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Abstract. The accuracy of spatial precipitation estimates
with relatively high spatiotemporal resolution is of vital im-
portance in various fields of research and practice. Yet the
intricate variability and intermittent nature of precipitation
make it very difficult to obtain accurate spatial precipitation
estimates. Radars and rain gauges are two complementary
sources of precipitation information: the former are inaccu-
rate in general but are valid indicators of the spatial pattern
of the rainfall field; the latter are relatively accurate but lack
spatial coverage. Several radar–gauge merging techniques
that can provide spatial precipitation estimates have been
proposed in the scientific literature. Conditional simulation
has great potential to be used in spatial precipitation estima-
tion. Unlike commonly used interpolation methods, condi-
tional simulation yields a range of possible estimates due to
its Monte Carlo framework. However, one obstacle that ham-
pers the application of conditional simulation in spatial pre-
cipitation estimation is the need to obtain the marginal distri-
bution function of the rainfall field with sufficient accuracy.
In this work, we propose a method to obtain the marginal
distribution function from radar and rain gauge data. A con-
ditional simulation method, random mixing (RM), is used to
simulate rainfall fields. The radar and rain gauge data used
in the application of the proposed method are derived from
a stack of synthetic rainfall fields. Due to the full control
over the stochastic process, the accuracy of the estimates
is verified comprehensively. The results from the proposed
approach are compared with those from three well-known

radar–gauge merging techniques: ordinary Kriging, Kriging
with external drift, and conditional merging, and the sensitiv-
ity of the approach to two factors – the number of rain gauges
and the random error in the radar estimates – is analysed in
the same experimental context.

1 Introduction

Precipitation is one of the most important factors in hydrol-
ogy and meteorology. The accuracy of spatial precipitation
estimates with relatively high spatiotemporal resolution is
of vital importance in various fields of research and prac-
tice, such as the promotion of meteorological and hydrolog-
ical monitoring, forecasting performed to enhance our abil-
ity to cope with natural disasters, the study of climate trends
and variability, and the management of water resources (Yil-
maz et al., 2005; Michaelides et al., 2009; Jiang et al., 2012;
Liu et al., 2017). Yet, unlike many other hydrometeorologi-
cal variables such as temperature and humidity, precipitation
occurs intermittently in space and time, i.e. nonrainy areas
occur amidst rainy areas, and dry periods occur amidst wet
periods (Kumar and Foufoula-Georgiou, 1994). The intricate
spatiotemporal variability and intermittent nature of precip-
itation make it very difficult to obtain accurate spatial pre-
cipitation estimates (Emmanuel et al., 2012; Cristiano et al.,
2017).
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Rain gauges – the only devices that directly measure pre-
cipitation on the ground surface – are still considered the
most reliable source of precipitation information in hydrol-
ogy. However, rain gauges are only available at limited lo-
cations. The representativeness of gauge observations for
the entire precipitation field is therefore limited. Significant
research has shown that precipitation estimation based on
gauge observations suffers from degraded levels of accuracy
during storms with increased rainfall intensities, when con-
vective processes are significant (Adams, 2016). Meteoro-
logical radar, on the other hand, is a superb tool for measur-
ing spatial patterns of reflectivity at the altitude of the mea-
surement. Yet radar-based precipitation estimation can be
problematic due to various sources of errors, e.g. variations
in the vertical profile reflectivity (VPR), static/dynamic clut-
ter, signal attenuation, anomalous propagation of the beam,
and uncertainty about the Z–R relationship (see Doviak and
Zrnić, 1993; Collier, 1999; Fabry, 2015, for details). Despite
these various potential error sources, radar-based precipita-
tion estimation is still, however, considered a valid indicator
of precipitation patterns (Méndez Antonio et al., 2009; Yan
et al., 2020). In summary, radars and rain gauges are two
complementary sources of precipitation information: the for-
mer are inaccurate in general but are valid indicators of the
spatial pattern of the rainfall field; the latter are relatively ac-
curate but lack spatial coverage.

Considering the pros and cons of the two sources of
precipitation information, many radar–gauge merging tech-
niques to obtain spatial precipitation estimates have been de-
veloped in recent years. Wang et al. (2013) grouped these
techniques into two categories: bias reduction techniques
and error variance minimization techniques. Bias reduction
techniques attempt to correct the bias of radar rainfall es-
timates using rain gauge observations. This class of tech-
niques has a long history; they range from the earliest mean
field bias correction schemes where a single correction fac-
tor is applied to the entire radar field (e.g. Wilson, 1970)
to later local bias correction schemes where spatially dis-
tributed correction factors are applied (e.g. Brandes, 1975;
James et al., 1993; Michelson and Koistinen, 2000). Error
variance minimization techniques attempt to eliminate the
bias of radar rainfall estimates while minimizing the vari-
ance between radar and rain gauge measurements. Repre-
sentatives of this class include the Bayesian data combina-
tion scheme (Todini, 2001), Kriging-based techniques such
as conditional merging (Sinclair and Pegram, 2005), Krig-
ing with external drift (Hengl et al., 2003; Haberlandt, 2007;
Velasco-Forero et al., 2009), and co-Kriging (Schuurmans
et al., 2007; Sideris et al., 2014).

In addition to the two categories mentioned above, there is
a class of methods that simulate spatial random fields under
the Monte Carlo framework. The logic behind the use of such
methods is straightforward. When faced with uncertainty
during the process of making a forecast or estimation, rather
than replacing the uncertain variable with a single average

number, simulation can provide a better solution by yield-
ing a range of possible outcomes. In the context of merging
radar and rain gauge data, simulation is often performed un-
der constraints (such as equality constraints at rain gauge lo-
cations or the field pattern indicated by radar). There are sev-
eral methods that simulate spatially random fields using cer-
tain covariance functions in Gaussian space, such as turning
bands simulation, LU-decomposition-based methods, and se-
quential Gaussian simulation (Mantoglou and Wilson, 1982;
Deutsch and Journel, 1998; Chilès and Delfiner, 2000; Lan-
tuéjoul, 2002). Studies on conditional simulation of rainfall
fields are, however, rare. One of the major obstacles that
hampers the application of conditional simulation in spatial
precipitation estimation is the need to obtain the marginal
distribution function of the rainfall field with sufficient ac-
curacy. This distribution function is needed to transform the
simulated Gaussian fields to rainfall fields of interest, as the
simulation is normally embedded in Gaussian space. Given
this, in the present paper, we propose a method to obtain the
distribution function from radar and rain gauge data.

Here, the method we employ to simulate rainfall fields is
random mixing (RM), which was first proposed by Bárdossy
and Hörning (2016) to solve inverse modelling problems
encountered when modelling groundwater flow and trans-
port. RM uses the concept employed in the gradual defor-
mation (GD) approach described in Hu (2000): that a con-
ditional field of interest can be obtained as a linear combi-
nation of unconditional random fields. However, unlike GD,
RM is targeted and flexible enough to be able to incorporate
different kinds of constraints (linear or nonlinear), and the
utilization of spatial copulas in the description of the under-
lying dependence structure enables the dependence structure
and marginal distribution to be treated separately.

The radar and rain gauge data used when applying the
proposed approach in this study are derived from a stack of
synthetic rainfall fields. Compared to commonly used verifi-
cation methods (e.g. leave-n-out cross-validation, where the
accuracy of the estimates is verified at limited locations), the
accuracy of the estimates is verified more comprehensively
in this study, as the synthetic data used allows full control
over the stochastic process. The results from the proposed
approach are compared with those from several well-known
radar–gauge merging techniques: ordinary Kriging, Kriging
with external drift, and conditional merging. Finally, the sen-
sitivity of the proposed approach to two factors – the number
of rain gauges and the random error in the radar estimates –
is analysed.

This paper is divided into six parts. After this introductory
section, the methodology of RM is elaborated in Sect. 2. Sec-
tion 3 describes the data used in this study. Section 4 com-
pares the results from the proposed approach with those ob-
tained from other techniques and analyses the sensitivity of
the approach. Section 5 describes the scope and assumptions
of the approach and discusses the limitations of this study.
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Section 6 draws conclusions and presents the outlook for the
proposed approach.

2 Methodology

2.1 CDF of the rainfall field

As described in the “Introduction”, one of the major obsta-
cles to the application of conditional simulation in spatial
precipitation estimation is obtaining the cumulative distri-
bution function of the rainfall field (rainfall CDF hereafter)
with sufficient accuracy. The rainfall CDF is needed to trans-
form the simulated Gaussian fields to rainfall fields of inter-
est. In this subsection, an algorithm to compute the rainfall
CDF from radar and rain gauge data is proposed. The algo-
rithm is as follows:

1. Estimate the spatial intermittency of the rainfall field as
the ratio of the number of dry pixels to the total num-
ber of pixels in the radar estimates Rr. We denote the
estimated spatial intermittency by u0.

2. Transform the radar estimates Rr to nonexceedance
probabilities (termed quantiles hereafter), which results
in a quantile map. Due to the intermittent nature of pre-
cipitation, all the dry pixels in Rr are transformed to u0
(i.e. u0 is the smallest value in the quantile map).

3. Determine the gauge-respective quantiles in the radar
quantile map, which are denoted by uk for k = 1, . . . ,K .
The two datasets – the rain gauge observations rk and
the gauge-respective quantiles uk – form K pairs (rk ,
uk). Perform the following quality control steps for
these pairs:

– Check the consistency at zeros and remove the pair
whenever a zero is encountered, i.e. rk = 0 or uk =
u0. In the ideal case where the radar estimates per-
fectly represent the pattern of the rainfall field, zero
gauge observations and the smallest quantile u0
should coexist. However, in practice, there are var-
ious factors that can reduce the representativeness
of the radar-indicated field pattern. A zero gauge
observation could be collocated with a quantile that
is slightly larger than u0, and a dry pixel could be
collocated with a gauge observation that is slightly
larger than 0 mm. The consistency at zeros is an im-
portant indicator of the mismatch between the radar
and rain gauge data, though none of the zeros in the
two datasets are used in the computation of the rain-
fall CDF.

– Maintain consistency in order. In the ideal case de-
scribed in the previous item, the pairs (rk , uk) rep-
resentK points that are exactly on the rainfall CDF.
However, due to the degraded representativeness

Figure 1. Light grey: the empirical CDFs obtained by linearly join-
ing (rk , uk) points after the two quality control steps, with one CDF
highlighted by the black dashed line. Red: the true rainfall CDF.
Note that the empirical CDFs shown here are computed from the
synthetic data as described in Sect. 3.

of the radar estimates, the Spearman rank correla-
tion of rk and uk can be less than 1. Namely, the
two datasets have different orders; for example, the
largest rain gauge observation does not correspond
to the largest radar quantile. To maintain a consis-
tent order, the values in rk and uk that remain after
applying the first item are sorted in ascending order.

Note that both of these consistencies (consistency at ze-
ros and consistency in order) are good indicators of the
mismatch between radar and rain gauge data. A signifi-
cant mismatch – e.g. the collocation of a dry pixel with
a 5 mm rainfall record, or a low Spearman’s rank corre-
lation (say ρr < 0.8) – can lead to unreliable estimates.

4. After performing the quality control steps, it is assumed
that the set of points (rk , uk) are distributed without bias
around the true CDF; see the empirical CDF obtained by
linearly joining the points in Fig. 1. The rainfall CDF
is obtained by fitting a theoretical CDF model under
the condition that the fitted CDF becomes positive at
the point (0, u0). The estimated rainfall CDF is denoted
by G(·) hereafter.

In the above algorithm, the radar data provide a hint about
the representativeness of the rain gauge data. For example,
has the extreme of the rainfall field been properly sampled
by the gauges? If not, to what extent has the extreme been
underestimated by the samples (rain gauge observations)?
One could answer this question by checking the maximum
value among the gauge-respective radar quantiles. Similarly,
one could also find the answers to questions such as whether
the samples are uniformly distributed in terms of the quantile
range or whether they just gather around the lower/higher
range of the rainfall field. Without the additional informa-
tion provided by radar, one would probably assign evenly
distributed quantiles to the rain gauge observations, as usu-
ally done in the acquisition of the empirical CDF.
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2.2 Prepare the constraints

The simulation is embedded in Gaussian space; hence, the
constraints should be transformed to the standard normal
marginal (normalized Gaussian). Specifically, we consider
the following three constraints:

1. The equality constraints at rain gauge locations, when
defined in terms of the standard normal marginal, mean
that the simulated values at the rain gauge locations
should equal the values mapped from the rain gauge ob-
servations rk:

Z(xk)=8
−1 (G(rk)) for k = 1, . . ., K, (1)

where Z is the simulated Gaussian field, xk denotes the
rain gauge location, and G(·) and 8(·) denote the rain-
fall CDF and the CDF of the standard normal distribu-
tion, respectively.

2. The simulated Gaussian field Z should preserve a given
correlation function obtained from the transformed
radar estimates, i.e.

Z′r =8
−1 (G(Rr)) . (2)

The problem here is that one can only obtain a trun-
cated Gaussian field Z′r from the radar estimates Rr, as
all the dry pixels in Rr are converted to z0 =8

−1(u0),
where u0 is the spatial intermittency. The sill of the cor-
relation function evaluated from Z′r is reduced due to
the truncation. Figure 2 displays and compares empiri-
cal variograms evaluated from 1000 truncated Gaussian
fields with the true variogram used to generate the corre-
sponding continuous Gaussian fields. From the figure, it
can be seen that the empirical and true variograms have
very similar patterns. Practically speaking, the true cor-
relation function can be approximated by scaling given
a priori knowledge that the variance of the simulated
field is 1. Besides, as random mixing is a geostatistical
simulation method, the choice of the correlation func-
tion has a limited effect on the estimates, just as it does
for Kriging (Verworn and Haberlandt, 2011). We denote
the estimated correlation function by 0 hereafter.

Note that the terms correlation function and variogram
are used interchangeably here, as it is common in geo-
statistics to work with the variogram, the estimation
of which has been shown to be more stable than that
of the correlation function (Calder and Cressie, 2009).
Namely, one simulates by using the correlation function
as the measure of spatial dependence, whereas the spa-
tial dependence of the simulated field is normally exam-
ined via its variogram.

Figure 2. The blue lines denote the empirical variograms evaluated
from 1000 truncated Gaussian fields; the 95 % confidence interval
is marked by the black dashed lines. The red line denotes the true
variogram used to generate the continuous Gaussian fields. Note
that the continuous Gaussian field is truncated at z0 =8

−1(0.36).

3. The pattern of the simulated field should resemble that
of the radar estimates as closely as possible. This repre-
sents an optimization problem, and the goal is to maxi-
mize the Pearson correlation coefficient of the simulated
field Z and the reference field Z′r, i.e.

O(Z)= ρ
(
Z,Z′r

)
→ max, (3)

where Z is the simulated Gaussian field, Z′r is obtained
from the radar estimates as defined in Eq. (2), and ρ(·) is
the Pearson correlation coefficient. The same problem
arises: Z is continuous whereas Z′r is truncated. To eval-
uate the objective function, one could truncateZ at z0 or
one could also use Z directly, as shown in Eq. (3). The
difference between these approaches is minor, as a high
correlation between Z′r and Z means a high correlation
between Z′r and the truncated Z. To be as parsimonious
as possible, we use Z directly in the evaluation of the
objective function.

2.3 Random mixing

The task is to estimate the true rainfall field given a set of
rain gauge observations and a set of radar estimates. In terms
of conditional simulation, this means simulating a Gaussian
field Z that fulfils all the constraints described in Sect. 2.2
and then converting Z to the rainfall field of interest, i.e.
yielding an estimate of the true rainfall field.

We use random mixing (RM) to fulfil the task. RM utilizes
the concept described in Hu (2000): that the conditional field
of interest can be obtained as a linear combination of many
unconditional random fields, i.e.

Z =

N∑
i=1

αiYi , (4)
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where Yi(s) are independent Gaussian random fields with
identical statistical properties, i.e. the marginal distributions
all follow the standard normal distribution with the same
correlation function. If, in addition, the L2 norm of the
weights αi fulfils

N∑
i=1

α2
i = 1, (5)

the resultant conditional field Z is statistically identical to Yi ,
as demonstrated by Bárdossy and Hörning (2016). There are
several methods that can be used to obtain Gaussian random
fields with a given correlation function. We have used an ef-
ficient method – the fast Fourier transform for regular grids
(Wood and Chan, 1994; Wood, 1995; Ravalec et al., 2000).

It is necessary to differentiate Hu’s method from the pro-
posed one before specifying the algorithm. Hu’s method (Hu,
2000; Hu et al., 2001) incorporates linear data using condi-
tional Kriging, and the method is extended to combine de-
pendent conditional fields in Hu (2002), whereas RM incor-
porates linear or nonlinear constraints under the unified con-
cept of randomly mixing unconditional random fields. The
algorithm for RM is as follows:

1. The prospective conditional Gaussian field Z that fulfils
all the constraints is obtained as

Z =

N∑
i=1

αiYi+(cosθ ·H+sinθ ·H ′) ·
√

1−
∑

α2
i . (6)

Z consists of two parts:

a. The first part,

N∑
i=1

αiYi ,

is made up ofN statistically identical unconditional
random fields Yi(s) with correlation function 0, as
estimated in Sect. 2.2. The role of this part is to
fulfil the equality constraints at the rain gauge loca-
tions. Thus, K linear constraints are imposed as

N∑
i=1

αi ·Yi (xk)=8
−1 (G(rk)) for k = 1, . . ., K. (7)

See Eq. (1) for the definitions of xk , rk , G(·) and
8−1(·). In total, we have N unknowns: αi for i =
1, . . . ,N and K equations. If N >K , this forms an
underdetermined equation system. Multiple tech-
niques are available for solving such a system.
Specifically, we found the set of weights with the

lowest L2 norm; i.e. we minimized
N∑
i=1
α2
i by using

the singular value decomposition technique.

In addition, the constraint
N∑
i=1
α2
i < 1 is imposed to

ensure that the second part has a positive weight,
i.e. 1−

∑
α2
i > 0. The extra constraint is further sat-

isfied by increasingN , i.e. increasing the number of
degrees of freedom of the equation system.

b. The second part,

(cosθ ·H + sinθ ·H ′) ·
√

1−
∑

α2
i ,

is made up of two independent, statistically identi-
cal conditional random fields H and H ′, which are
referred to as the H -field hereafter. The H -field is
also obtained as a linear combination of uncondi-
tional random fields Y ′i (statistically identical to Yi):

H =

M∑
i=1

βiY
′

i .

The H -field is special because of the zeros at the
rain gauge locations, which mean that the addition
of the second part to the first part does not change
the values at the rain gauge locations. Hence, the
equalities in Eq. (7) can be rewritten as

Z(xk)≡

N∑
i=1

αi ·Yi (xk)+ 0=8−1 (G(rk))

for k = 1, . . ., K. (8)

The remaining question is how to obtain such H -
fields. Similarly, an underdetermined system is cre-
ated as

M∑
i=1

βi ·Y
′

i (xk)= 0 for k = 1, . . ., K, (9)

with M unknowns, K equations, and M >K . To
ensure that theH -field is statistically identical to Y ′

(or Y ), the following constraint is imposed addi-
tionally:

M∑
i=1

β2
i = 1. (10)

The set of weights (βi for i = 1, . . . ,M) can be de-
termined by solving Eq. (9) first, and then scaling

the weights with the factor (1/
√∑

β2
i ) such that

Eq. (10) is satisfied. Because of the “zeros”, scal-
ing does not change the values at the rain gauge
locations.

The Gaussian field Z obtained from Eq. (6) fulfils the
equality constraints at the rain gauge locations and re-
produces the correlation function 0. The correlation
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function is reproduced because the L2 norm of the
weights of all the fields underlying Z satisfies∑

α2
i +

(
cos2θ + sin2θ

)
·

(
1−

∑
α2
i

)
= 1. (11)

It should be noted that oneH -field is sufficient to do the
same job. For example, one could obtain such a Z via

Z =

N∑
i=1

αiYi +H ·

√
1−

∑
α2
i .

The aim of using twoH -fields instead of one is to intro-
duce more freedom, allowing the third constraint to be

met too. The relative weights of the two parts (
√∑

α2
i :√

1−
∑
α2
i ) do matter. The second part should weigh

more, as this facilitates the solution of the optimization
problem defined in the next step. Thus, when solving
the underdetermined system in (a), the set of weights√∑

α2
i � 1 is found.

2. Due to the freedom introduced by the extra H -field, the
Gaussian field Z obtained from Eq. (6) is a function of
θ . This is also true of the objective function evaluated
from Z, which actually defines a 1D optimization prob-
lem w.r.t. θ :

O(θ)= ρ
(
Z(θ),Z′r

)
→ max, (12)

where θ ∈ (−π,π ]. See the definitions of Z′r and ρ(·) in
Eqs. (2) and (3). The task is to find the θ that produces
the maximum objective function value. There are vari-
ous methods that can be applied to solve the 1D uncon-
strained optimization problem. In this work, we simply
used the trial-and-error method, and a coarse search fol-
lowed by a fine search was implemented to accelerate
the solving process. The solution to the 1D optimiza-
tion problem is denoted by θ∗.

3. If Z(θ∗) meets the stopping criterion of the optimiza-
tion, continue with step 4. Otherwise, go back to step 2
after updating H and H ′ as follows:

H ← cosθ ·H + sinθ ·H ′ (13)
H ′← a newly generated H -field. (14)

As always in optimization, there are multiple choices of
stopping criteria, such as a particular number of itera-
tions, a preset limit on the objective function, a specific
rate of decrease of the objective function, and so forth.
We adopted a specific number of continuous iterations
without improvement as the stopping criterion.

4. Finally, an estimate of the true rainfall field is obtained
as

R =G−1 (8(Z (θ∗))) . (15)

3 Data

An artificial experiment was carried out to test the capabil-
ity of the proposed approach to estimate the true rainfall
field. Due to a lack of knowledge of the true fields, we used
synthetic ones: 1000 rainfall fields were generated indepen-
dently and served as the “true” rainfall fields from which the
radar and rain gauge data were derived.

This was done because it is difficult to verify the accu-
racy of the estimates comprehensively without knowing the
real rainfall field. Some studies employ the leave-n-out cross-
validation method, where one verifies the accuracy of the es-
timates at certain points, for verification. However, the accu-
racy of the estimates in terms of the overall statistics (e.g. the
mean and maximum of the rainfall field) is more hydrologi-
cally interesting than the accuracy at particular points.

3.1 Generate the true rainfall fields

1000 rainfall fields, each with a grid size of 80× 80, were
generated. Each pixel was assumed to represent an area of
1× 1 km2, and all 1000 fields were generated independently
and had identical properties, i.e. they all had the same spa-
tial intermittency, rainfall CDF, and correlation function. The
generation procedure was as follows:

1. Generate 1000 Gaussian random fields ZT with a given
correlation function. Figure 3a displays the exponential
correlation function used in the generation of ZT. Note
that a subscript T is used throughout this paper to denote
the true Gaussian and rainfall fields or the true rainfall
CDF. Similarly, we used the fast Fourier transform for
regular grids to generate ZT.

2. Generate a rainfall CDF where the lognormal distribu-
tion is used as the model for the rainfall CDF, as this
distribution has been shown to be effective at describing
the marginal distribution of rainfall rates or the short-
time rainfall (accumulation time: 10 or 15 min) over a
specified area (Bell, 1987; Crane, 1990; Pegram and
Clothier, 2001). Figure 3b shows the rainfall CDF used
in the generation of the 1000 true rainfall fields, i.e. the
true rainfall CDF: G−1

T (·).

3. Convert the Gaussian random fields ZT to rainfall fields
using the normal-score transformation method:

RT =G
−1
T (8(ZT)) , (16)

where RT is the true rainfall field and 8(·) is the CDF
of the standard normal distribution. Note that the quan-
tile value u0, which is labelled in Fig. 3b, is used to
maintain the spatial intermittency. Hence, all pixel val-
ues smaller than z0 =8

−1(u0) in ZT are converted to
zero (precipitation) in RT.

Hydrol. Earth Syst. Sci., 25, 3819–3835, 2021 https://doi.org/10.5194/hess-25-3819-2021
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Figure 3. (a) The exponential correlation function used in the gen-
eration of the Gaussian random fields ZT . (b) The rainfall CDF
used in the generation of the true rainfall fields, where the spatial
intermittency u0 is labelled.

3.2 Generate the radar estimates

The radar estimates were derived from the true rainfall fields.
Specifically, the Gaussian field ZT generated in Sect. 3.1 was
used. Two types of errors are commonly seen in radar es-
timates: random and nonlinear errors. The following proce-
dure was applied to mimic those errors:

1. Introduce a random error. The proposed approach as-
sumes that the radar estimates measured aloft can rep-
resent the pattern of the rainfall field on the ground.
However, there are some factors that can reduce the rep-
resentativeness of radar estimates, such as evaporation,
complex terrain effects, and anthropogenic effects. A
random error is therefore introduced to mimic this kind
of error. We also utilize the concept of random mixing,
where the Gaussian field with the introduced random
error is obtained by mixing two fields:

Zr = w1 ·ZT+w2 ·Ze , (17)

where ZT is the true Gaussian field and Ze is an in-
dependently generated Gaussian random field with the
same statistical properties as ZT. The constraint w2

1 +

w2
2 = 1 is also imposed to ensure that the resultant Zr

is statistically identical to ZT (or Ze). The ratio of the
two weights (w1/w2) is used to measure the signif-
icance of the random error, by analogy with a com-
monly seen parameter, the signal-to-noise ratio (SNR).

The proposed approach was tested at three levels of sig-
nificance: SNR= 3, 5, and 10. Accordingly, the Gaus-
sian fields with introduced random error were obtained
as

Zr = 0.9487 ·ZT+ 0.3162 ·Ze
Zr = 0.9806 ·ZT+ 0.1961 ·Ze
Zr = 0.9850 ·ZT+ 0.0985 ·Ze.

2. Convert the Gaussian fields with random error to rainfall
fields using the normal-score transformation:

Rr =G
−1
T (8(Zr)) . (18)

The resultant Rr differs in pattern from the true rain-
fall field, while differences in statistical properties are
small. See the statistical properties evaluated from the
true rainfall field and the rainfall fields that contain ran-
dom error only (i.e. the rainfall fields obtained via per-
forming steps 1 and 2 in Fig. 4.

3. Apply a nonlinear transformation to mimic the error
induced through the use of an erroneous Z–R rela-
tionship. In practice, the true Z–R relationship is dif-
ficult to identify. The omnipresent Z–R relationship
Z = 200R1.6 given by Marshall and Palmer (1948) is
widely used in radar hydrology to convert radar reflec-
tivity to rain rate. Long lists of vastly different Z–R re-
lationships have been derived for different areas with
different conditions in the scientific literature (Uijlen-
hoet, 2001; Fabry, 2015). However, the Z–R relation-
ship varies over space and time. Generally, there is no
means to identify the true Z–R relationship in real time.
In other words, most of the time, an erroneous Z–R
relationship is employed, which results in a nonlinear
departure of the radar estimates from the true rainfall
field: the larger the radar measurement, the more seri-
ous the departure. Given the above, we used the follow-
ing power function to mimic this nonlinear departure
(where the operator “←” denotes updating):

Rr← 0.87R0.83
r . (19)

The values of the two parameters – the factor of 0.87
and the exponent of 0.83 – are selected arbitrarily, as
these values do not influence the proposed approach
where the transformed radar estimates (the radar quan-
tiles) are utilized. The monotonic transformation above
does not change the quantile map. We modelled a case
where radar underestimates the precipitation, as this is a
known tendency of radar data (Curry, 2012; Berne and
Krajewski, 2013; Shehu and Haberlandt, 2020). Under-
estimated precipitation is useless and can have negative
effects in many hydrological applications. On the other
hand, the choice of values for the two parameters does
matter for radar–gauge merging techniques, where the
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radar estimates are used directly. Thus, underestimated
radar estimates lead to underestimated precipitation, for
example.

3.3 Generate the rain gauge observations

The rain gauge observations were sampled from the true rain-
fall field RT at the rain gauge locations. Due to the local ef-
fect of the rain gauge observations (the closer an ungauged
location is to its nearest rain gauge, the less uncertain the cor-
responding estimate is), it is favourable to have a denser rain
gauge network. However, it is always an interesting question
to ask how dense the rain gauge network must be to achieve
sufficient accuracy. We try to answer this question in the ex-
perimental context of this study. As it would have been too
complex to model real-world rain gauge networks, which are
usually irregularly distributed and have various densities, we
made things as simple as possible. The proposed approach
was tested on three layouts: 5×5, 6×6, and 7×7 rain gauges
that are uniformly distributed in the domain of interest (de-
noted G25, G36, and G49, respectively, hereafter). Presum-
ably, this gives an approximate coverage of one rain gauge
per 256, 178, and 131 km2, respectively.

4 Results

4.1 Comparison of the results

The proposed approach (referred to simply as RM in this sec-
tion, though RM is in fact only part of the approach) was used
to estimate the 1000 true rainfall fields based on the corre-
sponding radar estimates and rain gauge observations. The
results from RM were compared with those from three well-
known Kriging methods: ordinary Kriging, Kriging with ex-
ternal drift (KED), and conditional merging (Sinclair and Pe-
gram, 2005). It is not possible to display all the results ob-
tained in this paper; we focus on the results for one rainfall
field randomly drawn from a total of 1000. A single realiza-
tion obtained from RM is shown in Fig. 5b, which should
be compared with the corresponding true rainfall field and
the radar estimates presented in Fig. 5a and c, respectively.
Meanwhile, the estimates obtained from ordinary Kriging,
KED, and conditional merging are displayed in Fig. 5d–f,
respectively. The results shown here are typical enough to
be able to draw the following conclusions (conclusion 1 for
ordinary Kriging, 2 for KED and conditional merging, and
3 for RM):

1. The rainfall field obtained from ordinary Kriging has
neither the pattern nor the extremes of the true rainfall
field, as the method only considers the rain gauge ob-
servations; the radar estimates do not contribute to the
final estimates.

2. The estimates from KED and conditional merging cap-
ture the pattern but neither possess the extremes of the
true field. KED outperforms conditional merging in this
case because KED takes the radar estimates as the ex-
ternal drift and tries to capture the linear relationship
between the gauge observations and the radar estimates
at the gauge locations. Thus, the estimates from KED
correct the extremes of the radar estimates a little bit
but not perfectly, as radar underestimates the rainfall
field nonlinearly in the scenario considered. In this spe-
cific case, the maximum values in the true and KED-
estimated rainfall fields are 46.24 and 32.55 mm, re-
spectively. Compared to KED, conditional merging is
more dependent on the accuracy of the radar estimates,
as the method assumes that the radar data provide an es-
timate of the actual Kriging error. As KED outperforms
ordinary Kriging and conditional merging in this con-
text, the results from RM are compared with those from
KED in the following subsections.

3. The rainfall field obtained from RM captures the ex-
tremes of the true field. The maximum values in the
true and RM-estimated rainfall fields are 46.24 and
47.57 mm, respectively. The pattern of the true field is
captured with limited accuracy. After analysing the re-
sults from RM further, it is found that:

3.1. The proposed approach is capable of capturing the
extremes of the true field under the condition that
the estimated rainfall CDF is relatively accurate;
see the estimated and true CDFs for the specific
case in Fig. 6.

3.2. Unlike the estimates from ordinary Kriging, KED,
or conditional merging, where one obtains a Kriged
mean field, the proposed approach can yield an in-
finite number of realizations for the same true rain-
fall field due to the Monte Carlo framework. The
mean of 100 realizations is displayed in Fig. 7b;
this should be compared with the true rainfall field
shown in Fig. 7a. From the figure, it can be seen that
the mean realization is smooth and captures the pat-
tern of the true field; in other words, the rain cells
are more accurately located in the mean realiza-
tion than in the individual realization. However, the
statistics of the mean realization (variance and co-
variance) are clearly different from those of the true
field. In summary, the individual realization gives
relatively accurate statistics; an ensemble of such
realizations is an accurate indicator of the locations
of rainfall peaks. When feeding such an ensemble
to applications such as a hydrological model, for
example, one will also obtain an ensemble of esti-
mates, meaning that the estimation uncertainty for
the rainfall field will propagate.
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Figure 4. The coloured histograms were evaluated from the 1000 true rainfall fields. The unfilled histograms overlaid on the coloured ones
were evaluated from the 1000 rainfall fields that contain random error only (SNR= 3).

Figure 5. (a) The true rainfall field; (b) a single realization from RM (scenario: G36, SNR= 3); (c) the radar estimates; (d–f) the estimates
obtained from ordinary Kriging, Kriging with external drift (KED), and conditional merging, respectively.

3.3. The various estimates from RM provide a reason-
able representation of the estimation uncertainty.
Figure 7c displays the standard deviation (std) of
the 100 realizations. The black/zero-valued 6× 6
pixels (which are uniformly distributed in the do-
main) reveal the locations of the rain gauges, as all
the realizations present the same values at these lo-
cations. The exact locations of the rain gauges are
marked by the small red dots in Fig. 7b. Compared
to the Kriging variance, which reflects the relative
positions of the unknowns and the data points only,
the std map from RM is more physically meaning-
ful. The estimation uncertainty of a pixel is affected
by two factors: (a) the distance of the pixel from
the data points (i.e. the uncertainty from the gauge

side) and (b) the expected estimate at the pixel (i.e.
the uncertainty from the radar side). There is a clear
tendency: the closer the pixel to the neighbouring
rain gauge and the smaller the expected estimate at
the pixel, the lower the estimation uncertainty at the
pixel.

To show the estimation uncertainty at different pix-
els, the box and whisker plots for nine selected pix-
els are displayed in Fig. 8. The locations and IDs of
the nine pixels are given in Fig. 7b. It can be seen
from the figure that the true values of the 9 px all
fall in the central boxes, i.e. within the interquar-
tile range (IQR). Among the 9 px, pixels 3, 4, and
8 are collocated with the rain gauges, and all the
estimates at those 3 px equal the true values, which
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Figure 6. The solid and dashed black lines show the empirical and
estimated rainfall CDFs for the specific case shown in Fig. 5b. The
red line shows the true rainfall CDF used in the generation of the
true fields.

demonstrates the fulfilment of the equality con-
straints at the rain gauge locations directly. Pixels 1
and 2 are distant from their nearest rain gauges, but
those two pixels are located in regions where less
rainfall is expected. Thus, the estimates at the 2 px
present relatively low variance. Pixels 5, 7, and 9
are also distant from their nearest rain gauges, but
those 3 px are located in regions where more rain-
fall is expected. Thus, the corresponding estimates
present higher variance. Though pixel 6 is close to
its nearest rain gauge, it is located in a region where
much rainfall is expected. Thus, the corresponding
estimates show relatively high variance.

4.2 Sensitivity analysis

The accuracy of the estimates is mainly affected by two fac-
tors: the number of rain gauge observations and the random
error in the radar estimates. To analyse the influence of the
two factors, the 1000 true rainfall fields were estimated under
different scenarios: radar estimates with different levels of
random error (SNR= 3, 5, and 10) and rain gauge networks
with different layouts (5× 5, 6× 6, and 7× 7 rain gauges
that are uniformly distributed in the domain; these were de-
noted G25, G36, and G49, respectively). Specifically, we fo-
cus on two statistics when evaluating the estimation accu-
racy: the mean and maximum of the estimated rainfall field.
The former is noteworthy when the estimated rainfall field is
used in studies where the water balance of a region is impor-
tant; the latter is of great importance when the extreme for
the region is of interest (e.g. for stormwater management or
flood risk assessment).

4.2.1 Field maximum

The maximum of the rainfall field obtained from RM or
KED is compared with the true maximum. Using RM, one
could obtain an infinite number of realizations for each of
the 1000 true rainfall fields, so we simulate an ensemble of

20 realizations for each true field and use the median of the
20 errors – the difference between the simulated and true
maxima for each realization – as the representative. Figure 9
shows histograms of the errors w.r.t. the estimated field max-
ima for the 1000 fields obtained by RM and KED. Specifi-
cally, the upper panel shows the influence of the rain gauge
layout and the lower panel shows the influence of the level of
random error in the radar estimates. For the sake of clarity,
we only display the scenarios with the most and least rain
gauges (i.e. G25 and G49) in the upper panel, with the ran-
dom error in the radar estimates fixed at SNR= 5. Similarly,
in the lower panel, only the results of the scenarios with the
largest and smallest levels of random error in the radar es-
timates (i.e. SNR= 3 and 10) are displayed, with the rain
gauge layout fixed at G36. It can be seen from the figure that
there are negative biases in all the results from KED, while
the biases of the results from RM are not obvious. Further,
it can be seen that increasing the number of rain gauges and
reducing the level of random error in the radar estimates are
both beneficial to the quality of the estimates, i.e. they reduce
the size of the error and decrease the estimation variance (re-
duce the scatter in the histogram).

The histogram shown in Fig. 9 can be summarized by two
statistics: the mean error (ME) and the interquartile range
of the errors (IQR, the range between the quantiles 0.75
and 0.25). Table 1 shows the two statistics evaluated from
the results for all the scenarios. It can be seen from the upper
part of the table that the estimates from RM are slightly over-
estimated, and that the estimates from KED are significantly
underestimated. For both methods, increasing the number of
rain gauges and reducing the level of random error in the
radar estimates help to reduce the ME and shrink the IQR.
Yet for RM, more is not necessarily better. For example, the
best performance in terms of ME and the best performance
in terms of IQR both occur in scenario (SNR= 10, G36).
Scenario (SNR= 10, G49) – which is assumed to perform
the best – is only ranked second, possibly due to the overfit-
ting problem in the estimation of the rainfall CDF. When the
radar estimates are relatively accurate, the presence of a cer-
tain number of rain gauges is enough to sample sufficient in-
formation. Increasing the number of rain gauges further can
lead to the overfitting problem, due to the surplus of infor-
mation.

4.2.2 Field mean

The estimated mean of the rainfall field by RM or KED is
compared with the true mean to evaluate the accuracy in
terms of the mean statistic. For each of the 1000 true fields,
an ensemble of 20 realizations is produced by RM and the
mean of the 20 errors – the difference between the simu-
lated and the true means for each realization – is used as the
representative. Figure 10 shows the histograms of the errors
w.r.t. the estimated field means for the 1000 fields obtained
from RM in Fig. 10a and b and from KED in Fig. 10c and d.
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Figure 7. (a) The true rainfall field; (b) the mean of 100 realizations obtained from RM (the small red dots denote the locations of the rain
gauges, and the red triangles labelled with IDs denote the 9 px selected to develop the box and whisker plots shown in Fig. 8); (c) the standard
deviation (std) of the 100 realizations.

Figure 8. Box and whisker plots of the estimates at nine selected pixels (see the locations and IDs of the 9 px in Fig 7b). The blue dots denote
the true values, i.e. the values at the corresponding pixels in the true field.

Table 1. The mean error (ME) and the interquartile range (IQR) of
the errors w.r.t. the estimated field maxima for the 1000 true rainfall
fields obtained by RM (the three columns on the left) and by KED
(the three columns on the right). The column name denotes the SNR
of the radar estimates whereas the row name denotes the rain gauge
layout.

ME 3 5 10 3 5 10

G25 2.182 1.929 1.611 −10.114 −9.104 −8.741
G36 1.819 1.698 1.451 −9.760 −8.700 −8.250
G49 1.740 1.611 1.538 −8.997 −7.960 –7.620

IQR RM KED

G25 9.551 6.497 4.798 9.650 7.166 5.312
G36 7.742 5.574 4.218 8.703 6.539 4.624
G49 6.665 5.057 4.242 8.652 6.684 5.101

The best performances in terms of the ME and IQR for both methods are printed in bold.

It can be seen from the figure that, compared to RM, KED
seems to be more sensitive to the two factors. Further, slight
positive biases can be observed in the estimates from KED
for all the displayed scenarios. Among the four subfigures,
Fig. 10a and c show the influence of the rain gauge layout
for RM and KED, respectively, while Fig. 10b and d show the
influence of the level of random error in the radar estimates.

For KED, the influences of the two factors are ambiguous.
Increasing the number of rain gauges or reducing the level of
random error in the radar estimates helps to reduce the esti-
mation variance, but it is unclear whether it helps to reduce
the size of the error. For RM, neither the influences of the
two factors nor the biases in the estimates are obvious.

We still use the two statistics – ME and IQR – to gen-
eralize each histogram, and the results for all the scenarios
are shown in Table 2. It can be seen from the upper part of
the table that RM outperforms KED in terms of the ME, as
the MEs from RM in all the scenarios are smaller than the
best performance of KED. It is worth considering that, based
on the previous analysis, KED is expected to underestimate
the maximum of the rainfall field; however, the results shown
here indicate that KED overestimates the mean of the field.
KED is therefore likely to overestimate the lower quantiles
of the rainfall field. Further, the table also demonstrates that
RM is not very sensitive to the two factors in terms of the
mean statistic, as one can see barely any trend.
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Figure 9. Histograms of the errors w.r.t. the estimated field maxima for the 1000 true rainfall fields obtained by RM and KED. (a) The results
for the scenarios with different rain gauge layouts, with the random error in the radar estimates fixed at SNR= 5. (b) The results for the
scenarios with different levels of random error in the radar estimates, with the rain gauge layout fixed at G36.

Table 2. The mean error (ME) and the interquartile range (IQR) of
the errors w.r.t. the estimated field means for the 1000 true rainfall
fields obtained by RM (the three columns on the left) and by KED
(the three columns on the right). The column name refers to the
SNR of the radar estimates, and the row name denotes the layout of
the rain gauges.

ME 3 5 10 3 5 10

G25 0.049 0.055 0.023 0.103 0.090 0.082
G36 0.038 0.033 0.029 0.105 0.096 0.092
G49 0.038 0.039 0.030 0.116 0.106 0.099

IQR RM KED

G25 0.545 0.412 0.340 0.434 0.300 0.212
G36 0.490 0.372 0.352 0.355 0.251 0.182
G49 0.438 0.362 0.353 0.294 0.214 0.154

The best performance levels in terms of the ME and IQR for each method are
printed in bold.

5 Discussion

5.1 The two core components of the approach

In this paper, an approach allowing estimates of spatial rain-
fall fields to be obtained together with the associated uncer-
tainty is proposed. This approach has two core components:
the method used to compute the rainfall CDF (referred to as

the CDF method hereafter) and the method of random mix-
ing (RM), which is used to simulate random spatial fields
under constraints.

The CDF method provides the foundation for the ap-
proach. A resultant rainfall CDF with sufficient accuracy
is necessary for the successful application of the approach.
The statistics of intermittent precipitation are not Gaussian,
which restricts the usage of well-established stochastic mod-
els that assume Gaussianity (Pulkkinen et al., 2019). Specif-
ically in this study, the rainfall CDF is important in two re-
spects: (a) it is used in the data transformation, whereby the
simulated Gaussian fields are transformed into rainfall fields
of interest; (b) it is used to define the constraints in terms of
the normalized Gaussian marginal.

RM, on the other hand, is an excellent tool that performs
conditional simulation in Gaussian space, but it is not ir-
replaceable. Another conditional simulation method could
have been used, such as phase annealing (Yan et al., 2020).
RM was employed in this study due to (a) its relatively high
efficiency, which makes the mass production of realizations
possible, and (b) code availability (a Python package for the
conditional simulation of random spatial fields using RM is
available, with the authors giving practical demonstrations of
the application of the method; Hörning and Haese (2021)).
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Figure 10. Histograms of the errors w.r.t. the estimated field means for the 1000 true rainfall fields obtained by RM (a, b) and KED (c, d).
The estimates were obtained under different scenarios; see the text in the subfigures for the specific scenarios.

5.2 The scope of the approach

The proposed approach is intended for the estimation of spa-
tial rainfall fields following a short accumulation time: 15,
10, or even 5 min. The temporal aspects of QPE (quanti-
tative precipitation estimates) are outside the scope of this
study. Unlike the acquisition of QPF (quantitative precipi-
tation forecasts) by e.g. a radar-based nowcast model when
modelling the temporal evolution of the rainfall field is of
interest, the spatial rainfall fields are obtained in a hind-
cast mode in this study. This approach has great potential to
improve the quality of QPF. Shehu and Haberlandt (2020)
showed that one of the major factors that causes the pre-
dictability loss of a nowcast model is the inability of radar to
capture the true rainfall field. The proposed approach could
therefore be used to improve the rainfall field fed into the
model.

Furthermore, radar-based nowcasting has evolved from the
use of a deterministic to the use of a probabilistic framework
to estimate the predictive uncertainty (e.g. Pierce et al., 2012;
Shehu and Haberlandt, 2020). A common approach is based
on stochastic simulation, in which correlated noise fields are

used to perturb a deterministic nowcast (e.g. Liguori and
Rico-Ramirez, 2014; Foresti et al., 2016). The output of the
proposed approach – an ensemble of estimates that consid-
ers both radar and rain gauge data – could be used to per-
turb a deterministic model, and this ensemble of estimates
is more hydrologically meaningful than a random perturba-
tion, which is used in many probabilistic nowcast models
(e.g. Bowler et al., 2006; Berenguer et al., 2011; Pulkkinen
et al., 2019). Besides, precipitation exhibits spatial variabil-
ity; hence, it is challenging to estimate spatial rainfall fields
in a deterministic manner, even in a hindcast mode. If the
nowcasting community can embrace the change from a de-
terministic framework to a probabilistic one, a similar change
could also happen in the hindcasting community.

5.3 Concerning the CDF method

5.3.1 Basic assumption

The rainfall CDF is computed from a set of rain gauge obser-
vations and the radar estimates. The basic assumption of the
method is that the radar estimates can represent the pattern of
the rainfall field to a reasonable extent. Random error, which
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can reduce the representativeness of the radar estimates, is
accounted for, and the quality control steps in the algorithm
are specifically designed to get rid of the negative effects of
random error. However, the degradation of representative-
ness due to systematic effects in the radar estimates (e.g.
range-dependent errors associated with the increasing height
of the radar beam or increasing sampling volume as the dis-
tance from the radar antenna increases) is not accounted for.
Thus, quality control to get rid of systematic effects in the
radar estimates is necessary.

5.3.2 Impact of the distribution and number of rain
gauge observations

The capability of the CDF method is affected by the distri-
bution and number of rain gauge observations. A uniform
distribution of rain gauge observations is not required, but
the gauge observations should not be too clustered, as it is
normally considered that one has a better chance of obtain-
ing spatially representative samples from a relatively evenly
distributed rain gauge network.

It is often the case that only small samples from irregularly
distributed rain gauge stations are available for mesoscale
hydrological studies. Sufficient gauge–radar pairs (samples)
must be available if we are to obtain a rainfall CDF with ad-
equate accuracy. There are two ways to increase the sample
size:

1. Increase the sample size in space. For small domains
with only a few rainfall stations (say 10), it can be as-
sumed that rain parcels move uniformly. Under this as-
sumption, one can displace the radar quantile map us-
ing a vector that decreases the radar–gauge mismatch
(using the Spearman’s rank correlation as the measure,
for example) and then refind the gauge-respective quan-
tiles in the displaced quantile map. The result is 10 new
pairs (rk , u′k) for k = 1, . . . , 10, where u′k is the refound
radar quantile. Normally, a stack of such vectors (N )
can be found, which results in 10 ·N new samples. One
should limit the domain size when applying the above
practice. This technique has been applied by Yan and
Bárdossy (2019) to find the empirical rainfall CDF for
a domain of size 19× 19 km2.

2. Increase the sample size in time. A fixed time window
can be set by assuming a relatively stable distribution
during the relevant time interval, and the gauge–radar
pairs in the time window can be used in the calculation
of the rainfall CDF.

A combination of both practices can enrich the sample size
to a remarkable extent.

5.3.3 Impact of spatial intermittency

In this work, the performance of the CDF method was tested
for the hydrologically interesting spatial intermittency u0 =

0.36. Practically speaking, the choice of u0 has only a minor
influence on the performance. When u0 > 0.36 (i.e. a larger
dry-area ratio), the point at which the rainfall CDF intersects
the y axis moves up, and there are also more zero samples
in both the radar and rain gauge data. When 0< u0 < 0.36
(i.e. a larger wet-area ratio), the point moves down and there
are fewer zero samples. This method is problematic if u0 = 0,
i.e. the entire domain is wet. In that case, there is no (0, u0)
and the requirement (stated in step 4 in Sect. 2.1) that the
CDF passes through the point (0, u0) does not apply.

5.3.4 Applicability in terms of the spatial scale

The CDF method is valid for a limited spatial scale. As
the spatial scale increases, the domain eventually becomes
too large for a single CDF to represent all processes. The
limit on the spatial scale is related to factors such as rainfall
regime, topography, and geography. However, because syn-
thetic datasets were used instead of realistic datasets in this
study, it was not possible to derive any useful information re-
garding the limit on the spatial scale. A further study based
on realistic datasets is therefore required.

6 Conclusions and outlook

In this paper, an approach for simulating spatial rainfall fields
conditioned on radar and rain gauge data was proposed.
The approach has two core components: a method to com-
pute the marginal distribution function of the rainfall field,
and random mixing, which conducts a conditional simula-
tion in Gaussian space. An artificial experiment was per-
formed to test the efficiency of the proposed approach, and
the results were compared with those from three commonly
used Kriging methods: ordinary Kriging, Kriging with exter-
nal drift (KED), and conditional merging. The proposed ap-
proach was found to outperform KED and conditional merg-
ing, especially in the estimation of extremes. The estimates
yielded by the proposed approach differ from those provided
by the other methods in two respects. First, unlike the Krig-
ing methods, where a Kriged mean field is obtained by mini-
mizing the estimation variance, the output of the approach is
an ensemble of estimates (realizations) with identical statis-
tics (mean, variance, correlation function, etc.) due to the
Monte Carlo framework. Each individual realization strictly
fulfils the equality constraints at rain gauge locations and
presents a field pattern that is similar to the radar estimates,
and an ensemble of such realizations provides a tendency to-
wards the accurate locations of the rainfall peaks. Second, the
various estimates from the proposed approach provide a rea-
sonable representation of the estimation uncertainty. In ad-
dition to representing the relative positions of the unknowns
and the data points (i.e. the information and the associated
uncertainty from rain gauge data), which are also provided
by the Kriging variance, the estimation uncertainty obtained
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with the proposed approach is more physically meaningful
because the information and the associated uncertainty from
radar data are also considered.

Further, the sensitivity of the proposed approach to the
two factors – the number of rain gauges and the magnitude
of the random error in the radar estimates – was analysed.
We focused on the accuracy of the approach when estimating
the maximum and the mean of the rainfall field, and the re-
sults were compared with those from KED. Concerning the
estimation of the maximum, increasing the number of rain
gauges and reducing the random error in the radar estimates
help to improve the estimation quality. However, when the
radar estimates are relatively accurate, a certain number of
rain gauges are sufficient to sample adequate information on
the rainfall field. Increasing the number of rain gauges further
can lead to overfitting during the estimation of the rainfall
CDF. Comparing the two methods, the proposed approach
outperforms KED in terms of the mean error (ME) and the
interquartile range (IQR) of the errors. Concerning the esti-
mation of the mean, the proposed approach is not as sensitive
as KED to the two factors. The proposed approach outper-
forms KED in terms of the ME, but the estimation variance
is generally larger than that from KED.

In this paper, we presented a simulation study where syn-
thetic rainfall fields were used as the true fields, and radar and
rain gauge data used when applying the proposed approach
were derived from those fields. Due to the full control over
the stochastic process, it was possible to comprehensively
examine the accuracy of the estimates based on the overall
statistics and to analyse the sensitivity of the approach. How-
ever, there are several practical questions that cannot be an-
swered without performing the relevant investigation based
on realistic datasets. For example, explicit information on the
largest spatial scale at which the CDF method can be reliably
applied is required, and the effects of a small sample size
and/or an irregular distribution of rain gauges on the perfor-
mance of the approach remain interesting topics. Thus, fur-
ther studies based on realistic datasets are necessary.

Data availability. The datasets used when ap-
plying the proposed approach are available at
https://doi.org/10.6084/m9.figshare.14864910.v1 (Yan, 2021).
The generation procedures of the synthetic rainfall fields are ex-
plained in the Python script gen_gaugeData.py. The Python script
gen_radar_gauge_data.py shows the generation procedures of the
radar and rain gauge data. The Python script specsim_simple.py
applies the method – fast Fourier transform for regular grids – to
generate correlated Gaussian random fields.
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