations. Finally, seven infilling approaches (Table 1)
are also utilized and evaluated in a cross-validated framework
to evaluate the performance of the proposed model.
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Table 1. The seven infilling approaches discussed in the study.

No. Method Description

1 FDC-IDW Inverse distance-weighted estimate of non-exceedance probability from those of all donors.

2 IDW-streamflow Inverse distance-weighted estimate using streamflow from all donors.

3 Rho-streamflow Correlation-weighted streamflow estimate from the selected donors for each time step. The optimal
number of donors is determined in a cross-validation.

4 FDC-highestrho Estimate non-exceedance probability from the gage with the highest correlation.

5 DAR-streamflow Drainage area (DA) ratio for streamflow using the DA from the nearest neighbor gage.

6 Kriging-streamflow Geostatistical interpolation method to estimate streamflow from all donors for each time step.

7 Dvine Vine copula-based estimate from the selected donors

Figure 2. Structure of the 6-dimensional vine model and marginal probability function for the synthetic simulation. LN(π,σ 2) denotes the
log normal distribution with its mean (π ) and variance (σ 2). The target gage is highlighted.

3.1 Synthetic simulation

Synthetic streamflow data are generated using a controlled
Monte Carlo experiment to explore how well the three
copula-based models (MBicop, MKraus, and MDvine) provide
streamflow predictions at the target site given a complex
streamflow data in a pseudo gage network. In this analysis,
a 6-dimensional streamflow set (qζ1 , qζ2 , qζ3 , qζ4 , qζ5 , and qζ6 ),
ζ = 1, . . . , ξ = 2190 (i.e. 2190

365 = 6 years), is modeled using
four bivariate copulas (Gaussian, Student t , Flank, and Clay-
ton) and lognormal distributions for margins (see Fig. 2).

The performance of each model is evaluated in a
calibration–validation framework. First, synthetic stream-
flow data are generated for a 6-dimensional gage network.
Then, ϕ years of data are randomly selected to be assumed
to be known at the target gage, and the streamflow for the re-
maining 6−ϕ years of data is then estimated as missing val-
ues (ϕ = 4 in this analysis). This process is repeated 20 times
to build an ensemble prediction. In particular, this study as-
sumes that the fifth streamflow data (i.e., q5) will be pre-
dicted. In this assessment, two characteristics are considered
to compare the three models, i.e., model prediction reliability
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Figure 3. Map of the Yadkin–Pee Dee basin with 54 stream gage
stations.

and uncertainty quantification skill. Model prediction relia-
bility is tested using the RMSE (Eq. 6) and Nash–Sutcliffe
efficiency (NSE), which are further described in Sect. 3.4.
The uncertainty quantification skill is judged by the ability of
each model to build prediction intervals (PIs) that correctly
bound predictions (see Sect. 3.4). Here, coverage probabil-
ities, defined as the proportion of the time that true values
occur into these PIs, are employed to show the usefulness of
the proposed model.

3.2 Application to the Yadkin–Pee Dee River

The Yadkin–Pee Dee River basin (Fig. 3), covering around
18 700 km2 and one of the largest river basins in North Car-
olina and South Carolina (Fisk, 2010), is used as real data
to evaluate infilling ability. The basin flows from the north-
western corner of North Carolina near Blowing Rock and ex-
tends south by southeast, crossing the south-central border of
North Carolina into South Carolina, with slightly more than
half of its watershed in North Carolina. Most of the land cov-
ered within the basin is forested or used for agriculture, al-
though urban areas in the basin are expanding.

Daily streamflow data at 54 gages are gathered through-
out the study region from the web interface of the US Ge-
ological Survey (USGS) National Water Information Sys-
tem (NWIS; US Geological Survey, 2018). The 54 gages
are selected based on the following criteria: (1) all gages
are recorded continuously for 15 years of daily streamflow
over the period from January 2004 to December 2018, and
(2) gages have non-zero daily values for the period in the
first criterion, since gages with streamflow values equal to
zero require a more flexible modeling structure. Thus, it is

common to model zero flows separately in regionalization
studies. Based on the second criterion, this study discards 10
gage stations (not shown).

3.3 Intermodel comparison framework

A set of seven infilling approaches is used in the final assess-
ment (see Table 1), i.e., (1) MFDC-IDW, (2) MIDW-streamflow,
(3) MRho-streamflow, (4) MFDC-highestrho, (5) MDAR-streamflow,
(6)MKriging-streamflow, and (7)MDvine. This set of seven mod-
els is tested in a cross-validation framework under two differ-
ent cases. The two cases consider situations wherein ϕ have
values of 2 and 8 to represent relatively deficit and sufficient
records for the target site. Similar to the comparative assess-
ment to show the usefulness of the proposed copula-based
model (see Sect. 3.1), each case is repeated 20 times by ran-
domly selecting ϕ years over the applied period. The reliabil-
ity of each model is evaluated using RMSE and NSE metrics
over the validated 4-year period randomly selected in the re-
maining data (i.e., 4 years in 15−ϕ years).

3.4 Error metrics and error decomposition

As presented in Sect. 3.1 and 3.3, the RMSE (Eq. 6) and NSE
are employed to evaluate prediction skills as follows:

NSE= 1−

ξ∑
ζ=1

(
ˆqζ − qζ

)2

ξ∑
ζ=1

(
qζ − qζ

)2
. (9)

The NSE (RMSE) can range from −∞ to 1 (0 to ∞), with
higher NSE (lower RMSE) implying better performance.
Both metrics have been commonly used in hydrology analy-
sis (Boyle et al., 2000).

Following derivations suggested in Gupta et al. (2009), the
RMSE can be further decomposed into three components, as
follows:

RMSE2
=MSE=

(
µ̂−µ

)2
+
(
σ̂ − σ

)2
+2σ σ̂ (1− r), (10)

where µ(µ̂) and σ(σ̂ ) represent the average and standard de-
viation for the observed (estimated) streamflow, respectively,
and r indicates the estimated correlation coefficient. The first
component (µ̂−µ)2 is a measure of how well the average
of the observed streamflow represents the average of the esti-
mated streamflow, the second component (σ̂ −σ)2 is a mea-
sure of how well the variance of the prediction represents the
variance of the observed streamflow, and the third compo-
nent 2σ σ̂ (1− r) is dominated by the correlation and is de-
fined as the timing component (Worland et al., 2019). Using
these three defined components, their absolute contributions
are explored in this study.

In addition, the accuracy of the uncertainty quantification
skill is also evaluated for the copula-based models (MBicop,
MKraus, and MDvine). To be specific, this study utilizes the
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Table 2. RMSE and NSE results over the validation periods under the synthetic experiment for comparing copula-based model formulations.
The best metric values for each quantile are shown in bold.

Metric Model Min First Median Third Max
formulation quantile quantile

Root mean MBicop 0.912 1.119 1.258 1.363 3.353
squared error MKraus 0.990 1.140 1.386 1.660 4.273
(RMSE) MDvine 0.895 1.046 1.112 1.391 4.119

Nash–Sutcliffe MBicop 0.464 0.779 0.826 0.856 0.902
efficiency MKraus 0.198 0.724 0.782 0.825 0.885
(NSE) MDvine 0.248 0.805 0.838 0.869 0.905

PI coverage probability (PICP), which is a common metric
for this purpose (He et al., 2017; Niemierko et al., 2019). It
provides the relative number of data points that fall between
the defined bounds and are expressed as follows:

PICP=
1
ξ

ξ∑
ζ=1

2ζ with 2ζ =
{

1, if qζ ∈
[
Lζ ,U ζ

]
0, else ,

(11)

where 2ζ is the indicator variable if qζ is covered by the
ζ th PI defined by the lower bound Lζ and upper bound U ζ .
This study examines the prediction accuracy of single quan-
tiles. Therefore, the lower bound is defined as Lζ =−∞ and
U ζ = ˆqζ,$ , where$ is the estimated quantile at time ζ . Ac-
cordingly, the upper bound is not a constant but is reassigned.
By subtracting the nominal confidence$ from PICP, the av-
erage coverage error (ACE) is obtained as follows:

ACE= PICP−$. (12)

The metric clearly indicates if the predicted quantile is un-
derestimated (ACE< 0) or overestimated (ACE> 0), while
taking small values around 0 for ideal case.

4 Results

4.1 Results for synthetic experiment

Prediction results from the out-of-sample RMSE and NSE
metrics are presented for the three copula-based mod-
els (MBicop,MKraus, andMDvine) in Table 2. The ACE scores
are also described for $ ∈ {0.05,0.10,0.50,0.90,0.95}
in Table 3. When compared to the other models,
MBicop achieves lower RMSE values in the right tail of the
RMSE distribution over the validation periods, but severely
underperforms for the majority of the designed experiment,
suggesting that this model formulation, relying on a sin-
gle donor, leads to poor predictions. MKraus provides higher
RMSE values for all RMSE distributions, particularly for
the right tail of the RMSE distribution. The model utilizes

Table 3. Results of average coverage error (ACE) over the valida-
tion periods under the synthetic experiment for comparing copula-
based model formulations. The best metric values for each quantile
are shown in bold.

Model Estimated quantile ($)

formulation 0.05 0.10 0.50 0.90 0.95

MBicop 0.027 0.063 0.079 0.014 0.002
MKraus 0.003 0.011 0.055 0.024 0.001
MDvine 0.029 0.048 0.042 0.001 0.000

streamflow data from all donors (i.e., five donor sites), al-
though the first two gages (gages 1 and 2) show insignif-
icant associations to the target site (r1,5 = 0.11 and r2,5 =
0.14). MDvine unequivocally produces the best predictions.
MDvine adopts streamflow data from two or three donors
(gages 3, 4, and 6), without utilizing streamflow data from
the first two donors when a multiple-dependence structure
is established, to build an ensemble prediction. It outper-
forms MBicop and MKraus across all validation periods, be-
sides a few with the worst performance. Even in this case,
the maximum RMSE of MDvine is less than the maximum
RMSE of MKraus.

In addition, the ACE results present how the three mod-
els characterize prediction uncertainty. MDvine is capable of
properly covering the predications across the entire distri-
bution, while slight overestimation occurs for the smallest
two quantiles. The remaining upper quantiles also tend to
slightly overestimate the true values, but the overestimations
are less than the other models (MBicop and MKraus). Taken
together, the results of the synthetic experiment suggest that
MDvine yields the best predictions among the copula-based
models tested.

4.2 Performance of the copula-based models in the
Yadkin–Pee Dee River

Using the insights developed from the synthetic experiment
above, the three copula-based models are applied to the
streamflow data for the Yadkin–Pee Dee River. At first,

https://doi.org/10.5194/hess-25-4319-2021 Hydrol. Earth Syst. Sci., 25, 4319–4333, 2021



4326 K.-H. Ahn: Streamflow estimation at partially gaged sites using multiple-dependence conditions

Figure 4. Pairwise upper- and lower-tail dependence for watersheds in the Yadkin–Pee Dee River basin. The upper triangular matrix shows
values for the upper-tail dependence and the lower triangular matrix presents values for the lower-tail dependence. The metrics can range
from 0 to 1, with higher values suggesting greater interdependence of the two streamflows for each upper- and lower tail.

upper- and lower-tail dependences (λupper and λlower ) are ex-
amined for both pairs of sites (see Fig. 4), using the approach
of Schmid and Schmidt (2007). The theoretical background
is described in the Supplement (Sect. S3). Note that, in this
analysis, the dependences become more obvious as the val-
ues approach unity. In total, two major insights emerge from
this figure. First, many site pairs exhibit a strong upper-tail
dependence, suggesting that streamflow variability has a ten-
dency to be more correlated under high-flow conditions com-
pared to low-flow conditions (i.e., asymmetric dependence).
The lack of lower-tail dependence may be due to contri-
butions governing low streamflow, such as river regulation.
Next, even under high- or low-flow conditions, there is a wide
range of tail dependence across the study basin (i.e., hetero-
geneous dependence). To sum up, a wide range of complex
dependencies is observed in the streamflow data over the
study basin. The complex dependences suggest that, when
streamflow is estimated from multiple donors, the potential
usefulness of considering a multiple-dependence structure,
which is one of the main features of vine copulas, is shown.

Figure 5 shows the RMSE and NSE results for the three
copula-based models under a leave-one-out cross-validation
framework. This process is repeated 20 times to build an en-
semble prediction by using test periods randomly defined.
For this analysis, 5 years of data are selected to be assumed
as the observed period at the target gage, and another 4 years

are randomly selected in the remaining data for the test pe-
riod. Similar to the results from the synthetic experiment,
MKraus performs poorly in both the RMSE and NSE metrics
(median of RMSE= 1.549 and NSE= 0.652). The bivariate
copula performs well (median of RMSE= 1.496), indicating
that this approach efficiently leverages available information,
even though the information is limited to single donor. Par-
ticularly,MBicop achieves the lowest RMSE values in the up-
per side of the RMSE box (e.g., third quartile), providing a
strong uncertainty quantification skill for the upper bound.
However, MDvine yields the best median RMSE and NSE
values (= 1.359 and 0.719). Given the heterogeneous depen-
dence conditions (see Fig. 4), the high-dimensional struc-
tures are effective in modeling a complex streamflow gage
network. This feature can substantially improve prediction
of target site flows.

Figure 6a presents the ACE scores described for princi-
pal quantiles, $ ∈ {0.05,0.10,0.20, . . . , 0.90,0.95}, across
all target sites under the cross-validation framework. Fig-
ure 6b presents 95 % PIs for each model for an example time
period (1 May to 31 July 2018) for one target site (USGS
site ID 02143500). Note that the ACE would ideally take
a zero value, regardless of the quantiles. The ACE scores
for the three models (MBicop, MKraus, and MDvine) range
from 0.004 to 0.0007 when considering all the quantiles to-
gether. However, the scores vary, depending on the quantiles.

Hydrol. Earth Syst. Sci., 25, 4319–4333, 2021 https://doi.org/10.5194/hess-25-4319-2021



K.-H. Ahn: Streamflow estimation at partially gaged sites using multiple-dependence conditions 4327

Figure 5. Model performance for the Yadkin–Pee Dee river under
a cross-validation framework, based on RMSE (dark squares) and
NSE (light squares). Here, the RMSE (NSE) can range from 0 to∞
(−∞ to 1), with lower RMSE (higher NSE) implying better perfor-
mance.

For instance, the ACE score for MKraus is noticeably pos-
itive but is almost zero around the median streamflow, in-
dicating that the model properly represents the uncertainty
of the median streamflow. MBicop and MDvine result in very
similar ACE scores, althoughMDvine performs slightly better
than MBicop. The differences in the characterization of pre-
diction uncertainty can be confirmed from a particular target
site (Fig. 6b).

Based on the results in Figs. 5 and 6, MDvine outperforms
the other copula models (as judged by model prediction re-
liability and uncertainty quantification skill) and is thus se-
lected as an appropriate copula model to infill missing data in
partially gaged sites. Figure 7 shows an example application
of MDvine, including the optimal donor sites, proper bivari-
ate copulas, and their parameters for one target site (USGS
site ID 214645022) when the model is calibrated using the
full 15-year record.

4.3 Intermodel comparison for streamflow estimation

To assess the predictive skill of the proposed vine copula
model, it is compared with six other statistical models (see
Table 1). Figure 8 shows RMSE and NSE for the seven mod-
els where the streamflow values are estimated based on the
available data defined by the two different cases, labeled
“deficit record” and “sufficient record” (see Sect. 3.3). Un-
der all cases, the vine copula approach outperforms the other
infilling approaches. For example, for the sufficient record
case, the median NSE for MDvine is 0.673, whereas those
for MIDW-streamflow and Mrho-streamflow are 0.462 and 0.649,
respectively. In this analysis, the approaches, which are based
on streamflow values of the donor sites without utilizing
non-exceedance probability, including DAR-streamflow and
Kriging-streamflow, yield relatively increased bias in their
predictions. On the other hand, an application of FDC mod-
els offers reliable predictions. For instance, for the sufficient
record case, the median RMSE for MFDC-highestrho is 1.603
compared to that of a direct of using streamflow (e.g., median

RMSE of MFDC-streamflow = 3.422 for the sufficient record).
A similar interpretation can be found in the comparison be-
tween MFDC-IDW and MIDW-streamflow. The results from these
approaches suggest that utilizing the FDC process leads to a
reliable estimation, which is a primary structure in the vine
copula. The other noticeable feature is that the available data
length provides a significant influence on the performance of
some infilling methods. In particular, this is quite evident for
the vine copula model (median RMSEs are 1.598 and 1.379
for deficit and sufficient records, respectively).

4.4 Prediction error decomposition

The RMSE is decomposed into their components (bias,
variance, and timing) for both the deficit record and suf-
ficient record predictions (Fig. 9). For both cases, timing
components primarily bring about the majority of predic-
tion errors for all seven models. In particular, models di-
rectly estimating streamflow values (IDW-streamflow, DAR-
streamflow, and Kriging-streamflow) produce a somewhat
biased component, which increases when a shorter record
is employed in the model. For instance, the timing compo-
nent forMIDW-streamflow is 4.11 and 3.75 for the deficit record
and sufficient record, respectively. Moreover, timing com-
ponents dominate the error metric for all cases. However,
the importance of the variance component is increased, es-
pecially in three models (FDC-IDW, DAR-streamflow, and
Kriging-streamflow). Lastly, the results show that, if the pro-
posed vine copulas approach is adapted, variance and timing
components are better captured, leading to better streamflow
estimations, which are beneficial in the practical applications
of water resources management.

Finally, the following two predictions are further produced
using two additional experiments: (1) the observed marginal
cumulative probabilities (i.e., using all 15 years) and condi-
tional streamflow values constructed from the partial record
(i.e., based on ϕ years) and (2) the estimated marginal cumu-
lative probabilities (i.e., based on ϕ years) and conditional
streamflow values constructed from the full record (i.e., all
15 years). Their prediction abilities are evaluated over the
validated 4-year period randomly selected in the remaining
data. Similar to the previous analysis, each analysis is tested
20 times. The results from these experiments provide an in-
ference to better isolate how error components from the two-
step procedure (see Sect. 2.2) influence prediction skill.

Figure 10 shows the ACE scores from the out-of-sample
predictions using the proposed Dvine model under the two
scenarios. When considering all the quantiles together, the
ACE scores for the two scenarios are 0.003 (scenario no. 1)
and 0.006 (scenario no. 2) on average under the deficit record
prediction. Also, the scores under the sufficient record pre-
diction are all nearly 0.003. Those results of the scores are
sufficiently close to zero, implying that both predictions are
reliable. Yet, compared to the predictions estimated by the
cumulative probabilities estimated by the partial record and
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Figure 6. (a) Average coverage error from three copula-based models for the Yadkin–Pee Dee River basin across exemplary quantiles and
(b) 95 % PIs for three models for an example period (1 May to 31 July 2018) for a specific target gage (USGS site ID 02143500). Observed
streamflow (black solid line) is also presented in each figure.

Figure 7. Structure of the Dvine copula applied for a particular tar-
get site (USGS site ID 214645022), with the defined bivariate cop-
ulas and their parameters.

conditional models constructed by full records (i.e., sce-
nario no. 2), the ACE scores are achieved better if the cumu-
lative probabilities are determined by the full record, except
for some of the low and high quantiles. Similar interpretation
can be found in the NSE performance of two scenarios (see

the insets in Fig. 10). It may suggest that careful attention
should be paid to the first procedure (i.e., how to determine
the cumulative probabilities for the target site and its donors)
whenMDvine is utilized. Nevertheless, the procedure for con-
structing the conditional model in a streamflow gage network
is obviously crucial, since the over or underestimations are
observed in many quantiles when the insufficient sampling is
employed in this process.

5 Conclusion

This study introduces a multiple-dependence conditional
model (i.e., vine copulas) to produce streamflow estimates
at partially gaged sites. The model includes a flexible high-
dimensional joint-dependence structure and conditional bi-
variate copula simulations. In order to confirm the useful-
ness of a multiple-dependence structure and the procedure
for an appropriate number of donor sites in the final vine
copula model, the bivariate copula model and two types of
vine copulas with their unique procedure to determine the
optimal number of donor sites are first investigated using the
generated data. These analyses were further extended in a
case study of the Yadkin–Pee Dee River basin, in the east-
ern USA, by estimating streamflow in partially gaged loca-
tions. In this analysis, six statistical infilling approaches were
also employed to represent the applicability of the proposed
model.
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Figure 8. Intermodel comparison using cross-validation experiments based on RMSE (a) and NSE (b). Here, lower RMSE suggests more
accurate estimations for infilling missing values.

Figure 9. The three contributions from the decomposed mean
squared error (MSE) for the cross-validation experiment with
(a) the deficit record and (b) sufficient record scenarios.

Results of the synthetic experiment and application to
the Yadkin–Pee Dee River basin demonstrate that the pro-
pose model has benefits in some aspects. First, a multiple-
dependence structure adopted in the proposed model is ben-
eficial. From the massive evaluation experiments, this study
shows that a multiple-dependence structure clearly outper-
forms a single-dependence structure, although there is the
risk of overfitting when too many dependence structures
are employed. For example, the proposed model shows the
improvement of 9.2 % on average compared to the bivari-
ate model from the evaluation experiment over the histori-
cal case study. Moreover, this study confirms that the pro-

posed multiple-dependence structure model, with its opti-
mum number of donor sites, produces more reliable stream-
flow estimation than other common infilling models. To be
specific, for the sufficient record case, the proposed model
shows the improvement of 13.9 % on average compared to
the FDC-highestrho model. Next, the proposed model allows
the development of confidence intervals to consider predic-
tion uncertainty, which is fairly attractive compared to other
models. For example, Bárdossy and Pegram (2013) argue
that confidence intervals obtained using an ordinary kriging
model do not reflect the prediction uncertainty well, partic-
ularly on a daily scale. Overall, this study shows that a vine
copula is potentially an effective tool to support water re-
source management planners for objectives like gap-filling
or extending missing streamflow records.

While the results of the proposed model are favorable,
there are possible limitations worthy of further discussion.
First, the proposed method is computationally expensive,
even after adopting the multicore processing to reduce the
computational burden. This becomes more problematic when
the method is applied to a larger, more complex streamflow
gaging network. Nevertheless, because local water managers
do not need to build the model repeatedly whenever they face
missing values, once the model is calibrated for a specific
site, this computational burden may be a minor issue. Sec-
ond, the assessment illustrated in this study focuses on model
performance under cross-validation at partially gaged basins,
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Figure 10. Average coverage error of the Dvine model for two scenarios under (a) the deficit and (b) sufficient cases. In each case, the dark
line represents the scenario by the marginal cumulative probabilities using all years and conditional streamflow values constructed from the
partial record. On the other hand, the light line illustrates the scenario by the marginal cumulative probabilities estimated by the partial record
and conditional streamflow values constructed from the full record. The inset shows the NSE performance of the Dvine model for the two
scenarios in each case.

but additional work is needed to extend the proposed model
to ungaged basins; one possible way is to build a regres-
sion based model with spatial proximity and physical basin
characteristics to define associations between the target and
donor sites (e.g., Ahn and Steinschneider, 2019). Lastly, this
study does not consider the potential nonstationarity in FDCs
and correlations caused by the influence of anthropogenic ac-
tivity and change in land use. Nonstationarity may not be
problematic in this analysis since the assessment is limited
to 15 years across the gaging network. However, if longer
records were used, it would be beneficial to consider the po-
tential nonstationarity. This exploration has been left for fu-
ture work.

There are several opportunities to improve the model
structure. For instance, a vine copula is able to incorpo-
rate more additional conditioning variables. One feasible ap-
proach is to add a time series of climate data (e.g., precip-
itation) or to decompose a time series of streamflow from
the donor sites into a number of periodic components at dif-
ferent frequency levels through the wavelet decomposition
approach (Kisi and Cimen, 2011). Moreover, although the
proposed model provides a more flexible way to model multi-
variate dependences, it can be further improved by not adopt-
ing the standard assumption (i.e., simplifying assumption)
that the conditional pair copulas depend on the conditioning
variables through the conditional margins (Acar et al., 2012).
One possible alternative is the use of the semi-parametric
estimation of a conditional copula (Acar et al., 2012; Vat-
ter and Chavez-Demoulin, 2015). This semi-parametric ap-

proach enables an estimate of the dependence parameters
which do not rely on the simplifying assumption, eventually
leading to more reliable infilling estimations. I believe that
this provides an interesting avenue for future research.

Lastly, the results presented here are specific to a study
basin used in a case study. The proposed model is not re-
stricted to other watersheds around the world, and its applica-
tion is further required for drawing more generalized conclu-
sions. In addition, the model could be used for the purpose of
infilling missing values of other hydro-meteorological vari-
ables besides streamflow (e.g., precipitation and soil mois-
ture). For this application, the implementation of a vine cop-
ula with combined discrete and continuous margins (i.e., to
account for no rainfall days) should be explored (e.g., Stoe-
ber et al., 2013).
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