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Abstract. Environmental hot spots and hot mo-
ments (HSHMs) represent rare locations and events
that exert disproportionate influence over the environment.
While several mechanistic models have been used to
characterize HSHM behavior at specific sites, a critical
missing component of research on HSHMs has been the
development of clear, conventional statistical models. In
this paper, we introduced a novel stochastic framework for
analyzing HSHMs and the uncertainties. This framework
can easily incorporate heterogeneous features into the
spatiotemporal domain and can offer inexpensive solutions
for testing future scenarios. The proposed approach utilizes
indicator random variables (RVs) to construct a statistical
model for HSHMs. The HSHM indicator RVs are comprised
of spatial and temporal components, which can be used
to represent the unique characteristics of HSHMs. We
identified three categories of HSHMs and demonstrated
how our statistical framework is adjusted for each category.
The three categories are (1) HSHMs defined only by spatial
(static) components, (2) HSHMs defined by both spatial and
temporal (dynamic) components, and (3) HSHMs defined
by multiple dynamic components. The representation of
an HSHM through its spatial and temporal components
allows researchers to relate the HSHM’s uncertainty to the
uncertainty of its components. We illustrated the proposed
statistical framework through several HSHM case studies
covering a variety of surface, subsurface, and coupled
systems.

1 Introduction

Environmental hot spots and hot moments (HSHMs) were
originally defined as rare locations or events that support or
induce disproportionately high activity levels (e.g., chemical
reaction rates) compared to surrounding areas or preceding
times (McClain et al., 2003). Vidon et al. (2010) further clas-
sified HSHMs into either transport-driven or biogeochemi-
cally driven HSHMs, based on the mechanisms causing the
HSHMs. Bernhardt et al. (2017) derived the concept of eco-
logical control points (CPs) related to HSHMs, defining CPs
as areas of the landscape that exert a disproportionate influ-
ence on the biogeochemical behavior of an ecosystem under
study. These definitions have mainly focused on HSHMs re-
lated to elevated biogeochemical activities triggered by hy-
drological or biogeochemical processes or a confluence of
both processes. The concept of HSHMs is also used in cli-
mate science, where it is related to elevated greenhouse gas
emissions or specific locations that are subject to extreme
natural hazards (e.g., sea-level rise, floods, hurricanes, or
earthquakes) caused by climate change (Arora et al., 2021;
Shrestha and Wang, 2018). Further, Henri et al. (2015) re-
lated HSHMs to locations experiencing elevated environ-
mental risks and developed the incremental lifetime cancer
risk (ILCR) model to quantify the effects of hot spots on hu-
man health. In the present study, we provide a unified treat-
ment of both positive and negative impacts of HSHMs, which
allows us to present an integrative analytical framework for
understanding and modeling HSHMs in various fields.

Various approaches have been developed to better quan-
tify HSHM dynamics, including numerical modeling, em-
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pirical modeling and data-based approaches with statistics.
For example, Dwivedi (2017) developed a three-dimensional
high-resolution numerical model to investigate whether
organic-carbon-rich and chemically reduced sediments lo-
cated within the riparian zone act as denitrification hot spots.
Their study demonstrated a significantly higher potential (∼
70 %) of the naturally reduced zones (NRZs) to remove ni-
trate than the non-NRZ locations. Arora et al. (2016b) used
a two-dimensional transect model and showed that temper-
ature fluctuations constituted carbon hot moments in a con-
taminated floodplain aquifer that resulted in a 170 % increase
in annual groundwater carbon fluxes. Gu et al. (2012) devel-
oped a Monte Carlo reactive transport approach and discov-
ered how denitrification HSHMs are triggered by river stage
fluctuations. Abbott et al. (2016) developed the HotDam
framework that combines the HSHM concept and Darmköh-
ler number with multiple tracers to advance our understand-
ing of ecohydrology. Statistical concepts have also been used
to identify HSHMs through simple comparison to the aver-
age, substantial percentage of total flux, outlier in distribution
of data, statistically significant difference between or among
landscape elements and contribution to flux/total area or time
(Bernhardt et al., 2017, and references therein). Wavelet and
entropy-based approaches have also been used to identify
non-uniform regions and times and consequently HSHMs
(Arora et al., 2013, 2019a). However, most of these quanti-
tative methods are derived based on site-specific data, which
severely limits the transferability of these approaches. In con-
trast, a unified HSHM approach offers multiple advantages.
First, a unified strategy based on commonly used parameters
for a given HSHM would allow modelers to create probabil-
ity priors that could be used for prediction of said HSHMs at
unsampled or poorly sampled sites (Li et al., 2018). Second,
such a standardized approach for modeling HSHMs could be
beneficial to developing and implementing monitoring stan-
dards and regulations for environmentally sensitive HSHMs.
Last, but not least, a unified approach can be used together
with mechanistic models to capture uncertainty and hetero-
geneity for HSHMs in environmentally relevant applications.

Successful characterization of HSHMs through determin-
istic physically based models or purely statistical approaches
relies on experts’ knowledge of a site, intensive field charac-
terization, and possibly continuous field sampling to provide
the data to develop and validate these approaches. Under-
standably, intensive site characterization and long-term sam-
pling can be quite challenging due to the associated costs and
efforts. In this regard, having access to a stochastic approach
that could improve predictions through built-in model updat-
ing (i.e., Bayesian) capabilities could prove to be an advan-
tage.

Stochastic concepts and models have been widely applied
in hydrology and hydrogeology for addressing situations
subject to uncertainty, including but not limited to model-
ing flow and contaminant transport, quantifying subsurface
heterogeneity and the associated uncertainties, developing

strategies for site characterization, and providing informative
priors for ungauged watersheds. Bayesian approaches were
found to be particularly useful, especially through concepts
such as conditioning and updating. In this paper, we aim to
bring the experience gained in hydrology and hydrogeology
to HSHM modeling.

An important characteristic of HSHMs is that they occupy
a limited portion of the investigated domain and may be ac-
tive for a limited amount of time since they are activated
when the control variable exceeds a given threshold. Phys-
ical and geochemical heterogeneities and the impossibility
of fully characterizing them render the deterministic iden-
tification of HSHMs a vanishing objective. To address this
hurdle, we propose to cast the problem into a probabilistic
framework by seeking the probability of HSHM occurrence
at a given position and time. For a given time and/or space
interval and for a priori specified criteria, an HSHM occur-
rence could be viewed as a binary variable where the ensem-
ble mean is the probability of occurrence. Indicator statis-
tics have previously been applied to model flow and trans-
port phenomena in groundwater (Rubin and Journel, 1991),
where indicators were used to model the spatial distribu-
tion in a sand-shale formation. Wilson and Rubin (2002) and
Bellin and Rubin (2004) used indicator statistics to charac-
terize aquifer heterogeneity. These studies suggest that rep-
resentation of a system’s structure through indicator formu-
lation holds the potential to make informed decisions, for ex-
ample concerning remediation actions, under incomplete site
characterization.

Based on the mechanisms that trigger HSHMs, we iden-
tified three categories of HSHMs: (1) those triggered only
by spatial (static) contributors, (2) those triggered by both
spatial (static) and temporal (dynamic) contributors, and
(3) those triggered by multiple dynamic contributors. Ap-
plications of the proposed indicator formulation to a diverse
range of HSHM situations are presented to illustrate the gen-
erality of our proposed approach. The remainder of the pa-
per is structured as follows. Section 2 outlines the proposed
statistical framework for predicting HSHMs. In Sect. 3, var-
ious reported cases from previous HSHM studies are pre-
sented using the framework of our proposed approach, in-
tended to demonstrate its generality. In Sect. 4, we present
an HSHM application in groundwater hydrology and show
how the HSHM uncertainty relates to the spatial variability
of the hydraulic conductivity. Advantages and limitations of
our approach are discussed in Sect. 5.

2 Methodology and statistical formulation of HSHMs

Herein, we present a probabilistic formulation of hot spots
and hot moments, which considers the HSHM occurrence as
a binary event, expressed through indicator statistics embed-
ded with the HSHM underlying physics. Section 2.1 sum-
marizes the indicator formulation of HSHMs. Based on the
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contributors to HSHMs, we classified HSHMs into three dif-
ferent types, and we demonstrate how indicators are con-
structed for each type of HSHM in Sect. 2.2–2.4, respec-
tively. Section 2.5 focuses on the linkages between indicators
and Bayesian concepts. Case studies for each class of HSHM
are provided in Sect. 3.

2.1 Indicator formulation of HSHMs

HSHMs represent intervals in space and/or time character-
ized by hydrobiogeochemical activity rates or fluxes that dif-
fer significantly from the background conditions, thus ex-
erting disproportionate influences over an ecosystem’s dy-
namics. We define �∗ as the volume (subdomain) within
which the hot spot may be located and t∗ the time at
which the hot moment occurs. An indicator random variable,
IHSHM(�

∗, t∗), is used to identify whether an HSHM occurs
at (�∗, t∗) or not. If user-defined critical conditions needed to
trigger an HSHM are met at (�∗, t∗), then IHSHM(�

∗, t∗)=

1, and it is equal to zero otherwise. These user-defined crit-
ical conditions may require concentration or reaction rates
above certain thresholds or require both concentration and
rate limits depending on the type of HSHM. What makes
the indicator a random variable is the uncertainty in the
spatial and temporal distribution of the quantities trigger-
ing the HSHM event in real-life applications. Following the
original definition by McClain et al. (2003), in our method,
IHSHM(�

∗, t∗) can take a value of 0 or 1, depending on
whether suitable thresholds are exceeded or not as follows:

IHSHM
(
�∗, t∗

)
=

{
1, if C (x, t∗) > Cth; x ⊆�

∗

0, otherwise or

IHSHM
(
�∗, t∗

)
=

{
1, if R(x, t∗) > Rth; x ⊆�

∗

0, otherwise , (1)

where C(x, t∗) and R(x, t∗) are the concentration and re-
action rate at position x and time t∗, respectively. Cth and
Rth represent the concentration and reaction rate thresholds,
respectively, which identify whether an HSHM is triggered
or not. Defining indicators with concentration or reaction rate
depends on the target of an HSHM. For example, indicators
defined by concentration are preferred with transport-driven
HSHMs, whereas biogeochemically driven HSHMs may re-
quire indicators defined by both concentration and reaction
rates. The threshold values can also be based on regulatory
limits or defined by the user.

The critical values of Cth and/or Rth are keys to an effec-
tive application of the above framework and should be deter-
mined based on the specific scenario under investigation. For
example, in the case of contaminants that are associated with
significant environmental or health risks (e.g., nuclear waste
or a cancerous substance), Cth = 0 or Rth = 0 can be used so
that the HSHM will be triggered as soon as there is the pres-
ence of such contaminants and relevant chemical reactions.
As an alternative, a limit in the total accumulated mass or
fluxes within hot spots may also be set, such as suggested by

the EPA (USEPA, 2001), but in this case the definition (1) of
the indicators should be modified. For water quality param-
eters, Cth =MCL or Rth = R

∗ can be assigned, where MCL
represents the maximum concentration limit for a specific so-
lute, whereas R∗ could represent a critical reaction rate. The
critical thresholds can be determined based on statistics, such
as percentiles and extremes as defined by regulations or ana-
lytical studies. Alternatively, Cth and Rth could also be cho-
sen based on the experts’ domain knowledge or from well-
documented studies in similar environments. Through the
flexibility to adopt different choices for activation thresholds,
our approach could allow users to compare relevant indicator
models and assess their applicability by testing how different
thresholds would influence the probability of the HSHM oc-
curring and assessing said probabilities against risk tolerance
and/or regulations.

Following the definition of IHSHM(�
∗, t∗) as

a binary random variable (Eq. 1), we propose to
model it with a Bernoulli distribution, such as
IHSHM(�

∗, t∗)∼ Bernoulli(< IHSHM(�
∗, t∗) >), where

< . > is the ensemble-averaging operator. An important
characteristic of the Bernoulli distribution is that all the
statistical moments of IHSHM(�

∗, t∗) can be expressed as
a function of the ensemble mean < IHSHM(�

∗, t∗) >. For
example, the variance is given by var(IHSHM(�

∗, t∗))=<

IHSHM(�
∗, t∗) > ·(1−< IHSHM(�

∗, t∗) >). Thus, being
able to fold the HSHM physics into an indicator formulation,
a simplified approach is presented through Eq. (1).

Case-based formulation of the Bernoulli distribution of
IHSHM(�

∗, t∗) requires the incorporation of the mechanisms
that govern the development and occurrence of HSHMs into
the indicator model. To facilitate this undertaking, we pro-
pose to decompose IHSHM(�

∗, t∗) into a type-A (static) indi-
cator random variable, Is(�

∗), and a type-B (dynamic) indi-
cator random variable, Id(�

∗, t∗). Definitions of the type-A
and type-B indicators are provided herein.

– Type-A (static) contributors. This category covers dis-
crete spatial elements (and their associated critical
states) that could trigger an HSHM once they come into
contact with type-B contributors (see discussion below).
Critical states are the range of values needed to trigger
an HSHM (either in stand-alone mode or when coupled
with type-B contributors).

– Type-B (dynamic) contributors. This category covers
dynamic variables (and their associated critical states)
that could trigger an HSHM once they come into con-
tact with type-A contributors. This category includes,
for example, mass transport variables. It also includes
changes in local hydrological and environmental con-
ditions (e.g., water table fluctuations). The displace-
ments of solutes in the subsurface (trajectories and
travel times) from below- and above-ground processes
are prime examples of type-B contributors.
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As an example, naturally reduced sediments (type-A contrib-
utor) occurring next to the river corridor at the Rifle site were
identified as carbon export hot spots (Arora et al., 2016a;
Wainwright et al., 2015). Studies showed that these hot spots
were triggered when temperature conditions (type-B contrib-
utor) varied in the subsurface, resulting in a 170 % increase
in groundwater carbon export from the floodplain site to the
river (Arora et al., 2016b). In another example, topographic
features, such as the backslope of the lower montane hill-
slope (type-A contributor) within the East River Watershed
(Hubbard et al., 2018), were considered denitrification hot
spots, which can have a significant impact on the watershed-
scale nitrogen loss pathway. These hot spots were often trig-
gered by spring snowmelt and storm events (type-B contrib-
utor).

Both indicators of the type-A and type-B contributors as-
sume a value of either 0 or 1. If one of these indicators takes
a value of 1, it can be viewed as an HSHM contributor. How-
ever, for an HSHM to occur, both indicators must have a
value of 1 at the same location and time. This idea can be
expressed as follows:

P
(
IHSHM

(
�∗, t∗

)
= 1

)
= P

(
Is
(
�∗
)
= 1,Id

(
�∗, t∗

)
= 1

)
= P

(
Is
(
�∗
)
= 1

)
·P
(
Id
(
�∗, t∗

)
= 1|Is

(
�∗
)
= 1

)
= P

(
Id
(
�∗, t∗

)
= 1

)
·P
(
Is
(
�∗
)
= 1|Id

(
�∗, t∗

)
= 1

)
. (2)

Based on the mechanisms of HSHMs, we can distinguish
three different HSHM categories as discussed below. These
categories can be used to guide the application of the above
statistical framework in a variety of complex HSHM scenar-
ios, and they can also be used to develop analytical or numer-
ical solutions for both type-A and type-B contributors.

2.2 HSHMs induced by type-A (static) indicators

In this section, we consider HSHMs that are defined by static
indicators only (Fig. 1a). This list can include zones of high,
persistent concentration and reactivity that are due to the sub-
surface or the ecosystem’s unique hydrological and biogeo-
chemical properties. For example, the accumulation of con-
taminants in the subsurface (e.g., the high nuclide concentra-
tion in the subsurface at the Hanford site) could lead to the
evolution of persistent, high-reactivity zones. An aquifer’s
reactivity is another example that could distinguish certain
regions with high reactivity compared to surrounding areas
(Loschko et al., 2016). Such high-reactivity spots (hereafter
denoted as �∗) can be characterized by static indicator RVs
due to the persistence of high concentration or reactivity. The
static indicators are defined as follows:

IHSHM
(
�∗
)
= Is

(
�∗
)
=

{
1, if Z

(
�∗
)
⊆ Z∗s

0, otherwise , (3)

where Z∗s represents the conditions needed to trigger a hot
spot at �∗, and Z(�∗) represents the corresponding local
conditions at �∗. Notice that �∗ is a volume centered at a

selected position of the domain where the probability of de-
veloping an HSHM is evaluated.

2.3 HSHMs induced by type-A (static) and type-B
(dynamic) indicators

HSHMs can also result from dynamic processes encounter-
ing specific local conditions at �∗ (Fig. 1b). This is the situ-
ation described by Eq. (2), where the type-A indicators are
determined first and then used jointly with the type-B in-
dicators for complete HSHM characterization. For example,
Bundt et al. (2001) concluded that locations (�∗) intersected
by preferential flow paths are possible biological hot spots for
soil microbial activities. Meanwhile, dynamic factors, such
as snowmelt or rainfall infiltration control contaminant trans-
port via the preferential flow paths, thus constitute the hot
moment component. Additional case studies are presented in
Sect. 3.

For HSHMs induced by both type-A and type-B indica-
tors, the static locations are selected first, based on their
HSHM-related properties. After this, we can focus on char-
acterizing the HSHM dynamics as they relate to the relevant
locations. A selected location, �∗, could become an HSHM
site based on characteristics defined through the following
type-A and type-B indicators, respectively:

Is
(
�∗
)
=

{
1, if Zs

(
�∗
)
⊆ Z∗s

0, otherwise , (4)

Id
(
�∗, t∗

)
=

{
1, if Zd

(
�∗, t∗

)
⊆ Z∗d

0, otherwise , (5)

IHSHM
(
�∗, t∗

)
=

{
1, if Zs

(
�∗
)
⊆ Z∗s , and Zd

(
�∗, t∗

)
⊆ Z∗d

0, otherwise , (6)

where Z∗d represents the critical conditions needed to trig-
ger the hot moment, whereas Zd(�

∗, t∗) represents the cor-
responding, critical-state local conditions at t∗ and �∗. The
statistical model of IHSHM(�

∗, t∗) can be expressed using the
statistical models of Is and Id as shown in Eq. (2).

2.4 HSHMs induced by multiple type-B (dynamic)
indicators

A confluence of dynamic processes could result in the for-
mation of an HSHM (Fig. 1c). Unlike the previous scenar-
ios where static locations can be determined through known
characteristics provided by geophysical or other types of
data, HSHMs can also emerge due to a confluence of dy-
namic processes. For example, Gu et al. (2012) analyzed how
streamflow fluctuations could trigger a nitrogen HSHM. In
their example, the dynamics of the streamflow and ground-
water controlled the transport and mixing of the chemical re-
actants, thus triggering the occurrences of HSHMs. For this
case, the static locations of �∗ are determined by the conflu-
ence of multiple dynamic processes, not being restricted by
a set of local conditions. In this case, only type-B indicators
need to be modeled.
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Figure 1. Identified categories of HSHMs. Panel (a) presents HSHMs resulting from a type-A (static) indicator only; panel (b) presents
HSHMs resulting from coupled action (static+ dynamic), and panel (c) presents HSHMs resulting from multiple (two) dynamic indicators.

We can consider the case where an HSHM is predicated on
m dynamic processes, dj , where Id,j (�

∗, t∗) is the dynamic
for each dynamic dj at �∗ and time t∗. The hotspot location
�∗ is determined by the confluence of all dynamic processes
at time t∗. These dynamic processes are not necessarily in-
dependent. Therefore, generally, the statistical model for the
comprehensive dynamic indicator (which covers all dynamic
contributors) assumes the following form:

P
[
Id
(
�∗, t∗

)
= 1

]
= P

[
Id,1

(
�∗, t∗

)
= 1, . . ., Id,m

(
�∗, t∗

)
= 1

]
. (7)

In situations where the various dynamic contributors can be
viewed as independent (e.g., Destouni and Cvetkovic, 1991)
– i.e., where the reactants travel via different paths – then,
assuming independence, we can state that

P
(
Id
(
�∗, t∗

)
= 1

]
=

m∏
j=1

P
[
Id,j

(
�∗, t∗

)
= 1

]
. (8)

Here, the mean of the dynamic indicator becomes

< Id
(
�∗, t∗

)
>=

m∏
j=1

< Id,j
(
�∗, t∗

)
> . (9)

If �∗ is a hot spot, then Eq. (9) also defines <

IHSHM(�
∗, t∗) >. However, if �∗ is not a hot spot, then we

need to resort to coupled statistical modeling, as suggested
by Eq. (2).

2.5 Additional advantages of stochastic formalism

The statistical framework provides several benefits. Unified
formulations of HSHMs through indicators provide us with
a platform to evaluate alternative HSHM models thoroughly
and objectively. For example, the Akaike information crite-
rion (AIC, Akaike, 1974) and Bayesian information crite-
rion (Schwarz, 1978) can be used to rank between alterna-
tive indicator formulations and evaluate their ability to ex-
plain HSHM observations. Smaller AIC and BIC values indi-
cate more information preserved in a given indicator HSHM
model and imply better model quality than other indicator
models. On the other hand, if larger AIC and BIC values are

observed, important processes for HSHMs are likely miss-
ing, indicating the necessity of increasing site characteriza-
tion and refinement of conceptual models.

In addition, informative priors constructed from similar
HSHM sites (Cucchi et al., 2019; Li et al., 2018) could
advance early stage planning for HSHM site investigation.
Knowledge from studies at similar HSHM sites can be sum-
marized into prior distributions, which can account for vari-
abilities within and between sites. For example, Cucchi et
al. (2019) demonstrated how the distribution of hydraulic
parameters at unknown target sites can be predicted using
information from hydrologically similar sites with existing
tool packages such as exPrior. Goal-oriented site characteri-
zation also becomes feasible with informative priors; for ex-
ample, Li et al. (2018) demonstrated the usefulness of in-
formative priors in reducing model uncertainty and potential
risks for estimating groundwater drawdown at Mintang tun-
nel in China. Therefore, through integration with statistical
concepts, unified formulations of HSHMs enable us to inte-
grate Bayesian concepts to obtain combined and less risky
estimations of HSHMs at new sites, which can help us gain
better understanding of the underlying mechanism.

3 Examples of the statistical formulation of HSHMs
with case studies

In this section, we selected numerous examples from pub-
lished research to present how our approach can be used
to derive statistical representations for the HSHMs inves-
tigated in these studies. We grouped these studies into
three categories based on the similarities of their underly-
ing HSHM mechanisms, as described in Sect. 2. Section 3.1
demonstrates the formulation of static-only HSHM; Sect. 3.2
presents the case with static- and dynamic-triggered HSHMs,
and Sect. 3.3 summarizes the steps to construct multiple dy-
namic indicators for HSHMs. Table 1 presents a summary of
these cases, where environmental risk levels as well as im-
pacts on the ecosystem were also included.

3.1 HSHMs triggered by static contributors only

In this section, we use Wainwright et al. (2015) as an example
to illustrate our process to construct IHSHM(�

∗, t∗) following
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Eq. (3), where an HSHM is triggered by static contributors
only (Sect. 2.1). NRZs within floodplain environments at the
Rifle site are considered biogeochemical hot spots because
they represent elevated concentrations of uranium, organic
matter, and geochemically reduced minerals, and they have
been found to contribute significant carbon fluxes to the at-
mosphere and to local rivers (Arora et al., 2016a). Due to its
characteristics, we considered the spatial distribution of an
NRZ to be a static-mechanism-based hot spot. Wainwright et
al. (2015) used geophysical data (e.g., induced polarization)
to map the distribution of an NRZ at the subsurface level.
They found that the phase shift (φ) from the induced polar-
ization data of the NRZ was within [4.5, 5] mrad compared
to non-NRZ locations at φ ⊆ [1, 3.5]mrad. Thus, φ can be
used to construct the static indicator with a critical condition
of [4.5, 5] mrad. Therefore,

Is
(
�∗
)
=

{
1, if Zφ

(
�∗
)
⊆ [4.5,5]mrad

0, otherwise . (10)

Other static attributes, including but not limited to elevation,
hydraulic conductivity, and resistivity, can also be used to
define the critical conditions to construct the static indicator
for hot spots through Bayesian conditioning.

3.2 HSHMs occurring when dynamic contributors
coincide at locations defined by static contributors

The second case we present here utilizes Eqs. (4)–(6), where
HSHMs are triggered when dynamic contributors coincide at
hot spots determined by static contributors. Here, we present
the case investigated by Duncan et al. (2013), where riparian
hollows representing less than 1 % of the total catchment area
contributed more than 99 % of the total denitrification within
the watershed. In their study, the denitrification rates peaked
during the base flow (midsummer) period, when the riparian
hollows were partially oxygenated and the hydrologic fluxes
were at a minimum. The site was considered to have low in-
organic N availability and, thus, nitrate was supplied via ni-
trification. The highest rates of denitrification were therefore
tied to nitrification and the partially aerated conditions.

The static indicator needs to be constructed based on
the micro-topographical features within the riparian zone.
Specifically, the topographic wetness index (TWI) (Beven
and Kirkby, 1979; Sørensen et al., 2006) was used in Dun-
can et al. (2013) to delineate the riparian hollows from other
riparian locations. Terrain analysis indicated TWI threshold
values of 6.0 and 8.0 for riparian hollows under wet and dry
conditions, respectively, whereas 4.8 and smaller TWI values
corresponded to other riparian locations (e.g., hummocks).
Thus, the static indicator can be constructed using the TWI
values within the riparian zone to determine the hotspot lo-
cations – the hollows. Hence,

Is
(
�∗
)
={

1, if ZTWI
(
�∗
)
> 6 (wet condition) or 8 (dry condition)

0, otherwise . (11)

Multiple dynamic processes control the denitrification rate at
the riparian hollows. As examined by Duncan et al. (2013), a
partially aerated condition (CO2 > 5 %) is needed to support
nitrification, which supplies the nitrate for denitrification. As
quiescent, non-storm periods during base flow favor the cou-
pled nitrification–denitrification mechanism, this is another
key process that needs to be represented by a dynamic indi-
cator. Although Duncan et al. (2013) did not mention specific
concentration ranges for nitrogen species, the major compo-
nents, such as organic N, should be available. Therefore, we
can construct the dynamic indicators as follows:

P
[
Id
(
�∗, t∗

)
= 1

]
= P

[
Id,O2

(
�∗, t∗

)
= 1,Id,Hydro

(
�∗, t∗

)
= 1,Id,N

(
�∗, t∗

)
= 1

]
, (12)

where Id,Hydro(�
∗, t∗) is the dynamic indicator representing

the streamflow stages; this will be 1 if the base flow condi-
tions are met. Additionally, here, Id,N(�

∗, t∗) is the dynamic
indicator for the transport of the nitrogen species in the sub-
surface that support the coupled nitrification–denitrification
mechanism.

Id,O2

(
�∗, t∗

)
=

{
1, if CO2

(
�∗, t∗

)
> 5%

0, otherwise , (13)

Id,Hydro
(
�∗, t∗

)
=

{
1, if t∗ ⊆ base flow periods
0, otherwise , (14)

Id,N
(
�∗, t∗

)
=

{
1, if CN

(
�∗, t∗

)
> 0

0, otherwise (15)

It is noted that these dynamic processes are not statistically
independent. Usually, when one condition is met (e.g., base
flow conditions), other conditions may consistently be satis-
fied (e.g., the transport of nitrogen in riparian hollows). Al-
ternatively, numerical modeling approaches can be used to
construct the dynamic indicators based on the critical condi-
tions at riparian hollows (�∗), where we could directly tar-
get N2 fluxes using a Monte Carlo approach. The statisti-
cal formulation used here is constructed specifically for the
mechanisms described by Duncan et al. (2013). Thus, the
detailed threshold limits could change under other denitri-
fication HSHM cases, such as the case presented in Hill et
al. (2000), who focus on desert landscapes, or the one by
Harms and Grimm (2008), where the monsoon season is in-
fluential for the nitrogen transport. Nonetheless, the general
formulation of HSHMs using indicators is still applicable.

3.3 HSHMs occurring when multiple dynamic
processes converge in space

HSHMs can also be triggered by the confluence of multi-
ple dynamic processes that lead to the convergence of com-
plementary reactants at �∗. Complementary reactants can

https://doi.org/10.5194/hess-25-4127-2021 Hydrol. Earth Syst. Sci., 25, 4127–4146, 2021



4134 J. Chen et al.: Statistical characterization of environmental HSHMs in groundwater hydrology

be mobilized and transported via different hydrologic flow
paths. They can converge at hotspot locations and trigger hot
moments during the mixing. Following the statistical frame-
work developed in this study, Eqs. (7) to (9) are suitable for
this condition. In order to illustrate how the dynamic indi-
cators are constructed, we consider here the case reported
by Gu et al. (2012), where high biogeochemical activity was
observed at the interface of groundwater and surface water
during the stream stage fluctuations, which resulted in sig-
nificant in-stream denitrification and NO−3 removal.

In their study, hot spots form around the near-stream ripar-
ian subsurface during river stage fluctuations, where active
biogeochemical reaction (e.g., denitrification) requires both
O2 depletion and the simultaneous presence of NO−3 and the
dissolved organic carbon (DOC). Specifically, the spatiotem-
poral distribution of denitrification hot spots coincides with
an O2 depletion zone along the DOC infiltration flow paths.
In order to determine the mixing of groundwater and sur-
face water during stage fluctuations, Gu et al. (2012) defined
bank storage volume V (t) and maximum bank storage vol-
ume Vmax. The flood hydrograph was subdivided into the ris-
ing limbs, recession limbs and return flow, the latter repre-
senting the slow restitution of part of the water that infiltrated
during the previous stages. Considering the different dynam-
ics of these components, they observed that the largest infil-
tration rate occurred prior to the maximum stage rise, while
Vmax = 5 m3 m−1 (critical condition) occurred in the reces-
sion limb of the flood event. Instead, maximum return flow
occurred toward the end of the recession curve before the
stream hydrograph stabilizes. Maximum NO−3 rate removal
occurred when the return flow phase was almost complete
and then decreased until the depletion of NO−3 . Through sta-
tistical analysis, they found that Vmax, viewed as an inte-
grated index for hydrological exchange, could explain 64 %
of the variation in the NO−3 removal. Thus, Vmax can be used
as the critical state to determine whether or not the hyporheic
dynamics is significant to enhance relevant biogeochemical
processes. In order for the hot moments to be significant,
the stream–riparian zone should also be microbially active.
Based on these conditions, the dynamic indicators can be
constructed as follows:

P
[
Id
(
�∗, t∗

)
= 1

]
=P

[
Id,Hydro

(
�∗, t∗

)
= 1,

Id,Chem
(
�∗, t∗

)
= 1

]
, (16)

where Id,Hydro(�
∗, t∗) represents the dynamic process in-

duced by the hydrologic conditions (e.g., stage fluctuation),
and Id,Chem(�

∗, t∗) represents the dynamic process con-
trolled by the transport and accumulation of chemical reac-
tants. Based on the critical values or ranges, we formulate the
indicators as follows:

Id,Hydro
(
�∗, t∗

)
=

{
1, ZVmax

(
�∗, t∗

)
≥ 5m3 m−1

0, otherwise ,

Id,Chem
(
�∗, t∗

)
=


1, if CO2

(
�∗, t∗

)
is small and CNO−3(

�∗, t∗
)
> 0 and CDOC

(
�∗, t∗

)
> 0

0, otherwise
. (17)

Typically, because of the complexity of the processes, no
analytical solutions are available for formulating the indi-
cators. However, Monte Carlo simulations can be useful in
constructing such indicators. For this case, an HSHM at any
given location and tim (�∗, t∗) will only be triggered when
all of the conditions are met and the ensemble mean of the
indicator assumes the following form:

< Id
(
�∗, t∗

)
>=

1
N

N∑
i=1

Id,i
(
�∗, t∗

)
, (18)

where Id,i(�
∗, t∗) is the value that the indicator assumes in

the ith realization and N is the total number of realizations.
Overall, our choices of the three studies should not limit

the generalizability of the indicator statistics approach for
deriving statistical formulations for HSHM applications. The
critical conditions chosen to construct the indicators are de-
termined solely on the findings from these selected studies,
and they will vary under different scenarios.

4 HSHM applications in groundwater hydrology

This section focuses on HSHMs in the subsurface for demon-
stration of linking HSHM models with the contributing phys-
ical processes, such as the migration of groundwater carry-
ing reducing substrates, nuclear waste transport within the
subsurface, the accumulation and transport of dense non-
aqueous phase liquid (DNAPL) and other biogeochemical
processes. Some current modeling approaches that focus on
subsurface HSHMs assume simplified hydrologic structures
(e.g., homogeneous and isotropic domains) in quantifying
the fate and transport of solutes in the subsurface. However,
such assumptions neglect the effect of the heterogeneity in
the subsurface, potentially missing localized HSHMs arising
as the combined effect of heterogeneity in physical and geo-
chemical properties, and do not allow us to assess uncertain-
ties in the HSHM occurrences.

This section therefore focuses on HSHMs taking place in
the subsurface, with a particular emphasis on the role of spa-
tial variability of the hydrologic parameters. Section 4.1 il-
lustrates the potential of subsurface heterogeneity for trigger-
ing and timing of HSHMs. In Sect. 4.2, we develop closed-
form analytical solutions for HSHM probability. In doing
this, we demonstrate the linking between our indicator model
and the physics of the HSHMs in the subsurface. In Sect. 4.3
we demonstrate applications under various conditions of spa-
tial variability.

4.1 Importance of spatial variability in the subsurface

The heterogeneous structure of hydraulic conductivity leads
to significant variability in the transport of solutes in the
subsurface, which couples with heterogeneous geochemical
properties leading to a spatially varying reactivity (Arora et
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al., 2019b; Loschko et al., 2016; Sassen et al., 2012; Wain-
wright et al., 2015). Figure 2 demonstrates the uncertainty
associated with HSHMs by looking at the flow fields in two-
dimensional log-hydraulic conductivity (Y = ln(K)) fields
with streamlines resulting from a uniform mean head gradi-
ent, left to right. The three panels differ in terms of the vari-
ance, σ 2

Y , of the log conductivity. The covariance function
used for generating the fields is exponential and isotropic.
σ 2
Y is shown to have a profound impact upon the conductivity

field. As the variance increases, regions of high and low log
conductivity emerge, creating preferential flow paths bypass-
ing the low-conductivity zones as shown by particle trajec-
tories. At smaller variance (i.e., σ 2

Y = 0.1), particles mainly
travel along the mean flow direction with very limited de-
parture from the mean trajectory, which are the straight lines
connecting the left and right boundaries. In this situation, the
arrival times of solute particles at a critical location (i.e., �∗,
where for example geochemical conditions are favorable for
certain types of reactions to occur) are predictable. With large
variances (i.e., σ 2

Y = 2), the streamlines assume a very irreg-
ular, hard-to-predict geometry, and we can observe the emer-
gence of flow channels, where particles can move quickly
next to stagnant flow regions. Arrival times become more un-
certain, because the exact geometry of the streamlines is hard
to predict unless the Y field is known deterministically. How-
ever, since this is never the case, in another equally likely re-
alization of the Y field, the situation may be different, result-
ing in significant uncertainties in predicting the particle travel
times. Thus, spatial variability of log conductivity is a major
uncertainty-inducing factor and, by extension, requires the
need for stochastic modeling of HSHMs in situations where
the associated processes and attributes are subject to uncer-
tainty. In the following sections, we will present illustrative
examples to analyze how subsurface spatial variability influ-
ences< IHSHM(�

∗, t∗) >, including variance and anisotropy
ratio of the log conductivity.

4.2 Illustrative example and indicator formulation

In this section we illustrate the proposed indicator approach
by means of synthetic case studies developed by using meth-
ods of stochastic hydrogeology. The choice of the synthetic
case studies does not limit our approaches to broader appli-
cations where stochastic modeling with Monte Carlo simu-
lations is applicable. Figure 3 displays the configuration of
this case example. Consider the case of an instantaneous
point source release of a target compound at location x0
and time t0. HSHMs are triggered at any (�∗, t∗) if the so-
lute is present. Consider the hot spot (�∗) to be confined
within the following volume: w1 ≤ x1 ≤ w

′

1; w2 ≤ x2 ≤ w
′

2;
w3 ≤ x3 ≤ w

′

3; the dynamic indicator is therefore defined as
follows:

Id
(
�∗, t∗

)
=

{
1, if X(t∗)⊆�∗ at t∗

0, otherwise . (19)

The injected solute can be modeled in a Lagrangian frame-
work as a particle moving according to the velocity field
without changing its volume. The latter is the consequence
of neglecting pore-scale dispersion. The expected value of
this dynamic indicator at t∗ is therefore

< Id
(
�∗, t∗

)
>=

∗∫
�

fX(t∗) (a|x0, t0)da, (20)

where fX(t∗t)(a|x0, t0) is the probability distribution func-
tion (pdf) of the particle’s trajectory at time t∗ (Dagan and
Nguyen, 1989; Rubin, 2003). If we also assume steady, uni-
form in the average flow with mild heterogeneity of the log
hydraulic conductivity field with the Gaussian displacement
pdf, then we can compute< IHSHM(�

∗t∗) > analytically us-
ing the following equation:

P
(
IHSHM

(
�∗, t∗

)
= 1

)
=< IHSHM

(
�∗, t∗

)
>

=< Is
(
�∗
)
><

(
Id
(
�∗, t∗

))
>

= prob
(
Id
(
�∗, t∗

)
= 1

)
= prob

{
X
(
t∗
)
⊆�∗

}
=

m∏
i=1

w′i∫
wi

fXi (t∗) (ai |x0, t0)dai =

w′1∫
w1

fX1(t∗) (a1|x0, t0)da1

w′2∫
w2

fX2(t∗) (a2|x0, t0)da2

w′3∫
w3

fX3(t∗) (a3|x0, t0)da3

=
1

(2π)
3
2
√
X11 (t∗)X22 (t∗)X33 (t∗)

w′1∫
w1

exp

[
−

1
2
(a1−Ut

∗)2

X11 (t∗)

]
da1 ·

w′2∫
w2

exp

[
−

1
2

a2
2

X22 (t∗)

]

da2

w′3∫
w3

exp

[
−

1
2

a2
3

X33 (t∗)

]
da3, (21)

which can be integrated to yield

P
(
IHSHM

(
�∗, t∗

)
= 1

)
=< IHSHM

(
�∗, t∗

)
>

=
1
8

[
erfc

(
w1−Ut

∗

√
2X11 (t∗)

)
− erfc

(
w′1−Ut

∗

√
2X11 (t∗)

)]
·

[
erfc

(
w2

√
2X22 (t∗)

)
− erfc

(
w′2

√
2X22 (t∗)

)]
[

erfc
(

w3
√

2X33 (t∗)

)
− erfc

(
w′3

√
2X33 (t∗)

)]
. (22)

For simplicity, but without lack of generality, in Eq. (20) we
assumed x0 = (0,0,0). The displacement variances Xii , i =
1, 2, 3 depend on the spatial distribution of the hydraulic con-
ductivity in the subsurface. Equations (A4) to (A6) present
the displacement variances for an axisymmetric exponential
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Figure 2. Illustrative example of a heterogeneous log-hydraulic conductivity field and solute particle transport. Black lines represent simu-
lated particle travel paths. A left to right hydraulic gradient of 0.1 is applied. Mean of log conductivity is set at −3. Note that color scales for
log conductivity are consistent in all three panels.
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Figure 3. Configuration of the synthetic case study. x1, x2 and x3 represent the longitudinal, transverse and vertical directions, respectively.
w1, w′1, w2, w′2, w3 and w′3 are the coordinates that set up the volume of �∗.

covariance function of the log conductivity (Eq. A3) given
in Appendix A. In Eqs. (A7) to (A19), we have provided
derivations of indicator formulations for other HSHM sce-
narios, including indicator formulation for complex concen-
tration thresholds and indicator formulation for hot moment
durations. Notice that in obtaining Eq. (20) we postulated
ergodicity, which in practical terms reflects the actual situa-
tion of an instantaneous injection into a source zone with a
transverse dimension much larger than the integral scale of
the hydraulic conductivity (Dagan, 1990), such that the en-
semble mean is representative of the effects of the actual, but
unknown, distribution of hydraulic conductivity.

4.3 Probability of HSHM occurrence controlled by
subsurface heterogeneity

In the following sections, we present the results from the
case study described in Sect. 4.2. Specifically, in Sect. 4.3.1
and 4.3.2, we explore how heterogeneity of log-hydraulic
conductivity influences the probability of HSHM occur-
rences. To make results as general as possible, lengths are
made dimensionless with respect to the integral scales (IYh in
the two horizontal directions and IYv in the vertical one)
and time with respect to the following advective timescale:
IYh/U , where U is the mean velocity. In the following,
we explore the effect of the remaining parameters, i.e., the
anisotropy ratio e =

IYV
IYH

and the variance of the log conduc-

tivity σ 2
Y , on the emergence of an HSHM. We placed �∗

along the mean trajectory at (21IYH , 0, 0) with dimensions
as (2IYH , 2IYH , 2IYV ). The dimensions of the hot spot are
therefore of two integral scales in the three coordinate direc-
tions (x1, x2, x3) and are placed at a dimensionless distance
of 21 from the point source.

4.3.1 Dependence of P(IHSHM(�
∗,τ)= 1) on variance

in the spatial correlation structure of the log
conductivity

Figure 4 shows P(IHSHM(�
∗,τ )= 1), which is the prob-

ability that an HSHM is triggered at �∗ and the di-
mensionless time τ = tU

IYh
, for a few values of σ 2

Y . Here,

IHSHM(�
∗,τ )= 1 represents the situation in which an

HSHM is triggered. At early time (e.g., τ < 5), larger
probability P(IHSHM(�

∗,τ )= 1) is observed with increase
in σ 2

Y . At intermediate time, i.e., at times comparable with
the mean travel time τ = 21, P(IHSHM(�

∗,τ )= 1) is in-
versely proportional to σ 2

Y . At late time (e.g., τ > 40),
the largest P(IHSHM(�

∗,τ )= 1) occurs at intermediate σ 2
Y .

We observe that σ 2
Y regulates the timing of the peak in

P(IHSHM(�
∗,τ )= 1), which is located in the proximity of

the mean travel time, τ = 21, for weak heterogeneity and
shifts towards earlier times as σ 2

Y increases. From the prac-
tical perspective, Fig. 4 shows the probability of developing
an HSHM at the identified position �∗ at the given time τ .

These effects relate to the relationship between travel
times (from the source to �∗) and σ 2

Y . The key point to note
is that σ 2

Y controls the spread of the travel time around its
mean value. A larger σ 2

Y enhances channeling effects (Fiori
and Jankovic, 2012; Moreno and Tsang, 1994, also in Fig. 2),
which in turn enable earlier arrival times. However, at the
same time, it also leads to the emergence of low-conductivity
zones with low velocity or stagnant groundwater. The so-
lute tends to bypass low hydraulic conductivity zones, as
shown by the streamlines depicted in Fig. 2; however, the
small amount of solute that actually penetrates these zones
by slow advection and diffusion gets trapped for long time
before being released, and this results in an extended tailing
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Figure 4. Dependence of P(IHSHM(�
∗,τ )= 1) on time (τ ) and on the level of spatial variability of the log-hydraulic conductivity (σ 2

Y
).

with low concentration, which increases the probability of
observing an HSHM at later times. Thus, with an increase
in σ 2

Y , we notice an increase in the probability of observ-
ing both increasingly earlier and increasingly delayed arrival
times, which widens the probability distribution. By contrast
at small variance, particles deviate little from the ensemble
mean trajectory, because of the small contrast in conductiv-
ity between high- and low-conductivity zones. This results
in small particle spreading and travel times that differ only
slightly from the mean travel time (τ = 21) and a probability
distribution less spread around the mean, where the peak is
observed.

In summary, hydraulic conductivity contrast between low-
and high-conductivity lithofacies increases with σ 2

Y , lead-
ing to the emergence of organized high-conductivity path-
ways sneaking through surrounding low-conductivity zones,
with the latter acting as “trapping” elements. This causes
the emergence of both early and late arrival times, with
the consequent larger probability of triggering HSHMs at
early and later times, with respect to the case of low hetero-
geneity. Early arrival times are controlled by the connected
high-conductivity pathways, and the late arrival times are in-
fluenced by the low-conductivity zones, which act as low-
release reservoirs for solutes.

4.3.2 Dependence of P(IHSHM(�
∗,τ)= 1) on

anisotropy in the spatial correlation structure of
the log-hydraulic conductivity

The discussion here (accompanying Fig. 5) focuses on the
impact of the anisotropy ratio in the correlation structure (e,
defined above) on the probability of triggering HSHMs. The
anisotropy ratio, e, provides an indication of the persistence

of the log conductivity (Y ) in the principal directions. The
spatial correlation model used here for demonstration is that
of axis symmetry, which is common to sedimentary forma-
tions (Dagan, 1989; Rubin, 2003), with e providing the ratio
between the persistence of Y in the vertical (x3) direction,
represented by IYV , and the ones on the horizontal plane (x1–
x2), represented by IYH . In unconsolidated sedimentary for-
mations, IYV is typically smaller than IYH by as much as 1
order of magnitude, due to the different timescales of the de-
positional process taking place in the horizontal and vertical
directions, which leads to thin and elongated lithofacies and
consequently to a much smaller persistence of Y values in
the normal to horizontal plane (Miall, 1985, 1988; Ritzi et
al., 2004).

Figure 5 compares P(IHSHM(�
∗,τ )= 1) between forma-

tions defined by different anisotropy ratios and different σ 2
Y .

It shows that we have two factors to consider when explain-
ing the differences in P(IHSHM(�

∗,τ )= 1). The first factor,
as discussed earlier, is the widening of the probability distri-
bution (direct consequence of the widening of the travel time
distribution) due to increase in σ 2

Y . With larger variance, we
observe higher probabilities of departure of the travel times
away from the average. The anisotropy ratio e adds a com-
pounding factor. To understand its effect, we should recall the
analyses of lateral displacement variances of solute particles
moving in heterogeneous formations (cf. Dagan, 1989, and
Eqs. A4 to A6 here), showing that smaller e leads to smaller
lateral (both vertical and horizontal) displacement variances,
implying smaller probabilities of lateral departures from the
mean flow trajectory. Smaller e limits lateral spreads and in-
creases the probability of particles entering �∗, sooner or
later, and triggering HSHMs. The effect could also be viewed
as a channeling effect of sorts: smaller e implies Y blocks of
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Figure 5. Dependence of P(IHSHM(�
∗,τ )= 1) on (τ ) and on anisotropy ratio e. Solid and dashed lines represent, respectively, the proba-

bilities of large (σ 2
Y
= 2.0) and small (σ 2

Y
= 0.5) variance of the log-hydraulic conductivity.

small aspect ratio (i.e., long but thin elements), which pro-
vide fast tracks for particles when defined by high Y values
while blocking lateral spreads when defined by low Y values.

Additional notes: first, �∗ known in the present analy-
sis is located downstream from the source, along with the
mean trajectory of the solute displacement. We expect dif-
ferent results in situations where �∗ is positioned at an off-
set with respect to the mean flow direction or when its po-
sition is unknown. In both cases we expect a reduction of
the probability of triggering an HSHM. Relevant to our dis-
cussion is that the proposed probabilistic framework can ad-
dress the case of an unknown position for �∗ as well. Sec-
ond, we note that the analytical models used to compute the
displacement statistics are formally limited to small variance
of the log conductivity (σ 2

Y < 1), although they are shown to
provide good approximations for large variances (Bellin et
al., 1992; Salandin and Fiorotto, 1998). Third, the stochastic
formulation provides the theoretical and computational for-
malism for conditioning the probabilities on in situ measure-
ments (Ezzedine and Rubin, 1996; Rubin and Dagan, 1992)
as well as on information borrowed from similar sites (Li et
al., 2018; Cucchi et al., 2019).

5 Discussion and summary

In this study, we developed a general stochastic framework
for characterizing the spatiotemporal distribution of environ-
mental hot spots and hot moments (HSHMs). The stochastic
formulation is built around the following principles.

– The HSHMs are defined as random variables, and the
goal is to derive their stochastic distribution in terms of
the relevant processes and attributes.

– The processes and attributes are modeled as stochastic
processes and random variables, respectively, based on
the underlying physics.

– The static contributors are modeled stochastically using
geostatistical space random functions.

– The dynamic contributors are modeled stochastically
using probability distribution functions derived from the
underlying mathematical–physical models.

– Several HSHM categories are defined, based on the con-
tributing factors, as follows: HSHMs defined by dy-
namic contributors only, HSHMs defined by static con-
tributors, and, most commonly, HSHMs requiring the
coupling of static and dynamic contributors. The HSHM
stochastic formulations are expressed in terms of the
stochastic formulations of the relevant contributors.

We provided a detailed review of multiple HSHMs and
showed how they relate to our definitions.

The framework we proposed in this study is advantageous
in that it allows us to calculate the uncertainty associated with
HSHMs based on the uncertainty associated with its contrib-
utors. Additionally, it provides a formalism, well established
by Bayesian theory, for conditioning the HSHM probabilities
on in situ measurements as well as on information borrowed
from geologically and otherwise similar sites.
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We demonstrated our proposed approach through appli-
cations in the area of subsurface transport and hydrogeol-
ogy, focusing on the impacts of subsurface heterogeneity
on HSHMs. We analyzed, quantitatively, how subsurface
heterogeneity of the conductivity field controls the HSHM
statistics, for example, the time expected for the probability
of the HSHM to occur to reach a priori set thresholds or time
to peak probability.

Lastly, as mentioned both here and in previous studies, sta-
tistical methods for quantifying the occurrences of HSHMs
and the associated uncertainties are needed to advance our
understanding of the mechanisms that cause HSHMs, as well
as to enhance our ability to predict HSHMs and manage their
consequences.
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Appendix A: Equations and derivations

A1 Equations for the displacement pdf

Assuming steady uniformity in the average flow, with mild
heterogeneity of the log-hydraulic conductivity field with
Gaussian displacement, the pdf of the longitudinal (x1,
Fig. 3) displacement of a solute particle starting at time
t0 = 0 at x0 = (0,0,0) is given by the following equation
(Dagan and Nguyen, 1989; Dagan and Rubin, 1992):

fX1(t∗) (x1)=
1

√
2πX11 (t∗)

exp

[
−

1
2
(x1−Ut

∗)2

X11 (t∗)

]
. (A1)

Additionally, the displacement pdf in the transverse direc-
tions (x2 and x3) is given by

fXi (t∗) (xi)=
1

√
2πXii (t∗)

exp

[
−

1
2

x2
i

Xii (t∗)

]
, i = 2,3. (A2)

A2 Equations for displacement variances under
anisotropic conditions

Dagan (1984) developed a solution of the displacement vari-
ances Xii , i = 1, 2, 3 for an exponential and axisymmetric
log-conductivity covariance:

CY (r)= 〈(Y (x)−〈Y 〉)(Y (x+ z)〈Y 〉)〉

= σ 2
Y exp

[
−

√
r2

1 + r
2
2

I 2
Yh

+
r2

3

I 2
Yv

]
, (A3)

X11 = σ
2
Y I

2
Y 2t∗+ 2

[
exp

(
−t∗

)
− 1

]
+ 8e

∞∫
0

[
J0
(
Kt∗

)
− 1

]
·

[
1(

1+K2− e2K2
)2

−
eK(

1+K2− e2K2
)2(1+K2

)0.5
−

eK

2
(
1+K2− e2K2

)(
1+K2

)1.5
]
dK

− 2e

∞∫
0

[
J0
(
Kt∗

)
−
J1 (Kt

∗)

Kt∗
−

1
2

]

·

[
e3K3 (e2K2

− 5− 5K2)(
e2K2− 1−K2

)3(1+K2
)1.5

+
1+K2

− 5e2K2(
1+K2− e2K2

)3
]
dK, (A4)

X22 =−2eσ 2
Y I

2
Y ·

∞∫
0

[
J1 (Kt

∗)

t∗
−
K

2

]
[

e3K2 (e2K2
− 5K2

− 5
)(

e2K2− 1−K2
)3(1+K2

)1.5
+

1+K2
− 5e2K2

K
(
1+K2− e2K2

)]dK, (A5)

X33 =−4eσ 2
Y I

2
Y

∞∫
0

[
J0
(
Kt∗

)
− 1

]

·

{
1(

e2K2− 1−K2
)2 [1

2
+

2e2K2

1+K2− e2K2

+
eK

(
e2K2

+ 3+ 3K2)
2
(
e2K2− 1−K2

)(
1+K2

)0.5
]}

dK, (A6)

where r is the two-point separation distance and 〈Y 〉 the en-
semble mean of the log conductivity Y = lnK . J0 and J1 are,
respectively, the zero and first orders of the first-kind Bessel
functions.

A3 Equations for displacement variances under
isotropic conditions

Dagan (1984) provided analytical solutions for longitudinal
and transverse displacement variances. This is a special case
for the anisotropic case with e = 1. The solutions are as fol-
lows:

X11 =σ
2
Y I

2
Y

{
2t∗− 2 ·

[
8
3
−

4
t∗
+

8
t∗3
−

8
t∗2(

1+
1
t∗

)
exp

(
−t∗

)]}
, (A7)

X22 =X33 = 2σ 2
Y I

2
Y

[
1
3
−

1
t∗
+

4
t∗3

−

(
4
t∗3
+

4
t∗2
+

1
t∗

)
exp

(
−t∗

)]
. (A8)

A4 Indicator formulation for complex concentration
thresholds

When considering local dispersion or in case of a reactive
tracer, the condition that the particle is inside the volume �∗

does not suffice to define the dynamic indicator, and a con-
centration threshold Cth should be introduced:

Id
(
�∗, t∗

)
=

{
1, if X(t∗;x0, t0)⊆�

∗ and C (X, t∗) > Cth
0, otherwise . (A9)

In the absence of local dispersion and for a reactive solute
decaying at a (spatially) constant rate k, the ensemble mean
assumes the following expression (Cvetkovic and Shapiro,
1990):
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P
(
Id
(
�∗, t∗

)
= 1

)
=< Id

(
�∗, t∗

)
>

=

{
1−H

[
t∗−

1
k

ln
(
C0

Cth

)]} ∗∫
�

fX
(
t∗
)
(a|x0, t0)da, (A10)

where C0 is the initial concentration and H [·] is the Heavi-
side step function. The ensemble mean (Eq. A10) is the prod-
uct of the probability that the particle assumes a concentra-
tion larger than the threshold at t∗ (given that reaction rate k
is constant, this probability is either 0 or 1) and the proba-
bility that at the same time t∗ the particle is within the hot
spot �∗. In other words, Eq. (A10) expresses the fact that a
particle inside �∗ contributes to the hot moment only if its
concentration is greater than the threshold, and this occurs
for t∗ < 1

k
ln( C0

Cth
). Equation (A10) can be generalized to the

cases of instantaneous injection into a source of volume V0,
as discussed before for the non-reactive case. For other com-
plex situations, such as that in which k is spatially variable
and complex reaction networks, the ensemble mean of the
indicators can be addressed by Eq. (16) in a Monte Carlo
framework.

A5 Indicator formulation for hot moment durations

As hot moments can persist over short time periods, estimat-
ing the corresponding probabilities for any given time inter-
val becomes also very important. The probability that the hot
moment persists over the interval [t1, t2] at �∗ can be for-
mally computed as follows:

< Id
(
�∗, t1, t2

)
>=P

(
t1,�

∗
)
P
(
t2|t1,�

∗
)
, (A11)

where P(t1,�∗) is the probability that the particle is in-
side �∗ at time t∗ = t1 and P(t2|t1,�∗) is the probability
that the particle is still inside �∗ at time t∗ = t2, provided
that at time t1, it was also inside �∗. If the particle exits �∗

during interval [t1, t2], this time interval will not be qualified
as a hot moment, and thus the probability computation needs
to ensure the particle stays within �∗ during the entire time
interval.

Under the first-order approximation (FOA) (see, e.g., Da-
gan, 1989; Gelhar, 1993; Rubin, 2003), the pdf of the par-
ticle displacement is normal with mean < X(t∗;x0, t0) >

and auto-covariance tensor of the residual displace-
ments X′(t∗)= X(t∗)−〈X(t∗)〉 defined by Xij (t∗;x0, t0)=

〈X′i(t
∗
;x0, t0)X′j (t

∗
;x0, t0)〉, i,j = 1, 2, 3. For simplicity in

the following, we assume x0 = 0 and t0 = 0. Under these as-
sumptions,

< Id
(
�∗, t1, t2

)
>=

∫
�∗

∫
�∗

fX(t1)(a)f
c
X(t2) (b|X(t1)= a)dbda, (A12)

where the conditional pdf f c
X(t2)(b|X(t1)= a) is multi-

normally distributed with conditional mean and variance ten-
sor given by

〈X(t2) |X(t1)= a〉 =< X(t2) >+Cov
[
X′ (t2) ,X′ (t1)

]
·Var

[
X′ (t1)

]−1
· (a−< X(t1) >), (A13)

and

σ (t1, t2)= Var
[
X′ (t2)

]
−Cov

[
X′ (t2) ,X′ (t1)

]
·Var

[
X′ (t1)

]−1
·Cov

[
X′ (t1) ,X′ (t2)

]
, (A14)

respectively, which further yields the following:

f c
X(t2) (b|X(t1)= a)= exp

[
−

1
2

[b−〈X(t2) |X(t1)

= a〉]T · σ (t1, t2)−1
· [b−〈X(t2) |X(t1)= a〉]

]
·

{
8π3
· |σ (t1, t2)|

}− 1
2
, (A15)

where | · | indicates the determinant, exp is the exponential
function and the exponent T indicates the transpose of the
vector.

In Eqs. (A13) and (A14), X′(t∗)= X= (t∗)−〈X(t∗)〉
stands for the departure of the particle’s displacement with
respect to the ensemble mean trajectory, and Var[X]−1 is
the auto-covariance tensor of the residual displacement
whose elements are defined above. Similarly, Cov[X′(t1),
X′(t2)] is the covariance tensor of residual displace-
ment whose elements are Xij (t1, t2;x0, t0)= 〈X

′

i(t1)X
′

j (t2)〉,
i,j = 1, 2, 3. Note that in the general three-dimensional case
〈X(t2) |X(t1)= a〉 is a three-dimensional vector and σ (t1, t2)
is a 3× 3 second-order tensor.

For t2→ t1, f c
X(t2)
[b|X(t1)= a] → δ(b−a), where δ(·) is

the Dirac delta, such that P(t2|t1,�
∗)→ 1. On the

other hand, for t2� t1, Cov[X′(t1), X′(t2)] → 0 and
P(t2|t1,�

∗)→ P(t2,�
∗), the marginal probability that the

particle is within �∗ at time t∗ = t2. Equations (A12)
to (A15) are obtained under the FOA and assume that the par-
ticle can enter �∗ only once. Such an assumption is needed
to obtain analytical solutions and is reasonable for situations
with small to mild subsurface heterogeneity (e.g., σ 2

Y ≤ 1.6),
such as the cases presented in Bellin et al. (1992, 1994) and
Cvetkovic et al. (1992). In particular, FOA assumes small
heterogeneity, and under this assumption the particle trajec-
tory deviates slightly from its ensemble mean, which is di-
rected along the regional hydraulic head gradient. For a reg-
ular volume �∗, this reduces the probability of the particle
entering more than once the hot spot. This probability re-
duces further if in the horizontal and vertical transverse di-
rections�∗ is much larger than the respective integral scales,
because the probability of observing negative longitudinal
velocity components (i.e., along the mean flow field) is much
smaller than in the transverse directions (Bellin et al., 1992)
and vanishes as formation heterogeneity reduces.

If the hotspot �∗ is the volume confined between two
planes at x1−

l1
2 and x1+

l1
2 , with the other two dimensions
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much larger than the transverse horizontal and vertical inte-
gral scales, l2� Ih, l3� Iv, Eq. (A13), simplify to

< Id
(
�∗, t1, t2

)
>=

x1+
l1
2∫

x1−
l1
2

x1+
l1
2∫

x1−
l1
2

fX1(t∗) (a1)f
c
X1(t∗)

(b1|X1 (t1)= a1)db1da1, (A16)

where X1 is the longitudinal component of the particle’s tra-
jectory and f c

X1(t∗)
is its conditional pdf, which is normal

with conditional mean and variance given by

µ [a1]= 〈X1 (t2) |X1 (t1)= a1〉 =<X1 (t2) >

+
X11 (t1, t2)

X11 (t1)
(a1−<X1 (t1) >) (A17)

and

σ 2 (t1, t2)=X11 (t2)−
X11(t1, t2)

2

X11 (t1)
, (A18)

respectively. Consequently, fXc(t∗) in Eq. (A16) assumes the
following form:

f c
X1(t∗)

(b1|X1 (t1)= a1)=
1

√
2πσ (t1, t2)

exp
[
−

1
2
(b1−µ [a1])2σ(t1, t2)−1

]
. (A19)

Substituting Eq. (A16) into Eq. (A19) allows us to compute
< Id(�

∗, t1, t2) > . For situations where the FOA assump-
tions are not valid (e.g., large heterogeneity), a Monte Carlo
simulation framework is still applicable as an alternative ap-
proach to construct the dynamics indicators (see Eq. 16).
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