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Abstract. Soil moisture (SM) plays a critical role in the wa-
ter and energy cycles of the Earth system; consequently, a
long-term SM product with high quality is urgently needed.
In this study, five SM products, including one microwave re-
mote sensing product – the European Space Agency’s Cli-
mate Change Initiative (ESA CCI) – and four reanalysis
data sets – European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis – Interim (ERA-Interim),
National Centers for Environmental Prediction (NCEP), the
20th Century Reanalysis Project from National Oceanic and
Atmospheric Administration (NOAA), and the ECMWF Re-
analysis 5 (ERA5) – are systematically evaluated using in
situ measurements during 1981–2013 in four climate regions
at different timescales over the Chinese mainland. The re-
sults show that ESA CCI is closest to the observations in
terms of both the spatial distributions and magnitude of the
monthly SM. All reanalysis products tend to overestimate
soil moisture in all regions but have higher correlations than
the remote sensing product except in Northwest China. The
largest inconsistency is found in southern Northeast China
region, with an unbiased root mean square error (ubRMSE)
value larger than 0.04. However, all products exhibit certain
weaknesses in representing the interannual variation in SM.

The largest relative bias of 144.4 % is found for the ERA-
Interim SM product under extreme and severe wet condi-
tions in northeastern China, and the lowest relative bias is
found for the ESA CCI SM product, with the minimum of
0.48 % under extreme and severe wet conditions in north-
western China. Decomposing mean square errors suggests
that the bias terms are the dominant contribution for all prod-
ucts, and the correlation term is large for ESA CCI. As a re-
sult, the ESA CCI SM product is a good option for long-term
hydrometeorological applications on the Chinese mainland.
ERA5 is also a promising product, especially in northern and
northwestern China in terms of low bias and high correlation
coefficient. This long-term intercomparison study provides
clues for SM product enhancement and further hydrological
applications.

1 Introduction

Soil moisture (SM) is a key state variable in the climate sys-
tem and controls the exchange of water, energy, and car-
bon fluxes between land surface and atmosphere (Western
and Blöschl, 1999; Robock et al., 2000; Ochsner et al.,
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2013; McColl et al., 2017; Peng and Loew, 2017; Qiu et al.,
2018). SM can influence runoff generation, drought devel-
opment, and many other processes of hydrology and agri-
culture (Markewitz et al., 2010; Das et al., 2011; Sevanto et
al., 2014; Akbar et al., 2018). Thus, understanding SM char-
acteristics is beneficial to flood prediction (Komma et al.,
2008; NorBiasto et al., 2008), drought monitoring (Dai et
al., 2004; Anderson et al., 2007; AghaKouchak et al., 2015;
Li et al., 2018), and water management, which are directly
related to crop growth (Engman, 1991; Bastiaanssen et al.,
2000; Dobriyal et al., 2012). SM also affects the climate sys-
tem through the land–atmosphere feedback loop (Kim and
Hong, 2007; Dirmeyer, 2011; Zuo and Zhang, 2016), while
the SM–climate interaction actually amplifies climate vari-
ability in some transitional climate zones (Seneviratne et al.,
2010). Despite the small total mass of SM compared to other
water cycle components, it is essential for numerical weather
prediction (An et al., 2016) and has been recognized as an
essential climate variable (ECV; GCOS, 2010).

In situ measurements have been acknowledged as being
the most accurate method to determine SM values, but they
cannot fulfill the demand of high spatial and temporal reso-
lution for hydrometeorological use (Bárdossy and Lehmann,
1998). Furthermore, the temporal coverage of in situ mea-
surements is usually not long enough. Therefore, satellite-
based products, reanalysis products, and numerical model
products are often used (Peng et al., 2017). Although model
outputs are spatially and temporally continuous, large uncer-
tainties still exist in model simulations because of the phys-
ical structure, parameters, and other reasons (Schellekens et
al., 2017). Reanalysis products are generally more accurate,
yet they still inherit some uncertainties of the models (Berg
et al., 2003), and their spatial resolutions are not high enough
for regional application (Crow and Wood, 1999). Despite the
short temporal coverage and the limitation of only measur-
ing the surface SM (Petropoulos et al., 2015), satellite-based
products are very promising (Chauhan et al., 2003; Bogena et
al., 2007; de Jeu et al., 2008) because they are often based on
observations with high spatial resolution (Busch et al., 2012).
For this reason, satellite-based products are normally taken as
reference data sets to evaluate model outputs and reanalysis
products (Crow and Ryu, 2009; Lai et al., 2014). To choose
the most appropriate SM product for long-term hydrological
and meteorological studies, more evaluation work needs to
be done.

Several evaluation studies have been conducted to find a
qualified remote sensing SM product (Li et al., 2009; Zhang
et al., 2012; Lai et al., 2014; Peng et al., 2015; An et al.,
2016; Ma et al., 2016; Zhu et al., 2018). The SM product
from the European Space Agency (ESA) Climate Change
Initiative (CCI) program has attracted attention in recent
years (Dorigo et al., 2018) and has been proven to have
good quality in some regions of the world (Dorigo et al.,
2015, 2017; Chakravorty et al., 2016; Ikonen et al., 2018;
González-Zamora et al., 2019; Beck et al., 2021). Peng et

al. (2015) evaluated the ESA CCI product along with four
other data sets in Southwest China and found that it has the
potential to provide valuable information. Based on observa-
tional data and eight model products, An et al. (2016) fur-
ther confirmed that the CCI SM can be applied over China.
Ma et al. (2016) compared the ESA CCI and the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis– Interim (ERA-Interim) products with in situ
measurements and found that both products show reliable
time series results. However, few studies on long-term SM
products over 30 years have been compared with the ESA
CCI product using in situ measurements in East China, and
thus, more in-depth evaluation needs to be done.

Many efforts have been made to assess the reanalysis
products of soil variables based on limited observations
(Decker et al., 2012; Hagan et al., 2020). Analysis of spring
SM shows that ERA-Interim can reproduce the interan-
nual variation in observed values well, and it exhibits a
better correlation with precipitation and evaporation than
the National Centers for Environmental Prediction (NCEP)–
National Center for Atmospheric Research (NCAR) Reanal-
ysis Project (R1), Modern-Era Retrospective analysis for Re-
search and Applications (MERRA), Japan Meteorological
Agency (JMA), or the Central Research Institute of Elec-
tric Power Industry (CRIEPI) SM products (Liu et al., 2014).
Using in situ observations from 25 networks worldwide
from 1979 to 2017, ERA5 SM performs better than other
reanalysis products, and NCEP products show higher skill in
terms of long-term trends (Li et al., 2020). During weak mon-
soon conditions, ERA-Interim overestimates SM over India,
and SM correlates well with observed rainfall (Shrivastava
et al., 2017). Using 670 SM stations worldwide, Deng et
al. (2020) found that NCEP performed poorly in December–
February (DJF) and June–August (JJA) and in arid or tem-
perate and dry climates. Nevertheless, to our knowledge, few
studies on the estimation of long time series of SM over the
Chinese mainland have been conducted.

The objective of this study is to comprehensively evaluate
long-term SM products over the Chinese mainland and iden-
tify the most accurate products for further meteorological and
hydrological research. For this purpose, in situ measurements
during 1981–2013 are utilized to evaluate five SM products.
In addition to the comparison based on different statistical
metrics, the source of errors is also discussed.

2 Data and methodology

2.1 Remotely sensed and reanalysis products

2.1.1 ESA CCI SM

Generated by the ESA Program Climate Change Initiative
CCI project (ESA CCI), the ESA CCI SM includes active,
passive, and combined products (Liu et al., 2012; Gruber et
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al., 2017). The ESA CCI SM v04.4 combined product is em-
ployed in this study, which provides SM data starting from
November 1978 until June 2018, with a spatial resolution of
0.25◦. The project of ESA CCI is to use C-band microwave
scatterometers (Aqua satellite and the Advance Scatterome-
ter, ASCAT) and multichannel microwave radiometers (i.e.,
SMMR, SSM/I, TMI, AMSR-E, WindSat, and AMSR2) to
produce a long-term reliable time series of SM (Chakravorty
et al., 2016). The ESA CCI SM v04.4 is better at detect-
ing SM changes (Balenzano et al., 2011) than previous ver-
sions as it merges all active and passive level 2 products di-
rectly to generate the combined product, rather than creat-
ing active and passive products separately and then merg-
ing them together (ESA, 2018; Gruber et al., 2019). The
Global Land Data Assimilation System Noah (GLDAS 2.1)
was used as a scaling reference in the combined product to
obtain a consistent climatology and to flag a high vegetation
optical depth (VOD) for SM (Dorigo et al., 2017; Pasik et
al., 2020). A polynomial signal-to-noise ratio (SNR) VOD
regression and the p value based mask was used to fill spa-
tial gaps in triple collocation analysis (TCA)-based SNR es-
timates and exclude unreliable input data set in the combined
product, respectively. Here, we evaluate all the products over
the period from 1981 to 2013 (the same as below), during
which in situ measurements are also available. The top layer
of ESA CCI SM data at the depth of 2–5 cm depth are esti-
mated.

2.1.2 ERA-Interim SM

ERA-Interim is a famous reanalysis product produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF, 2009). The data assimilation system is based on
the Integrated Forecast System (IFS Cy31r2), which includes
a four-dimensional analysis with a 12 h analysis window.
The ERA-Interim data used in this study are on a fixed grid
of 80 km and have a temporal resolution of 6 h, daily, and
monthly scales. ERA-Interim starts in 1979 and is continu-
ously updated in real time (Berrisford et al., 2011). ECMWF
simulates SM at four depths, namely 0–7, 7–28, 28–100,
and 100–255 cm. As suggested by An et al. (2016), the data
at depths of 7–28 cm are linearly interpolated to a depth of
10 cm for evaluation.

2.1.3 NCEP SM

NCEP is the second reanalysis product provided by the Na-
tional Centers for Environmental Prediction and Department
of Energy (NCEP-DOE; Kanamitsu et al., 2002). The prod-
uct has been available since January 1979, with a spatial reso-
lution of approximately 200 km. The temporal resolution in-
cludes daily and monthly data. NCEP has two layers of SM
between 0–10 and 10–200 cm, from which the first layer was
chosen for evaluation.

2.1.4 NOAA SM

The 20th Century Reanalysis Project (20CR) led by the
Earth System Research Laboratory Physical Sciences Divi-
sion from the National Oceanic and Atmospheric Adminis-
tration (NOAA) and the University of Colorado Cooperative
Institute for Research in Environmental Sciences (CIRES)
also produces a long-term SM product. The version of V2c
is used here, spanning the entire 20th century from 1851
to 2014 (Compo et al., 2011). The NOAA SM product is gen-
erated with a spatial resolution of 2◦ at 6 h (also monthly) and
with four subsurface levels (0, 10, 40, and 100 cm), of which
the data at 10 cm depth are used.

2.1.5 ERA5 SM

ERA5 is the latest reanalysis product produced by ECMWF,
covering the period from 1979 to the present. The product
uses a new version of the ECMWF assimilation system IFS
(IFS Cycle 41R2), and combines vast amounts of historical
observations, including ozone, aircraft and surface pressure
data, as well as various newly reprocessed data sets and re-
cent instruments that could not be ingested in ERA-Interim
(C3S, 2017). The ERA5 model input includes the World Cli-
mate Research Programme (WCRP) Coupled Model Inter-
comparison Project (CMIP) for greenhouse gases, volcanic
eruptions, sea surface temperature (SST), and sea ice cover,
which are appropriate for climate studies. Furthermore, the
spatial (31 km globally) and temporal (hourly) resolutions of
ERA5 are rather high compared to ERA-Interim. ERA5 will
eventually cover the period from 1950 to the present, and one
of its key improvements is better SM (Komma et al., 2008).
The land surface models of the Interactions between Soil,
Biosphere, and Atmosphere (ISBA) driven by ERA5 also
show consistent improvements, especially in surface SM,
compared to those driven by ERA-Interim (Albergel et al.,
2018). Similar to ERA-Interim, there are levels of SM data,
in which the SM is interpolated to 10 cm for evaluation.

2.2 In situ SM and preprocessing of data sets

The in situ SM observations were generated by three SM data
sets as follows.

(1) The International Soil Moisture Network (ISMN)

The updated Chinese soil moisture was presented as volu-
metric soil moisture (θv; cubic meters per cubic meter; here-
after m3 m−3) for 1981 to 1999 from the ISMN website
(https://ismn.geo.tuwien.ac.at/en/, last access: 15 June 2020)
(Dorigo et al., 2011). The ISMN provides a global in situ soil
moisture database, which have been widely used for the val-
idation of satellite products and model simulations (e.g., Al-
bergel et al., 2012). The SM data, at the depth of 0–5 and 5–
10 cm, were obtained and averaged as the value at the depth
of 0–10 cm.
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Figure 1. Spatial distribution of 119 agricultural–meteorological observation stations and four research regions over China for the period 1981
to 2013. The colors denote the distribution of annual precipitation (millimeters per annum; hereafter mm a−1) from 1971–2000.

(2) Soil water content from agricultural–meteorological
stations

The in situ SM measurements are obtained from the Na-
tional Meteorological Information Center of China (NMIC,
2006). The data have been collected at 778 agricultural–
meteorological stations, with a temporal resolution of 10 d,
since May 1991 (on day 8, 18, and 28 of each month). As
there are too many missing observations after 2013, the eval-
uations of the different data sets are performed until Decem-
ber 2013. The SM data were observed at the depth of 10, 20,
50, 70, and 100 cm using drying methods, with the data at
10 cm depth being utilized. In addition, the observed SM is
expressed as the relative water content (θ ′; percent), while
the SM in all other products is in the unit of volumetric water
content (θv; m3 m−3). Therefore, the observed SM is calcu-
lated by the following:

θv = θ
′
× θf× ρb/ρw, (1)

where θf is the field capacity, ρb is the dry bulk density, and
ρw is the water density, with a value of 1.0 (grams per cubic
centimeter; hereafter g cm−3).

(3) Mass percent of measured SM

Another data set, including SM, field capacity, and dry bulk
density in China, recorded from 1981 to 1998, was obtained
from the National Meteorological Information Center of the
China Meteorological Administration. SM was presented as
a mass percentage three times each month to avoid auxiliary
calibration (Robock et al., 2000). The volumetric soil mois-
ture is calculated by the following:

θv = θm× ρb/ρw, (2)

in which θm is the mass percent of measured soil moisture.
Within a certain period, the two parameters of θf and ρb can

be treated as constant. The SM mass percent was measured at
11 levels, including the depths of 0–5, 5–10, 10–20, 20–30,
30–40, 40–50, 50–60, 60–70, 70–80, 80–90, and 90–100 cm.
To match other data sets, the values at 10 cm depth are cal-
culated by averaging the values at the depth of 5–10 and 10–
20 cm.

Considering that the field capacity and the dry bulk den-
sity are not measured at all stations, data from 119 stations
are selected from 1981 to 2013. Not all in situ data were
suitable for evaluation, given instrumental error and obser-
vational conditions, for example, and the available measure-
ment period, installation depth, and sensor placement. There-
fore, the evaluation was conducted in unfrozen and snow-free
seasons, such as June–August (JJA). The selection of appro-
priate SM values is based on quality control, by removing
abnormal data due to instrument failures, and threshold con-
trol, by retaining the value between 0–1. First, if there were
multiple data points in the same time period, then the ISMN
SM value was selected, if available, or the average of the
remaining two data sets was calculated. Second, SM values
greater than 3 times the standard deviation were deleted. On
considering the availability, all the in situ observations were
averaged to monthly data at a depth of 10 cm. The distribu-
tions of the available stations are presented in Fig. 1, and
detailed information of all the above SM products is listed in
Table 1.

2.3 Land surface air temperature, precipitation, and
radiation

The land surface air temperature and precipitation data
are obtained from the National Meteorological Informa-
tion Center (NMIC) at a spatial resolution of 0.25◦ span-
ning from 1961 to the present (http://data.cma.cn/site/index.
html, last access: 12 March 2020). By interpolating Chi-
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Table 1. Details of the SM products used in the study.

Name Soil depths (cm) Spatial resolution Temporal Temporal
resolution coverage

In situ

ISMN 10, 20, 50, 70, 100 3× monthly Jan 1981–Dec 1999
agricultural– 10, 20, 50, 70, 100 3× monthly May 1991–Dec 2013
meteorological
stations Total 778 stations

Mass percent 0–5, 5–10, 10–20, 20–30, (119 used) 3× monthly Jan 1981–Dec 1998
of measured 30–40, 40–50, 50–60,
SM 60–70, 70–80, 80–90, and

90–100

Satellite

ESA CCI −2 to 5 0.25◦× 0.25◦ Daily; monthly 1978–present

Reanalysis

ERA-Interim 0–7, 7–28, 28–100, and 100–255 0.75◦× 0.75◦ 4× daily; monthly Jan 1979–present
NCEP 0–10, 10–200 T62 (−2◦× 2◦) 4× daily; monthly Jan 1979–present
NOAA 0, 10, 40, 100 2◦× 2◦ 8× daily; monthly Jan 1851–Dec 2014
ERA5 0–7, 7–28, 28–100, and 100–255 0.28125◦× 0.28125◦ 2× daily; monthly Jan 1979–present

nese ground-based, high-density stations (over 2400 ob-
servation stations), the station observational meteorology
data set (CN05.1) includes daily mean temperature, maxi-
mum/minimum temperature, and precipitation (Wu and Gao,
2013). The net radiation data were downloaded from the
ECMWF ERA5 products, for which the details can be found
in Sect. 2.1.5.

The self-calibrating Palmer drought severity index (SC-
PDSI) was utilized to determine the performance of all prod-
ucts under different drought or wet conditions (Wells et al.,
2004). By adjusting the climatic characteristics and calculat-
ing the duration factors based on the characteristics of the cli-
mate at a given location, the SC-PDSI has been widely used
in recent decades. The SC-PDSI fit Palmer’s 11 categories
to allow for comparisons across time and space. A negative
value indicates drought conditions, and a positive value in-
dicates a wet spell. The SC-PDSI data can be downloaded
via https://crudata.uea.ac.uk/cru/data/drought/#global/ (last
access: 12 January 2020).

2.4 Evaluation strategies

2.4.1 Statistical metrics

The comparisons were conducted through the statistical met-
rics, such as the bias, relative bias (rBias), Pearson correla-
tion coefficient (R), root mean square difference (RMSD),
and the unbiased root mean square error (ubRMSE), using
the following formulas:

Bias=

n∑
t=1

(
xp,t − xobs,t

)
n

(3)

rBias=
Bias

Mean(Observation)
(4)

R =

n∑
t=1

(
xobs,t −µobs

)(
xp,t −µp

)
√

n∑
t=1

(
xobs,t −µobs

)2√ n∑
i=1

(
xp,t −µp

)2 (5)

RMSD=

√√√√√ n∑
t=1

(
xp,t − xobs,t

)2
n

(6)

ubRMSE=
√

RMSD2
−Bias2, (7)

in which n is the total number of time steps, xp,t and xobs,t
are the values of SM products (including remote sensing and
reanalysis) and observation at time step t , µobs and µp are
the mean of the in situ observed values and all SM products,
and Mean(Observation) is the average of observation. The
metrics of rBias were used to study the performance of var-
ious regions under different drought or wet conditions. The
ubRMSE is introduced to evaluate temporal dynamic vari-
ability to remove the bias error caused by the mismatch of
spatial representativeness between the in situ data and all
SM products (Jackson et al., 2010, 2012; Entekhabi et al.,
2014). What is worth saying is that the in situ observations
were not considered as being true values because of instru-
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mental errors and representativeness, so the RMSD terminol-
ogy was used in this study.

2.4.2 Decomposition of mean square errors (MSEs)

To better explain the disagreement between all the SM prod-
ucts and in situ observations, the mean square errors (MSEs;
as defined in Eq. 8) of each product in individual regions are
utilized. To decompose the MSEs, the Nash–Sutcliffe effi-
ciency (NSE; Nash and Sutcliffe, 1970) is utilized, as defined
in Eq. (9).

MSE=
1
n

n∑
t=1

(
xp,t − xobs,t

)2 (8)

NSE= 1−

n∑
t=1

(
xp,t − xobs,t

)2
n∑
t=1

(
xobs,t −µobs

)2 = 1−
MSE
σ 2

obs
. (9)

NSE was decomposed as the correlation, the conditional bias,
and the unconditional bias, as shown in Eq. (9) (Murphy,
1988).

NSE= A−B −C

A= R2

B =
[
R−

(
σp/σobs

)]2
C =

[(
µp−µobs

)
/σobs

]2
, (10)

in which R is the correlation coefficient of observations and
products, σobs and σp are the standard deviation of in situ
data and all SM products. Equation (10) can be transformed
as Eq. (11), representing the correlation, bias, and variability.

NSE= 2 ·α ·R−α2
−β2

n

α = σp/σobs

β =
(
µp−µobs

)
/σobs . (11)

Finally, the Eq. (12) was obtained by substituting Eq. (11)
into Eq. (9) as follows:

MSE= 2σpσobs(1−R)+
(
σp− σobs

)2
+
(
µp−µobs

)2
. (12)

The MSE was decomposed to quantify the contributions of
the correlation term, standard deviation term, and bias term
(Gupta et al., 2009). On the right-hand side of the equation,
the first term (correlation term) shows the correspondence
between the SM product and the in situ observations. The
second term (standard deviation term) explains the degree
of similarity in the variations, and the third term (bias term)
shows the accuracy of the product. With a better understand-
ing of the error structure of the data sets, we can explain the
discrepancy between the SM products and the in situ obser-
vations well (Dorigo et al., 2010).

Table 2. Names and spatial coverage of the selected research re-
gions.

Regions Zonal Meridional
coverage coverage

(◦ E) (◦ N)

I NE Northeast 118–130 39.5–50.5
II NC North China 110–117.5 34.5–42
III YH Yangtze–Huai 110–120 29.5–34.5
IV NW Northwest 99.5–110 32.5–41

2.5 Study area

China is located on the eastern coast of Asia, immediately
to the west of the Pacific Ocean. It extends from roughly
3.5 to 53.75◦ N latitude and from 73.25 to 135.25◦ E longi-
tude. Considering climate conditions and the distribution of
available SM data, all estimations are conducted in four re-
search regions, as suggested by Ma et al. (2016), which are
shown in Fig. 1. Detailed information on the four research re-
gions is specified in Table 2. Figure 1 also shows the annual
mean precipitation data obtained from 160 Chinese meteoro-
logical stations during 1971–2000 from the National Climate
Center (NCC) of China. The 30-year averaged annual mean
precipitation is treated as the climatological mean precipita-
tion to define the division of the climate zone.

The comparisons were performed as follows: (i) find cor-
respondence between all SM data sets and in situ SM by us-
ing the values at the nearest neighbor grids; (ii) compare all
the SM products at regional scales by calculating the reginal
average of monthly value of all SM products, which has been
proved to reduce the uncertainty caused by grid mismatch to
some extent (Nie et al., 2008); (iii) treat all reanalysis data at
the same period as missing values if the in situ observations
are missing, and do not take these values into account.

3 Results and discussion

3.1 Spatial pattern of SM

Figure 2 shows the spatial patterns of the 33-year aver-
aged SM for the in situ observations and five products. ESA
CCI has the highest spatial resolution, followed by ERA-
Interim and ERA5, and the spatial resolutions of NCEP and
NOAA products are relatively coarse. Considering the frozen
and vegetation cover, only the JJA SM values are used for the
evaluation of the spatial pattern. Generally, most SM prod-
ucts are able to capture the overall spatial distribution of
the SM value, although the NOAA SM is highly overesti-
mated throughout the region. According to the in situ obser-
vations, SM is the lowest in the northwest and increases to
the northeast and southeast. Except for NCEP, all the other
data sets are able to represent the wet center in the northeast

Hydrol. Earth Syst. Sci., 25, 4209–4229, 2021 https://doi.org/10.5194/hess-25-4209-2021
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Figure 2. Annual averages of (a) observations and (b–e) five satellite and reanalysis SM products (m3 m−3) during JJA for the period of 1981
to 2013 in China.

of China. ESA CCI underestimates SM in the north of north-
eastern China and in northwestern and southwestern China.
SM is underestimated by ESA CCI but overestimated for all
the analysis data sets, except in northwestern China. For the
ERA5 data set, the region in the north of northwestern China
is much drier than the other products, with an average value
of less than 0.05 m3 m−3. ERA-Interim and ERA5 SM prod-
ucts are able to represent the decreasing trend from southeast

to northwest, which failed for the NCEP SM. The largest bi-
ases, reaching 0.15 m3 m−3, are found in the south of north-
eastern China, and the largest inconsistency is found in the
northwest.

The distribution of the ubRMSE for all stations is shown in
Fig. 3 to evaluate temporal SM dynamical variability. By re-
moving the bias, the NCEP product has the lowest ubRMSE,
with values between 0.01 and 0.03 m3 m−3, indicating its
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Figure 3. Same as Fig. 2 but for ubRMSE.

better performance at capturing the temporal variation in the
in situ SM. Large ubRMSE are found for the ESA CCI, with
values larger than 0.04 m3 m−3, indicating that this remote
sensing product needs to be improved at temporal variations.
Spatially large ubRMSE are also found in the Yangtze–Huai
region and in the south of northeastern China, which may be
attributed to the high SM values. A possible explanation for
the poor performance in the northern China region might be
that this region is strongly influenced by irrigation.

3.2 Temporal variability of SM

As shown in Table 2, all temporal variabilities in SM
are averaged over northeastern China, northern China, the
Yangtze–Huai region, and northwestern China, which are ab-
breviated as NE, NC, YH, and NW, respectively, below.

3.2.1 Temporal evolution

The temporal evolutions of in situ observations and grid
point SM values from the five data sets are averaged over
each research region during JJA, as displayed in Fig. 4.
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Figure 4. Time series of SM in four research regions (a–d)
from 1981 to 2013.

Generally, all the reanalysis products have a positive bias
of 0.08–0.15, 0.05–0.10, 0.07–0.13, and 0.01–0.05 m3 m−3

in the NE, NC, YH, and NW regions, respectively. ESA
CCI tends to have a negative bias with observations be-
tween −0.06 and 0 m3 m−3. All products perform well in
the NW region, and the worst performance is found in the
NC region. ERA-Interim largely overestimates SM in all the

Figure 5. Taylor diagrams of the comparison between multisource
SM products and in situ observations. The reference is the SM from
in situ observations.

research regions, while NOAA and NCEP SM have the low-
est bias among the reanalysis data sets. Reanalysis can better
reproduce the variation characteristics than remote sensing
during extreme event periods, probably due to large percent
of missing data and instrument limitations.

Table 3 shows the biases, RMSD, ubRMSE, and corre-
lation coefficients for the comparison between all products
and in situ observations during 1981 to 2013. All the eval-
uation indexes were calculated using monthly spatial aver-
age over all regions. ESA CCI presents the lowest biases for
all regions, indicating that ESA CCI is the closest to the ob-
served SM values. ERA-Interim SM has the largest positive
bias for all regions. By removing the bias error, the ubRMSE
for all products fluctuates between 0.016 and 0.025, except
for the NC region, indicating poor performance in capturing
the temporal variability. The correlation coefficient with ob-
servations for ESA CCI is relatively low. Good correlation is
obtained for ERA5 SM, except in the NC region, indicating
that ERA5 can represent the temporal and spatial variation
well. All products show a small correlation in the NC and
NW regions, implying that none of the products can capture
the spatiotemporal variation in SM over both regions.

The Taylor diagrams presenting the statistics of the com-
parison between ESA CCI, NCEP, ERA-Interim, NOAA,
ERA5, and in situ observations over four regions are shown
in Fig. 5. Generally, the NOAA SM is highly overestimated
in all regions, and ESA CCI SM is underestimated. Most cor-
relation coefficient values are between 0.5 and 0.6 for ERA5,
implying a good performance with variability. Lower corre-
lations are found for ESA CCI and ERA-Interim SM, demon-
strating that both products represent poor performance with
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Table 3. Correlation coefficients, biases, and RMSEs of the five data sets for JJA SM from 1981 to 2013. The coefficients in parentheses are
those that cannot pass the significance test (α = 0.1) with n= 33. The values marked with ∗∗ and ∗∗∗ indicate that the correlation coefficient
has passed the significance test of 95 % and 99 %, respectively. The values in brackets indicate that the significance test has not been passed.

Regions Products Bias RMSD ubRMSE Correlation

NE

ESA CCI 0.000 0.019 0.019 (0.070)
NCEP 0.081 0.083 0.016 0.380∗∗

ERA-Interim 0.148 0.149 0.016 0.550∗∗∗

NOAA/CIRES 20CR 0.075 0.079 0.024 0.509∗∗∗

ERA5 0.123 0.124 0.019 0.538∗∗∗

NC

ESA CCI −0.061 0.122 0.106 (0.122)
NCEP 0.076 0.084 0.037 (0.085)
ERA-Interim 0.100 0.109 0.044 (0.109)
NOAA/CIRES 20CR 0.083 0.093 0.041 (0.093)
ERA5 0.050 0.061 0.035 (0.061)

YH

ESA CCI −0.022 0.037 0.029 (0.173)
NCEP 0.071 0.073 0.017 0.510∗∗∗

ERA-Interim 0.132 0.134 0.025 0.398∗∗

NOAA/CIRES 20CR 0.065 0.069 0.023 0.415∗∗

ERA5 0.103 0.107 0.027 0.535∗∗∗

NW

ESA CCI −0.030 0.037 0.022 (0.227)
NCEP 0.053 0.056 0.019 (0.027)
ERA-Interim 0.045 0.049 0.020 (0.048)
NOAA/CIRES 20CR 0.032 0.039 0.023 (0.080)
ERA5 0.011 0.026 0.023 (0.244)

changing characteristics. All products exhibit poor correla-
tions in the NW region.

3.2.2 Seasonality

Monthly SM from 1981–2013 during unfrozen and snow-
free months have also been calculated in Fig. 6, showing the
temporal evolution of SM seasonality averaged spatially over
different regions. Overall, there exists a negative and a posi-
tive bias between remote sensing and reanalysis with respect
to SM observations, respectively. The difference in ESA CCI
is smaller than all reanalysis products, especially in the pe-
riod where the in situ SM value is low, which is in line with
the findings of Ma et al. (2019), in that ESA CCI have rela-
tive poor skills with lower time series correlations in sparse
or dense VOD conditions but good performance in vegetated
areas that are moderately dense (Zeng et al., 2015). Further-
more, soil types (silt, clay, and sand) also play an important
role in terms of different regions. Chakravorty et al. (2016)
studied the influence of soil texture on regional-scale perfor-
mance and found that large fractional RMSE is associated
with a large percentage of sand, which might be one of the
reasons why poor performance is found in the NW region.
ESA CCI yields the worst seasonal cycle results with respect
to temporal variation, which may be because of the large
percentage of missing data. Furthermore, the remote sens-
ing products are completely independent without assimilat-
ing or integrating measured observations. The seasonal cycle

of SM in the NE region is obvious, partly due to the sufficient
water content there. Observed SM in all regions reaches its
minimum from April to June, and then increases to its max-
imum from July to September, which can be reproduced by
all reanalysis. All reanalysis SM series have a larger dynamic
range than in situ observations and remote sensing SM val-
ues. ERA5 is closer to the observations in the NC and NW re-
gions, while NCEP and NOAA show the smallest biases in
the NE and YH regions. ERA5 SM performed better than
ERA-Interim, as it shows a similar variation tendency, with
the observations, and a smaller difference, with the average
relative biases of 7.40 %, 18.70 %, 7.34 %, and 15.38 % in
the NE, NC, YH, and NW regions, respectively.

Figure 7 displays the autocorrelation coefficients lagging
by 1 month in different seasons to investigate the persistence
of the soil moisture anomalies for in situ observations and
five products. The aim of this figure is to study the soil mois-
ture memory in different seasons. It is shown from observa-
tions that the autocorrelation is high in spring and autumn,
indicating that the soil moisture is obviously affected by the
value from 1 month before in spring and autumn. The auto-
correlation is low in summer and winter, implying that SM in
these seasons are strongly affected by meteorological ele-
ments, such as the influences of liquid and solid precipitation
and freezing. The ESA CCI correlation are low during the
MAM (March–May), JJA, and SON (September–November)
seasons because of the large amount of missing data. The
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Figure 6. Seasonality of SM distributions based on in situ observa-
tions and five products averaged over the (a) NE, (b) NC, (c) YH,
and (d) NW regions from 1981 to 2013.

lowest autocorrelation coefficient is found in the NW region,
possibly because of the particular sandy soil with relative
high porosity and low water-holding capacity. The regions
with a good seasonal persistence of soil anomalies are lo-
cated in the NW and eastern NE regions of China, which are
dominated by relatively simple land cover, e.g., bare soil and
forests, respectively. The NOAA SM shows larger autocor-
relations for all seasons than the other reanalysis products,
implying that NOAA models should take into account the in-
fluence of some other variables in soil moisture in the future,

e.g., temperature and precipitation. ERA5 shows a better per-
formance than ERA-Interim, especially with a close autocor-
relation coefficient in the NE region. The information of soil
moisture autocorrelation gives hints for the assimilation of
surface soil moisture into land surface models (Crow and
Van den Berg, 2010) in which, during summer and winter,
the influence of meteorological elements (e.g., precipitation,
temperature, evaporation, etc.) should be considered more.

3.2.3 Interannual anomalies

The JJA SM shows evident interannual anomalies in all the
research regions, as shown in Fig. 8. Most peaks and troughs
can be well represented by all products in the NE and YH re-
gions, while the variation characteristics cannot be repro-
duced in the other regions, especially in the NC region. Fur-
thermore, all products have a smaller amplitude of variation
than observations in extreme wet or drought years in the
NC and NW regions, implying that the models had a poor
ability to represent these extreme events.

Specifically, the variation range in the NOAA SM is the
largest, especially in wet and drought years in the NE region.
Taking the years of drought from 2001 to 2002 and the wet
year of 2003 as examples, this characteristic was missed by
ESA CCI. The variation range in NCEP SM is significantly
smaller than the actual measurement, and the simulation of
NCEP is obviously inferior to the other three products. In the
NC region, all products fail to capture the JJA SM variation
tendency, especially during extreme drought and wet periods.
NOAA and ERA5 can capture the basic trend, but the varia-
tion range does not match the measured value. The variation
amplitudes of NCEP and ERA-Interim are obviously smaller
than the observations. Surface SM is a variable associated
with precipitation and evaporation, both of which fluctuate
greatly with time in the JJA seasons. To improve the quality
of SM, all reanalysis data would need to improve their per-
formance in representing precipitation and evaporation, espe-
cially during extreme events. In the YH region, ERA-Interim
and ERA5 can roughly reproduce the trend of change, but
the magnitude of the change is large. There is a SM peak
occurring in 1998, in accordance with the 1998 floods in
China. The peaks in the years of 1987, 1998, and 2001 can
be reproduced by the all products. In the NW region, none of
these products are able to reproduce the variation character-
istics, especially with worse performances in drought periods
than in wet periods. According to the correlation (in Table 3),
ERA5 has the best performance, but it shows a fictitious in-
crease from 1981 to 1993.

3.3 Decomposition of the mean square error (MSE)

The (a) contribution to MSE is decomposed into a correla-
tion term, standard deviation term, and bias term according
to Eq. (12), and (b) their fractions are showed in Fig. 9.
The contribution of the bias term is much larger than the
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Figure 7. Distribution of the autocorrelation coefficient of SM in the following seasons: (a, e, i, m, q, u) FMA (February–April) and MAM
(March-May), (b, f, j, n, r, v) MJJ (May–July) and JJA (June–August), (c, g, k, o, s, w) ASO (August–October) and SON (September–
November), and (d, h, l, p, t, x) NDJ (November–January) and DJF (December–February) for (a–d) in situ, (e–h) ESA CCI, (i–l) NCEP,
(m–p) NOAA, (q–t) ERA-Interim (ERAI), and (u–x) ERA5.
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Figure 8. Temporal evolution of the JJA SM anomaly time series
from observations and the five satellite and reanalysis products in
four research regions from 1981 to 2013.

Figure 9. The (a) decomposition of three terms to the mean
square errors (MSEs) for the four satellite and reanalysis products
from 1981 to 2013 and (b) their fraction.

correlation term, except for the ESA CCI and ERA5 in the
NW region, indicating that reducing biases is the direction
we need to follow to further improve the quality of reanal-
ysis SM products. The MSE of ESA CCI SM is the small-
est for all regions, with a large fraction of the correlation
term, indicating that the main error of ESA CCI comes from
the poor performance of the variation tendency. The MSE
of ERA5 performs inconsistently in that its main difference
comes from the correlation term in the NC and NW regions,
while the bias terms are dominant in the NE and YH regions.
This implies that improving the spatiotemporal resolution
and assimilating more observation might be a potential way
to improve SM estimate, but the large fraction of ERA5 also
points to the need to improve the model simulation ability
of SM. Additionally, all products present poor performance
in the NC and NW regions, with a high correlation term. The
standard deviation term has little effect on MSE for all data
sets, except for the ESA CCI in the NE region and ERA-
Interim product in the NC region. The NOAA SM product
also shows a small MSE, except in the NW regions, which is
similar to previous evaluations in some other regions (Peng
et al., 2015; An et al., 2016; Zhu et al., 2018).
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Figure 10. The rBias of remote sensing and reanalysis SM
against in situ observations under dry or wet conditions. The
dry condition consists of extreme (scPDSI<−4) and severe
(scPDSI<−3) drought conditions; the wet condition consists of ex-
treme (scPDSI> 4) and severe (scPDSI> 3) wet spell conditions.

3.4 SM performance under various climate
backgrounds

Figure 10 shows the rBias under different humid or arid con-
ditions by utilizing SC-PDSI (Wells et al., 2004). The rBias
of the JJA SM between in situ observation and remote sens-
ing and reanalysis was calculated at each in situ grid point
as the bias divided by the mean of in situ observations and
then averaged over regions. All of the reanalysis products
show a lower rBias under drought conditions than wet con-

Figure 11. The ubRMSE of remote sensing and reanalysis SM
against in situ observations under dry or wet conditions in differ-
ent regions. The dry condition consists of extreme (scPDSI<−4)
and severe (scPDSI<−3) drought conditions; the wet condition
consists of extreme (scPDSI> 4) and severe (scPDSI> 3) wet spell
conditions.

ditions, indicating a better performance of all products un-
der dry conditions. The largest rBias was found for all prod-
ucts in the NE region, implying that the largest uncertainty
would appear in this region during extreme events. The large
difference in rBias between dry and wet conditions was ob-
served in the NW region, implying that all products fail to
represent the SM value when the water content is high. The
largest rBias is found for ERA-Interim under severe wet con-
ditions in NE, with an average bias of 144.4 %. The best per-
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Figure 12. Scatterplots of monthly anomalies of (a, d, g) precipitation, (b, e, h) temperature, and (c, f, i) net radiation vs. observed soil
moisture in the top 10 cm depth during 1981–2013 during (a–c) MAM, (d–f) JJA, and (g–i) SON seasons. R is the correlation coefficient
over four research regions, and the values marked with ∗, ∗∗, and ∗∗∗ indicate that the correlation coefficient has passed the significance test
of 90 %, 95 %, and 99 %, respectively.

formance is found for ESA CCI SM in NW, with an average
rBias of 10.0 %.

For the ubRMSE in different regions (Fig. 11), the
ubRMSE of all SM products in the NE and NW regions is
noticeably high. The difference in ubRMSE between differ-
ent conditions is not as large as for rBias, especially in the
NE region. Overall the ubRMSE for all products is larger un-
der wet conditions, while the phase is opposite in the NW re-
gion. The averaged bias for ESA CCI under drought condi-
tions is smaller than that under wet conditions. The largest
and smallest ubRMSE are found for the ESA CCI under wet
conditions in the NE region and for NCEP SM products un-
der both conditions in the YH region, respectively.

Previous studies have shown that soil moisture is influ-
enced by the combination of precipitation and evaporation,
in which land surface evaporation is linked with temperature
and surface net radiation (Jasper et al., 2006; Harmsen et al.,
2009). Figure 12 shows scatterplots of (a, d, g) precipitation,
(b, e, h) temperature, and (c, f, i) net radiation anomalies ver-
sus observed SM anomalies over different regions in (left
column) MAM, (middle column) JJA, and (right column)
SON seasons. Obvious positive correlations are found be-
tween precipitation and SM in the YH regions during MAM

and SON seasons and in the NE and NC regions during JJA
season. Temperature and net radiation show a negative cor-
relation within the NE, NC, and YH regions. The correla-
tion coefficient is low for all meteorological variables in the
NW region, which may be attributed to the large fraction of
sand there. Soil moisture in the NE and NC regions tends to
be influenced by temperature during cold seasons. SM in the
YH region tends to be influenced by radiation during warm
seasons, due to the large evaporation there.

3.5 Discussion

The ESA CCI SM product showed the top layer soil content
up to 5 cm depth or so. The in situ measurement depth and
model output are at 0–10 cm depth, which was also treated
as the top layer soil content. Such a difference would also
cause representativeness errors. Previous studies have found
that there is a close relationship between surface SM and
SM in the upper 10 cm (i.e., Albergel et al., 2008; Dorigo
et al., 2015), so the SM measurements at a depth of 10 cm
were chosen as the reference to evaluate satellite-based and
reanalysis products. Furthermore, introducing ubRMSE and
conducting a comparison at the regional scale can remove
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the bias error caused by the mismatch of grid cells to some
extent.

The ESA CCI combined data generally increase the num-
ber of observations available for a time period but the cor-
relation coefficients were not better than those of the best-
performing single data set (Dorigo et al., 2015). Dorigo et
al. (2015) also studied the possible reasons of input data
and found that the low correlation of the combined product,
possibly due to the merging procedure, including the influ-
ence of vegetation (Taylor et al., 2012), the different origi-
nal overpass time, and the scaling of the high-resolution AS-
CAT product to lower resolution reference products. Beck
et al. (2021) found that ESA CCI SM performed better in
eastern Europe in terms of high-frequency fluctuations and
found that the reason that the overall performance of ESA
CCI may be not so good was possibly due to the incorpora-
tion of ASCAT, which performed less well. Furthermore, the
poor correlation of the remote sensing product is also associ-
ated with the missing of available data because of instrument
limitations and cloud impact.

In the winter, SM decreases in all regions, mainly because
of decreased precipitation. Lower evaporation caused by sud-
den cooling may explain why SM increases in early winter.
SM reaches a local minimum in the spring in most of the
regions, except the NE region, as a temperature rise leads
to higher evaporation, while precipitation does not increase
much in this season. In the NE region, ice and melting snow
partially compensate for soil water loss and help maintain
a relatively stable SM. Increased precipitation in the sum-
mer gives rise to an evident increase in SM. In the autumn,
SM continues to increase in the YH and NC regions, proba-
bly due to less evaporation caused by lower temperatures.

Precipitation and evaporation are found to be the most
important determinants of soil moisture simulation perfor-
mance where the evaporation is associated with temperature
and radiation (Gottschalck et al., 2005; Mall et al., 2006;
Chen and Yuan, 2020). the SM value in the analysis is over-
estimated, partly due to the reason that the JJA precipitation
over China is overestimated by models (e.g., Luo et al., 2013;
Yun et al., 2020). The largest bias in precipitation overes-
timation, using the hourly 31 km resolution ERA5 reanaly-
sis data, is found over the Tibetan and Yun-Gui plateaus, the
North China Plain, and southern China, which gives one of
the explanations why reanalysis products represent the worst
performance over the NC region.

Soil type and soil texture are also important elements for
soil moisture estimation. In the southwest of the NE region,
the sand fraction of the topsoil can reach about 80 %–90 %,
and the sand fraction and clay fraction of the topsoil are
around 30 %–40 % and 10 %–30 % respectively (Shangguan
et al., 2012) in the northern NE region. The inconsistency of
the soil types over the NE region might explain why the large
inconsistency in spatial distribution was found for all prod-
ucts. In the northwest of the NW region, the sand fraction is
larger than 80 %, and the sand fraction is low in the south-

east of the NW region. The large difference in soil types over
the northern NW region is one of the reasons that all products
show poor performance. In the NC and YH regions, sand and
clay fraction of the topsoil account for about 10 %–20 % and
30 %–50 %, 30 %–50 %, and 0 %–20 % respectively. The dif-
ferent performance over the NC and YH regions hints that re-
mote sensing and reanalysis products tend to perform worse
when the soil type is sand because of its poor water retention.

ERA5 (∼ 0.28125◦) has a higher spatial resolution than
ERA-Interim (∼ 0.75◦), which can be directly reflected in
their spatial patterns of SM distribution. ERA5 can repro-
duce the spatial distribution and time series of monthly SM
well over the Chinese mainland in terms of low bias between
observations. Looking at the monthly variation and interan-
nual variation in the SM anomaly, ERA5 has a better per-
formance than ERA-Interim in terms of low bias. It is pro-
posed that ERA5 will eventually replace ERA-Interim, and
we do see improvements in the ERA5 product. However,
ERA5 overcorrects the problem of a small variation in ERA-
Interim, which leads to almost the same ubRMSE and cor-
relation coefficient in ERA5 and ERA-Interim. This implies
that improving the model resolution and assimilating satel-
lite SM estimates can help reduce the difference in SM but
will not improve much in the spatial and temporal variation at
long-term scales. This might be caused by the small improve-
ment of assimilating the ASCAT soil moisture in the ERA5
reanalysis (Hersbach et al., 2020). Beck et al. (2021) con-
cluded that assimilating satellite soil moisture estimate may
not improve more than increasing model resolution or im-
proving soil moisture simulation ability, which is in line with
our results. This suggests that improving the model simula-
tion performance of SM is beneficial, especially at long-term
scales.

4 Conclusions

To evaluate the performance of long-term SM products over
the Chinese mainland, one satellite-based product and four
reanalysis data sets from 1981 to 2013 are selected for com-
parison with in situ measurements at different timescales.

Overall, ESA CCI has the best performance, with the high-
est spatial resolution and accuracy, making it a good option
for long-term hydrometeorological applications in China.
The 0.25◦× 0.25◦ resolution of the ESA CCI product pro-
duces the finest spatial pattern of SM, making it more bene-
ficial for regional application than other SM products. How-
ever, ESA CCI shows poor performance in terms of its low
correlation and missing values, especially in northeastern
China.

ERA-Interim and ERA5 can reproduce the tendency of the
time series well and perform the best at stations, but they
overestimate the seasonal variation in SM. ERA5 is also a
promising product, with better performance in several as-
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pects compared to ERA-Interim, highlighting the importance
of incorporating more observations at finer spatial resolution.

NCEP cannot reproduce the spatial pattern of SM in
China, the time series of NCEP SM data is poorly corre-
lated with observations, and the variation amplitude of its
seasonal cycle is much larger than that of the observations.
NOAA is able to reproduce the basic spatial pattern, but it
systematically overestimates SM in China and shows little
seasonal variation. All the SM products used in the present
study cannot adequately simulate the interannual variation in
the SM anomaly.

The mismatch between SM layers in analysis products
and observations, as well as their spatial mismatch, should
be investigated in the future (Choi and Hur, 2012; Crow et
al., 2012). Furthermore, subdaily SM model products con-
sidering the advantages of individual models under different
weather regimes and climate scenarios could be merged in
future work (Chen and Yuan, 2020).

Data availability. We acknowledge the data providers of the fol-
lowing SM products. The updated Chinese soil moisture pre-
sented as volumetric soil moisture (θv; m3 m−3) for 1981
to 1999 was downloaded from the International Soil Moisture
Network website (https://ismn.geo.tuwien.ac.at/en/, last access:
15 June 2020) (ISMN, 2020). The in situ SM measurements are
available upon request from the website of the National Mete-
orological Information Center of China (NMIC; http://data.cma.
cn/site/index.html, last access: 12 March 2020). We acknowledge
the sources of the following data sets: ESA CCI (http://www.
esa-soilmoisture-cci.org, last access: 7 September 2018) (ESA,
2018), ECMWF ERA-Interim (https://apps.ecmwf.int/datasets/
data/interim-full-daily/levtype=sfc/, last access: 5 June 2018)
(ECMWF, 2018), ERA5 (https://apps.ecmwf.int/data-catalogues/
era5/?class=ea, last access: 27 November 2017) (ECMWF, 2017),
NCEP (https://doi.org/10.1175/BAMS-83-11-1631) (Kanamitsu et
al., 2002), NOAA (https://doi.org/10.1002/qj.776) (Compo et
al., 2011), and NMIC (http://data.cma.cn/data/cdcdetail/dataCode/
AGME_AB2_CHN_TEN.html, last access: 12 March 2020). The
land surface air temperature and precipitation data are obtained
from the National Meteorological Information Center (NMIC) at
a spatial resolution of 0.25◦, spanning from 1961 to the present
(http://data.cma.cn/site/index.html, last access: 12 October 2019).
The SC-PDSI data can be downloaded via https://crudata.uea.ac.uk/
cru/data/drought/#global/ (last access: 12 January 2020) (Climate
research unit, 2020).

Author contributions. YH, WG, and JP designed the study and per-
formed the experiments. XL and YW performed the experiments,
analyzed the data, and wrote and revised the paper. BQ, JG, KQ,
and YX contributed to the interpretation of the results and the revi-
sion of the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We are grateful to all the soil moisture product
developers for producing and sharing their products. We thank the
editor, Xing Yuan, two anonymous reviewers, and Xingwang Fan,
for their constructive suggestions, which helped to improve this ar-
ticle.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Financial support. This work was jointly supported by the Na-
tional Key R & D Program of China (grant no. 2017YFA0603803),
the National Science Foundation of China (grant nos. 42075114,
41705101, and 41775075), the Priority Academic Program
Development of Jiangsu Higher Education Institutions (grant
no. 140119001), and the ESAMOST Dragon 5 project (Monitor-
ing and Modelling Climate Change in Water, Energy, and Carbon
Cycles in the Pan-Third Pole Environment – CLIMATE-Pan-TPE).

Review statement. This paper was edited by Xing Yuan and re-
viewed by two anonymous referees.

References

AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., An-
derson, M. C., Wardlow, B. D., and Hain, C. R.: Remote sens-
ing of drought: progress, challenges and opportunities, Rev.
Geophys., 53, 452–480, https://doi.org/10.1002/2014rg000456,
2015.

Akbar, R., Gianotti, D. J. S., McColl, K. A., Haghighi, E., Salvucci,
G. D., and Entekhabi, D.: Estimation of landscape soil water
losses from satellite observations of soil moisture, J. Hydrom-
eteorol., 19, 871–889, https://doi.org/10.1175/jhm-d-17-0200.1,
2018.

Albergel, C., Rosnay, P., Gruhier, C., Munoz-Sabater, J., Hasenauer,
S., Isaksen, L., Kerr, Y., and Wagner, W.: Evaluation of remotely
sensed and modelled soil moisture products using global ground-
based in situ observations, Remote Sens. Environ., 118, 215–226,
https://doi.org/10.1016/j.rse.2011.11.017, 2012.

Albergel, C., Dutra, E., Munier, S., Calvet, J. C., Munoz-
Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-
interim driven ISBA land surface model simulations: which
one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532,
https://doi.org/10.5194/hess-22-3515-2018, 2018.

An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J., Shen,
X., Gao, W., Huang, L., Zhao, Y., and Ke, Z.: Validation of the
ESA CCI soil moisture product in China, Int. J. Appl. Earth Obs.
Geoinf., 48, 28–36, https://doi.org/10.1016/j.jag.2015.09.009,
2016.

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A.,
and Kustas, W. P.: A climatological study of evapotranspiration
and moisture stress across the continental United States based on
thermal remote sensing: 2. Surface moisture climatology, J. Geo-
phys. Res., 112, D11112, https://doi.org/10.1029/2006jd007507,
2007.

https://doi.org/10.5194/hess-25-4209-2021 Hydrol. Earth Syst. Sci., 25, 4209–4229, 2021

https://ismn.geo.tuwien.ac.at/en/
http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html
http://www.esa-soilmoisture-cci.org
http://www.esa-soilmoisture-cci.org
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://apps.ecmwf.int/data-catalogues/era5/?class=ea
https://apps.ecmwf.int/data-catalogues/era5/?class=ea
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1002/qj.776
http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html
http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html
http://data.cma.cn/site/index.html
https://crudata.uea.ac.uk/cru/data/drought/#global/
https://crudata.uea.ac.uk/cru/data/drought/#global/
https://doi.org/10.1002/2014rg000456
https://doi.org/10.1175/jhm-d-17-0200.1
https://doi.org/10.1016/j.rse.2011.11.017
https://doi.org/10.5194/hess-22-3515-2018
https://doi.org/10.1016/j.jag.2015.09.009
https://doi.org/10.1029/2006jd007507


4226 X. Ling et al.: Comprehensive evaluation of satellite-based and reanalysis soil moisture products

Balenzano, A., Mattia, F., Satalino, G., and Davidson, M.
W. J.: Dense temporal series of C- and L-band SAR data
for soil moisture retrieval over agricultural crops, IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens., 4, 439–450,
https://doi.org/10.1109/jstars.2010.2052916, 2011.

Bárdossy, A. and Lehmann, W.: Spatial distribution of soil mois-
ture in a small catchment. Part 1: geostatistical analysis, J. Hy-
drol., 206, 1–15, https://doi.org/10.1016/s0022-1694(97)00152-
2, 1998.

Bastiaanssen, W. G. M., Molden, D. J., and Makin, I. W.: Re-
mote sensing for irrigated agriculture: examples from research
and possible applications, Agric. Water Manage., 46, 137–155,
https://doi.org/10.1016/s0378-3774(00)00080-9, 2000.

Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A.,
Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa,
R. M., van Dijk, A. I. J. M., Du, J., Kimball, J. S., Vergopolan, N.,
and Wood, E. F.: Evaluation of 18 satellite- and model-based soil
moisture products using in situ measurements from 826 sensors,
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-
25-17-2021, 2021.

Berg, A. A., Famiglietti, J. S., Walker, J. P., and Houser, P. R.: Im-
pact of bias correction to reanalysis products on simulations of
North American soil moisture and hydrological fluxes, J. Geo-
phys. Res., 108, 4490, https://doi.org/10.1029/2002jd003334,
2003.

Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes,
M., Kallberg, P., Kobayashi, S., Uppala, S., and Simmons,
A.: The ERA-Interim archive, version 2.0, ERA report series,
1. Technical Report, ECMWF, Shinfield Park, Reading, 23 pp.,
2011.

Bogena, H. R., Huisman, J. A., Oberdörster, C., and Vereecken,
H.: Evaluation of a low-cost soil water content sensor
for wireless network applications, J. Hydrol., 344, 32–42,
https://doi.org/10.1016/j.jhydrol.2007.06.032, 2007.

Busch, F. A., Niemann, J. D., and Coleman, M.: Evaluation of an
empirical orthogonal function-based method to downscale soil
moisture patterns based on topographical attributes, Hydrol. Pro-
cess., 26, 2696–2709, https://doi.org/10.1002/hyp.8363, 2012.

Chakravorty, A., Chahar, B. R., Sharma, O. P., and Dhanya, C. T.:
A regional scale performance evaluation of SMOS and ESA-
CCI soil moisture products over India with simulated soil mois-
ture from MERRA-Land, Remote Sens. Environ., 186, 514–527,
https://doi.org/10.1016/j.rse.2016.09.011, 2016.

Chauhan, N. S., Miller, S., and Ardanuy, P.: Spaceborne soil
moisture estimation at high resolution: a microwave-optical/IR
synergistic approach, Int. J. Remote Sens., 24, 4599–4622,
https://doi.org/10.1080/0143116031000156837, 2003.

Chen, Y. and Yuan, H.: Evaluation of nine sub-daily
soil moisture model products over China using high-
resolution in situ observations, J. Hydrol., 588, 125054,
https://doi.org/10.1016/j.jhydrol.2020.125054, 2020.

Choi, M. and Hur, Y.: A microwave-optical/infrared disaggrega-
tion for improving spatial representation of soil moisture using
AMSR-E and MODIS products, Remote Sens. Environ., 124,
259–269, https://doi.org/10.1016/j.rse.2012.05.009, 2012.

Climate research unit: Drought indices, available at: https://
crudata.uea.ac.uk/cru/data/drought/#global/, last access: 12 Jan-
uary 2020.

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Al-
lan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G.,
Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I.,
Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger,
A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross,
T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S.
J.: The twentieth century reanalysis project, Q. J. Roy. Meteorol.
Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.

Crow, W. and Van den Berg, M.: An improved approach for
estimating observation and model error parameters in soil
moisture data assimilation, Water Resour. Res., 46, W12519,
https://doi.org/10.1029/2010WR009402, 2010.

Crow, W. T. and Ryu, D.: A new data assimilation ap-
proach for improving runoff prediction using remotely-sensed
soil moisture retrievals, Hydrol. Earth Syst. Sci., 13, 1–16,
https://doi.org/10.5194/hess-13-1-2009, 2009.

Crow, W. T. and Wood, E. F.: Multi-scale dynamics of soil mois-
ture variability observed during SGP’97, Geophys. Res. Lett., 26,
3485–3488, https://doi.org/10.1029/1999gl010880, 1999.

Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P.,
Panciera, R., de Rosnay, P., Ryu, D., and Walker, J. P.: Upscal-
ing sparse ground-based soil moisture observations for the vali-
dation of coarse-resolution satellite soil moisture products, Rev.
Geophys., 50, RG2002, https://doi.org/10.1029/2011rg000372,
2012.

C3S: ERA5: fifth generation of ECMWF atmospheric reanalyses
of the global climate, available at: https://cds.climate.copernicus.
eu/cdsapp#!/home (last access: 12 July 2018), 2017.

Dai, A., Trenberth, K. E., and Qian, T.: A global dataset of palmer
drought severity index for 1870–2002: relationship with soil
moisture and effects of surface warming, J. Hydrometeorol., 5,
1117–1130, https://doi.org/10.1175/jhm-386.1, 2004.

Das, N. N., Entekhabi, D., and Njoku, E. G.: An algorithm for
merging SMAP radiometer and radar data for high-resolution
soil-moisture retrieval, IEEE T. Geosci. Remote, 49, 1504–1512,
https://doi.org/10.1109/tgrs.2010.2089526, 2011.

Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and
Bosilovich, M. G.: Evaluation of the reanalysis products from
GSFC, NCEP, and ECMWF using flux tower observations, J. Cli-
mate, 25, 1916–1944, https://doi.org/10.1175/jcli-d-11-00004.1,
2012.

de Jeu, R. A. M., Wagner, W., Holmes, T. R. H., Dolman,
A. J., van de Giesen, N. C., and Friesen, J.: Global soil
moisture patterns observed by space borne microwave ra-
diometers and scatterometers, Surv. Geophys., 29, 399–420,
https://doi.org/10.1007/s10712-008-9044-0, 2008.

Deng, Y., Wang, S., Bai, X., Wu, L., Cao, Y., Li, H., Wang, M., Li,
C., Yang, Y., Hu, Z., Tian, S., and Lu, Q.: Comparison of soil
moisture products from microwave remote sensing, land model,
and reanalysis using global ground observations, Hydrol. Pro-
cess., 34, 836–851, https://doi.org/10.1002/hyp.13636, 2020.

Dirmeyer, P. A.: The terrestrial segment of soil moisture-
climate coupling, Geophys. Res. Lett., 38, L16702,
https://doi.org/10.1029/2011gl048268, 2011.

Dobriyal, P., Qureshi, A., Badola, R., and Hussain, S. A.: A review
of the methods available for estimating soil moisture and its im-
plications for water resource management, J. Hydrol., 458–459,
110–117, https://doi.org/10.1016/j.jhydrol.2012.06.021, 2012.

Hydrol. Earth Syst. Sci., 25, 4209–4229, 2021 https://doi.org/10.5194/hess-25-4209-2021

https://doi.org/10.1109/jstars.2010.2052916
https://doi.org/10.1016/s0022-1694(97)00152-2
https://doi.org/10.1016/s0022-1694(97)00152-2
https://doi.org/10.1016/s0378-3774(00)00080-9
https://doi.org/10.5194/hess-25-17-2021
https://doi.org/10.5194/hess-25-17-2021
https://doi.org/10.1029/2002jd003334
https://doi.org/10.1016/j.jhydrol.2007.06.032
https://doi.org/10.1002/hyp.8363
https://doi.org/10.1016/j.rse.2016.09.011
https://doi.org/10.1080/0143116031000156837
https://doi.org/10.1016/j.jhydrol.2020.125054
https://doi.org/10.1016/j.rse.2012.05.009
https://crudata.uea.ac.uk/cru/data/drought/#global/
https://crudata.uea.ac.uk/cru/data/drought/#global/
https://doi.org/10.1002/qj.776
https://doi.org/10.1029/2010WR009402
https://doi.org/10.5194/hess-13-1-2009
https://doi.org/10.1029/1999gl010880
https://doi.org/10.1029/2011rg000372
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://doi.org/10.1175/jhm-386.1
https://doi.org/10.1109/tgrs.2010.2089526
https://doi.org/10.1175/jcli-d-11-00004.1
https://doi.org/10.1007/s10712-008-9044-0
https://doi.org/10.1002/hyp.13636
https://doi.org/10.1029/2011gl048268
https://doi.org/10.1016/j.jhydrol.2012.06.021


X. Ling et al.: Comprehensive evaluation of satellite-based and reanalysis soil moisture products 4227

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G.,
Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E.,
Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., La-
hoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw,
N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R.,
Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI soil
moisture for improved earth system understanding: state-of-the
art and future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017.

Dorigo, W., Wagner, W., Gruber, A., Scanlon, T., Hahn, S., Kidd,
R., Paulik, C., Reimer, C., van der Schalie, R., and de Jeu, R.:
ESA soil moisture climate change initiative (soil_moisture_cci):
version 04.2 data collection, Cent. Environ. Data Anal.,
https://doi.org/10.5285/3a8a94c3fa464d68b6d70df291afd457,
2018.

Dorigo, W. A., Scipal, K., Parinussa, R. M., Liu, Y. Y., Wagner, W.,
de Jeu, R. A. M., and Naeimi, V.: Error characterisation of global
active and passive microwave soil moisture datasets, Hydrol.
Earth Syst. Sci., 14, 2605–2616, https://doi.org/10.5194/hess-14-
2605-2010, 2010.

Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C.,
Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oeve-
len, P., Robock, A., and Jackson, T.: The international soil mois-
ture network: a data hosting facility for global in situ soil mois-
ture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698,
https://doi.org/10.5194/hess-15-1675-2011, 2011.

Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T.,
Loew, A., Albergel, C., Brocca, L., Chung, D., Parinussa, R. M.,
and Kidd, R.: Evaluation of the ESA CCI soil moisture product
using ground-based observations, Remote Sens. Environ., 162,
380–395, https://doi.org/10.1016/j.rse.2014.07.023, 2015.

ECMWF: European Centre for Medium-Range Weather Fore-
casts (ECMWF) Re-Analysis Interim (ERA-Interim) Model
Data, NCAS British Atmospheric Data Centre, Oxford, UK,
2009.

ECMWF: ERA5 Catalogue, available at: https://apps.ecmwf.int/
data-catalogues/era5/?class=ea, last access: 27 November 2017.

ECMWF: ERA Interim, Daily, available at: https://apps.ecmwf.
int/datasets/data/interim-full-daily/levtype=sfc/, last access:
5 June 2018.

Engman, E. T.: Applications of microwave remote sensing of soil
moisture for water resources and agriculture, Remote Sens. Envi-
ron., 35, 213–226, https://doi.org/10.1016/0034-4257(91)90013-
v, 1991.

Entekhabi, D., Yueh, S., O’Neill, P., Kellogg, K., Allen, A.,
Bindlish, R., Brown, M., Chan, S., Colliander, A., Crow, W., Das,
N., De Lannoy, G., Dunbar, R., Edelstein, W., Entin, J., Escobar,
V., Goodman, S., Jackson, T., Jai, B., Johnson, J., Kim, E., Kim,
S., Kimball, J., Koster, R., Leon, A., McDonald, K., Moghad-
dam, M., Mohammed, P., Moran, S., Njoku, E., Piepmeier, J., Re-
ichle, R., Rogez, F., Shi, J., Spencer, M., Thurman, S., Tsang, L.,
Van Zyl, J., Weiss, B., and West, R.: SMAP Handbook Soil Mois-
ture Active Passive, Mapping Soil Moisture Freeze/Thaw From
Space, Nat. Aeronaut. Space Admin., Jet Propul. Lab., Pasadena,
California, 180 pp., 2014.

ESA: v05.2 release: ESA CCI SM now including SMAP data!,
available at: https://www.esa-soilmoisture-cci.org/ (last access:
7 September 2018), 2018.

GCOS: Essential Climate Variables-Land, avail-
able at: https://public.wmo.int/en/programmes/
global-climate-observing-system/essential-climate-variables
(last access: 12 July 2019), 2010.

González-Zamora, Á., Sánchez, N., Pablos, M., and Martínez-
Fernández, J.: CCI soil moisture assessment with SMOS soil
moisture and in situ data under different environmental condi-
tions and spatial scales in Spain, Remote Sens. Environ., 225,
469–482, https://doi.org/10.1016/j.rse.2018.02.010, 2019.

Gottschalck, J., Meng, J., Rodell, M., and Houser, P.: Analysis of
multiple precipitation products and preliminary assessment of
their impact on Global Land Data Assimilation System land sur-
face states, J. Hydrometeorol., 6, 573–598, 2005.

Gruber, A., Dorigo, W. A., Crow, W., and Wagner, W.:
Triple collocation-based merging of satellite soil mois-
ture retrievals, IEEE T. Geosci. Remote, 55, 6780–6792,
https://doi.org/10.1109/tgrs.2017.2734070, 2017.

Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and
Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate
data records and their underlying merging methodology, Earth
Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-
717-2019, 2019.

Gupta, H., Kling, H., Yilmaz, K., and Martinez, G. F.: Decomposi-
tion of the mean squared error and NSE performance criteria: Im-
plications for improved hydrological modeling, J. Hydrol., 377,
80–91, 2009.

Hagan, D. F. T., Parinussa, R. M., Wang, G., and Draper, C. S.:
An evaluation of soil moisture anomalies from global model-
based datasets over the people’s republic of China, Water, 12,
117, https://doi.org/10.3390/w12010117, 2020.

Harmsen, E. W., Norman, L. M., Nicole, J. S., and Gonzalez, J. E.:
Seasonal climate change impacts on evapotranspiration, precipi-
tation deficit and crop yield in Puerto Rico, Agr. Water Manage.,
96, 1085–1095, 2009.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara,
G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley,
S., Laloyaux, P., Lopez, P., Radnoti, G., de Rosnay, P., Rozum,
I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Ikonen, J., Smolander, T., Rautiainen, K., Cohen, J., Lemme-
tyinen, J., Salminen, M., and Pulliainen, J.: Spatially dis-
tributed evaluation of ESA CCI soil moisture products in
a northern boreal forest environment, Geosciences, 8, 51,
https://doi.org/10.3390/geosciences8020051, 2018.

ISMN: Welcome to the International Soil Moisture Net-
work, available at: https://ismn.geo.tuwien.ac.at/en/, last access:
15 June 2020.

Jackson, T., Cosh, M., Bindlish, R., Starks, P., Bosch, D.,
Seyfried, M., Goodrich, D., Moran, S., and Du, J.: Val-
idation of Advanced Microwave Scanning Radiometer soil
moisture products, IEEE T. Geosci. Remote, 48, 4256–4272,
https://doi.org/10.1109/TGRS.2010.2051035, 2010.

https://doi.org/10.5194/hess-25-4209-2021 Hydrol. Earth Syst. Sci., 25, 4209–4229, 2021

https://doi.org/10.1016/j.rse.2017.07.001
https://doi.org/10.5285/3a8a94c3fa464d68b6d70df291afd457
https://doi.org/10.5194/hess-14-2605-2010
https://doi.org/10.5194/hess-14-2605-2010
https://doi.org/10.5194/hess-15-1675-2011
https://doi.org/10.1016/j.rse.2014.07.023
https://apps.ecmwf.int/data-catalogues/era5/?class=ea
https://apps.ecmwf.int/data-catalogues/era5/?class=ea
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://doi.org/10.1016/0034-4257(91)90013-v
https://doi.org/10.1016/0034-4257(91)90013-v
https://www.esa-soilmoisture-cci.org/
https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
https://doi.org/10.1016/j.rse.2018.02.010
https://doi.org/10.1109/tgrs.2017.2734070
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.3390/w12010117
https://doi.org/10.1002/qj.3803
https://doi.org/10.3390/geosciences8020051
https://ismn.geo.tuwien.ac.at/en/
https://doi.org/10.1109/TGRS.2010.2051035


4228 X. Ling et al.: Comprehensive evaluation of satellite-based and reanalysis soil moisture products

Jackson, T., Bindlish, R., Cosh, M., Zhao, T., Starks, P.,
Bosch, D., Seyfried, M., Moran, M., Goodrich, D., Kerr,
Y., and Leroux, D.: Validation of Soil Moisture and Ocean
Salinity (SMOS) soil moisture over watershed networks
in the U.S., IEEE T. Geosci. Remote, 50, 1530–1543,
https://doi.org/10.1109/TGRS.2011.2168533, 2012.

Jasper, K., Calanca, P., and Fuhrer, J.: Changes in summertime soil
water patterns in complex terrain due to climatic change, J. Hy-
drol., 327, 550–563, 2006.

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo,
J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-
II reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1643,
https://doi.org/10.1175/BAMS-83-11-1631, 2002.

Kim, J. E. and Hong, S. Y.: Impact of soil moisture anomalies on
summer rainfall over east Asia: a regional climate model study, J.
Climate, 20, 5732–5743, https://doi.org/10.1175/2006jcli1358.1,
2007.

Komma, J., Blöschl, G., and Reszler, C.: Soil mois-
ture updating by Ensemble Kalman Filtering in real-
time flood forecasting, J. Hydrol., 357, 228–242,
https://doi.org/10.1016/j.jhydrol.2008.05.020, 2008.

Lai, X., Wen, J., Ceng, S. X., Song, H. Q., Tian, H., Shi, X. K., He,
Y., and Huang, X.: Numerical simulation and evaluation study
of soil moisture over China by using CLM4.0 model, J. Atmos.
Sci., 38, 499–512, 2014.

Li, H. Y., Robock, A., Liu, S., Mo, X., and Viterbo, P.: Evalua-
tion of reanalysis soil moisture simulations using updated Chi-
nese soil moisture observations, J. Hydrometeorol., 6, 180–193,
https://doi.org/10.1175/jhm416.1, 2009.

Li, M., Wu, P., and Ma, Z.: A comprehensive evaluation of soil
moisture and soil temperature from third-generation atmospheric
and land reanalysis data sets, Int. J. Climatol., 40, 5744–5766,
https://doi.org/10.1002/joc.6549, 2020.

Li, Y., Li, Y., Yuan, X., Zhang, L., and Sha, S.: Evaluation of
model-based soil moisture drought monitoring over three key
regions in China, J. Appl. Meteorol. Clim., 57, 1989–2004,
https://doi.org/10.1175/jamc-d-17-0118.1, 2018.

Liu, L., Zhang, R., and Zuo, Z.: Intercomparison of
spring soil moisture among multiple reanalysis data
sets over eastern China, J. Geophys. Res., 119, 54–64,
https://doi.org/10.1002/2013jd020940, 2014.

Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M.,
Wagner, W., McCabe, M. F., Evans, J. P., and van Dijk, A. I. J.
M.: Trend-preserving blending of passive and active microwave
soil moisture retrievals, Remote Sens. Environ., 123, 280–297,
https://doi.org/10.1016/j.rse.2012.03.014, 2012.

Luo, L., Tang, W., Lin, Z., and Wood, E.: Evaluation of summer
temperature and precipitation predictions from NCEP CFSv2 ret-
rospective forecast over China, Clim. Dynam., 41, 2213–2230,
2013.

Ma, H. , Zeng, J. , Chen, N. , Zhang, X. , and Wang, W.: Satel-
lite surface soil moisture from SMAP, SMOS, AMSR2 and
ESA CCI: a comprehensive assessment using global ground-
based observations, Remote Sens. Environ., 231, 111215,
https://doi.org/10.1016/j.rse.2019.111215, 2019.

Ma, S., Zhu, K., Li, M., and Ma, Z.: A comparative study of multi-
source soil moisture data for China’s regions, Clim. Environ.
Res., 21, 121–133, 2016.

Mall, R., Gupta, A., Singh, R., Singh, R., and Rathore, L.: Water
resources and climate change: an Indian perspective, Curr. Sci.,
90, 1610–1626, 2006.

Markewitz, D., Devine, S., Davidson, E. A., Brando, P.,
and Nepstad, D. C.: Soil moisture depletion under simu-
lated drought in the Amazon: impacts on deep root up-
take, New Phytol., 187, 592–607, https://doi.org/10.1111/j.1469-
8137.2010.03391.x, 2010.

McColl, K. A., Wang, W., Peng, B., Akbar, R., Gianotti, D. J. S.,
Lu, H., Pan, M., and Entekhabi, D.: Global characterization of
surface soil moisture drydowns, Geophys. Res. Lett., 44, 3682–
3690, https://doi.org/10.1002/2017gl072819, 2017.

Murphy, A.: Skill scores based on the mean square error and their
relationships to the correlation coefficient, Mon. Weather Rev.,
116, 2417–2424, 1988.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through.
Part I. A conceptual models discussion of principles, J. Hydrol.,
10, 282–290, 1970.

Nie, S., Luo, Y., and Zhu, J.: Trends and scales of observed soil
moisture variation in China, Adv. Atmos. Sci., 25, 43–58, 2008.

NMIC: Data set of crop growth and soil moisture in China
(AGME_AB2_CHN_TEN): http://data.cma.cn/data/cdcdetail/
dataCode/AGME_AB2_CHN_TEN.html (last access:
27 November 2017), 2006.

NorBiasto, D., Borga, M., Esposti, S. D., Gaume, E., and
Anquetin, S.: Flash flood warning based on rainfall thresh-
olds and soil moisture conditions: an assessment for
gauged and ungauged basins, J. Hydrol., 362, 274–290,
https://doi.org/10.1016/j.jhydrol.2008.08.023, 2008.

Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper,
C. S., Hagimoto, Y., Kerr, Y. H., Larson, K. M., Njoku, E.
G., Small, E. E., and Zreda, M.: State of the art in large-scale
soil moisture monitoring, Soil Sci. Soc. Am. J., 77, 1888–1919,
https://doi.org/10.2136/sssaj2013.03.0093, 2013.

Pasik, A., Scanlon, T., Dorigo, W., de Jeu, R. A. M., Hahn,
S., van der Schalie, R., Wagner, W., Kidd, R., Gruber, A.,
Moesinger, L., and Preimesberger, W.: ESA Climate Change
Initiative Plus – Soil Moisture: Algorithm Theoretical Baseline
Document (ATBD) Supporting Product Version v05.2, Earth Ob-
servation Data Centre for Water Resources Monitoring (EODC)
GmbH, TU Wien, VanderSat, CESBIO and ETH, Zürich, 71 pp.,
2020.

Peng, J. and Loew, A.: Recent advances in soil mois-
ture estimation from remote sensing, Water, 9, 530,
https://doi.org/10.3390/w9070530, 2017.

Peng, J., Niesel, J., Loew, A., Zhang, S., and Wang, J.: Evalua-
tion of satellite and reanalysis soil moisture products over south-
west China using ground-based measurements, Remote Sens., 7,
15729–15747, https://doi.org/10.3390/rs71115729, 2015.

Peng, J., Loew, A., Merlin, O., and Verhoest, N. E. C.:
A review of spatial downscaling of satellite remotely
sensed soil moisture, Rev. Geophys., 55, 341–366,
https://doi.org/10.1002/2016RG000543, 2017.

Petropoulos, G. P., Ireland, G., and Barrett, B.: Surface soil
moisture retrievals from remote sensing: current status, prod-
ucts & future trends, Phys. Chem. Earth Pt. A/B/C, 83–84, 36–
56, https://doi.org/10.1016/j.pce.2015.02.009, 2015.

Qiu, B., Xue, Y., Fisher, J. B., Guo, W., Berry, J. A., and Zhang, Y.:
Satellite chlorophyll fluorescence and soil moisture observations

Hydrol. Earth Syst. Sci., 25, 4209–4229, 2021 https://doi.org/10.5194/hess-25-4209-2021

https://doi.org/10.1109/TGRS.2011.2168533
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1175/2006jcli1358.1
https://doi.org/10.1016/j.jhydrol.2008.05.020
https://doi.org/10.1175/jhm416.1
https://doi.org/10.1002/joc.6549
https://doi.org/10.1175/jamc-d-17-0118.1
https://doi.org/10.1002/2013jd020940
https://doi.org/10.1016/j.rse.2012.03.014
https://doi.org/10.1016/j.rse.2019.111215
https://doi.org/10.1111/j.1469-8137.2010.03391.x
https://doi.org/10.1111/j.1469-8137.2010.03391.x
https://doi.org/10.1002/2017gl072819
http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html
http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html
https://doi.org/10.1016/j.jhydrol.2008.08.023
https://doi.org/10.2136/sssaj2013.03.0093
https://doi.org/10.3390/w9070530
https://doi.org/10.3390/rs71115729
https://doi.org/10.1002/2016RG000543
https://doi.org/10.1016/j.pce.2015.02.009


X. Ling et al.: Comprehensive evaluation of satellite-based and reanalysis soil moisture products 4229

lead to advances in the predictive understanding of global terres-
trial coupled carbon-water cycles, Global Biogeochem. Cy., 32,
360–375, https://doi.org/10.1002/2017gb005744, 2018.

Robock, A., Vinnikov, K. Y., Srinivasan, G., Entin, J. K.,
Hollinger, S. E., Speranskaya, N. A., Liu, S., and Namkhai,
A.: The global soil moisture data bank, B. Am. Me-
teorol. Soc., 81, 1281–1299, https://doi.org/10.1175/1520-
0477(2000)081<1281:tgsmdb>2.3.co;2, 2000.

Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo,
G., van Dijk, A., Weiland, F. S., Minvielle, M., Calvet, J.-
C., Decharme, B., Eisner, S., Fink, G., Flörke, M., Peßen-
teiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R.,
Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A
global water resources ensemble of hydrological models: the
eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413,
https://doi.org/10.5194/essd-9-389-2017, 2017.

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M.,
Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling,
A. J.: Investigating soil moisture–climate interactions in a
changing climate: a review, Earth Sci. Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.

Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R., and
Pockman, W. T.: How do trees die? A test of the hydraulic failure
and carbon starvation hypotheses, Plant Cell Environ., 37, 153–
161, https://doi.org/10.1111/pce.12141, 2014.

Shangguan, W., Dai, Y., Liu, B., Ye, A., and Yuan, H.: A
soil particle-size distribution dataset for regional land and
climate modelling in China, Geoderma, 171–172, 85–91,
https://doi.org/10.1016/j.geoderma.2011.01.013, 2012.

Shrivastava, S., Kar, S. C., and Sharma, A. R.: Soil mois-
ture variations in remotely sensed and reanalysis datasets
during weak monsoon conditions over central India and
central Myanmar, Theor. Appl. Climatol., 129, 305–320,
https://doi.org/10.1007/s00704-016-1792-z, 2017.

Taylor, C. M., De Jeu, R. A. M., Guichard, F., Harris, P. P., and
Dorigo, W. A.: Afternoon rain more likely over drier soils, Na-
ture, 489, 282–286, 2012.

Wells, N., Goddard, S., and Hayes, M. J.: A self-
calibrating palmer drought severity index, J. Cli-
mate, 17, 2335–2351, https://doi.org/10.1175/1520-
0442(2004)017<2335:aspdsi>2.0.co;2, 2004.

Western, A. W. and Blöschl, G.: On the spatial scaling of soil mois-
ture, J. Hydrol., 217, 203–224, https://doi.org/10.1016/s0022-
1694(98)00232-7, 1999.

Wu, J. and Gao, X. J.: A gridded daily observation dataset over
China region and comparison with the other datasets, Chinese J.
Geophys., 56, 1102–1111, https://doi.org/10.6038/cjg20130406,
2013.

Yun, Y., Liu, C., Luo, Y., Liang, X., Huang, L., Chen, F., and
Rasmmusen, R.: Convection-permitting regional climate simu-
lation of warm-season precipitation over Eastern China, Clim.
Dynam., 54, 1469–1489, https://doi.org/10.1007/s00382-019-
05070-y, 2020.

Zeng, J., Li, Z., Chen, Q., Bi, H., Qiu, J., and Zou, P.: Evaluation of
remotely sensed and reanalysis soil moisture products over the
Tibetan plateau using in-situ observations, Remote Sens. Envi-
ron., 163, 91–110, 2015.

Zhang, W., Zhou, T., and Zhi, H.: Numerical test of soil mois-
ture affecting summer climate in China, J. Meteorol., 70, 78–90,
https://doi.org/10.1007/s11783-011-0280-z, 2012.

Zhu, Z., Shi, C., Zhang, T., and Wang, J.: Applicability analy-
sis of four reanalysis soil moisture datasets in China, Plateau
Meteorol., 37, 240–252, https://doi.org/10.7522/j.issn.1000-
0534.2017.00033, 2018.

Zuo, Z. and Zhang, R.: Soil Moisture and its Impact on the East
Asian Summer Monsoon, American Geophysical Union, Wash-
ington, DC, 2016.

https://doi.org/10.5194/hess-25-4209-2021 Hydrol. Earth Syst. Sci., 25, 4209–4229, 2021

https://doi.org/10.1002/2017gb005744
https://doi.org/10.1175/1520-0477(2000)081<1281:tgsmdb>2.3.co;2
https://doi.org/10.1175/1520-0477(2000)081<1281:tgsmdb>2.3.co;2
https://doi.org/10.5194/essd-9-389-2017
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1111/pce.12141
https://doi.org/10.1016/j.geoderma.2011.01.013
https://doi.org/10.1007/s00704-016-1792-z
https://doi.org/10.1175/1520-0442(2004)017<2335:aspdsi>2.0.co;2
https://doi.org/10.1175/1520-0442(2004)017<2335:aspdsi>2.0.co;2
https://doi.org/10.1016/s0022-1694(98)00232-7
https://doi.org/10.1016/s0022-1694(98)00232-7
https://doi.org/10.6038/cjg20130406
https://doi.org/10.1007/s00382-019-05070-y
https://doi.org/10.1007/s00382-019-05070-y
https://doi.org/10.1007/s11783-011-0280-z
https://doi.org/10.7522/j.issn.1000-0534.2017.00033
https://doi.org/10.7522/j.issn.1000-0534.2017.00033

	Abstract
	Introduction
	Data and methodology
	Remotely sensed and reanalysis products
	ESA CCI SM
	ERA-Interim SM
	NCEP SM
	NOAA SM
	ERA5 SM

	In situ SM and preprocessing of data sets
	Land surface air temperature, precipitation, and radiation
	Evaluation strategies
	Statistical metrics
	Decomposition of mean square errors (MSEs)

	Study area

	Results and discussion
	Spatial pattern of SM
	Temporal variability of SM
	Temporal evolution
	Seasonality
	Interannual anomalies

	Decomposition of the mean square error (MSE)
	SM performance under various climate backgrounds
	Discussion

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Disclaimer
	Financial support
	Review statement
	References

