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Abstract. Accurate estimation of terrestrial water stor-
age (TWS) at a high spatiotemporal resolution is important
for reliable assessments of regional water resources and cli-
mate variability. Individual components of TWS include soil
moisture, snow, groundwater, and canopy storage and can be
estimated from the Community Atmosphere Biosphere Land
Exchange (CABLE) land surface model. The spatial reso-
lution of CABLE is currently limited to 0.5◦ by the reso-
lution of soil and vegetation data sets that underlie model
parameterizations, posing a challenge to using CABLE for
hydrological applications at a local scale. This study aims
to improve the spatial detail (from 0.5 to 0.05◦) and time
span (1981–2012) of CABLE TWS estimates using rederived
model parameters and high-resolution meteorological forc-
ing. In addition, TWS observations derived from the Gravity
Recovery and Climate Experiment (GRACE) satellite mis-
sion are assimilated into CABLE to improve TWS accu-
racy. The success of the approach is demonstrated in Aus-
tralia, where multiple ground observation networks are avail-
able for validation. The evaluation process is conducted us-
ing four different case studies that employ different model
spatial resolutions and include or omit GRACE data assimi-
lation (DA). We find that the CABLE 0.05◦ developed here
improves TWS estimates in terms of accuracy, spatial res-
olution, and long-term water resource assessment reliabil-
ity. The inclusion of GRACE DA increases the accuracy of
groundwater storage (GWS) estimates and has little impact
on surface soil moisture or evapotranspiration. Using im-

proved model parameters and improved state estimations (via
GRACE DA) together is recommended to achieve the best
GWS accuracy. The workflow elaborated on in this paper re-
lies only on publicly accessible global data sets, allowing the
reproduction of the 0.05◦ TWS estimates in any study region.

1 Introduction

Accurate knowledge of terrestrial water storage (TWS) is
crucial for assessing water resource and climate variability
(Delworth and Manabe, 1988; Koster and Suarez, 2001).
TWS consists of soil moisture, groundwater, snow, and
canopy storage. Each component plays a significant role in
the global water cycle and interacts closely with the land–
atmospheric water–energy exchange (Koster et al., 2006; Fis-
cher et al., 2007; Seneviratne et al., 2010). The TWS com-
ponents can be measured or estimated by various platforms
(e.g., satellite measurement and model simulation). However,
spatial resolutions are coarse due to the limitation of sensors
and models that focus on global or continental scales (e.g.,
Rodell et al., 2004; Alkama et al., 2010). At a regional or
local scale, the spatial resolution of the TWS estimate is vi-
tal, as most applications (e.g., risk management for drought
or flood) require accurate information at the county or sub-
county level (Quiring, 2009). This motivates the develop-
ment of TWS estimates at higher spatiotemporal scales, cor-
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responding particularly to an increased interest in exploiting
TWS in interdisciplinary studies (e.g., IPCC, 2007; NASEM,
2018).

TWS information can be obtained or estimated from
ground observation networks, satellite measurements, or
model simulations. Each has different strengths and limi-
tations. Ground observations (e.g., soil moisture probe and
groundwater well) are considered the most reliable, provid-
ing measurements closest to the truth (e.g., Dorigo et al.,
2013). However, ground observations have high maintenance
costs and incomplete coverage. Also, point measurements
only reflect information at one location and not necessarily
the entire region. On the other hand, satellite platforms offer
an automated measurement with improved coverage ranging
from regional to global (e.g., Tapley et al., 2004; Entekhabi
et al., 2010a). The challenges of using satellite measurements
are the coarse spatial resolution and the sensors’ technical
limitations (e.g., penetration depth, cloud/vegetation obstruc-
tion, and background noise). Therefore, its usage is restricted
to a large region and requires a sophisticated algorithm to re-
trieve TWS variables (Crow et al., 2012; Castellazzi et al.,
2016; Tangdamrongsub et al., 2019). In addition, satellite
measurements can be limited by a relatively short period of
record (e.g., Flechtner et al., 2014; Karthikeyan et al., 2017).

TWS components can also be simulated from a land sur-
face model (LSM). The LSM incorporates various land sur-
face physics into complex numerical sequences to allow the
simulation of TWS to be performed at any desired location
and spatiotemporal scale (Pitman, 2003). The LSM can pro-
vide a complete suite of TWS components compared with
the ground or satellite measurements that can only measure
a single or integrated TWS component (e.g., Tapley et al.,
2004; Entekhabi et al., 2010a). However, due to the limi-
tations of input data, the spatial resolution of many LSMs
is coarse (e.g., > 0.25◦ (∼ 25 km)), which consequently re-
stricts their application to a large region (e.g., Rodell et al.,
2004; Alkama et al., 2010; Ke et al., 2012).

Efforts to improve the spatial resolution (and time span)
of global TWS estimates have been made in many modeling
communities (e.g., Wood et al., 2011; Bierkens et al., 2015;
Bierkens, 2015). For instance, Ke et al. (2012) improved the
resolution of the Community Land Model (CLM) from 0.5◦

(∼ 50 km) to 0.05◦ (∼ 5 km) using modified land surface pa-
rameters. The World-Wide Water model (W3; van Dijk et
al., 2013a, b) recently allowed the global TWS variables
to be estimated at 0.05◦ (∼ 5 km). The European Centre
for Medium-Range Weather Forecasts (ECMWF) Reanaly-
sis 5 (ERA5) offers global land surface variables at 0.1◦ (∼
9 km) resolution from 1981 to present (see the data availabil-
ity section). A similar effort is also seen in hydrologic model
development, such as the PCRaster Global Water Balance
(PCR-GLOBWB; Sutanudjaja et al., 2018), which improves
the spatial resolution from 30 arcmin (∼ 50 m or ∼ 0.5◦) to
5 arcmin (∼ 9 km or 0.083◦) and extends the time span to
more than a 50-year period. The enhancement of model spa-

tial resolution and time span receives even more attention at
the local level, where spatial detail down to a few kilometers
is needed (e.g., Rasmussen et al., 2014; Singh et al., 2015;
Beamer et al., 2016; Dong et al., 2020).

On top of the improved spatiotemporal resolutions, the im-
proved accuracy of TWS estimates is also a concern in LSM
developments. As in most environmental modeling systems,
model outputs are associated with a high degree of uncer-
tainty propagated from, e.g., inaccurate meteorological forc-
ings, imperfect model physics, and ineffective parameter cal-
ibration. Data assimilation (DA; Reichle et al., 2002; Re-
ichle, 2008) techniques can be employed to improve LSM
performance. The approach sequentially updates the model’s
states using an optimal value computed by combining model
simulations with observations. A variety of satellite obser-
vations reflecting different TWS components can be assim-
ilated into the system (e.g., Kumar et al., 2014; Dong and
Crow, 2018). TWS observations from the Gravity Recovery
And Climate Experiment (GRACE) satellite mission (Tap-
ley et al., 2004) offer integrated water column information
that can be used to constrain multiple water storage com-
ponents simultaneously (e.g., Zaitchik et al., 2008; Forman
et al., 2012; Tangdamrongsub et al., 2015). GRACE DA has
shown positive impacts on most TWS components, including
groundwater (e.g., Girotto et al., 2017; Nie et al., 2019), soil
moisture (Jung et al., 2019), and snow (Kumar et al., 2016).

The Community Atmosphere Biosphere Land Exchange
model (CABLE; Kowalczyk et al., 2006) is an open-source
global LSM developed and updated by the community. CA-
BLE is a core LSM of the Australian Community Climate
and Earth System Simulator (ACCESS; Bi et al., 2013;
Kowalczyk et al., 2013) that can be used to simulate water
storage and fluxes globally. The model has been regularly
updated to incorporate state-of-the-art model physics (e.g.,
Decker, 2015; Ukkola et al., 2016; Haverd et al., 2018). De-
spite its success, CABLE’s spatial scale is currently limited
to 0.5◦ (∼ 50 km) due to the 0.5◦ resolution of its parameter
and forcing data sets. This contrasts with other global model
developments, where high-resolution versions have already
been developed (e.g., van Dijk et al., 2013a, b; Sutanudjaja
et al., 2018). CABLE and its inputs must be reconfigured to
increase the spatial detail of TWS estimates for smaller-scale
studies (e.g., 0.01–0.05◦). Our effort to increase the study’s
spatial resolution should narrow this development gap and
has not previously been implemented.

This study aims to improve the accuracy, spatial reso-
lution, and time span of CABLE TWS estimates. Our ap-
proach utilizes only publicly available global data sets, so
resulting TWS estimates can be reproduced over any tar-
get region (see the data availability section for the data ac-
cess). The spatial detail of CABLE is improved from 0.5 to
0.05◦ (∼ 5 km) using high-resolution forcing data (precipita-
tion in particular) and land surface parameters derived from
high-resolution maps of soil and vegetation cover. The de-
velopment is demonstrated in Australia, where ground ob-
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servation networks (e.g., surface soil moisture, groundwa-
ter, and evapotranspiration) are available to validate the re-
sult. The demonstrated simulation period is 1981–2012, co-
incident with the availability of meteorological forcing data.
Recent studies have shown success in assimilating GRACE
data into a coarse-scale CABLE version to improve TWS
and groundwater storage (GWS) estimates in the Goulburn
River catchment and in the North China Plain (Tangdam-
rongsub et al., 2020; Yin et al., 2020). In this study, GRACE
observations (Luthcke et al., 2013) are also assimilated into
CABLE 0.05◦ (and CABLE 0.5◦) to improve the accuracy
of TWS components between 2003 and 2012. Assimilat-
ing the coarse GRACE observations into a much higher-
resolution model is performed using the 3-dimensional en-
semble Kalman smoother (EnKS 3D; Tangdamrongsub et
al., 2017). This approach will reveal whether assimilating
GRACE data can benefit a newly developed fine-scale CA-
BLE configuration. Our study will perform a thorough in-
vestigation on this issue to address GRACE DA’s benefit on
CABLE 0.05◦.

The objectives of this paper are (1) to present the devel-
opment and evaluation of retrospective 0.05◦ TWS estimates
and (2) to assess the GRACE DA impact on 0.05◦ CABLE
version, as well as the benefit of assimilating the coarse reso-
lution satellite data into a fine-scale model. This paper is pre-
sented as follows. Section 2 provides the details of the study
area, model configurations, and data processing. Section 3
presents the GRACE DA schematic and the statistical metric
used in the evaluation. Section 4 presents the assessment and
validation of the result. Finally, Sect. 5 summarizes the find-
ings of this study and provides a possible direction for future
development.

2 Study area and data

2.1 Study area

This study uses Australia as a case study. Due to its size and
geographic location, Australia is influenced by multiple cli-
mate drivers (Murphy and Timbal, 2008; Xie et al., 2016)
and experiences episodes of severe droughts and floods (e.g.,
van Dijk et al., 2013a). The recent long-term drought, known
as the Millennium Drought (Bond et al., 2008), severely af-
fected industrial and agricultural sectors and has led to a
significant economic loss nationwide (see, e.g., van Dijk et
al., 2013a). The need for an accurate prediction of possible
water scarcity from climate variations motivated the devel-
opment of land surface and hydrology models in Australia,
e.g., the Australian Water Availability Project (AWAP; Rau-
pach et al., 2008), the Australian Water Resources Assess-
ment – Landscape Model (AWRA-L; van Dijk, 2010), and
CABLE (Kowalczyk et al., 2006). Recent work has assimi-
lated GRACE satellite data into such water models (e.g., Tian
et al., 2017; Schumacher et al., 2018; Tangdamrongsub et al.,

2020). Studies relevant to GRACE DA in Australia are sum-
marized in Table 1. Ground observation networks have also
been installed across the continent and continuously monitor
the water storage and flux variations. Such data records are
valuable for validating the accuracy of the model estimates
and remote sensing observations. Details regarding the in situ
data used in this study are provided in Sect. 2.3.2.

2.2 Model configuration

In this study, TWS estimates are derived from CABLE. A
history of the model’s development can be found in, e.g.,
Wang et al. (2011), Kowalczyk et al. (2013), Decker (2015),
and Haverd et al. (2018). Multiple CABLE versions have
been developed since 2003 for different objectives (see the
data availability section); CABLE SubgridSoil GroundWa-
ter (CABLE-SSGW; Decker, 2015) is considered most suit-
able for our use due to its inclusion of comprehensive ter-
restrial water storage components and, especially, a ground-
water module. CABLE is developed using Fortran and can
be executed in a Unix environment. The input/output file for-
mat follows the NetCDF Climate and Forecast (CF) conven-
tion. The model has been used to simulate global TWS at
0.5◦ spatial resolution using 0.5◦ resolution model param-
eters and forcing data (e.g., Decker, 2015; Ukkola et al.,
2016). The variables used to assess TWS consist of soil mois-
ture storage (SMS), snow water equivalent (SWE), canopy
storage (CNP), and GWS.

The model parameters of CABLE-SSGW are derived from
several different sources (Kowalczyk et al., 2006; Wang et
al., 2011; Decker, 2015). Land use/vegetation type categories
are obtained from the International Geosphere–Biosphere
Programme (IGBP) classification from the Moderate Res-
olution Imaging Spectroradiometer (MODIS; Friedl et al.,
2002). Relative volumes of silt, sand, clay, and organic mat-
ter in the soil are obtained from the Harmonized World Soil
Database (Fischer et al., 2008). The Zobler soil category
(Zobler, 1999) is computed empirically from the silt, sand,
and clay fractions (Oleson et al., 2010). The monthly clima-
tology of the leaf area index (LAI) is computed using a repro-
cessed MODIS LAI product (Yuan et al., 2011). All derived
model parameters are resampled to 0.5◦ to match the 0.5◦

model grid space. Comprehensive details of model parame-
ters can be found in, e.g., Kowalczyk et al. (2006), Wang et
al. (2011), and Decker (2015).

This study rederives the model parameters and employs
enhanced forcing data to increase the model spatial detail
from 0.5 to 0.05◦. The vegetation type is derived from the
global land cover climatology using MODIS data (Broxton
et al., 2014). The soil map is also derived from the Harmo-
nized World Soil Database but at 0.05◦ grid spacing. The
0.05◦ monthly climatology LAI is derived from the Global
Land Surface Satellite product (GLASS; Xiao et al., 2014).
All rederived parameters are shown in Fig. 1. The soil layer
thicknesses, from top to bottom, are set to 1.2, 3.8, 25, 39.9,
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Figure 1. (a) Characteristics of the study area, including elevation, major Australian river basin, and ground observation networks
(FLUXNET – red triangle; the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) – blue square). Note that the lo-
cations of groundwater sites can be found in Fig. 14. (a–c) The derived 0.05◦ land cover values for (b) soil class, (c) averaged LAI (used
only for demonstration), and (d) vegetation and land cover types.

107.9, and 287.2 cm, and the unconfined aquifer’s thickness
is set to 20 m. The surface soil moisture (SSM; cubic me-
ter per cubic meter, hereafter m3 m−3) is defined as the top
two layers, and the SMS (meters) is computed from all soil
layers.

The CABLE model is forced with precipitation, air tem-
perature, wind speed, humidity, surface pressure, and short-
wave and longwave downward radiation. For precipitation,
we use the Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS; Funk et al., 2015), provided on a
0.05◦ grid. The other forcing variables are provided on a 0.5◦

grid by the high-resolution global data set of meteorological
forcings for land surface modeling version 2, Princeton Uni-
versity (Princeton; Sheffield et al., 2006). When performing
0.5◦ model simulations, the CHIRPS data are spatially aver-
aged to 0.5◦ grid space while other forcing variables main-
tain their intrinsic 0.5◦ resolution. When performing 0.05◦

model simulations, the coarser-resolution forcing variables
are spatially resampled to 0.05◦ model grid space using the
nearest-neighbor interpolation.

Model simulations are performed between 1981 and 2012
(a total of 32 years), given the Princeton forcing data’s avail-
ability. Similar to McNally et al. (2017), temporal disaggre-
gation is applied to CHIRP precipitation data to resample
from 1 d to 3 h, consistent with the Princeton data’s time step.
The scale factor derived from the 3 h Princeton precipitation
data is used to (temporally) rescale the CHIRPS data. The
characteristics of forcing data and the derived model param-
eters used in this paper are given in Table 2.

In all simulations, initial states are obtained using a 320-
year spinup, i.e., performing 10 repeated runs between 1981
and 2012.

2.3 GRACE data

GRACE is a twin satellite-to-satellite tracking mission de-
signed to measure the mean and time-varying components of
the Earth’s gravity field (Tapley et al., 2004). Every month,
GRACE provides a time-varying gravity solution containing
information about mass redistribution near the Earth’s sur-
face. The monthly gravity change is dominated by a hydrol-
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Table 1. Relevant studies related to the development of the land surface and hydrology models (with the inclusion of GRACE DA applica-
tions) to estimate TWS in Australia.

Model Spatial Time span GRACE DA References
resolution approach

WaterGAP Global Hydrology Model 0.5◦ 2003–2010 EnKF Müller Schmied
(WGHM) (2017); Schumacher et

al. (2018)

The World-Wide Water (W3) 0.5◦ 2002–2013 EnKF Van Dijk et al.
(2013b); Tian et al.
(2017)

World-Wide Water Resources 0.5◦ 2002–2013 Various Van Dijk (2010);
Assessment (W3RA) Khaki et al. (2017)

PCRaster Global Water Balance 0.5◦ 2003–2014 EnKS 3D Sutanudjaja et al.
(PCR-GLOBWB) (2018); Tangdamrongsub

et al. (2018)

NASA’s Catchment Land Surface Model 0.25◦ 2003–2012 EnKS Koster et al. (2000);
(CLSM) Li et al. (2019)

The Australian Water Resources 0.05◦ 2000–2018 Adaptive EnKF Van Dijk (2010);
Assessment – Landscape model Shokri et al. (2019)
(AWRA-L)

The Community Atmosphere Biosphere 0.05◦ 1980–2012 EnKS 3D This study
Land Exchange (CABLE) 0.05◦

Table 2. Characteristics of the land cover parameters, meteorological forcing, and remote sensing data used in the development and validation
of CABLE 0.05◦.

Products Grid size Time References
interval

Meteorological Princeton Forcing data 0.5◦ 3 h Sheffield et al. (2006)
forcing data version 2

Precipitation Climate Hazards Group 0.05◦ 1 d Funk et al. (2015)
InfraRed Precipitation with
Station data (CHIRPS)

Soil type Harmonized World Soil 30 arcsec n/a Nachtergaele and Batjes (2012)
Database version 1.2

Vegetation type MODIS Land Cover Maps 500 m n/a Broxton et al. (2014)

LAI Global Land Surface Satellite 0.05◦ ∼ 8 d Xiao et al. (2014)
(GLASS)

TWS GRACE NASA GSFC Irregular ∼ 1 month Luthcke et al. (2013)
Mascons

Soil moisture European Space Agency – 0.25◦ 1 d Dorigo et al. (2017)
Climate Change Initiative
program (ESA CCI)

Evapotranspiration Global Land Evaporation 0.25◦ 1 d Martens et al. (2017)
Amsterdam Model (GLEAM)

“n/a” stands for not applicable.
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Figure 2. The GRACE GSFC Mascon grid (black rectangles) and
the CABLE 0.05◦ grids (red dots) in Australia. The green inset
shows details of rectangle A. The orange circle B shows the number
of mascon cells inside a ∼ 3◦ radius, which are used to update the
state variables inside the center mascon (filled orange). Processing
details can be found in Sect. 3.1.

ogy signal, making the GRACE product beneficial for var-
ious hydrological and geophysical applications (e.g., Klees
et al., 2008; Mouyen et al., 2018; Rodell et al., 2018; Tap-
ley et al., 2019). Different GRACE solutions have been re-
leased, including the mascon solution (e.g., Luthcke et al.,
2008; Rowlands et al., 2010). The mascon approach uti-
lizes mass concentration blocks (as a basis function) to de-
termine the Earth’s mass variation and is found to provide
a more accurate TWS estimate compared to the spherical
harmonic approach (Rowlands et al., 2010). In this study,
the mascon (mass concentration) product from the Goddard
Space Flight Center (GSFC) is used (Luthcke et al., 2013).
The GSFC Mascon product contains monthly TWS vari-
ations (1TWS), expressed in equivalent water height (in,
e.g., meters). The glacial isostatic adjustment correction is
applied using the ICE6G model (Peltier et al., 2015). The
mascon varies in size and represents the average 1TWS of
the associated grid cell. The spatial distribution of mascon
in Australia is shown in Fig. 2. The GSFC Mascon prod-
uct also provides monthly 1TWS uncertainties, and they
are used to represent the observation error of the individ-
ual mascon. In this study, GRACE data are assimilated into
CABLE between January 2003 and December 2012 (due to
the availability of GRACE data). To convert monthly1TWS
into absolute TWS (necessary for the GRACE DA process),
the temporal mean value of the CABLE-simulated TWS
from 2003 to 2012 is added to the GSFC Mascon product.
This process reconciles the observed long-term mean with
the model estimates.

2.4 Evaluation data

2.4.1 Satellite-derived products

The satellite-derived soil moisture and evapotranspira-
tion (ET) data obtained from the European Space Agency
Climate Change Initiative program (ESA CCI; Dorigo et al.,
2017; Gruber et al., 2019) and the Global Land Evapora-
tion Amsterdam Model (GLEAM; Martens et al., 2017) are
used to validate the soil moisture and evaporation estimates,
respectively. The ESA CCI COMBINED product combines
multiple active and passive satellite sensor soil moisture
products and provides a near-global daily volumetric soil
moisture product at 0.25◦ resolution with ∼ 0.04 m3 m−3

accuracy (unbiased root mean square error). The combined
product version 4.7 (v04.7) is used in this study. The prod-
uct includes approximately eight different satellite observa-
tions, including, e.g., SSM/I, AMSR-E, ASCAT, Windsat,
and SMOS (see, e.g., Fig. 3 of Dorigo et al. (2017) for
complete details) during our evaluation period (1981–2012).
GLEAM is an algorithm that derives the daily global terres-
trial evaporation using observations from multiple satellite
microwave sensors and reanalysis data sets (Martens et al.,
2017). In total, two product variants are available, i.e., the
satellite-only and the reanalysis, and the newest release of
the latter (version 3.3a) is used in this study due to its consis-
tent time span with our evaluation period.

2.4.2 In situ data

In situ soil moisture, groundwater, and ET measurements are
obtained from different ground observation networks. The
daily in situ soil moisture data are obtained from the Scal-
ing and Assimilation of Soil Moisture and Streamflow (SAS-
MAS; Rüdiger et al., 2007) network in the southeastern part
of the Murray–Darling Basin (see Fig. 1). The SASMAS net-
work hosts more than 20 measurement sites and provides
volumetric soil moisture (θ ; m3 m−3) data associated with 0–
5 cm depth. Only sites with a data record longer than 3 years
are used in our analysis.

The monthly in situ groundwater level data are collected
from the Australian Bureau of Meteorology through the Aus-
tralian Groundwater Explorer. More than 870 000 monitoring
bores are distributed across the continent. At each bore, the
groundwater level measurement is converted to the ground-
water level variation by removing the long-term mean asso-
ciated with the entire data record. The bores are excluded
from the analysis if the data record is shorter than 3 years
or has significant missing data. The groundwater level mea-
surements are not converted to groundwater storage due to
the absence of accurate knowledge of specific yield.

The in situ ET (i.e., latent heat flux) is obtained from the
FLUXNET2015 data set (Pastorello et al., 2017). FLUXNET
is a global network measuring carbon and energy fluxes.
More than 20 flux tower sites are distributed across Australia
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and are associated with different periods (e.g., 2001–2014).
Only the sites with 3 years of data or longer are used in our
analysis (see site locations in Fig. 1a).

3 Methods

3.1 Ensemble Kalman smoother (EnKS)

The ensemble Kalman smoother (EnKS; Zaitchik et al.,
2008) is used to assimilate the GRACE-derived 1TWS into
the CABLE model. The 3-dimensional EnKS (EnKS 3D)
scheme described in Tangdamrongsub et al. (2017) is used in
this study for two reasons. First, it accounts for spatial corre-
lations in model and observation errors. The latter are highly
correlated at neighboring 0.5◦× 0.5◦ or 0.05◦× 0.05◦ grid
cells. Second, EnKS does not require interpolation of the ob-
servations (as in the ensemble Kalman filter (EnKF); Tang-
damrongsub et al., 2015) and mitigates the spurious jump in
water storage estimates caused by applying updates at the
end of the month only. The additional computational cost is
small, for handling large covariance matrices and running the
model twice for each month.

The GRACE DA comprises forecast, analysis, and dis-
tributing update steps. The forecast step propagates the
model states forward in time for approximately 1 month. The
analysis step computes the monthly model state update us-
ing GRACE observations (and uncertainties). The final step
reinitializes the ensemble (e.g., initial states and forcing data)
and reperforms the forecast step with the DA update (in-
crement) distributed evenly throughout the month. Figure 3
illustrates the concept of the GRACE DA process. Pseu-
docodes of GRACE DA can be found in the Supplement.

The meteorological forcings and model parameters are
perturbed using N = 100 ensemble members prior to
GRACE DA processing. Multiplicative white noise is used to
perturb the precipitation and shortwave radiation, while addi-
tive white noise is used for the air temperature and model pa-
rameters. The characteristics of the uncertainties are given in
Table 3. Downscaling and upscaling forcing data also cause
errors. In our DA process, when the data are resampled, their
errors are also adjusted. The relationship between coarse and
fine-scale errors can be expressed as follows:

σc =
1
M

M∑
h=1

M∑
l=1

√√√√σ 2
f hl exp

(
−φ2

hl

2φ2
0

)
, (1)

where σc and σf represent coarse and fine-scale errors,
(h, l) is the index of a grid cell,M is the number of fine-scale
grid cells used in resampling, φ is a spherical distance be-
tween grid cells, and φ0 is the considered correlation length
(e.g., a coarse scale’s grid size). After the perturbation pro-
cess, CABLE model states are then propagated for approxi-
mately 1 month (the forecast step). The state vector consists
of nine model states (n= 9), including six soil moisture lay-

ers, canopy storage, snow water equivalent, and groundwater
storage.

In the analysis step, when a GRACE observation is avail-
able, the monthly averaged states (ψ) are related to the
GRACE observations by the following:

dj =Hψj + εj ;ε ∼N(0,R), (2)

where dj is anm×1 perturbed observation vector containing
the perturbed GRACE mascon for the month of interest, H is
a measurement operator which relates the ensemble state ψj
to the vector dj , m is the number of GRACE mascon cells
used in the calculation, and j indicates ensemble index. The
uncertainties in the observations are described by the random
error ε, which is assumed to have zero mean and covariance
matrix Rm×m. The subscription denotes the dimension of the
matrix. Note that R is a variance matrix here as only the vari-
ance components are provided in the mascon product.

In EnKS 3D, multiple model and observation grid cells
(e.g., inside 300 km radius corresponding to GRACE spatial
resolution) are simultaneously used to compute the state up-
date. Figure 2 (see circle B) demonstrates the model and mas-
con grid cells used in the analysis step to compute the update
of the center mascon cell (see also Fig. 7 of Tangdamrong-
sub et al. (2017) for more details). The H matrix is defined
as follows:

H=


1
k1
(111 . . .1)1×nk1 0 · · · 0

0 1
k2
(111 . . .1)1×nk2 · · · 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 · · ·
1
km
(111 . . .1)1×nkm




m×

∑m
i=1nki

,

(3)

where ki is the number of model grid cells inside a mascon i
(see, e.g., rectangle A in Fig. 2 for the distribution of model
grids inside a mascon cell).

The ensemble of the states is stored in a matrix AK×N =

(ψ1, ψ2, ψ3, . . ., ψN ), where K =
m∑
i=1
nki , and the ensem-

ble perturbation matrix is defined as A′ = A−A, where the
matrix A contains the mean values computed from all ensem-
ble members. Similarly, the perturbed GRACE observation
vector is stored in the matrix Dm×N = (d1, d2, d3, . . ., dN ).
The analysis equation is then expressed as follows:

Aa
= A+1A= A+K(D−HA), (4)

with

K= PeHT(HPeHT
+Re

)−1
, (5)

where Aa
K×N represents the updated state vector, 1AK×N is

the monthly averaged update from EnKS 3D, and KK×m is
the Kalman gain matrix. The superscript “T” denotes a trans-
pose (matrix) operator. The model and observation error co-
variance matrix (Pe)K×K , (Re)m×m are computed as follows:
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Figure 3. The data-processing diagram of the GRACE DA process.

Pe = A′(A′)T/(N − 1), (6)

Re =ϒϒ
T/(N − 1), (7)

where ϒ contains the measurement error of all ensemble
members. After the monthly averaged update 1A is ob-
tained, the daily increment (1Ad) of the update is computed
by dividing 1A by the total number of days in that month.
Note that only 1Ad of the center mascon is saved (see also
Tangdamrongsub et al., 2017). The processes described in
Eqs. (2)–(7) are repeated through all mascon cells to obtain
all individual 1Ad in the study domain. Then, the model
is reinitialized using the previous month’s initial states, and
the simulation is performed again while adding 1Ad to the
model initial states daily (the distributing update step). The
DA process is performed until the last month of the study
period (December 2012).

3.2 Assessment metrics and experiment designs

3.2.1 Resample approach

The state estimates are validated against the referenced data
described in Sect. 2.4. As the spatial resolution of the model
estimate and referenced data are different, a spatial resam-
ple is performed before the comparison. The model estimate
is resampled to the observation grid space using the nearest-
neighbor gridded interpolation when the model’s resolution
is coarser. Conversely, the estimate is upscaled (spatial aver-
aging) when the model’s resolution is higher. The evaluation
is conducted at the observation grid cell.

3.2.2 Correlation and root mean square difference

The agreement between the estimated variable and the in situ
data is assessed using the Pearson correlation coefficient (ρ)
and the root mean square difference (RMSD). At a particular
grid cell, ρ is calculated as follows:
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Table 3. Perturbation settings associated with the meteorological forcing data and model parameters. The comprehensive description of
model parameters can be found in, e.g., Decker (2015) and Ukkola et al. (2016). The spatial correlation error is also applied to forcing data
(fourth column). The correlation length of the 0.5 and 0.05◦ CABLE model (C05 and C005) is determined based on covariance analysis (see
Sect. 3.2.4).

Forcing/ Description Perturbation Spatially correlated Standard
parameter type (correlation length) deviation
variables

Meteorological forcings

Rainf Precipitation Multiplicative Yes 10 % of the
(C05= 0.7◦; C005= 0.3◦) nominal value

Tair Air temperature Additive Yes 2 ◦C
(C05= 2.1◦; C005= 2.1◦)

SW Shortwave radiation Multiplicative Yes 10 % of the
(C05= 2.3◦; C005= 2.3◦) nominal value

Model parameters

fclay, fsand, The fraction of clay, Multiplicative No 10 % of the
fsilt sand, and silt nominal value

fsat The fraction of the grid Additive No 10 % of the
cell that is saturated nominal value

qsub The maximum rate of Additive No 10 % of the
subsurface drainage nominal value
assuming a fully
saturated soil column

fp Tunable parameter Additive No 10 % of the
controlling drainage nominal value
speed

ρ = E[(y− y)(x− x)]/
(
σyσx

)
, (8)

where the y vector contains the model estimates, the x vector
contains the validation data (observations), E[ ] is the expec-
tation operator, and (y, x), and (σy , σx) are the mean and
standard derivations of y and x, respectively. The RMSD is
computed as follows:

RMSD=
√∑

(y− x)2/L, (9)

where L denotes the length of the time series.

3.2.3 Long-term trend and seasonal variations

The long-term trend, annual amplitude, and phase of the time
series are computed using the least-squares adjustment asso-
ciated with five parameters, offset (a), long-term trend (b),
annual variation (c, d), and semi-annual variation (e, f ). A
time series (y) at a particular grid cell can be expressed as
follows:

y = a+ bt + c sinωt + d cosωt + e sin2ωt + f cos2ωt, (10)

ω = 2π/T , (11)

where the t vector contains time, and T is an annual period.
The annual amplitude (A) and phase (ϕ) are computed as
follows:

A=
√
c2+ d2, (12)

ϕ = arctan2(c,d). (13)

3.2.4 Spatial resolution

Spatial resolution is defined as the minimum distance at
which two signals of equal magnitude can be separated.
The spatial resolution can be determined from the empirical
(and isotropic) covariance function (C) computed as follows
(Tscherning and Rapp, 1974):

C (φhl)=
∑

phpl/nhl, (14)

where (ph, pl) are vectors containing data points (h, l) asso-
ciated with the spherical distance φhl , and nhl is the number
of data pairs considered in the calculation. The spatial reso-
lution (or correlation length of the covariance function) is de-
fined in this study as being the distance ψ at which C(φ = 0)
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Figure 4. The concept used to determine spatial resolution (corre-
lation length). The spatial resolution is defined to be the spherical
distance φ at which the 0 km covariance (or normalized covariance),
C(φ = 0) decreases by half.

decreases by half. The diagram in Fig. 4 illustrates how this
correlation length is determined.

3.2.5 Case studies

This paper uses four case studies to quantify the effect of
different model grid sizes and GRACE DA. The case studies
are described as follows:

1. CABLE 0.5◦ – CABLE model simulations at 0.5◦ grid
size without GRACE DA;

2. CABLE 0.05◦ – CABLE model simulations at 0.05◦

grid size without GRACE DA;

3. GRACE DA 0.5◦ – CABLE model simulations at 0.5◦

grid size with GRACE DA;

4. GRACE DA 0.05◦ – CABLE model simulations at
0.05◦ grid size with GRACE DA.

It is noteworthy that the 0.5 or 0.05◦ represents the CABLE
grid size, which may differ from the spatial resolution. The
term “spatial resolution”, as used in this paper, refers to the
determined resolution computed from Sect. 3.2.4.

4 Results and discussions

4.1 Estimation of TWS components from CABLE
simulations (without GRACE DA)

4.1.1 Improvement in spatial resolution

The resolution improvements can be seen by comparing CA-
BLE 0.5◦ TWS estimates against those from CABLE 0.05◦.
Both are open-loop (OL) simulations, meaning the model is
run without data assimilation. The simulation period is from

January 1981 to December 2012. After obtaining TWS esti-
mates, the TWS annual amplitude and phase are computed
using Eqs. (12) and (13) and are shown in Fig. 5. Both CA-
BLE versions have similar spatial features, but more local-
ized and much finer details are seen in the CABLE 0.05◦ sim-
ulation than in the CABLE 0.5◦ simulation. A clear differ-
ence in annual amplitude is shown over the Yarra Ranges and
the Alpine National Park (compare Fig. 5a vs. Fig. 5b insets).
CABLE 0.05◦ provides greater details of the 1TWS spatial
distribution, and the annual amplitude is approximately 30 %
higher than it is in the coarse-scale version. Differences in
spatial details are also seen in the phase estimates (see Fig. 5c
vs. Fig. 5d).

The spatial resolutions can be quantitatively determined
using the empirical covariance function, Eq. (14), described
in Sect. 3.2.4. The covariance function is computed for each
month’s TWS estimates using all grid points in Australia.
Figure 6 shows the averaged spatial resolution (correlation
length) of CABLE 0.5◦ and CABLE 0.05◦ for each month
between 1981 and 2012. The CABLE 0.5◦ simulations have
a spatial resolution of ∼ 50 km, consistent with the grid
size of the input 0.5◦ CABLE parameters and forcing data.
Larger correlation lengths are found during the rainy seasons
(January–April in the north and August–November in the
south) and during the dry season (e.g., June). Soil moisture
and aquifer storage increase during the wet seasons, leading
to more uniform (and smoother) spatial moisture features.
Similar uniformity can also be observed during the dry sea-
son. At the beginning of the wet season, scattered rainfall in
part of the continent likely causes a gradient between dry/wet
areas, resulting in smaller correlation lengths. It is notewor-
thy that our analysis only explains the overall temporal pat-
tern of continental correlation lengths. The temporal pattern
may also be affected by the local TWS wet/dry features or by
the spatial distribution of model parameters.

The use of CABLE 0.05◦ significantly improves the spa-
tial resolution by about a factor of 2 to 3. Note, again, that
the spatial resolution of CABLE 0.05◦ presented in Fig. 6 re-
flects the continental averaged value while the finer (higher)
spatial resolution is observed in the individual river basin (not
shown).

4.1.2 Assessment of long-term TWS variations

This study’s time span allows for an assessment of overall
trends and decadal variations in TWS estimates. The long-
term trends of water balance states and fluxes from CABLE
0.05◦ between 1981 and 2012 are shown in Fig. 7. A strong
relationship between components is observed, particularly in
the storage components (Fig. 7a–d). The TWS and GWS
(Fig. 7a and d) have very similar spatial patterns, where a
wetting trend is observed in the northern region, the Indian
Ocean basin, and the western part of the Murray–Darling
Basin (see Fig. 1a for the basin’s location), and a drying
trend is seen in the central part of the continent, the South
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Figure 5. Annual amplitude (a, b) and phase (c, d) of the TWS estimates computed from CABLE 0.5◦ (a, c) and CABLE 0.05◦ (b, d).
The insets in (a) and (b) show details in southeastern Australia. The phase exhibits the timing when TWS reaches the maximum value (with
respect to the beginning of the year). The unit of the phase is a calendar month, e.g., January (J) or December (D).

Figure 6. Monthly average spatial resolutions (correlation lengths)
of the TWS estimates derived from CABLE 0.5◦ and CABLE 0.05◦

in Australia between 1981 and 2012.

West Coast basin, and several parts of the Murray–Darling
Basin. The similarity between the TWS and GWS (both spa-
tially and in magnitude) indicates that GWS is a primary
driver of the TWS trend in Australia. By contrast, soil mois-
ture stores show different spatial patterns; increases in soil
moisture are also found in the central and western parts of
the continent (Fig. 7c). The SMS generally accommodates
a large portion of the seasonal variation in water storage in
Australia (see Sect. 4.2), but its role in the long-term trend
is marginal – smaller than that of the GWS by about a fac-
tor of 2. ET trend estimates show a similar spatial pattern to

SSM trends (Fig. 7e vs. Fig. 7b), which may be explained by
ET pulling moisture from SSM stores. The long-term trend
of the total runoff is in line with the TWS/GWS, increas-
ing in the north and decreasing in the southeastern region
and Tasmania (e.g., Fig. 7f vs. Fig. 7a). In the northern re-
gion, the soil moisture or aquifer is likely saturated due to a
wet climate, with more significant annual rainfall (than the
south) by about a factor of 5 (not shown). Such a condition
leads to a greater magnitude of root zone moisture, ground-
water recharge, and surface runoff variations. The opposite
scenario is observed in the southeastern region, where the
depleted TWS/GWS (induced by droughts) likely reduces
runoff generation, resulting in a negative runoff trend.

Regional water balance components can also be analyzed
at interannual and decadal timescales. Figure 8 shows the
trends of water balance components in 3 different decades,
i.e., 1981–1990, 1991–2002, and 2003–2012. The long-term
trends are not monotonic. In other words, there are no “al-
ways dry” or “always wet” regions observed between 1981
and 2012. Reversals between increasing and decreasing
trends are apparent in all components. For example, north-
ern and western Australia experience a drying trend be-
tween 1981 and 1990 (Fig. 8a) and recover between 1991
and 2002 (Fig. 8b) after continuously receiving increased
rainfall (not shown). The region experiences another drought
episode (van Dijk et al., 2013a) in the first half of the 2000s,
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Figure 7. Long-term trends computed from CABLE 0.05◦ between January 1981 and December 2012, showing the (a) terrestrial wa-
ter storage (TWS), (b) surface (volumetric) soil moisture (SSM), (c) total soil moisture storage (SMS), (d) groundwater storage (GWS),
(e) evapotranspiration (ET), and (f) total runoff.

causing decreased water storage between 2003 and 2012
(Fig. 8c). A similar reversal is also seen in the eastern re-
gions, with wetting in 1981–1990, drying in 1991–2002, and
wetting again in 2003–2012 (Fig. 8a–c).

Without such a long record, assessment of water resources
may have limited reliability. For instance, based only on the
∼ 10-year period of GRACE observations, it is difficult to
determine whether the negative TWS trend in western Aus-
tralia (e.g., Fig. 8c; see also Fig. 11d) is caused by anthro-
pogenic or natural processes (e.g., Richey et al., 2015). Evap-
oration or runoff after the extremely wet conditions prior
to 2002 may also produce a similar decreasing trend (e.g.,
van Dijk et al., 2011; Munier et al., 2012). By assessing
the historical TWS time series of the North Western Plateau
basin obtained from CABLE 0.05◦ (Fig. 9), the observed
negative trend is more likely governed by a decadal cycle of
drought and recovery. This approach demonstrates that there
is clear value in utilizing a longer time span of TWS esti-

mates, and that this can offer a more reliable assessment of
regional water resources and climate variations.

4.1.3 Comparison with the satellite products

TWS, SSM, and ET estimates are compared with satellite
data from GRACE, ESA CCI, and GLEAM, respectively
(see Sect. 2.2 and 2.3 for each product’s description). Note
that the remote sensing products may contain biases (caused
by, e.g., background model and processing algorithm) and
do not necessarily represent the truth. (Ground truth vali-
dation is performed in Sect. 4.3.) The intercomparison per-
formed in this section is only to assess the consistency be-
tween two independent estimates, i.e., model and satellite.
The CABLE estimate is rescaled to the satellite product’s
grid before comparison, as described in Sect. 3.2.1. Fig-
ure 10 shows the correlation and RMSD estimates between
CABLE 0.5◦ and CABLE 0.05◦ results and the evaluated
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Figure 8. Similar to Fig. 7 but the trends are associated with three different periods, i.e., 1981–1990 (a, d, g, j, m, p), 1991–
2002 (b, n, h, k, n, q), and 2003–2012 (c, f, i, l, o, r).
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Figure 9. The TWS estimates of the Sandy Desert basin obtained
from CABLE 0.05◦ between January 1981 and December 2012.
The long-term trend estimates (centimeters per year) in different
periods are given. The blue highlight indicates the GRACE period
(January 2003–December 2012).

satellite data. On average, both CABLE results are in good
agreement with the satellite products, with correlation values
greater than 0.55 (see Fig. 10a, b, e, f, i, j). CABLE 0.05◦

shows a more robust agreement with satellite-derived vari-
ables than CABLE 0.5◦ does; correlation values with TWS,
SSM, and ET are 14 %, 14 %, and 7 % higher (respectively)
in the former simulations than in the latter. Similar improve-
ments are also observed in the RMSD evaluations, where
CABLE 0.05◦ provides smaller RMSD values than CABLE
0.5◦ by 4 % (TWS), 14 % (SSM), and 17 % (ET). CABLE
0.05◦ reduces the RMSD of the SSM estimate to as low as
∼ 0.03 m3 m−3, e.g., over the South West Coast and Lake
Eyre basins, and the average RMSD value in Australia is
∼ 0.06 m3 m−3. It is worth noting that the average unbiased
RMSD value (Entekhabi et al., 2010b) is 0.037 m3 m−3 (not
shown), in line with the accuracy of the CCI product (see,
e.g., Table 1 of Dorigo et al., 2017).

The improved agreement between CABLE 0.05◦ estimates
and the satellite products is also seen in the temporal vari-
ation (Fig. 11). Compared with the CABLE 0.5◦ results,
CABLE 0.05◦ increases the dynamic range of the TWS es-
timates in most basins, leading to closer alignment with
GRACE observations (Fig. 11a–c). Similar increases in the
agreement are also observed in the CABLE 0.05◦ SSM and
ET estimates (Fig. 11d–i). The observed improvement may
be attributed, in part, to the rederived model parameters. For
example, in the North Western Plateau basin, CABLE 0.05◦

uses a ∼ 17 % higher area-averaged sand fraction than CA-
BLE 0.5◦ does, which allows faster infiltration/drainage in
the storage compartments, leading to greater dynamic ranges
of TWS and SSM variations (see Fig. 11a and d). Conse-
quently, the ET estimate is decreased as a response to in-
creased water storage following the water balance equation
(Fig. 11g). Similar mechanisms are also observed in the Lake
Eyre and South West Coast basins, where the improved pa-
rameterization leads to improved agreement with the satel-

lite data. The use of coarse-resolution forcing data (e.g., pre-
cipitation) could also explain the small TWS amplitude ob-
served in CABLE 0.5◦. Coarse-scale forcing data averages
local precipitation signals over a larger area than the finer-
resolution forcing data does, resulting in a smaller amplitude.

4.2 The impact of GRACE DA

GRACE observations are assimilated into the CABLE 0.5◦

and CABLE 0.05◦ models (called GRACE DA 0.5◦ and
GRACE DA 0.05◦, respectively) between January 2003 and
December 2012 (due to the availability of meteorological
forcing and GRACE data). The basin-averaged TWS esti-
mates from CABLE with and without GRACE DA are shown
in Fig. 12, alongside the GRACE observations themselves.
In most basins, apparent disagreements between the open-
loop estimates and the GRACE observations suggest the cur-
rent CABLE models’ limited accuracy. After assimilating
GRACE into the models, the estimates (GRACE DA 0.5◦

and GRACE DA 0.05◦) move toward the GRACE obser-
vations. The positive impact of GRACE DA on the basin-
averaged TWS estimates is similar regardless of the model
spatial resolutions. This likely reflects the nature of GRACE
observations that provide integrated water storage informa-
tion at the continental or basin scale (Tapley et al., 2004).
However, it should be noted that the GRACE DA applica-
tion does not degrade the spatial resolution of the model. The
offline analysis shows that the average correlation length of
GRACE DA 0.5◦ and GRACE DA 0.05◦ remain the same
as that of CABLE 0.5◦ and CABLE 0.05◦, respectively (not
shown). The EnKS 3D scheme exploits the spatially corre-
lated information from the high-resolution model to disag-
gregate the coarse-scale observations into a finer grid space,
resulting in the preservation of the model’s intrinsic resolu-
tion. The impact of GRACE DA is also observed in water re-
distribution within the water storage components. Figure 13
shows the contributions of four different water storage com-
ponents (SMS, GWS, SWE, and CNP) to TWS in different
basins before (CABLE 0.05◦; Fig. 13a) and after the appli-
cation of GRACE DA (GRACE DA 0.05◦; Fig. 13b). The
contribution is calculated as a percent of the annual ampli-
tude of TWS fluctuations. In CABLE 0.05◦ (Fig. 13a), the
SMS is a major contributor to more than 90 % of the TWS
variation (i.e., annual amplitude). The GWS contribution is
only ∼ 10 %. After applying GRACE DA (Fig. 13b), the
contribution of the GWS is significantly increased. It dom-
inates the entire water column in several basins (e.g., In-
dian Ocean, Lake Eyre, North West Plateau, and South West
Plateau). This behavior reflects the nature of GRACE in that
the groundwater provides a majority of the seasonal changes
to terrestrial water mass. GRACE DA has been shown to
significantly affect GWS in previous studies (e.g., Girotto
et al., 2016; Tangdamrongsub et al., 2018; Li et al., 2019).
The contributions of the SWE and CNP components are neg-
ligible across Australia, and the impact of GRACE DA on
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Figure 10. The comparison between CABLE 0.5◦ and CABLE 0.05◦ estimates and different remote sensing products in terms of correlation
coefficient (a, b, f, i, j) and root mean square difference (RMSD; c, d, g, h, k, l). The terrestrial water storage (TWS; a–d), surface soil
moisture (SSM; e–h), and evapotranspiration (ET; i–l) are compared with GRACE, ESA CCI, and GLEAM products, respectively. The
averaged statistical values (over Australia) associated with each comparison are also given.

Figure 11. The change in terrestrial water storage (1TWS; a–c), surface soil moisture (SSM; d–f), and evapotranspiration (ET; g–i) estimated
from CABLE 0.5◦ (CB0.5), CABLE 0.05◦ (CB0.05), and remote sensing observations (Obs) over three different river basins, i.e., North
Western Plateau (a, d, g), Lake Eyre (b, e, h), and South West Coast (c, f, i), between 1981 and 2012. The remote sensing observations used
for comparison are GRACE (TWS), ESA CCI (SSM), and GLEAM (ET).
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Figure 12. The TWS estimates from case studies CABLE 0.5◦, CABLE 0.05◦, GRACE DA 0.5◦, and GRACE DA 0.05◦ in various river
basins between 2003 and 2012. The GRACE observation is also displayed for comparison. Full descriptions of the case studies are given in
Sect. 3.2.5.

them is trivial. Similar changes to TWS contributions are also
observed between CABLE 0.5◦ and GRACE DA 0.5◦ (not
shown). It is noted that Figs. 12 and 13 only present the im-
pact of GRACE DA on storage components and do not assess
the accuracy of either version. The accuracy of the OL and
DA models is quantified in Sect. 4.3.

4.3 Validation with in situ data

In situ data from three different ground networks (see
Sect. 2.3.2) are used to validate the GWS, ET, and SSM es-
timates. Validation is conducted by quantifying the change
in correlation values between simulations and observations
when one model is used in place of another. The valida-
tion period is between January 2003 and December 2012,

consistent with the GRACE DA period. Figure 14 shows
the validation of GWS estimates between GRACE DA and
OL simulations (DA minus OL). A positive value indicates
improvement, while a negative value represents degradation.
A significance test is performed at the 0.05 level based on the
Fisher Z transformation test for correlation coefficients (Za-
itchick et al., 2008). The average change in correlation value
across all in situ data sites is shown in Fig. 14d. Values that
failed the significant test are excluded from the averaging.

We first analyze the impact of GRACE DA on the GWS
estimates of CABLE 0.5◦ and CABLE 0.05◦ (Fig. 14a
and b). A greater correlation improvement is observed when
GRACE DA is applied to the 0.5◦ model, which increases
the average correlation value by 0.23 (Fig. 14d1). When
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Figure 13. Contributions of different storage components (total soil
moisture storage – SMS; groundwater storage – GWS; canopy stor-
age – CNP; and snow water equivalent – SWE) to the TWS esti-
mates computed from CABLE 0.05◦ (a) and GRACE DA 0.05◦ (b)
in different river basins. The full names of the river basins are given
in Fig. 1a. Contributions of CNP+SWE are negligible in both pan-
els.

GRACE DA is applied to the 0.05◦ model (Fig. 14b), the av-
erage correlation value improves by 0.12 (Fig. 14d6), which
is ∼ 50 % less than in the 0.5◦ model.

When comparing the two OL runs (CABLE 0.5◦ vs. CA-
BLE 0.05◦), the GWS estimate from CABLE 0.05◦ has a
higher correlation value by 0.12 (see Fig. 14d2). This anal-
ysis indicates that the lower correlation improvement seen
between CABLE 0.05◦ and GRACE DA 0.05◦ is unlikely
caused by the reduced impact of GRACE DA on the high-
resolution model. Rather, it is a result of CABLE 0.05◦ hav-
ing better accuracy to start with. GRACE DA tends to pro-
vide the same information to both 0.5 and 0.05◦ models. Still,
GRACE DA 0.05◦ exhibits the best correlation with in situ
data, ∼ 0.02 higher than GRACE DA 0.5◦ (Fig. 14c and d5).
While GWS estimates from both CABLE 0.5◦ and CABLE
0.05◦ improve with GRACE DA, we find that GRACE DA
0.5◦ (DA) shows a higher correlation value than CABLE
0.05◦ (OL) by 0.1 (see Fig. 14d3). This indicates that im-
proving model state estimates via DA is more effective than
improving model parameters via increased resolution. De-
spite different study areas, LSMs, and validation data, our
finding is in line with, e.g., Girotto et al. (2017) and Nie et
al. (2019), who also found a significant impact of GRACE
DA on GWS components.

SSM and ET estimates are validated against ground mea-
surements from SASMAS and Ozenet, respectively. Corre-
lation coefficients between the case study simulations and
observation networks are summarized in Fig. 15. For SSM
(Fig. 15a), CABLE 0.05◦ exhibits slightly improved cor-
relation with observations (by ∼ 0.6 %) than CABLE 0.5◦

does. The addition of GRACE DA also shows a small

but positive impact on SSM estimates, improving correla-
tion with observations by ∼ 1 %. The small impact is at-
tributed to limited GRACE sensitivity. GRACE is sensitive to
the low-frequency variation (originated from deeper stores)
and cannot effectively capture SSM, which is dominated
by a high-frequency signal (e.g., precipitation). As a result,
GRACE DA is found to have a minor (or negative) impact on
the top soil component in most GRACE DA studies (e.g., Li
et al., 2012; Tian et al., 2017; Tangdamrongsub et al., 2020).
The small impact on SSM estimates also agrees with Jung et
al. (2019), who observed GRACE DA’s small (or negative)
impact over dry regions in West Africa.

For ET (Fig. 15b), CABLE 0.05◦ exhibits a more im-
proved correlation with observations (by ∼ 5 %) than CA-
BLE 0.5◦ does. The inclusion of GRACE DA also slightly
improves correlation values over the associated OL model
versions. Greater improvement (by ∼ 2 %) is seen between
CABLE 0.5◦ and GRACE DA 0.5◦ than between CABLE
0.05◦ and GRACE DA 0.05◦. As with SSM, the small
improvement of ET is likely attributable in part to small
GRACE DA updates (caused by the limited GRACE sensitiv-
ity to high-frequency surface fluxes). The SSM is a primary
moisture source for ET, so a trivial change in SSM leads to a
similarly small change in ET.

5 Conclusion

This study enhances the spatial resolution and time span
(> 30 years) of regional TWS estimates using the CABLE
LSM, high-resolution land cover maps and forcing data, and
GRACE DA application. By improving the model parame-
ter and forcing data (without GRACE DA), the developed
CABLE 0.05◦ model shows clear improvements in the accu-
racy of water balance component estimates (e.g., soil mois-
ture, groundwater, and evapotranspiration) when compared
with in situ and independent satellite data. The 0.05◦ model
also improves the spatial resolution by a factor of 2 to 3 over
the 0.5◦ version. The extended time span provides insightful
information for long-term assessment of regional water re-
sources and climate variability. The enhanced model param-
eterization is found to play a significant role in the improved
TWS estimates. Incorporating GRACE DA into the model
leads to further improvements in TWS component estimates.
The positive impact of GRACE DA is found in the deep stor-
age component (e.g., GWS), while the impact on the surface
components and flux estimates (i.e., SSM and ET) is trivial.
Of the four case studies investigated here, the most accurate
simulation uses CABLE 0.05◦ with GRACE DA.

The enhanced CABLE model resolution developed in this
study relies on improved parameter and forcing data. The
land surface physics remains unchanged. The workflow can
be adopted for other CABLE repositories or different LSMs
with only slight modifications, e.g., number of soil or vege-
tation types. This means TWS estimates can be reproduced
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Figure 14. (a–c) Improvements or degradations in correlation values between case study simulations (Sect. 3.2.5) and in situ observations of
GWS estimates. (a) GRACE DA 0.5◦ minus CABLE 0.5◦, (b) GRACE DA 0.05◦ minus CABLE 0.05◦, and (c) GRACE DA 0.05◦ minus
GRACE DA 0.5◦. The relative performance of each simulation is indicated with blue/red shading. Blue indicates that the first simulation is
better than the second, and red indicates that the second is better than the first. Changes that are not significant at the 0.05 level are displayed
in gray. (d) The average change in correlation value from each scenario is the vertically displayed case study minus the horizontally displayed
case study (e.g., d1 represents GRACE DA 0.5◦ minus CABLE 0.5◦ and indicates that the former is significantly better than the latter).

Figure 15. Box and whisker plots showing correlation values be-
tween (a) simulation case studies and in situ surface soil moisture
and between (b) simulations and evapotranspiration estimates.

with more spatial detail by CABLE 0.05◦ at locations out-
side the area studied here since high-resolution forcing data
and model parameters are available globally (or near glob-
ally). However, the performance of such simulations might
differ from this study due to the uncertainty in model pa-
rameters and forcing data that vary with geolocations (e.g.,

Herold et al., 2017; Tifafi et al., 2018). This remark also ap-
plies to the performance of GRACE DA. Although the im-
provement of assimilating GRACE into CABLE is also seen
in other regions, e.g., northeastern China (Yin et al., 2020),
it is still difficult to quantify the benefit of GRACE DA over
global river basins based on these early developments of CA-
BLE and GRACE DA. Validation is highly encouraged to as-
certain the accuracy of TWS estimates when performing the
simulation in other regions.

Our development is only demonstrated between 1981–
2012 due to the availability of the Princeton forcing data. Fu-
ture development can consider extending the temporal record
of TWS estimates. The time span extension is feasible using
reanalysis forcing data from the Modern-Era Retrospective
Analysis for Research and Applications, version 2 (MERRA-
2; Gelaro et al., 2017). Despite a slightly coarser spatial res-
olution than the Princeton data, MERRA2 data sets would
allow TWS simulations to be extended to the near present.

Code availability. Pseudocodes of GRACE DA can be found in the
Supplement.
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Data availability. The model and data used in this study are
publicly available and can be accessed as follows (last access:
6 May 2020):

– CABLE model, available at https://trac.nci.org.au/trac/cable
(NCI, 2020)

– The Harmonized World Soil Database
version 1.2, available at http://www.fao.org/
soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en (FAO, 2020)

– The global land cover climatology using MODIS data, avail-
able at https://archive.usgs.gov/archive/sites/landcover.usgs.
gov/global_climatology.html (USGS, 2020)

– The Global Land Surface Satellite, available at http://www.
glass.umd.edu (GLASS, 2020)

– The Princeton forcing data, available at https://hydrology.
princeton.edu/data.pgf.php (Terrestrial Hydrology Research
Group, 2020)

– The Climate Hazards Group InfraRed Precipitation with Sta-
tion data, available at https://chc.ucsb.edu/data/chirps (Univer-
sity of California, 2020)

– GRACE GSFC Mascon, available at https://earth.gsfc.nasa.
gov/geo/data/grace-mascons (NASA, 2020)

– The ESA CCI, available at https://www.esa-soilmoisture-cci.
org (ESA, 2020)

– The Global Land Evaporation Amsterdam Model, available at
https://www.gleam.eu (GLEAM, 2020)

– In situ soil moisture, available at https://ismn.geo.tuwien.ac.at/
en (ISMN, 2020)

– In situ groundwater, available at http://www.bom.gov.au/
water/groundwater/explorer/map.shtml (Australian Govern-
ment, 2020)

– In situ evapotranspiration, available at https://fluxnet.fluxdata.
org/data/fluxnet2015-dataset (FLUXNET, 2020)

– ERA5, available at https://www.ecmwf.int/en/era5-land
(ECMWF, 2020)

– W3, available at http://wald.anu.edu.au/challenges/water/
w3-and-ozwald-hydrology-models (Australian National
University, 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-4185-2021-supplement.
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