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S1 Minimalist Analytical Solution1

The analytical solution for the minimalist PHM is derived by equating supply (Ts; Eq. 1 of the article) and demand (Td ; Eq. 2-32

of the article) and solving for ψ∗l as shown in Eq. S1 (Eq. 4 of the article).3
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(S1)

Substituting ψ∗l back into Equation 1 of the article yields the analytical solution for the minimalist PHM (Eq. S2 and Eq.4

5 in the article). Algebraic manipulations shows that the solution is simply Td with an additional dependence on the ratio of5

atmospheric moisture demand and soil-plant conductance in the denominator.6
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(S2)

A key conclusion of this work relates to the nonlinearity in the PHM with respect to Tww, even in the simplest case of the mini-7

malist model. This nonlinearity can be shown formally by violating the superposition principle T phm (ψs,c1 ·Tww,1 + c2 ·Tww,2) 6=8

c1 ·T phm (ψs,Tww,1)+ c2 ·T phm (ψs,Tww,2). This is the fundamental difference between β and PHMs and results in the Tww/gsp9

term in the denominator of Eq. S2.10
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S2 LSM Description11

This section lays out the land surface model (LSM) coded in MATLAB (available at https://github.com/sloan091/HESS_LSM)12

used for the analysis of the US-Me2 ponderosa pine AmeriFlux site. The model is a two-big-leaf, dual-source model1 following13

closely the formulation laid out in the Community Land Model version 52 with key modifications. The general model structure14

for scalar transport is shown in Fig. S1 with the main modules highlighted. Here, module refers to a smaller model within the15

overall LSM, e.g., the Plant Hydraulics Model (PHM). The purpose of this LSM is to compare the scalar transport (temperature,16

water vapor, and carbon transport) scheme using PHM and empirical (β ) transpiration downregulation schemes; therefore,17

the model is simplified to be forced at the boundaries by incoming radiation, air scalar concentrations as well as soil water18

availability and heat flux. We are exploring the LSM component only during the growing season, so nutrient cycling, plant19

demographics, snow dynamics, and phenology components—common in terrestrial biosphere models like CLM— are ignored.20

This section is organized by the energy balance, radiative transfer, scalar transport, transpiration downregulation, and solution21

schemes.22

We adopt a slight modification in terminology within this LSM description section. In the main text and other sections of23

this supplement, the transpiration flux is represented by the variable T ; however, temperature is very prevalent in the LSM24

equations and is traditionally represented by T . To avoid confusion and maintain consistency with the conservation of energy in25

the LSM, we elect to represent transpiration in energy flux units (Wm−2) and label it as the latent heat flux from the canopy26

(LEl), where the subscript represents the two-big-leaf approximation. Similarly the bare soil evaporation is represented (LEg),27

where the subscript represents the ground. Thus, the latent heat flux (LE) is the sum of canopy and ground latent heat fluxes,28

which is simply evapotranspiration (ET ) in energy units. The notation frees up the variable T to represent temperature.29

S2.1 LSM Energy Balance30

The energy balance of the soil-plant-atmosphere for the two-big-leaf, dual-source LSM is shown by Eq. S3. The net radiation31

(Rn) of the soil-plant system is the difference of the incoming and outgoing shortwave (Sin and Sout , respectively) and longwave32

(Lin and Lout , respectively) radiation, i.e., the radiation absorbed by the soil-plant system. This absorbed radiation is available33

for sensible (H), latent (LE), ground heat flux (G) and storage (not included in this formulation). We assume one-dimensional34

(vertical), steady-state energy transport (no energy storage) common to many LSMs. The dynamics in model outputs are35

controlled by the change in the environmental forcing data. The steady-state simplification turns the solution from a numerical36

integration of a partial differential equation to a numerical solution of a set of nonlinear equations, allowing parallel computation.37

Rn = Sin−Sout +Lin−Lout = H +LE +G (S3)

The ‘dual-source’ and ‘two-big-leaf’ descriptors indicate how the overall energy balance is broken up into smaller38

components. The dual-source LSM structure means the surface is partitioned into plant canopy and ground components as39

sources of scalars (illustrated in Fig. S1). Additionally, we elect the two-layer form of the dual-source structure, similar to40
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CLM v52, where both canopy and soil interact with a canopy airspace (Fig. S1), which, in turn, interacts with the atmosphere41

above the canopy. The two-big-leaf approximation further partitions the canopy component into a sunlit and shaded big-leaf42

approximation, representing the integrated fluxes of all sunlit and shaded leaves. For clarity, actual leaf scale results are43

translated to the big leaf scale using the one-sided Leaf Area Index (LAI [m2 lea f m−2 ground]), which is further partitioned44

into sunlit and shaded LAI under the two-big-leaf approximation.45

Before diving further into the energy balance of these LSM components, it is important to define some notation rules for46

the equations in this section that will clearly delineate the model structure. We have created five notation rules for our LSM47

structure. 1) A subscript of ‘l’ or ‘g’ indicates canopy/big-leaf or ground fluxes, respectively. 2) An additional subscript ‘sl’ or48

‘sh’ following ‘l’ indicates the sunlit or shaded big leaf. respectively. 3) The index ‘k’, in lieu of ‘sl’ or ‘sh’, means the equation49

applies separately to both sunlit and shaded big leaves. 4) Shortwave radiation terms have an additional subscript ‘par’ or ‘nir’,50

identifying the specific radiation band, i.e., whether it is photosynthetically active radiation (PAR) or near infrared radiation51

(NIR). 5) The index ‘Λ’, in lieu of ‘par’ or ‘nir’, means the equation applies separately to both radiation bands.52

Using the above conventions, Eq. S3 can then be further broken down into three smaller balances for the sunlit big leaf53

(Eq. S4), shaded big leaf (Eq. S5), and the soil/ground (Eq. S6). Balancing each of these equations separately is equivalent54

to balancing the overall energy budget in Eq. S3. Furthermore, each total flux (Eq. S3) requires consistency between model55

components as shown in Eq. S7-S10.56

Rn,l,sl = Sl,sl,par +Sl,sl,nir +Ll,sl = Hl,sl +LEl,sl (S4)

Rn,l,sh = Sl,sh,par +Sl,sh,nir +Ll,sh = Hl,sh +LEl,sh (S5)

Rn,g = Sg,par +Sg,nir +Lg = Hg +LEg +Gg (S6)

Rn = Rn,l,sl +Rn,l,sh +Rn,g = Rn,l,k +Rn,g (S7)

H = Hl,sl +Hl,sh +Hg = Hl,k +Hg (S8)

LE = LEl,sl +LEl,sh +LEg = LEl,k +LEg (S9)

G = Gg (S10)

S2.2 Radiative Transfer57

The radiative transfer model was forced with incoming PAR, NIR and longwave radiation based on site measurements (see Sect.58

S5). Here we discuss the separate shortwave and longwave radiative transfer models.59

S2.2.1 Shortwave Radiative Transfer60

We use the Goudriaan and van Laar (GvL) model3 to estimate shortwave radiative transfer in lieu of the two-stream approxima-61

tion2, 4 used in CLM v5. Both approaches are two-stream models that focus on the upward and downward net fluxes of diffuse62
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radiation with single scattering5. However, the GvL model yields simpler analytical forms and is used in other TBMs such as63

CABLE6. The reader is referred to Goudriaan and van Laar (1994)3 or Bonan (2019)5 for detailed derivation of the model.64

Shortwave radiation is partitioned into direct beam, scattered beam, and diffuse components of PAR and NIR. The two-big-leaf65

approximation also requires the assumption that shaded leaves only receive scattered beam and diffuse radiation, while sunlit66

leaves receive the same as well as direct beam radiation2, 5, 7.67

The total canopy shortwave radiation absorption Sl,Λ is given by Eq. S11. This value must be partitioned appropriately68

between the sunlit and shaded big leaf. For ease of calculation and completeness, the sunlit leaf shortwave radiation absorption69

(Sl,sl,Λ, Eq. S12) is partitioned into direct beam (Sl,sl,Λ,b, Eq. S13), diffuse (Sl,sl,Λ,d , Eq. S14), and scattered direct beam70

(Sl,sl,Λ,sb, Eq. S15) components following De Pury and Farquhar (1997)7. The shaded leaf shortwave absorption (Sl,sh,Λ, Eq.71

S16) is simply the difference of total canopy absorption and sunlit leaf absorption, although analogous forms of the sunlit72

equations (Eq. S13-S15) can also be used7.73

Sl,Λ =
(
1−ρ

′
l,Λ,b
)

Sin,Λ,b
(
1− exp[−K′b,Λ ·LAI]

)
+
(
1−ρ

′
l,Λ,d

)
Sin,Λ,d

(
1− exp[−K′d,Λ ·LAI]

)
(S11)

Sl,sl,Λ = Sl,sl,Λ,b +Sl,sl,Λ,d +Sl,sl,Λ,sb (S12)

Sl,sl,Λ,b = Sin,Λ,b ·αl,Λ · (1− exp[−Kb ·LAI]) (S13)

Sl,sl,Λ,d = Sin,Λ,d · (1−ρ
′
l,Λ,d) · (1− exp[−(K′d,Λ +Kb) ·LAI]) ·

K′d,Λ
K′d,Λ +Kb

(S14)

Sl,sl,Λ,sb = Sin,Λ,b · ((1−ρ
′
l,Λ,b) · (1− exp[−(K′b,Λ +Kb) ·LAI]) ·

K′b,Λ
K′b,Λ +Kb

+αl,Λ · (1− exp[−2Kb ·LAI])/2) (S15)

Sl,sh,Λ = Sl,Λ−Sl,sl,Λ (S16)

These shortwave radiative transfer equations rely on four essential parameters: the direct (Kb) and diffuse extinction74

coefficients (Kd) and the direct (ρ ′l,b) and diffuse canopy reflectance coefficients (ρ ′l,d). The Kb value is calculated by dividing75

the mean leaf angle (G(Z)) by the projection of sunlight onto a horizontal surface (Eq. S17), where Z is the sun zenith angle.76

The Kb value will change throughout the day as the sun moves across the sky since the angle of incidence with respect to leaf77

angles will vary. The function G(Z) is known as the ‘Ross-Goudriaan’ function (Eq. S18-S20), which depends on a parameter,78

χl , that describes the leaf angle distribution’s deviation from a spherical (i.e., random) distribution. As mentioned in Sect. S4,79

we calibrated χl to vary between -0.4 and 0.6.80
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Kb =
G(Z)

cos(Z)
(S17)

G(Z) = φ1 +φ2 cos(Z) (S18)

φ1 = 0.5−0.633χl−0.33χ
2
l (S19)

φ2 = 0.877(1−2φ1) (S20)

The diffuse radiation extinction coefficient, Kd , is calculated by integrating the direct beam transmissivity (τl,b shown in Eq.81

S21) over every solid angle of the hemisphere (Eq. S22) and then inverting the transmissivity law (Eq. S23). The transmissivity82

defines the percent of radiation that makes it through the canopy to the soil assuming exponential light extinction.83

τl,b = exp(−Kb ·LAI) (S21)

τl,d = 2 ·
∫

π/2

0
τl,b · cosZ · sinZ dZ (S22)

Kd =
− lnτl,d

LAI
(S23)

The GvL model has fewer equations than the CLM v5 two-stream approximation due to several simplifying assumptions.84

First, the single scattering of radiation can be accounted for in the extinction coefficients (Kb and Kd) simply by multiplying by85

the square root of leaf absorption (αl)3. The extinction coefficients accounting for single-scattering are shown in Eq. S24-S25.86

Second, leaf transmissivity and reflectance are assumed identical—a reasonable assumption for green canopies3—allowing87

derivation of simplified relationships for direct beam (ρl,b, Eq. S26) and diffuse canopy reflectance (ρl,d , Eq. S27) based on88

idealized reflectance of horizontal leaves (ρl,h, Eq. S28). Readers are referred to Goudriaan (1977)8 and Goudriaan and van89

Laar (1994)3 for further details on these assumptions.90

K′b,Λ =
√

αl,Λ ·Kb (S24)

K′d,Λ =
√

αl,Λ ·Kd (S25)

ρl,b =
2Kb

Kb +Kd
ρl,h (S26)

ρl,d =
∫

π/2

0
2 ·ρl,b · cosZ · sinZ dZ (S27)

ρl,h =
1−√αl,Λ

1+√αl,Λ
(S28)

The above canopy reflectance equations were derived for infinitely deep canopies. To account for the ground reflectance91
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(ρg), the approximations in Eq. S29-S30 are used. These approximations assume radiation travels through the canopy, reflects92

off the soil according to ρg, and travels back up through the canopy (hence the factor of 2 in the exponential term).93

ρ
′
l,Λ,b = ρl,b +

(
ρg−ρl,b

)
· exp(−2K′bLAI) (S29)

ρ
′
l,Λ,d = ρl,d +

(
ρg−ρl,b

)
· exp(−2K′dLAI) (S30)

S2.2.2 Longwave Radiative Transfer94

The longwave radiative transfer model follows the method laid out in Dai et al. (2004)9, which is derived assuming exponential95

extinction of longwave radiation through the plant canopy. The net absorbed longwave radiation (Ll,k) is given by Eq. S31,96

which depends on the sunlit and shaded leaf temperature (Tl,k), ground temperature (Tg), fraction of longwave radiation absorbed97

by the canopy (δl , Eq. S32), the sunlit and shaded leaf fraction (Fk), and the Stefan-Boltzmann constant (σ ). As mentioned98

previously, k is used to indicate that the equations are identical for sunlit or shaded big leaves.99

Ll,k =
(
Lin−2σT 4

l,k +σT 4
g
)
·δl ·Fk (S31)

δl = 1− exp(−LAI) (S32)

Fk=1 = Fsl =
1− exp(−Kb ·LAI)

Kb ·LAI
(S33)

Fk=2 = Fsh = 1−Fsl (S34)

S2.3 Scalar Transport100

Scalar transport for this LSM consists of prognostic equations for latent heat flux (LE), sensible heat flux (H) and gross primary101

productivity (GPP). The conserved quantities are mass of H2O and CO2 as well as enthalpy (cp ·T ). The states of the soil-plant102

system are given by partial pressure of H2O (e), partial pressure of CO2 (c) and temperature (T ). First, we will describe the103

latent and sensible heat fluxes occurring between the canopy, ground, canopy airspace, and atmosphere. Then, we will elaborate104

on the coupled water vapor and CO2 transport controlled by stomatal response to varying environmental conditions.105

The two-layer approach5 used in this LSM splits the transport equations into canopy, ground, and atmospheric fluxes that106

are coupled via the canopy airspace (shown in Fig. S1). In effect, there are four transport pathways: 1) sunlit canopy (big107

leaf) to canopy airspace, 2) shaded canopy (big leaf) to canopy airspace, 3) ground to canopy airspace, and 4) canopy airspace108

to atmosphere above canopy. The first three pathways must balance with the last pathway under the imposed steady-state109

conditions. All transport equations use integrated flux-gradient relationships (also known as conductance-difference relations110

or an analogy to Ohm’s law) to calculate fluxes as the difference in potentials between two points in space multiplied by a111

conductance (inverse of resistance). As previously mentioned, the index k represents that an equation applies separately to both112
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the sunlit and shaded big leaf, while their resultant states and fluxes will differ.113

S2.3.1 Latent and Sensible Heat Fluxes114

The transport of water vapor from the canopy to the canopy air space (transpiration) consists of two steps: 1) transport from the115

leaf mesophyll cells through the stomatal openings (LEl,k, Eq. S35) and 2) transport through the laminar boundary layer at the116

leaf surface to the canopy air space (Eq. S36). The transpiration through the stomata is driven by a potential difference in the117

stomatal cavity vapor pressure (ei,k) and the vapor pressure at the surface of the leaf (es,k) and mediated by the stomatal aperture118

controlled by stomatal conductance gs,k. Likewise, the transport from the leaf surface to the canopy air space is driven by the119

difference in es,k and vapor pressure in the canopy air space (eca) and mediated by the laminar boundary layer conductance to120

water vapor (gbv). Since we assume steady state and use Ohm’s analogy to represent transport, we can treat these two pathways121

as two resistors in series and calculate the overall transpiration from the canopy in a single equation (Eq. S37). Note that122

scaling from the individual leaf to the big-leaf approximation (i.e., canopy) is done simply by multiplying by the respective123

sunlit or shaded leaf area index (LAIk). This assumes that all sunlit leaves have the same stomatal conductance and internal124

vapor pressure. Likewise, all shaded leaves have the same stomatal conductance and internal vapor pressure, which differs from125

the sunlit leaves. Additionally, we apply a mass-to-energy unit conversion (Ce) consisting of the latent heat of vaporization126

(Lv), density of air (ρa), ratio of molar mass of water to molar mass of air (ε), and atmospheric pressure (Patm). For simplicity,127

we have assumed a constant air density and have not modified it based on water vapor concentration or temperature. The LE128

equation is written assuming stomata on one side of the leaf as is common practice5. If a plant has stomata on both sides, it is129

usually accounted for in the stomatal conductance measurement and parameters.130

LEl,k = LAIk ·Ce ·gs,k ·
(
ei,k− es,k

)
(S35)

LEl,k = LAIk ·Ce ·gbv ·
(
es,k− eca

)
(S36)

LEl,k = LAIk ·Ce ·
gs,k ·gbv

gs,k +gbv
·
(
ei,k− eca

)
(S37)

Ce =
Lv ·ρa · ε

Patm
(S38)

The description of sensible heat flux from the canopy is simpler than that of latent heat flux, as we assume no temperature131

gradient within a leaf. Therefore, heat transport is driven by temperature difference between the leaf (Tl,k) and canopy airspace132

(Tca) only and mediated by the laminar boundary layer conductance to heat (gbh). The result is scaled from a single leaf to133

the big-leaf approximation (i.e., canopy) by multiplying by the sunlit or shaded LAI as shown in Eq. S39. The underlying134

assumption here is that all sunlit leaves have one temperature and all shaded leaves have another at each time step. Furthermore,135

a conversion factor (Ch, Eq. S39) consisting of ρa and specific heat at constant pressure (cp) is required to make the transport in136

terms of enthalpy which is the conserved quantity (not temperature). The factor of 2 in Eq. S39 represents transport from both137

sides of the leaf.138
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Hl,k = 2 ·LAIk ·Ch ·gbh ·
(
Tl,k−Tca

)
(S39)

Ch = ρa · cp (S40)

There are four unknown conductances that must be calculated. The stomatal conductance gs will be covered in the next139

section as it is coupled to carbon assimilation. The laminar boundary layer conductances for water vapor and heat are assumed140

identical based on Reynold’s analogy5 and are calculated using equations derived from heat transfer experiments on rigid steel141

leaves (Eq. S41). The calculation requires a turbulent transfer coefficient (Cl), a characteristic leaf dimension (dl) and the142

friction velocity (u∗) measured at the flux tower.143

gbv = gbh =
Cl ·u∗

dl
(S41)

Next, the transport of water and heat from the ground to the canopy airspace is shown in Eq. S42-S43. Much like LEl,k,144

latent heat flux from the ground (LEg) consists of two conductances in series driven by the vapor pressure difference in ground145

(eg) and canopy airspace (eca). The conductances represent vapor transport through the tortuous soil pores when soil is not146

saturated (gsv) and the subsequent transport from the soil surface to the canopy airspace through a laminar boundary layer (g′av).147

The sensible heat flux from the ground to canopy airspace Hg is driven by the difference in ground temperature Tg and Tca148

mediated by conductance of heat between soil surface and canopy airspace (g′ah).149

LEg =Ce ·
gsv ·g′av

gsv +g′av
· (eg− eca) (S42)

Hg =Ch ·g′ah · (Tg−Tca) (S43)

The conductance for both heat and water vapor from the soil are again assumed equivalent by Reynold’s analogy and is150

calculated using a turbulent transfer coefficient (Cg) and u∗ as assumed in Oleson et al. (2018)2 (Eq. S44). The turbulent151

transfer coefficient is balanced between bare soil and dense canopy values using Eq. S45-S47. The reader is referred to Oleson152

et al. (2018)2 and references therein for justification of these parametrizations.153
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g′av = g′ah =Cg ·u∗ (S44)

Cg =W ·Cg,bare +(1−W ) ·Cg,dense (S45)

W = exp(−LAI−SAI) (S46)

Cg,bare =
k

0.13
·
( zom,g ·u∗

ν

)−0.45
(S47)

The additional conductance accounted for in unsaturated soils, gsv, is calculated with Eq. S48 using an estimate of the dry154

soil layer (DSL), the water vapor diffusivity (Dv) and a shape factor describing the tortuosity of the soil pores (τ). The value of155

gsv approaches ∞ as the soil becomes saturated to an incipient level (θi), which was calibrated in our analysis. If gsv is infinite,156

the conductance in Eq. S42 simplifies to g′av. The reader is again referred to Oleson et al. (2018)2 and references therein for157

justification of these parametrizations.158

gsv =
Dv · τ
DSL

(S48)

Dv = 2.12×10−5 ·
(

Tg +273.15
273.15

)1.75

(S49)

DSL = Dmax ·
θi−θs

θi−θair
(S50)

τ = φ
2
air ·
(

θsat −θair

θsat

)3/b

(S51)

Lastly, the latent and sensible heat fluxes from the canopy airspace to the atmosphere at the measurement point z are159

described in Eq. S52-S53. The potential differences are between vapor pressure and temperature in the canopy airspace (Tca160

and eca) and the atmosphere at the flux tower measurement height (Ta and ea). The conductance from the canopy airspace to the161

atmosphere is again the same for heat (gah) and vapor (gav) by Reynold’s analogy shown in Eq. S54. The conductance is based162

on the Monin-Obukhov similarity theory (MOST)10, also known as the ‘log-law’. The momentum roughness length (zom),163

heat/vapor roughness length (zoh), and zero-plane displacement height (do) are empirical parameters. The zom was determined164

from literature while the other two parameters are calculated using practical relationships11 (Eq. S55-S56). For this study,165

we neglected the impact of atmospheric stability on the atmospheric conductance term. These effects are usually handled166

by correction factors accounting for how density stratifications in the atmosphere enhance or suppress turbulent transport.167

However, the stability corrections add another level of complexity to the numerical scheme, as they are dependent on H and LE,168

and are not important to the overall question of this research.169
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LE =Ce ·gav · (eca− ea) (S52)

H =Ch ·gah · (Tca−Ta) (S53)

gah = gav =
u · k2

ln
(

zm−do
zom

)
· ln
(

zm−do
zoh

) (S54)

zoh = 0.1 · zom (S55)

do = 0.7 ·h (S56)

In summary, Eq. S35-S56 contain five prognostic variables: Tl,sl , Tl,sh, Tg, gs,sl , and gs,sh. An important assumption for170

scalar transport is that the vapor pressures ei,k and eg are assumed to be dependent on Tl,k and Tg via the Clausius-Clapeyron171

relationship5. Furthermore, the states of the canopy airspace, eca and Tca, are completely determined by the states and172

conductances of the canopy, ground, and atmosphere. Substituting Eq. S37, S39, S42, S43, S52 and S53 into Eq. S8-S9 and173

solving for eca and Tca yields weighted averages of the other conductances and states (Eq. S57-S58). All other terms in the174

scalar transport equations are either forcing data, parameters, or constants. Therefore, we have at least five variables thus far175

that must be solved for.176

eca =
gav · ea +gl,sl · ei,sl +gl,sh · ei,sh +gav,g · eg

gav +gl,sl +gl,sh +gav,g
(S57)

Tca =
gah ·Ta +gbh ·Tl,sl +gbh ·Tl,sh +gah,g ·Tg

gah +2 ·gbh +gah,g
(S58)

gl,k =
LAIk ·gs,k ·gbv

gs,k +gbv
(S59)

S2.4 Stomatal Conductance and CO2 Assimilation177

Stomatal conductance (gs) is intrinsically tied to CO2 assimilation as stomatal aperture and CO2 gradient controls photosynthetic178

carbon fixation. We utilize a steady state, coupled stomatal conductance-photosynthesis scheme similar to Oleson et al. (2013)12
179

that balances CO2 assimilation with CO2 diffusion into the leaf. Specifically, we utilize the Medlyn stomatal conductance180

model13 to represent stomatal responses to atmospheric conditions coupled with the Farquhar, von Caemmerer, and Berry181

(1980) C3 photosynthesis model14 (hereafter, referred to as FvCB model).182

S2.4.1 Medlyn Stomatal Conductance Model183

We estimate the well-watered stomatal conductance (gs,ww,k), i.e., stomatal conductance without stomatal closure due to water184

transport from soil to leaf, using the Medlyn optimality model13 (Eq. S60). The Medlyn model assumes plants adjust stomatal185

aperture in order to minimize the water lost by transpiration for a certain carbon gain at each instant under light-limited186
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photosynthetic conditions (although it is also commonly used to describe stomatal behavior during Rubisco-limited conditions).187

The solution of a resulting calculus of variations problem yields a relation where stomata close under higher vapor pressure188

deficit (Dk = ei,k− es,k) and leaf surface CO2 concentration (cs), and open with higher CO2 assimilation (An,k). This model189

provided a unifying framework for previously successful empirical methods15 and is parametrized by the minimum stomatal190

conductance (go) and a species-specific slope parameter (g1) related to the marginal carbon gain to water loss.191

gs,ww,k = go +

(
1+

g1√
Dk/103

)
1.6 ·An,k

(cs/Patm) ·106 (S60)

The Medlyn equation provides a link between CO2 diffusion into the leaf (Ad
n,k) and CO2 assimilation determined by a192

photosynthetic model (An,k). The CO2 diffusive transport equation (Eq. S61) contains gs,k, which is simply the well-watered193

Medlyn value gs,ww,k reduced by a chosen transpiration downregulation scheme discussed in Sect. S2.5. (Note: CO2 transport194

into the leaf via diffusion is nearly identical to that of water vapor (Eq. S37), with increases to stomatal and laminar boundary195

layer conductances of 1.6 and 1.4, respectively, to account for the differing diffusivities of CO2 compared to H2O.) The CO2196

assimilation through photosynthesis appears as the term An,k in Eq. S60. Our LSM solution scheme (Sect. S2.6) ensures that197

diffusive CO2 transport into the leaf is balance by CO2 assimilation, i.e., Ad
n,k = An,k.198

Ad
n,k =

gs,k ·gbv

1.4gs,k +1.6gbv
·
(
ci,k− cca

)
Patm

·106 (S61)

S2.4.2 FvCB C3 Photosynthesis Model199

The FcVB model14 represents the three limiting mechanisms of the Calvin Cycle for steady-state carbon assimilation from200

atmospheric CO2: 1) the enzyme kinetics of Ribulose 1,5 bisphosphate carboxylase-oxyganese (Rubisco), 2) the Ribulose201

1,5 bisphosphate (RuBP) regeneration rate governed by ATP and NADPH created in the election transport chain of the light202

reactions, and 3) the amount of triose phosphates (starches) a plant can use. The equations here are for C3 photosynthesis only203

following Oleson et al. (2018)2.204

Rubisco-limitation is represented using Michaelis-Menten (MM) kinetics that describe uptake velocity of a fixed amount205

of Rubisco when RuBP is saturated at an internal concentration of CO2 (Eq. S62). The equation determines the amount of206

CO2 assimilated or released depending on whether Rubisco combines RuBP with CO2 (carboxylation) or RuBP with O2207

(oxygenation). Thus, the equation requires values for partial pressure of oxygen in the leaf (oi, Eq. S63), MM constant for CO2208

(Kc, Eq. S64), MM constant for O2 (Ko, Eq. S65), and the CO2 compensation point (Γ, Eq. S66).209
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Ac,k =Vmax25
ci,k−Γ

ci,k +Kc (1+oi/Ko)
(S62)

oi = 0.209 ·Patm (S63)

Kc = 404.9×10−6 ·Patm (S64)

Ko = 278.4×10−3 ·Patm (S65)

Γ = 42.75×10−6 ·Patm (S66)

The RuBP-limited assimilation rate (A j, Eq. S67), also known as the light-limited rate, describes conditions where the210

RuBP is limiting due to shortages in NADPH and ATP from the electron transport chain in the thykaloid of the mesophyll cells.211

A balance of the number of electrons required to create the required NADPH for RuBP regneration yields Eq. S67 where the212

rate of electron transport (J) is a key quantity. The electron transport rate is itself co-limited between a maximum rate (Jmax25)213

and the efficiency of photosystem II at delivering electrons (IPSII , Eq. S68) from the absorbed PAR by the leaf (Sl,k,par). The214

factor of 4.6 in Eq. S68 represents unit conversion from joules to µmoles of photons16. The quantum efficiency of photosystem215

II (ΦPSII) is usually taken to be 0.7 µmoles of electrons per µmoles of photons2.216

A j,k = J
ci,k−Γ

4ci,k +8Γ
(S67)

IPSII,k = 0.5 ·ΦPSII ·
(
4.6 ·Sl,k,par

)
(S68)

ΘPSII · J2− (IPSII,k+Jmax25) · J+ IPSII,k · Jmax25 = 0 (S69)

The product-limited assimilation rate (Ap, Eq. S70) represents the upper limit on assimilation based on the plant’s need for217

the starches. See Oleson et al. (2018)2 and sources within for justifications of the relationship with Vmax25.218

Ap =Vmax25/6 (S70)

Altogether, we want to calculate the co-limitation of these three controls on plant CO2 assimilation. To do this, we use219

quadratic equations to estimate the co-limitation as laid out in Collatz et al. (1991)17 to allow a gradual transition across the220

three mechanisms and to account for joint effects of the three limits. The Θc j and Θip are empirical curvature factors that221

control for this gradual transition2. The overall CO2 assimilation Ak is given by the root of Eq. S71 and S72. Lastly, we must222

remove from Ak the amount of CO2 that is released through dark respiration Rd to get the overall net assimilation An,k (Eq. S73).223

An,k is the amount of CO2 assimilated from the atmosphere, which we balance with CO2 diffusion into the leaf (Ad
n,k; Eq. S58).224
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Θc j ·A2
i,k− (Ac,k+A j,k) ·Ai,k +Ac,k ·A j,k = 0 (S71)

Θip ·A2
k− (Ai,k+Ap,k) ·Ak +Ai,k ·Ap,k = 0 (S72)

An,k = Ak−Rd (S73)

Rd = 0.015 ·Vmax25 (S74)

For simplicity, we have omitted the temperature dependence of the photosynthetic parameters Vmax25, Jmax25, Rd , Kc, Ko,225

and Γ and simply use the values at 25oC18–20. These dependencies are typically handled with Arrhenius functions5 to account226

for the breakdown or acceleration of various metabolic processes at high and low temperatures. Since the goal of this paper227

was to test the transpiration downregulation schemes, we omitted the temperature dependence due to the need for many more228

parameters to properly use the Arrhenius functions. We do not believe this simplification would alter the main conclusions on229

the differences between β and PHMs because both models incur the same errors by neglecting temperature dependence.230

S2.4.3 Scale Correction of Photosynthetic Parameters231

The maximum carboxylation rate of the Rubisco enzyme (Vmax25) and the maximum electron transport rate (Jmax25) are232

dependent on nitrogen availability in the leaf. Nitrogen content has been been found to exponentially decay with relative233

cumulative leaf area in the canopy21; therefore, both Vmax25 and Jmax25 vary nonlinearly with distance from the top of the234

canopy. For simplicity, we use methods from De Pury and Farquhar (1997)7 and Dai et al. (2004)9 to scale Vmax25 and Jmax25,235

respectively, which accounts for this nonlinear nitrogen profile by integrating these rates through the canopy to get a single,236

effective value. These methods differ from the optimality principles used in CLM v52.237

The overall Rubisco carboxylation capacity of the canopy (Vl,max25) factoring in leaf nitrogen is given Eq. S75, where Kn238

is the extinction coefficient for leaf nitrogen content. The two-big-leaf model requires separate consideration of the sunlit239

and shaded big leaf22 shown in Eq. S76-S77. The maximum electron transport rate of the canopy (Jl,max25) factoring in leaf240

nitrogen is given in Eq. S78, while the sunlit and shaded big leaf values are shown in Eq. S79-S80. The values of Vl,k,max25 and241

Jl,k,max25 are used in place of the Vmax25 and Jmax25 parameters for the FvCB model described in the previous section. Note, the242

scaled photosynthetic parameters do change at each timestep because the sun moving across the sky changes the fraction of243

sunlit and shaded leaves and, in turn, the integrated rate parameters.244
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Vl,max25 = LAI ·Vmax25 · [1− exp(−Kn)] (S75)

Vl,sl,max25 = LAI ·Vmax ·
1− exp(−Kn−Kb ·LAI)

Kn +Kb ·LAI
(S76)

Vl,sh,max25 =Vl,max25−Vl,sl,max25 (S77)

Jl,max25 = Jmax25 ·
1− exp

(
−K′d ·LAI

)
K′d

(S78)

Jl,sl,max25 = Jmax25 ·
1− exp

(
−[K′d +Kb] ·LAI

)
K′d +Kb

(S79)

Jl,sh,max25 = Jl,max25− Jl,sl,max25 (S80)

S2.5 Transpiration Downregulation245

The transpiration downregulation schemes used in the main article are the empirical β and Plant Hydraulic Model schemes246

(PHM). We will discuss how each is implemented to suppress transpiration under soil water stress. The reader is referred to the247

main article for detailed discussion on the theoretical justification for the two methods.248

S2.5.1 Well-Watered Transpiration249

Before discussing the transpiration downregulation schemes, we must first clarify the terminology ‘well-watered’. As stated250

in the main article, well-watered refers to soil water conditions that do not cause any limitation to transpiration through251

stomatal closure via low leaf water potential. In other words, the transpiration meets the stomata-regulated atmospheric252

moisture demand—determined by the Medlyn model (Eq. S60) and the driving vapor pressure difference. This definition253

becomes slightly more ambiguous as we introduce a dual-source, two-big-leaf model structure, as the states (vapor pressure254

and temperature) experienced by the hypothetical big leaves at a time step adjust to downregulation. Therefore, for clarity,255

the well-watered transpiration rate corresponds to the states calculated when transpiration downregulation is turned off, i.e.,256

representing no soil water stress. This approach differs from CLM v52, which considers well-watered transpiration to be the257

rate under the downregulated states. This distinction between the two definitions of the well-watered rate will become important258

shortly, as the well-watered rate is a key variable in the transpiration downregulation schemes. Also, note that the well-watered259

rate is different between sunlit and shaded big leaf as they encounter differing temperatures, light, and vapor pressures.260

S2.5.2 β Downregulation Schemes261

As mentioned in the main article, the LSM utilizes a Weibull function to represent the empirical β curve (Eq. 13 in the main262

article). There are three variants of this method used: 1) a single β , 2) a 2-leaf β , and 3) a dynamic β . Since the method is263

empirical, there is not firm guidance on where within the plant to apply this downregulation, as some models apply it directly264

to well-watered stomatal conductance and other apply it to photosynthetic parameters like Vmax25. Here, we apply β to the265

well-watered transpiration rate of the sunlit and shaded big leaf to maintain consistency with our minimalist analysis. Sect.266
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S2.6.1 will discuss in greater detail how β is applied.267

S2.5.3 PHM Downregulation Scheme268

We will elaborate here on the PHM laid out in the main article and extend its formulation to the two-big leaf approach of the269

LSM. The PHM describes one-dimensional water transport through the soil-plant system and is similar to that in CLM v52, 23.270

However, we have simplified the segmentation to soil-to-xylem, xylem-to-leaf, and leaf-to atmosphere compartments. For271

readability the equations shown in the main article are repeated here. Each segment has a conductance curve that downregulates272

from the maximum conductance values based on water potentials through the segment. The conductivity equations follow273

closely the work of Manzoni et al. (2014)24 and Feng et al. (2018)25 and references therein. All parameter values and units for274

the following equations can be found in Table S4.275

The soil-to-xylem conductance (gsx, Eq. S81) consists of the well-known unsaturated hydraulic conductivity curve for soil26
276

and a maximum conductance value (gsx,max, Eq. S82). The downregulation function is parametrized by saturated soil water277

potential (ψsat ), soil water retention exponent (b), unsaturated hydraulic conductivity exponent (c = 2b+3), and a correction278

factor (d) to account for roots’ ability to reach water27. During the calibration process (Sect. S4), we found that d = 0 to279

obtain realistic soil parameters, but it is included in our formulation for completeness. The gsx,max value is calculated using the280

saturated hydraulic conductivity (ks,sat ), specific weight of water (ρw ·g) and a length scale based on root area index (RAI), fine281

root diameter (dr) and effective rooting depth (Zr) to convert to conductance. We assume a single, homogeneous soil layer282

described by a constant water characteristic curve, average transport distance to root, and a root zone soil water potential (ψs).283

gsx (ψ) = gsx,max ·
(

ψsat

ψ

) c−d
b

(S81)

gsx,max =
ks,sat

ρw ·g
·
√

RAI
dR ·Zr

·10−6 (S82)

The xylem-to-leaf conductance, gxl (Eq. S83), is the maximum xylem-to-leaf conductance (gxl,max, Eq. S83) downregulated284

by a sigmoidal function28 parametrized by the vulnerability exponent a and the xylem water potential (ψx) at 50% loss of285

conductance (ψx,50) due to xylem embolism. The gxl,max is estimated using sapwood-specific hydraulic conductivity (Ksap), the286

sapwood area index (SapAI) and the height of vegetation (hv), which assumes uniform conductivity and sapwood area through287

the plant.288

gxl (ψ) = gxl,max ·
[

1− 1

1+ ea·(ψ−ψx,50)

]
(S83)

gxl,max =
Ksap ·SapAI

hv ·ρw
(S84)

The leaf-to-atmosphere conductance (Eq. S85) is the stomatal conductance for the sunlit and shaded leaf, gs,k, downregulated289
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from its well-watered value (gs,ww,k) using a Weibull function parametrized by a shape factor (bl) describing stomatal sensitivity290

and the leaf water potential at 50% loss of conductance (ψl,50)29. The gs,ww,k value is calculated using the Medlyn model291

previously discussed in Eq. S6013. The values for stomatal conductance are defined for both sunlit and shaded leaf by index k292

as they will almost always differ.293

gs,k = gs,ww,k ·2
−
(

ψl,k
ψl,50

)bl

(S85)

In order to calculate the water flux through each segment, we must utilize a Kirchhoff transform (Eq. S86) to account for294

the the varying potential (and conductance) along each segment30. The transform is only performed on the soil-to-xylem and295

xylem-to-leaf segments as the distance traveled through the leaf to stomata is assumed negligible. The total flux potential for296

soil-to-xylem (Φsx(ψ), Eq. S87) and xylem-to-leaf (Φxl(ψ), Eq. S88) give an upper limit on the water that could be extracted297

from a segment based on the potential. Using this linearized flow theory, the flux through each segment is simply calculated by298

taking the difference in total flux potential between the end points of each segment.299

Φ(ψ) =
∫

ψ

−∞

K
(
ψ
′)dψ

′ (S86)

Φsx(ψ) =
b ·gsx,max ·ψ

b− c+d
·
(

ψsat

ψ

) c−d
b

(S87)

Φxl(ψ) = gxl,max ·
[

ln(e−a·ψ + e−a·ψ50)

a
+ψ

]
(S88)

The two-big leaf configuration of this model requires five total segments: soil-to-xylem, xylem-to-sunlit leaf, xylem-to-300

shaded leaf, sunlit leaf-to-atmosphere, and shaded leaf-to-atmosphere. The underlying assumption is that the transport from301

xylem to the sunlit and shaded leaf is completely independent. The transport in each segment is shown below in Eq. S89-S91.302

Note these equations are the same as Equations 9-11 in the main article except adapted for the two-big-leaf configuration.303

LEsx = [Φsx(ψs)−Φsx(ψx)] ·ρw ·Lv (S89)

LExl,k =
[
Φxl(ψx)−Φxl(ψl,k)

]
·ρw ·Lv (S90)

LEla,k = LAIk ·gs,k ·
(
ei,k− es,k

)
·Ce (S91)

We assume a steady-state solution where the supply through the soil-plant system equals the atmospheric moisture demand.304

This problem can be solved using a Newton-Raphson method as done in CLM v52. However, this method was found to be305

unstable under certain conditions; therefore, we opted to use nonlinear least squares in MATLAB (lsqnonlin) to solve the306

problem. We used the Levenberg-Marquardt scheme, which is an unconstrained, quasi-Newton optimization routine. The307

16/57



optimization problem is laid out in Eq. S92-S94. The xylem, sunlit leaf, and shaded leaf water potentials are the decision308

variables (ψ , Eq. S94) that attempt to minimize the residuals (R, Eq. S93) that represent flow differences between connected309

segments. Therefore, when the residual vector becomes 0, flow is balanced through all segments and we have obtained our310

steady-state solution. We explored using constrained optimization (as in Sect. S2.6) for this problem, but it did not appear to311

provide any additional benefit and took longer to solve.312

ψ
∗ = min

ψ
‖R‖2 (S92)

R =


LEsx−∑

2
k=1 LExl,k

LExl,sl−LEla,sl

LExl,sh−LEla,sh

 (S93)

ψ =


ψl,sl

ψl,sh

ψx

 (S94)

S2.6 LSM Solution Scheme313

There are numerous ways to solve the steady-state dual-source scheme depending on how the equations and unknowns have314

been defined. Here, we have created our own method, similar to CLM v5. There are two overall computational schemes or315

solvers: a well-watered solver and a transpiration downregulation solver. In the well-watered solver, there are two levels of316

computation: the surface energy budget solver (outer solver) and the scalar transport solver (inner solver). For the transpiration317

downregulation scheme, well-watered solutions are adjusted in a separate solver based on soil moisture availability. Our318

solvers use optimization routines rather than the Newton-Raphson methods used in CLM v5 for several reasons: 1) numerical319

derivatives are required for both methods, 2) the optimization routine guards against solution divergence, 3) the optimization320

routine is simple to set up, and 4) speed between the two methods at our scale is essentially the same.321

S2.6.1 Well-Watered Solver322

The well-watered solver is the primary solution scheme of the LSM, which is run for every simulation with and without323

transpiration downregulation. The solver consists of two nested least squares optimization problems, which have been referred324

to as the outer and inner solvers for simplicity. There are six overall state variables that must be adjusted to balance the surface325

energy budget (Eq. S3) for this steady-state problem: Tl,k, Tg, ci,k and eca. The outer solver is concerned with balancing the326

surface energy budget by finding the correct leaf (Tl,k) and ground (Tg) temperatures, whereas the inner solver is focused on327

finding the correct internal leaf carbon concentrations (ci,k) and canopy water vapor pressure (eca) that balance the LE and H328

leaving the ground and canopy with the transport from the canopy airspace to atmosphere.329

The outer solver is a three dimensional nonlinear least squares problem shown in Eq. S95-S97. The residuals being330
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minimized (Ro) are the sunlit big leaf, shaded big leaf, and ground energy balances in Eq. S4-S6, while the decision variables331

(T ) are the temperatures of these three respective compartments. The outer solver is illustrated in (Fig. S2) as it begins by332

gathering all the environmental forcing data for a particular time step (Sect. S5). The outer solver then initiates a guess for the333

three temperatures based on the air temperature. The next step is to solve the GvL radiative transfer model to obtain the net334

radiation Rn for the three compartments and their breakdown into PAR, NIR, and longwave components. At this point, the335

temperatures are sent to the inner solver to determine the scalar fluxes from the ground, canopy, and canopy airspace under336

these fixed temperatures and states. Once the inner solver finds the ci,k and eca that balances Eq. S8-S9, the scalar fluxes for all337

compartments are calculated. The outer solver then checks to see if the net radiation in each compartment equals the scalar338

fluxes. If not, the temperatures are adjusted based on the optimization routine and the process is repeated until convergence.339

T ∗ =min
T

‖Ro‖2 (S95)

s.t. T ∈ (0,40)

Ro =


Sl,sl,par +Sl,sl,nir +Ll,sl−Hl,sl−LEl,sl

Sl,sh,par +Sl,sh,nir +Ll,sh−Hl,sh−LEl,sh

Sg,par +Sg,nir +Lg−Hg−LEg−Gg

 (S96)

T =


Tl,sl

Tl,sh

Tg

 (S97)

The inner solver is also a three dimensional nonlinear least squares problem within the outer solver shown in Eq. S98-S100.340

The inner solver is given temperatures and states of the two big leaves, ground, and air and must find the internal CO2341

concentrations that balance plant carbon assimilation with leaf diffusion as well as the canopy airspace water vapor pressure342

that balances scalar transport from ground and canopy with that to the atmosphere. The inner solver is shown in Fig. S2 as the343

light gray indented panels. First, values of ci,k and eca are guessed based on atmospheric conditions. Then the FvCB model is344

solved to calculate the net CO2 assimilation of each leaf (An,k), which must the diffusive CO2 flux into the leaf Ad
n,k. A neat345

trick introduced in CLM v52 is to substitute the diffusion equation (Eq. S61) into the Medlyn equation (Eq. S60) to obtain a346

quadratic equation whose larger root is the solution for gs,k (Eq. S101-S103). Using gs,k, the internal carbon concentration347

from leaf diffusion (c+i,k) is calculated and checked against the assumed value of the solver ci,k. Once gs,k has been determined,348

we can use Eq. S57 to calculate a check on the canopy airspace water vapor pressure (e+ca). These values are adjusted by the349

optimization routine until convergence criteria is met. The results are then sent back out to the outer solver.350
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x∗ =min
x
‖Ri‖2 (S98)

s.t. x ∈ (0,40)

Ri =


c+i,sl− ci,sl

c+i,sh− ci,sh

e+ca− eca

 (S99)

x =


ci,sl

ci,sh

eca

 (S100)

g2
s, j−

[
2 ·go +2 ·C1, j +

C2
1, j ·g2

1

gbv ·C2, j

]
gs, j +

[
g2

o +2 ·C1, j ·go +C2
1, j

(
1− g2

1
C2, j

)]
= 0 (S101)

C1, j =
1.6 ·An, j ·Patm

cs, j ·106 (S102)

C2, j =
ei, j− eca

1000
(S103)

S2.6.2 Transpiration Downregulation Solver351

The transpiration downregulation solver is an additional solver used after the well-watered solver to account for the effect352

of soil water stress on stomatal conductance and, in turn, on the scalar fluxes and plant microclimate. The solver scheme353

is a single least squares problem (Eq. S104) in five dimensions of leaf temperatures and conductances as well as ground354

temperature (Eq. S106). As in the well-watered solver, the first three residuals are the surface energy balance for the big leaves355

and ground (Eq. S105). The final two residuals (Eq. S107) ensure that the transpriation from the canopy calculated by the scalar356

transport module match the value calculated by the selected downregulation method; either β or PHM. For the β method, the357

downregulated transpiration is simply β multiplied by the well-watered transpriation rate LEl,k,ww. For the the PHM method,358

the downregulated transpiration rate (LEl,k,phm) is the solution to the PHM that balances supply and demand (Eq. S92-S94).359

The solver scheme is laid out in Fig. S3 where it initializes the five decision variables from the well-watered solution. For360

the set temperatures and conductances we are able to re-calculate the longwave radiation, carbon assimilation, scalar fluxes361

and states. At this point, we can calculate the the surface energy budget residuals in Eq. S105. Now there is a choice to362

make whether to select the β model or the PHM. The β model is less computationally expensive as we simply multiply β363

by the already calculated LEl,k,ww. Any of the three β methods (βs, β2L, and βdyn) can be applied at this point as there is no364

real computational difference between the three, just different β values are multiplied by the well-watered rates. The PHM365
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scheme is slightly more complex as we must solve the three-dimensional least squares problem to balance supply and demand366

(Sect. S2.5.2). However, both schemes then check the last two residuals (Eq. S107) to ensure the transpiration from the scalar367

transport module (Eq. S37) match the downregulation scheme transpiration. If the residual does not converge the solver adjusts368

the decision variable and repeats.369

This transpiration downregulation scheme is different than that proposed by CLM v52 not only numerically but also in how370

the well-watered transpiration is defined. As seen in our scheme (Fig. S3), our well-watered transpiration is fixed. We opted371

for this because the states of the plant microclimate under well-watered conditions are different then under downregulation.372

Therefore, under the same atmospheric forcings our method is consistent with what we would expect to see if the soil was373

saturated compared to when it is dry. The method in CLM v5 continually updates the well-watered transpiration during374

the downregulation solver. Essentially, as the microclimate states change during downregulation, CLM v5 re-calculates the375

well-watered stomatal conductance according to the Medlyn model and uses that in the downregulation schemes. This creates376

a positive feedback that increases transpiration suppression compared to our method. Also, the well-watered transpiration377

rate calculated in this method is the value that would be experienced in a certain plant microclimate and not necessarily under378

the atmospheric forcings. It is difficult to determine which method is most realistic, but they give very different values for379

downregulation. We think our definition of well-watered transpiration is more appropriate to defining the stomata-regulated380

atmospheric moisture demand so that is what was used in this analysis.381

x∗ =min
x
‖Rt‖2 (S104)

s.t. x ∈ (0,40)

Rt =



Sl,sl,par +Sl,sl,nir +Ll,sl−Hl,sl−LEl,sl

Sl,sh,par +Sl,sh,nir +Ll,sh−Hl,sh−LEl,sh

Sg,par +Sg,nir +Lg−Hg−LEg−Gg

Rt
(4)

Rt
(5)


(S105)

x =



Tl,sl

Tl,sh

Tg

gl,sl

gl,sh


(S106)
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Rt
(4,5) =


LEl,k,phm−LEl,sl if PHM scheme

LEl,k−β ·LEl,k,ww if β scheme
(S107)
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Figure S1. Schematic of our two-big-leaf, dual-source land surface model. The potentials and resistors indicate the scalar
transport between the sunlit and shaded big leaf approximations, ground, canopy airspace and atmosphere. To the left are the
assumed profiles of water vapor pressure deficit e, temperature (T ), CO2 partial pressure (c), and streamwise mean velocity (U).
The main modules used are laid out in text as well as the environmental forcings used from the US-Me2 AmeriFlux site for our
simulations.
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Figure S2. The well-watered solver solution scheme representing the outer solver (dark gray) and inner solver (light gray).
Light red panels indicate a step where a residual to the nonlinear least squares problem is calculated and yellow indicates
checking values of the residuals.
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Figure S3. The transpiration downregulation scheme that is used after the well-watered solver to re-caclulate fluxes and states
as plants reduce transpiration from soil water stress. Light red panels indicate a step where a residual to the nonlinear least
squares problem is calculated and yellow indicates checking values of the residuals. There are two separate choices for
downregulation: the β model and the Plant Hydraulic Model (PHM). See text for more details.
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S3 LSM Variables, Parameters, and Forcings382

The sheer volume of equations and data discussed in this supplemental materials make it necessary to provide a comprehensive383

table of variables, parameters, and constants with sources where necessary. This table has been split up based on the sections384

describing the LSM: radiative transfer (Table S1), scalar transport (Table S2), coupled stomatal conductance and photosynthesis385

(Table S3), transpiration downregulation (Table S4), and constants (Table S5). We break down each table, except for Table S5,386

into subscripts, fluxes and states, forcing data, and parameters. The ‘subscripts’ section is used to cut down on table entries as387

many subscripts are used on fluxes and parameters to describe their position in the the dual-source, two-big-leaf framework.388

The ‘fluxes and states’ section shows the main fluxes and states used in the section without all the positional subscripts. The389

‘forcing data’ section highlights the US-Me2 site data used to force the model discussed in Sect. S5. The ‘parameters’ section390

contains all the functional and constant parameters used along with values and sources.391
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Table S1. The main fluxes, states and parameters used by the radiative transfer module of the LSM.

Name Description Value Units Sources

Subscript
l Plant canopy -
sl Sunlit big leaf -
sh Shaded big leaf -
k Sunlit or shaded big leaf -
par Photosynthetically active radiation (PAR) -
nir Near infrared radiation (NIR) -
Λ PAR or NIR -
b Direct beam radiation -
d Diffuse radiation -
sb Scattered beam radiation -
in Incoming radiation -
out Outgoing radiation -

Fluxes and States
S Absorbed shortwave radiation - W·m−2

L Absorbed longwave radiation - W·m−2

T Temperature - oC

Forcing Data 31, 32

Sin Incoming shortwave radiation - W·m−2

Sin,par Incoming PAR - W·m−2

Sin,par,d Diffuse incoming PAR - W·m−2

Lin Incoming longwave radiation - W·m−2

Ta Air temperature at measurement height - oC

Parameters
K Extinction coefficient - -
K′ Extinction coefficient corrected for single-scattering - -
αl,par PAR leaf absorption coefficient 0.74 - Calibrated
αl,nir NIR leaf absorption coefficient 0.43 - Calibrated
LAI Leaf area index 3.2 m2 leaf area·m−2 ground area Calibrated
τ Transmissivity - -
G(Z) Mean leaf angle - radians
Z Solar zenith angle - radians
χl Leaf angle distribution parameter 0.11 - Calibrated
ρl,h Leaf reflectance for infinite horizontal canopy - -
ρl Plant canopy reflectance for infinite canopy - -
ρ ′l Plant canopy reflectance accounting for ground reflectance - -
ρg,par PAR ground reflectance 0.1 - 16

ρg,nir NIR ground reflectance 0.2 - 16

δl Fraction of longwave radiation absorbed by canopy - -
Fk Fraction of sunlit or shaded leaf area index - -
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Table S2. The main fluxes, states and parameters used by the scalar transport module of the LSM.

Name Description Value Units Sources

Subscript
l Plant canopy -
sl Sunlit big leaf -
sh Shaded big leaf -
k Sunlit or shaded big leaf -
i Inside the stomatal cavity of the leaf -
s On the leaf surface -
g Ground/soil -
ca Canopy airspace -
a Atmosphere above canopy at measurement height -

Fluxes and States
LE Latent heat flux - W·m−2

H Sensible heat flux - W·m−2

e Water vapor pressure - Pa
T Temperature - oC
c CO2 partial pressure - Pa

Forcing Data 31, 32

u Mean streamwise velocity - m·s−1

u∗ Friction velocity - m·s−1

θs Soil water content at 50 cm depth - m3 water·m−3 soil
ea Water vapor pressure at measurement height - Pa
Ta Water vapor pressure at measurement height - oC
G Ground heat flux - W·m−2

Parameters
gs Stomatal conductance - mol air ·m−2·s−1 or m·s−1

gbv or gbh Leaf laminar boundary layer water vapor/heat conductance - m·s−1

gav or gah Atmospheric water vapor/heat conductance - m·s−1

gsv Soil pore to soil surface water vapor conductance - m·s−1

g′av or g′ah Soil to canopy airspace water vapor/heat conductance - m·s−1

LAI Leaf area index 3.2 m2 leaf area·m−2 ground area Calibrated
SAI Stem area index 0.5 m2 stem area·m−2 ground area 33

Cl Leaf turbulent transfer coefficient 0.01 m·s−1 2

dl Characteristic leaf dimension 0.04 m 2

Cg Ground turbulent transfer coefficient - m·s−1

Cg,bare Bare ground turbulent transfer coefficient - m·s−1

Cg,dense Dense canopy ground turbulent transfer coefficient 0.004 m·s−1 2

zom Atmospheric momentum roughness length 1 m 11

do Zero-plane displacement - m
zov or zov Atmospheric water vapor/heat roughness length 0.1 m 11

zom,g Ground momentum roughness length 0.01 m 2

Dv Water vapor diffusivity - m2·s−1

DSL Depth of dry soil layer - m
Dmax Maximum dry layer thickness 0.015 m
θsat Saturated soil water content (porosity) 0.57 m3 water·m−3 soil 34

θi Soil water content where gsv begins 0.57 m3 water·m−3 soil Calibrated
θair Volumetric air content in soil pores - m3 air·m−3 soil
φair Air filled pore space - m3 air·m−3 pores
τ Soil pore tortuosity - -
b Brooks-Corey soil retention curve exponent 3.86 - Calibrated
z Measurement height 32 m 31, 32

hv Vegetation height 18 m 31, 32
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Table S3. The main fluxes, states and parameters used by the coupled stomatal conductance-photosynthesis module of the
LSM.

Name Description Value Units Sources

Subscript
l Plant canopy -
sl Sunlit big leaf -
sh Shaded big leaf -
k Sunlit or shaded big leaf -
i Inside the stomatal cavity of the leaf -
s On the leaf surface -
g Ground/soil -
ca Canopy airspace -

Fluxes and States
Ad

n Net CO2 assimilation rate from diffusion - µmol CO2·m−2·s−1

An Net CO2 assimilation rate from photosynthesis - µmol CO2·m−2·s−1

Ac Rubisco-limited CO2 assimilation rate - µmol CO2·m−2·s−1

A j Light-limited CO2 assimilation rate - µmol CO2·m−2·s−1

Ap Product-limited CO2 assimilation rate - µmol CO2·m−2·s−1

A CO2 assimilation rate - µmol CO2·m−2·s−1

c CO2 partial pressure Pa

Forcing Data 31, 32

Patm Atmospheric Pressure - Pa

Parameters
gs Stomatal conductance - mol air ·m−2·s−1 or m·s−1

g1 Medlyn slope parameter 0.88 kPa0.5 Calibrated
go Minimal stomatal conductance 10e-4 mol air ·m−2·s−1 or m·s−1 2

gbv Leaf laminar boundary layer water vapor - m·s−1

Vmax25 Max Rubisco assimilation rate at 25oC 122 µmol CO2·m−2·s−1 Calibrated
Jmax25 Max electron transport rate at 25oC 256 µmol e−·m−2·s−1 2.1·Vmax25
Γ CO2 compensation point - Pa
oi O2 partial pressure - Pa
Kc Rubisco Michaelis-Menten rate constant for carboxylation - Pa
Ko Rubisco Michaelis-Menten rate constant for oxidation - Pa
Kn Nitrogen extinction coefficient 0.7 - 2

IPSII Electron transport rate from photosystem II - µmol e−·m−2·s−1

ΦPSII Quantum efficiency of photosystem II 0.7 µmol e−· (µmol photons)−1 2

ΘPSII Curvature factor Jmax25 and IPSII co-limitation 0.85 - 2

Θc j Curvature factor Ac and A j co-limitation 0.98 - 2

Ai CO2 assimilation rate co-limited by Ac and A j - µmol CO2·m−2·s−1

Θip Curvature factor Ai and Ap co-limitation 0.95 - 2

Rd Dark respiration rate µmol CO2·m−2·s−1
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Table S4. The main fluxes, states and parameters used by the transpiration downregulation module of the LSM.

Name Description Value Units Sources

Subscript
l Plant canopy -
sl Sunlit big leaf -
sh Shaded big leaf -
k Sunlit or shaded big leaf -
i Inside the stomatal cavity of the leaf -
s On the leaf surface -
g Ground/soil -
ca Canopy airspace -
sx Soil-to-xylem -
xl Xylem-to-leaf -
la Leaf-to-atmosphere -
ww Well-watered rate -
max Maximum value -

Fluxes and States
LE Latent heat flux - mol CO2·m−2·s−1

ψ Water potential - MPa
e Water vapor pressure - Pa

Forcing Data 31, 32

θs Soil water content at 50 cm depth - m3 water·m−3 soil

Parameters
gs Stomatal conductance - mol air ·m−2·s−1 or m·s−1

g Segment-specific conductance - m·s−1·MPa−1

ψs,sat Saturated soil water potential -5.5e-3 MPa Calibrated
b Brooks-Corey soil retention curve exponent 3.86 - Calibrated
c Brooks-Corey hydraulic conductivity exponent - -
d Adjusting factor for roots in soil conductance 0 - Calibrated
Ks,sat Saturated soil hydraulic conductivity 0.81 m·d−1 Calibrated
RAI Root area index 11 m2 root area·m−2 ground area 35

dr Fine root diameter 5e-4 m 35

Zr Effective rooting depth 1.1 m 34

ψx,50 Xylem water potential at 50% loss of conductance -2.6 MPa Fixed36

a Xylem vulnerability curve shape parameter 0.54 - Calibrated
Ksap Sapwood-specific hydraulic conductivity 1.33 kg·m−1·s−1·MPa−1 Calibrated
SapAI Sapwood Area Index 20e-4 m2 sapwood ·m−2 ground area 37

hv Vegetation height 18 m 31, 32

ψl,50 Leaf water potential at 50% loss of stomatal conductance -1 MPa Fixed38

bl Leaf vulnerability curve shape parameter 5 - Calibrated
LAI Leaf area index 3.2 m2 leaf area·m−2 ground area Calibrated
Φ Flux potential from Kirchhoff transform - kg·s−1
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Table S5. The main physical constants used in the LSM.

Name Description Value Units

ρw Density of water 1000 kg·m−3

ρa Density of air 1.2 kg·m−3

ε Molar ratio of water to air 0.622 -
Lv Latent heat of vaporization 2.5e6 J·kg−1

k von Karmen constant 0.4 -
ν Kinematic viscosity 1.5e-5 m2·s−1

Rg Universal gas constant 8314 J·K−1·mol−1

cp Specific heat of air at constant pressure 1004 J·kg−1·K−1
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S4 LSM Calibration392

The LSM was calibrated using two-step approach consisting of a grid search followed by a parameter adjustment to ensure393

realistic values compared to measurements. The grid search created 13,600 parameter sets of 15 soil, plant and radiative394

parameters (Table S6) using Progressive Latin Hypercube Sampling available in the VARSTOOL package39 in MATLAB. The395

13,600 simulations were run for May-August 2013-2014 for the hours of 8 AM to 8 PM, excluding 12 hours following any396

precipitation event. The best parameter set from the grid search was then altered to align with plant hydraulic values from397

literature, while maintaining the same transpiration downregulation behavior. For clarity, we will refer to the best parameter set398

from the grid search analysis as ‘Best’ and the final adjusted parameter set used for the paper as ‘Best∗’.399

We evaluated the grid search parameter sets based on a performance metric of evapotranspiration (ET ), sensible heat flux400

(H), gross primary productivity (GPP) and net radiation (Rn) predictions. The performance metric (Mcal ; Eq. S108) consists401

of Taylor diagram statistics40: 1) the correlation coefficient (R), 2) the centered root mean square error (CRMSE), and 3) the402

difference in simulation versus observed variance (∆σ ). The percent bias (Pb) was also added to the metric to account for the403

mean difference in simulation and observation. Each index i in the summation of Eq. S108 represents a different flux which are404

combined to form a single metric.405

Mcal =
n

∑
i

Ri

max(R)
−CRMSEi−Pb,i−

∆σi

max(∆σ)
(S108)

We selected the three VARSTOOL parameter sets (VT1-VT3) with the highest metric value and selected VT1 because it406

fit ET the best (Fig. S5-S7). From here, we adjusted VT1 by reducing gxl,max by 60% to reduce biases found in representing407

ET during water stressed conditions (Fig. S7). As mentioned in the article, this parameter set (labeled ‘Best’ in Table S6 and408

figures) had an unrealistically low ψl,50 value compared to measurements of ponderosa pine at other sites38. Therefore, we409

undertook the second step of our calibration method: altering calibrated plant hydraulic traits to align with literature values,410

while maintaining the transpiration downregulation behavior.411

Our LSM suffers from equifinality41 (i.e., multiple parameter sets yield similar predictions) due to epistemic errors and412

non-linearity in the model structure. Although equifinality is usually an undesirable modeling reality, we were able to leverage413

it to find a new parameter set (‘Best∗’) with more realistic plant hydraulic trait values while matching the transpiration414

downregulation behavior of the original calibrated parameter set (‘Best’). To do this, we ran our PHM (outside of the LSM)415

with the ‘Best’ parameter set to create relative transpiration curves (T phm/Tww; solid lines in S4) for the range of soil water416

content (θs from measurements) and well-watered transpiration (Tww from the well-watered LSM simulation) experienced at the417

US-Me2 site. We specified θs rather than ψs because the soil water characteristic parameters (b, ψs,sat , and d) must be adjusted418

to alter the range of plant water potential experienced and, hence, the appropriate values of ψl,50 and ψx,50. We fixed ψl,50
38

419

and ψx,50
36 to desired literature values in our PHM and tuned the remaining six hydraulic parameters within realistic ranges420

(Ksap, a, bl , b, ψs,sat , and Ks,sat) until the new relative transpiration curves (dots in Fig. S4) matched the ‘Best’ curves. We421
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used nonlinear least squares to perform the tuning with the residual being the difference between the original and new relative422

transpiration curves. The resulting tuned parameters, which we call ‘Best∗’ (Table S6), match the transpiration downregulation423

behavior of our original calibration almost perfectly (Fig. S4). It is worth noting that the correction factor d in Brooks-Corey424

needed to be set to zero (from its original value of 427) in this second step in order to obtain realistic values for the soil water425

exponent, b. Overall, this two-step approach successfully creates a parameter set consistent with literature values and capable426

of matching observations.427

The metric value for all parameter sets used in our calibration are shown in Fig. S5 in terms of R and CRMSE. Specifically,428

we highlight the three top sets from the VARSTOOL grid search simulations (VT1-VT3) as well as the ‘Best’ and ‘Best∗’that429

show the clear trade-off in improvements between ET , H, GPP, and Rn. The outgoing longwave (Lout ) and shortwave radiation430

(Sout ) were ignored as including them in the metric had minimal effect on the selected parameter sets. The ‘Best∗’ (red x) and431

‘Best’ (pink diamond) provide clear improvement to the R and CRMSE compared to VT1-VT3 for ET . Similarly, the median432

diurnal fluxes for the observations and five selected LSM runs during May-June (Fig. S6) and July-August (Fig. S7) reveal433

the largest performance differences between parameter sets are for ET and GPP predictions. The over-prediction of ET by434

VT1-VT3 during soil water stress (Fig. S7) informed our decision to create the ‘Best’ (and ‘Best∗’) parameter set by reducing435

gxl,max to correct the bias. This manual adjustment also provides slight performance increases to some second order statistics436

of the fluxes illustrated in the Taylor diagram40 in Fig. S8. The adjustment from ‘Best’ to ‘Best∗’ has minimal impact when437

looking at Fig. S5-S8; most notably, the diurnal ET and GPP for late summer (Fig. S7) are slightly different. However, this438

difference has no effect on the main conclusions on the differences between PHMs and β based on the LSM analysis of the439

US-Me2 site.440

The ‘Best∗’ parameters set fit the ET observations well, but, as illustrated in Fig. 5e of the article, the βs downregulation441

scheme does perform best for a few Tww-θs. Looking at the Pb statistic for βs, PHM and well-watered LSM runs (Fig. S9),442

we see βs has the best performance for particular bins (bins outlined in red) where the PHM over-regulates because the βs is443

fit to the mean PHM behavior and downregulates less. However, in bins with higher (lower) Tww than the selected bins, βs444

underregulates (overregulates) as expected. More generally, any performance improvement from βs would be due to inadequate445

model fit for the PHM and not βs capturing the physics. Because βs is an end member scenario of a PHM, the best possibility446

for βs is that it predicts the same as the PHM, which means the complexity of a PHM is unnecessary to represent a certain447

soil-plant system. Therefore, in terms of Fig. 5e, βs is right for the wrong reasons as it outperforms the PHM for a small region448

where the underlying PHM parameter fit is likely not optimal and could be corrected by further calibration.449

32/57



Table S6. The calibration parameters for the LSM with PHM downregulation scheme. The parameter ranges were used to
create 13,600 parameters sets that were each run in the LSM. The initial calibrated value was selected based a performance
metric (Eq. S108) and additional manual adjustment (‘Best’), while the final calibrated values used in the article (‘Best∗’) were
created by replicating the transpiration downregulation behavior of the ‘Best’ parameter set with ψl,50 and ψx,50 set to literature
values.

Parameter Description Range Units Calibrated Values
Best Best∗

Ksap Sapwood-specific
hydraulic conductivity

[5e-4,5e1] kg m−1 s−1 MPa−1 0.28 1.33

ψx,50 Xylem water potential at
50% loss of xylem con-
ductance

[-0.1,-15] MPa -2.3 -2.6

a Xylem vulnerability
curve shape parameter

[0.2,10] - 0.3 0.54

ψl,50 Leaf water potential at
50% loss of stomatal con-
ductance

[-0.1,-15] MPa -9.9 -1

bl Leaf vulnerability curve
shape parameter

[0.2,5] - 3.4 5

b Soil retention curve expo-
nent

[2,14] - 5.1 3.86

ψs,sat Saturated soil water po-
tential

[1e-3,1e-2] MPa 9.9e-3 5.5e-3

Ks,sat Saturated soil hydraulic
conductivity

[0.01,20] m d−1 10 0.81

θi Incipient soil water con-
tent for restricting bare
soil evaporation

[0,0.57] - 0.57 Same

g1 Medlyn Slope Parameter [0.5,5] kPa0.5 0.9 Same
Vmax,25 Max Rubisco-limited car-

boxylation rate
[5,200] µmol CO2 m−2 s−1 122 Same

LAI Leaf area index [1.5,4] m−2 LA m−2 GA 3.2 Same
αl,par Leaf reflectance to PAR [0.5,1] - 0.74 Same
αl,nir Leaf reflectance to NIR [0,0.6] - 0.43 Same
χl Leaf angle distribution

parameter
[-0.4,0.6] - 0.11 Same
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Figure S4. The matching of downregulation behavior for the initial (Best; solid lines) and final (Best∗, dots
calibration parameter values shown in Table S6. We had to adjust our Best model parameters given a few unrealistic values

compared to measurements (see text for more details). Matching the relative transpiration outputs (T phm/Tww) over the range of
soil water content (θs) measurements used to force the model yielded nearly identical flux predictions between Best and Best∗

parameter sets.
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Best*

Figure S5. Centered root mean square error (CRMSE) and correlation (R) statistics for the LSM with PHM downregulation
scheme for 13,600 parameters sets plus two adjusted parameter sets. An ideal score would be R = 1 and CRMSE = 0. The best
fits from the VARSTOOL-created parameters sets, labelled VT1-VT3, are based on the metric in Eq. S108, while a manual
adjustment to VT1 was used to create the ‘Best’ and ‘Best∗’ parameter sets. The ‘Best∗’ parameter set is used in the main
article for our calibrated LSM with PHM downregulation scheme.
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Figure S6. The median diurnal fluxes for May-June 2013-2014 for the three best VARSTOOL parameter sets (VT1-VT3) and
the initial (‘Best’) and final (‘Best∗’) calibrated parameter set compared to the US-Me2 flux data for evapotranspiration (ET ),
gross primary productivity (GPP), sensible heat flux (H), net radiation (Rn), outgoing longwave radiation (Lout ) and outgoing
shortwave radiation (Sout ).
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Figure S7. Same as Fig. S6 for July-August 2013-2014 where there is soil water stress.
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Figure S8. The Taylor diagrams for May-June 2013-2014 (left) and July-August 2013-2014 (right) for the three best
VARSTOOL parameter sets (VT1-VT3) and the initial (‘Best’) and final (‘Best∗’) calibrated parameter set compared to the
US-Me2 flux data for Evapotranspiration (ET ), gross primary productivity (GPP), sensible heat flux (H), net radiation (Rn),
outgoing longwave radiation (Lout ) and outgoing shortwave radiation (Sout ).
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Figure S9. The percent bias (Pb) of the LSM with well-watered, PHM and βs downregulation schemes compared to ET
observations at the US-Me2 flux tower site. The Pb is broken down by well-watered transpiration Tww and volumetric soil water
content (θs) as in Fig. 5e-f of the main article. The gray numbers give the exact Pb value for each bin while the red outline
highlights the primary bins where βs appears to outperform the PHM in Fig. 5e of the main article. See text for explanation.
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S5 LSM Forcing Data450

The LSM for the AmeriFlux US-Me2 ponderosa pine site was forced with half-hourly atmospheric and subsurface measurements451

at the site taken from both the FLUXNET201531, 42 and AmeriFlux datasets32. Primarily, we used the FLUXNET2015 dataset,452

which performs additional gap-filling and quality control on the AmeriFlux dataset using a standard processing pipeline.453

However, we obtained the soil moisture and temperature profiles from the AmeriFlux dataset as only a single depth was454

included in the FLUXNET2015 dataset. For simplicity, we use the label ‘AmeriFlux US-Me2’ to refer to this site and dataset.455

This site was specifically selected for the LSM case study based on its extensive subsurface soil moisture and temperature456

profiles as well as its separate measurements of photosynthetically active radiation (PAR) and near infrared radiation (NIR).457

The extensive soil moisture and temperature data and detailed shortwave radiation measurements were used as forcing for the458

LSM in lieu of one-dimensional mass and heat transfer equations and atmospheric radiation partitioning models. The main459

focus of this work was on the scalar transport of the LSM, so use of these measurements help reduce confounding errors from460

other model structures (although there would still be measurement errors).461

The following atmospheric measurements from the AmeriFlux US-Me2 site for May-August 2013-2014 were used to force462

the LSM: friction velocity (u∗), mean streamwise velocity (u), air temperature (Ta), water vapor pressure (ea), atmospheric463

pressure (Patm), and CO2 partial pressure (ca). The radiative site measurements consisted of total incoming shortwave (Sin)464

and longwave radiation (Lin) as well as total and diffuse PAR. The LSM requires partitioning of shortwave radiation into PAR465

and NIR as well as direct beam and diffuse quantities. The diffuse incoming PAR (Sin,par,d) was measured at the site and the466

direct beam PAR (Sin,par,b) was calculated by the difference of total PAR (Sin,par) and diffuse PAR. Unfortunately, the site did467

not differentiate between direct beam (Sin,nir,b) and diffuse NIR (Sin,nir,d); therefore, total NIR was partitioned using the same468

ratio of direct and diffuse PAR at every time step. These detailed radiation measurements constrained the use of data from469

2013-2014, as this was when they were most consistently available.470

The subsurface moisture and temperature data was used to calculate the soil water availability of the root zone and the471

ground heat flux G at each time step. The G used to force the model was simply the thermopile measurements at 5 cm. In472

contrast, selecting a depth for the soil water content (θs) that would be representative of root-zone soil water availability473

was more difficult given there is minimal information at the US-Me2 site about the root structure. The US-Me2 site has θs474

measurements at 10, 20, 30, 50, 70, 100, 130, and 160 cm at multiple locations. To select a representative depth, we analyzed475

GPP deviations from the mean in terms of θs and vapor pressure deficit (D) at each depth (Fig. S10). All GPP values were476

studentized (i.e., mean subtracted and normalized by standard deviation) by hourly subsets for the period of May-August477

2002-2014 to remove diurnal variation in flux magnitude and the median of these scores is plotted for each θs-D bin. The blue478

(red) values indicate lower (higher) than average GPP fluxes. As expected, measurements at each depth show lower values479

during water stress periods (low θs and high D). However, the ranges of θs experienced varies with depth, likely due to the480

combined effects of variable soil moisture profile, soil texture heterogeneity, and sensor inaccuracy. We selected the depth of481

50 cm to use as our soil moisture forcing for two reasons: 1) there is a clear signal of GPP downregulation covering a wider482
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range of soil moistures, and 2) a depth of 50 cm seems reasonable to represent the average moisture conditions when looking at483

meta-analyses of temperate coniferous forest root measurements43.484

A crucial consequence of using the subsurface inputs as model forcings is that it allowed the model time steps to be run in485

parallel. Typically, the model must be run sequentially since the subsurface models are partial differential equations in space486

(soil column) and time, and each time step relies on previous energy stored in the subsurface. The observations codify this487

temporal information, thereby allowing the LSM to run steady-state energy partitioning on top of the temporal dynamics of soil488

moisture and heat. Additionally, the LSM simulation was run only for time steps 24 hours after precipitation, since the model489

was not coded to handle canopy precipitation interception. Lastly, atmospheric stability effects were ignored for simplicity, as490

they add an additional layer of complexity to the solution scheme5.491
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Figure S10. Median scores of the studentized gross primary productivity (GPP) measurements at the US-Me2 flux site for
differing depth so soil water content θs measurements. The θs and vapor pressure deficit (D) measurements help identify water
stress periods. The GPP data used are from May-August 2002-2014 and are studentized by their hourly subset to remove
diurnal variations. Blue (red) in the plots is an indicator of decreased (increased) GPP from the mean value.
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S6 Additional LSM Results492

S6.1 Soil Water Availability and Atmospheric Moisture Demand493

The improved performance of PHMs during midday of July-August (Figs. 5c-d in the article) are explained by looking at the494

temporal breakdown of the well-watered transpiration (Tww) and site data of soil water availability (Fig. S11). The Tww is a495

proxy for stomata-regulated atmospheric moisture demand at the site and is the greatest from 10 AM to 3 PM during the later496

summer months. The measured volumetric water content shows water stress during the later summer months as well. Therefore,497

these diurnal results suggest that PHMs are most important during periods of high atmospheric moisture demand and low soil498

water availability.499

S6.2 Fitting β Schemes500

The three β transpiration downregulation schemes used in this work were calibrated by fitting their respective parameters to the501

outputs of the calibrated LSM that uses a PHM scheme (the calibration process is detailed more extensively in Sect. S4). The502

calibrated LSM outputs are relative transpiration, T/Tww, for the sunlit and shaded big leaf (dots in Fig. S12e-f). We decided503

to avoid calibrating each LSM directly with a β scheme to the site data, and instead derive the β scheme from a fitted PHM504

scheme, because we know β is an end-member scenario of a PHM. Therefore, this process allows us to check if the complexity505

of a PHM is necessary to represent transpiration downregulation without confounding factors of differently calibrated parameter506

sets.507

The single β scheme (βs) has a Weibull curve (Eq. 13 in the article) fit to the combined calibrated sunlit and shaded T/Tww508

using nonlinear least squares in MATLAB. The fitted βs parameter values for ψs,50 and bs are -0.74 MPa and 3.3, respectively509

(shown in Fig. S12a-d in light gray). The two-leaf β scheme (β2L) fits a β curve to the calibrated sunlit and shaded T/Tww510

separately. The fitted β2L parameter values for ψl,50 and bl are -0.70 (-0.78) MPa and 2.7 (4.1) for the sunlit (shaded) big leaf511

(shown in Fig. S12a-d in dark gray). The reader is referred to Sect. S2.6.2 for details of how these β curves are used in LSM512

calculations.513

The ‘dynamic β ’ scheme (βdyn) was fit to the calibrated T/Tww using a two-step process. First, the T/Tww values were514

parsed into 10 bins covering the Tww range for the sunlit and shaded big leaf separately and a single β curve was fit to each515

bin (black circles in Fig. S12a-d). Second, a line was fit to the parameters ψs,50 and bs as a function of Tww (red lines and516

equations in Fig. S12a-d) using least squares weighted by Tww. Therefore, the parameters of β can dynamically change with517

the atmospheric moisture demand represented by Tww. This is illustrated in Fig. S12e-f by the βdyn lines at fixed Tww values that518

closely match the color gradation of the calibrated T/Tww envelope. The variation of βdyn with respect to Tww is well described519

by linear parameter functions for the PHM we have fit to this US-Me2 site.520

The βdyn has great potential to parsimoniously represent the complexity of a PHM given the simplistic, linear parameter521

functions (bs(Tww) and ψs,50(Tww)). The intercepts of the parameter functions for sunlit and shaded leaves are very similar.522

Furthermore, although the slope of the shaded leaf parameter functions (Fig. S12b,d) are steeper than the slope of the sunlit523
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parameter functions (Fig. S12a,c), the behavior is consistent when looking at the sunlit bin fits (circles in Fig. S12a,c) for the524

matching Tww range of 0-3 mm/day. During lower atmospheric moisture demand, the linear parameter functions are steeper, but525

become more gradual at higher Tww. Therefore, fitting bs(Tww) and ψs,50(Tww) to combined sunlit and shaded points (i.e., not526

having different sunlit and shaded functions) should work well. Additionally, we could attempt to fit a parsimonious curvilinear527

function to the combined sunlit and shaded points (e.g., Weibull function) to reduce errors when fitting to low Tww. Regardless,528

these results indicate that the complexity of our PHM can be represented by a ‘dynamic β ’ with 4 total parameters (2 slope and529

2 intercept), which is only two more parameters than the original β model. A promising avenue of future work is to relate these530

four parameters to key plant hydraulic traits and soil parameters to allow general application of the ‘dynamic β ’ to sites other531

than US-Me2. Currently, modelers could attempt to use the linear parameter functions to parsimoniously calibrate an LSM with532

a ‘dynamic β ’ scheme to site data; however, further work must validate these linear forms.533

S6.3 RMSE Comparison of PHM and β Schemes534

The improvements of the PHM scheme to the βs and ‘dynamic β ’ schemes are shown in terms of reduction in percent bias in535

Fig. 5e-f. These results are corroborated by the change in root mean square error as shown in Fig. S13. The RMSE results only536

differ from those based on reduction in percent bias in terms of improvements that are concentrated toward the highest Tww537

periods, since that is where the highest magnitude errors occur.538

S6.4 LSM Cumulative Energy and Carbon Budget Errors539

To aid the interpretation of the LSM case study, we have also calculated the cumulative error for our five LSM schemes540

compared to key measured fluxes at the US-Me2 site (Table S7-S8) during periods of high (Tww ≥ 4 mm day−1) and low541

(Tww < 4 mm day−1) atmospheric moisture demand. We split the table based on demand because βs over-predicts ET under542

high demand and under-predicts ET during low demand, which results in misleadingly low cumulative errors. The βs gets the543

right answer for the wrong reasons as errors from high demand periods are corrected by other errors from low demand periods.544

By splitting the table, we disentangle (at least somewhat) this error compensation. Furthermore, we did not split the table based545

on soil water stress as the effects of PHMs are seen at nearly all soil moisture values during high demand, and only at low soil546

moisture values during low demand (Fig. S13).547

The PHM and βdyn schemes provide the reduction in cumulative error (∼5%) to evapotranspiration (ET ) and gross primary548

productivity (GPP) during high atmospheric moisture demand, with less consistent results during low atmospheric moisture549

demand. Although these error reductions seem small and are likely outweighed by energy balance closure errors in the550

flux tower data (up to 20%44), they—along with the improvements in percent bias (Fig. 5e-f) and root mean square error551

(Fig. S13)—are consistent with our theoretical analysis of the fundamental differences between β and PHMs under varying552

environmental conditions. Therefore, we expect these errors to persist and grow under longer simulations and more variable553

environmental conditions.554

The PHM scheme does not universally improve all energy and mass balance components. βs appears to slightly improve555
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sensible heat flux (H) in all conditions and GPP under low demand, while the differences in net radiation (Rn) and outgoing556

longwave radiative flux (Lout) appear insignificant for all models. A reason for less consistent results between PHM and β557

during low demand could be our calibration process uses a metric that focuses on fitting larger fluxes which happen during558

higher atmospheric moisture demand. Furthermore, from all of our analysis, we know βs is not improving predictions because559

it is capturing a physical process better than PHMs. We know βs is the end-member scenario of a PHM, so βs can only perform560

the same or worse than a PHM and give us the answer to, "Is the complexity of a PHM necessary?". Any improvements from561

βs represent confounding errors in our parameter fit, observations and model structure.562
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Figure S11. Left: Well-watered transpiration rate calculated form the LSM run with no transpiration downregulation. This is
a proxy for the stomata-regulated atmospheric moisture demand. Right: Measured volumetric water content of soil at the
US-Me2 site at 50 cm depth. The colors are the average value for the temporal bins for May-August 2013-2014.
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Figure S12. The ‘dynamic β ’ (βdyn) fits used for the sunlit (top row) and shaded big leaf (bottom row). The first column is
the dependence of the soil water potential at 50% loss of stomatal conductance on well-watered transpiration Tww. The second
column is the dependence of the stomatal sensitivity parameter (bs) to Tww. The black circles are parameter values fit to relative
transpiration (T/Tww) binned over the range of Tww. The linear relationship for both parameters is shown in red. The last
column shows the relative transpiration outputs from the calibrated PHM with dot colors corresponding to Tww. The red lines
are the βdyn model isolines at 10 values of Tww (Equation 16 of the main article). These isolines clearly follow the color
gradient of the PHM results indicating that βdyn is able to capture the complexity of a PHM.
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Figure S13. Analogous results to Fig. 5e-f in the main text using root mean square error instead of percent bias as the
performance metric. The differences in reduction of RMSE between the PHM and βs scheme (left) and βdyn scheme (right).
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Table S7. Cumulative total for evapotranspiration (ET ), gross primary productivity (GPP), sensible heat flux (H), net
radiative flux (Rn), and longwave radiative flux (Lout ) for AmeriFlux US-Me2 data and 5 LSM simulations during high
atmospheric moisture demand (Tww > 4mmday−1) for May-Aug 2013-2014. The surface energy fluxes are in units of cm H2O
and GPP is in units kg CO2. The values in parentheses are the percent error compared to the observations.

ET GPP H Rn Lout
[cm] [kg] [cm] [cm] [cm]

Obs 26.5 2.9 48.4 94.2 69.5
WW 32.2 (21.4%) 3.6 (25.1%) 45.6 (-5.9%) 80.8 (-14.3%) 76.8 (10.5%)
PHM 26.7 (0.7%) 3 (4%) 50.1 (3.4%) 79.8 (-15.3%) 77.8 (11.9%)
βs 28 (5.9%) 3.1 (9.1%) 49 (1.1%) 80 (-15.1%) 77.5 (11.6%)
β2L 27.6 (4.2%) 3.1 (7.3%) 49.3 (1.8%) 80 (-15.2%) 77.6 (11.7%)
βdyn 26.8 (1%) 3 (4.5%) 50 (3.2%) 79.8 (-15.3%) 77.8 (11.9%)
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Table S8. Same as Table S7 except for during periods of low atmospheric moisture demand (Tww < 4mmday−1).

ET GPP H Rn Lout
[cm] [kg] [cm] [cm] [cm]

Obs 11.4 1.6 16.2 24.8 54.8
WW 9.7 (-15.3%) 2.4 (52.9%) 11.6 (-28.3%) 22 (-11.3%) 56.2 (2.5%)
PHM 9 (-21%) 2.3 (46.5%) 12.2 (-24.8%) 21.9 (-11.7%) 56.3 (2.7%)
βs 8.8 (-22.7%) 2.3 (44.3%) 12.4 (-23.8%) 21.8 (-11.8%) 56.3 (2.8%)
β2L 8.7 (-23.6%) 2.3 (43.2%) 12.5 (-23.3%) 21.8 (-11.9%) 56.3 (2.8%)
βdyn 9 (-21.1%) 2.3 (46.4%) 12.2 (-24.8%) 21.9 (-11.7%) 56.3 (2.7%)

50/57



S7 Defining a Threshold for Transport-limitation563

Quantifying the values of particular soil parameters and plant hydraulic traits that define a soil-plant system as transport-limited564

is an important avenue of future work. Fig. 3 in the article illustrates clearly that, even in the minimalist model, there is a565

complex interplay of drivers that contribute to the differences between PHM and β and, in turn, if a system is transport- or566

supply-limited. However, the overall soil-plant conductance in the minimalist model seems to be the main control on transport-567

limitation and a gsp ≈ 30 mm day−1MPa−1 appears to be at the boundary between soil- and transport-limited conditions (Fig.568

S14). The definition of transport-limitation is somewhat subjective as it depends on how much difference between PHM and β569

is considered acceptable.570

Determining a threshold of transport-limitation for the complex PHM is even less clear given the additional parameters.571

Therefore, a sensitivity analysis was performed using the recent Variogram Analysis of the Response Surface (VARS) method45
572

implemented with the VARSTOOL package in MATLAB39. Our metric (Mdi f , Eq. S109) to quantify the performance of each573

parameter set is the integrated difference in β and PHM-generated relative transpiration at high Tww (5 mm day−1) normalized574

by the difference between soil water content at incipient (θo) and complete (θc) stomatal closure. The normalization was an575

attempt to control for the differing ranges of soil moisture experienced by the plant; however, it had minimal impact on defining576

our transport-limitation threshold. The ranges and sensitivity scores for the 8 selected PHM parameters are shown in Table S9.577

Mdi f =
1

Tww · (θo−θc)
·
∫

ψs

T β (ψs)−T phm(ψs,Tww)dψs (S109)

The VARSTOOL analysis reveals that the maximum xylem-to-leaf conductance (gxl,max) is the most sensitive parameter;578

thus, as maximum conductance in the plant decreases, a single β curve becomes increasingly ineffective at downregulating579

transpiration realistically. The next most sensitive parameters are ψx,50, b, ψl,50, bl , and a, but they are of secondary importance.580

Lastly, the remaining two soil parameters, ψs,sat and gsx,max, were found to be the least sensitive parameters because transport-581

limitation from soil is primarily controlled by b.582

Focusing on gxl,max, we estimate a threshold for transport-limitation similar to the minimalist model. We do so by parsing583

the gxl,max range into 14 bins and sampling 5000 parameter sets from each bin (the 7 other parameters are sampled from their584

entire range in Table S9 for this analysis). The resulting sensitivity metrics were plotted for each bin in Fig. S14. As gxl,max585

becomes lower (gxl,max < 30 mm day−1MPa−1) there is a tendency for the PHM results to diverge substantially from those of a586

single β curve. This threshold notably coincides with that predicted by the minimalist model. The large amount of spread is587

likely caused by the interactions amongst the other parameters. Further work must be done to create a more robust relationship588

based on measurable plant and soil hydraulic parameters.589
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Table S9. VARSTOOL results for plant hydraulics model based on 35,600 parameter sets created using Progressive Latin
Hypercube Sampling and 200 STAR sampling centers. The IVARS50 is an integrated metric of sensitivity that accounts for
correlation of nearby parameter values in the parameter space. The sources for each parameter are how we determined a
realistic range to sample from.

Parameter Description Range Units IVARs50 Sources

gxl,max Max xylem-to-leaf con-
ductance

[10−10,10−3] m
sMPa 1.6e-3 24, 46

ψx,50 Xylem water potential at
50% loss of conductance

[-0.1,-15] MPa 8.0e-4 29, 47, 48

b Soil retention curve expo-
nent

[2,14] - 1.5e-5 26

ψl,50 Leaf water potential at
50% stomatal closure

[-0.1,-15] MPa 3.5e-4 24

a Xylem vulnerability
curve shape parameter

[0.2,10] - 2.4e-4 33

bl Leaf vulnerability curve
shape parameter

[0.2,5] - 1.0e-4 33

gsx,max Max soil-to-xylem con-
ductance

[10−2,103] m
sMPa 3.0e-5 24, 35

ψsat Saturated soil water po-
tential

[10−3,10−2] MPa 3.2e-6 26
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Figure S14. The control of soil-plant conductance (gsp) on transport-limitation of a soil-plant system. Left: Differences in
minimalist PHM and β as a function of overall soil-plant conductance. The thick light blue line represents change in gsp with
three other drivers at baseline values (see Fig. 3 in main article) while the thin lines represent 50% increase in ψs (dark blue),
Tww (light green) and ψl,c−ψl,o (dark green) compared to their baseline values. Right: Differences between a more complex
formulation of PHM and β used in the LSM analysis with respect to maximum xylem-to-leaf conductance. The metric used
integrates the difference between relative transpiration of β and PHM at a Tww = 5mmday−1 normalized by the range of soil
water availability over which downregulation occurs (Eq. S109).
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