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Abstract. Blowing snow processes are crucial in shaping the
strongly heterogeneous spatiotemporal distribution of snow
and in regulating subsequent snowpack evolution in moun-
tainous terrain. Although empirical formulae and constant
threshold wind speeds have been widely used to estimate the
occurrence of blowing snow in regions with sparse obser-
vations, the scarcity of in situ observations in mountainous
regions contrasts with the demands of models for reliable ob-
servations at high spatiotemporal resolution. Therefore, these
methods struggle to accurately capture the high local vari-
ability of blowing snow. This study investigated the potential
capability of the decision tree model (DTM) to detect blow-
ing snow in the European Alps. The DTMs were constructed
based on routine meteorological observations (mean wind
speed, maximum wind speed, air temperature and relative
humidity) and snow measurements (including in situ snow
depth observations and satellite-derived products). Twenty
repetitions of a random sub-sampling validation test with an
optimal size ratio (0.8) between the training and validation
subsets were applied to train and assess the DTMs. Results
show that the maximum wind speed contributes most to the
classification accuracy, and the inclusion of more predictor
variables improves the overall accuracy. However, the spa-
tiotemporal transferability of the DTM might be limited if the
divergent distribution of wind speed exists between stations.
Although both the site-specific DTMs and site-independent

DTM show great ability in detecting blowing snow occur-
rence and are superior to commonly used empirical param-
eterizations, specific assessment indicators varied between
stations and surface conditions. Events for which blowing
snow and snowfall occurred simultaneously were detected
the most reliably. Although models failed to fully reproduce
the high frequency of local blowing snow events, they have
been demonstrated to be a promising approach requiring lim-
ited meteorological variables and have the potential to scale
to multiple stations across different regions.

1 Introduction

Wind plays a key role in the snow distribution in moun-
tainous terrain, as it shapes both the spatial heterogene-
ity of snowfall and the erosion, transport and deposition of
surface snow via blowing snow processes. In addition to
their impacts on the strong spatiotemporal heterogeneity of
the surface snow distribution, blowing snow processes also
have important consequences for the subsequent evolution of
the snowpack (Déry and Yau, 2002; Leonard and Maksym,
2011) and the surface water and energy budgets (Lenaerts et
al., 2012a; Liston, 2004; Pomeroy and Gray, 1995; Sexstone
et al., 2018). Meanwhile, wind-induced snow transport can
also be a major hazard, causing severe reductions to visibil-
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ity near the ground and triggering snow avalanches (Lehn-
ing and Fierz, 2008), with the potential for loss of life, prop-
erty damage, and disruption of transportation. Blowing snow
events result in large-scale snow mass divergence or conver-
gence from open, wind-exposed surfaces to wind-sheltered
areas such as densely vegetated surfaces and topographic de-
pressions (Essery and Pomeroy, 2004). Micro- and meso-
scale variability in snow cover and snowmelt strongly influ-
ences the surface radiation balance, surface discharge, ecol-
ogy, and soil freeze/thaw and can be largely attributed to the
spatial heterogeneity of surface snow redistribution caused
by blowing snow (Liston, 2004; Mott et al., 2018). There-
fore, wind-driven snow redistribution is widely recognized as
driving patterns in snow accumulation and snowpack evolu-
tion in alpine basins and represents an important interaction
between the land and the overlying atmosphere.

Several specific instruments facilitate direct observation of
blowing snow at the local scale, for example, the mechanical
traps used by Budd et al. (1966), the optical sensors deployed
in the Antarctic and Alps (Snow Particle Counters, SPC; Sato
et al., 1993; Nishimura and Nemoto, 2005; Vionnet et al.,
2013), and the acoustic sensors (i.e., FlowCapt and SPC)
used to provide reliable measurements of blowing snow mass
flux (Chritin et al., 1999; Trouvilliez et al., 2015). However,
direct near-surface blowing snow observations are extremely
sparse in time and space. Alternative methods using empiri-
cal formulae to parameterize blowing snow occurrence have
been proposed (e.g., He and Ohara, 2017; Li and Pomeroy,
1997a; Schmidt, 1980). One of the most important param-
eters is the threshold wind speed for snow transport, as it
determines the occurrence of blowing snow. A blowing snow
event takes place when the wind exceeds the threshold wind
speed. Previous studies have demonstrated that cohesive re-
sistance increases dramatically when snow becomes wet, as
the meltwater increases the associated cohesion between the
particles (e.g., Li and Pomeroy, 1997a; Schmidt, 1980), and
sintering of snow particles has a significant bearing on the
cohesive force development as well (He and Ohara, 2017;
Schmidt, 1980). Therefore, the presence of liquid water and
the associated snow metamorphism and aging processes typ-
ically increase the bond strength in the surface snow layer
(Bromwich, 1988; Li and Pomeroy, 1997a). As summarized
by Schmidt (1980), the threshold wind speed highly depends
on the cohesion between snow particles and was greatly in-
fluenced by temperature, humidity and deposition time.

The threshold wind speed is important for predicting the
initialization of a blowing snow event. Threshold wind speed
at the height of 10 m was found to be 9.9 m s−1 for wet snow
and 7.7 m s−1 for dry snow, and a formula that expresses the
threshold wind speed as a function of air temperature has
been proposed based on field observations from the Cana-
dian Prairies (Li and Pomeroy, 1997a). Moreover, other pa-
rameterizations have also been established using the relation-
ship between threshold wind speed and the microstructural
properties of surface snow, such as snow density, the bond

diameter between snow particles, and the particle mean ra-
dius (Gallée et al., 2001, 2013; Guyomarc’h and Mérindol,
1998; He and Ohara, 2017; Lehning et al., 2000; Schmidt,
1980, 1981). These parameterizations are widely used in nu-
merical models to describe wind-driven snow transport pro-
cesses. Rather than being constant, it is widely accepted that
the threshold wind speed varies with temperature, humid-
ity, particle size, and deposition time (He and Ohara, 2017).
Though there are proposed relationships between the thresh-
old wind speed and meteorological conditions, parameteriza-
tions have only been validated for very limited areas (Gallée
et al., 2001; Li and Pomeroy, 1997a; Schmidt, 1981), and
there is no standard method for determining the meteorolog-
ical conditions under which blowing snow events occur (Li
and Pomeroy, 1997b).

Recent attempts have been made to retrieve blowing snow
occurrences from satellite remote-sensing data (Palm et al.,
2011, 2018). Results demonstrate the validity of the remote
retrieval algorithms in detecting the blowing snow events
over the Antarctic, providing insights into the spatial and
temporal variability of blowing snow events independently
of modeling approaches. The satellite-based technique pro-
vides the opportunity to derive blowing snow occurrences
with wide spatial coverage, but it is hampered by the pres-
ence of clouds and the coarse vertical resolution (Gossart et
al., 2017). Moreover, satellite blowing snow detection is as-
sociated with pronounced uncertainty and cannot detect the
presence of blowing snow events at fine temporal resolution
(Palm et al., 2011), preventing its widespread application in
remote areas outside Antarctica.

Progress has been made in obtaining large spatial-scale
blowing snow estimates using various multiple data sources,
such as visual observations (Mahesh et al., 2003), ground-
based ceilometer observations (Gossart et al., 2017), and
snow depth and simultaneous meteorological observations
(Guyomarc’h et al., 2019; Guyomarc’h and Mérindol, 1998;
Vionnet et al., 2013). However, direct observations are
scarce, both in time and space. Snow depth measurements
are more common than visual blowing snow observations
or ground-based ceilometer observations but are not rou-
tinely included in conventional meteorological observation
systems. Meanwhile, numerical modeling provides a use-
ful tool to estimate blowing snow occurrences but relies not
only on accurate forcing datasets (e.g., temperature and wind
speed), but also on knowledge of the surface snow properties,
which are difficult to accurately define. This is particularly
notable in mountainous regions such as the Alps, where the
surface is strongly heterogeneous and environmental condi-
tions are very variable.

Whether a blowing snow event occurs or not is an im-
portant state variable for detailed simulations of blowing
snow processes. Standard meteorological instruments (dis-
tinct from specific instruments such as SPC and FlowCapt,
which are less commonly deployed) are often used in blow-
ing snow studies. In this study, we use a machine-learning-
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Table 1. List of stations used in this study.

Station Latitude Longitude Elevation Data period
(◦ N) (◦ E) (m)

Fmor 45.02965 5.880547 2140 17 Sep 2013–10 Dec 2020
Fcmb 45.017311 6.17845 2460 23 Nov 2015–10 Dec 2020
Fber 44.949944 6.237082 2390 17 Sep 2013–10 Dec 2020
Fhue 45.10188 6.056158 2064 17 Sep 2013–10 Dec 2020
Fgie 45.855289 6.525692 1812 2 Jun 2011–10 Dec 2020
Fmon 45.30283 6.56593 2280 2 Nov 2013–10 Dec 2020
Fche 45.513248 6.95439 2869 16 May 2011–10 Dec 2020
Fbon 45.362431 7.05232 2480 16 May 2011–10 Dec 2020
Fcel 45.49057 6.40921 1924 16 May 2011–10 Dec 2020
Fsal 44.856754 5.952989 1975 16 Jun 2019–12 Dec 2020

based decision tree model (DTM) to detect the presence
of blowing snow by exploiting routine meteorological ob-
servations (such as wind speed, air temperature, precipita-
tion and relative humidity) and snow measurements (in situ
snow depth observations and satellite-derived products) from
10 ISAW stations (http://isaw.ch/, last access: 12 Decem-
ber 2020). This study aims to develop a simple but efficient
tool to detect blowing snow occurrences and to advance our
understanding of the relationships between blowing snow
processes and ambient meteorological conditions.

2 Data and methods

2.1 Data

Data were obtained from ISAW and include measurements
of blowing snow fluxes and surface meteorological variables.
These include mean and maximum wind speed (WS and WS-
MAX) at 3.5 m height, wind direction (WD), air tempera-
ture (T ), relative humidity (RH), snow depth (SD), and pre-
cipitation about 30 observation stations. The surface meteo-
rological data are measured at every minute, and hourly aver-
ages are stored. Although the available meteorological vari-
ables vary between stations (for example, RH is only avail-
able at Fmor, Fcmb, Fber, Fhue and Fgie), each ISAW sta-
tion is equipped with the FlowCapt acoustic sensor (Chritin
et al., 1999) to measure blowing snow fluxes. In this study,
10 stations that include all the above-mentioned observations
were selected (Table 1), of which the Fsal station was used
in the sensitivity test and not used in constructing the DTMs.
This maximizes the number of different dimensions (corre-
sponding to the different observed fields) that can be used
to construct an efficient DTM for identifying blowing snow
events.

To minimize uncertainty in the classification stemming
from the use of poor-quality data, strict data selection criteria
were applied to observations. First, using a threshold value of
50 % change within 1 h, the main change range check was ap-

plied to the relative humidity to detect its abnormal change.
In addition, a threshold check was performed for the hourly
measured air temperature, wind speed, and maximum wind
speed. For example, data with T outside the range −50 to
50 ◦C or WSMAX greater than 40 m s−1 were considered
unreliable and were discarded. Periods when both WS and
WSMAX were zero for more than 3 consecutive hours and
when non-zero WS remain unchanged for more than 5 h were
also removed. Since blowing snow fluxes measured by the
FlowCapt sensors are sensitive to soil particles, false sig-
nals are frequently detected; therefore, only data from winter
and spring (from November to April) were used, minimizing
the uncertainty resulting from this issue. Additional suspi-
cious data were discarded when a blowing snow event was
recorded by the FlowCapt sensor without concurrent snow-
fall and in the absence of snow cover or when the positive
air temperature lasted for more than 24 h. In this study, peri-
ods of blowing snow occurrence were identified when posi-
tive blowing snow flux was observed. This is different from
the work of Trouvilliez et al. (2015), who used a threshold
of 1 g m−2 s−1 to remove non-significant blowing snow oc-
currences, and the work of Vionnet et al. (2013), who only
analyzed events of durations longer than 4 h. The presence of
snow on the ground was determined based on the snow depth
measurements from two snow depth sensors, the MODIS
daily snow cover product (MOD10A1 and MYD10A1, Hall
and Riggs, 2021) and the CryoLand fractional snow cover
product over the Alps (http://cryoland.enveo.at, last access:
12 December 2020). For detailed procedures, please refer to
the schematic flowchart in Fig. 1a.

As discussed above, internal physical properties of the
snowpack, such as snow particle bonding, cohesion, and its
kinetic properties, greatly influence the strength of snow re-
sistance, which determines the initiation and persistence of
blowing snow events (Li and Pomeroy, 1997b; Pomeroy and
Gray, 1990; Schmidt, 1980). Previous studies have shown a
sharp contrast in the threshold wind speed for snow transport
between fresh snow and aged snow (Huang et al., 2008; Lis-
ton et al., 2007; Xie et al., 2019), owing to the strength of the
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Figure 1. Schematic flowchart of (a) the procedures to identify the presence of snow, (b) flowchart of a simple decision tree model to detect
blowing snow occurrence (only WSMAX and T were used to construct the DTM, A denotes the threshold maximum wind speed, and B1 and
B2 denote the threshold air temperature), and (c) logical framework of this study. BS and No_BS denote with and without blowing snow
occurrence, respectively.

Figure 2. The frequencies of occurrence of the three types of
blowing snow at each station and at all stations combined. SF de-
notes snowfall condition and NoSF_SC_DRY denotes surface cov-
ered by dry snow without concurrent snowfall condition, and
NoSF_SC_WET denotes the surface covered by wet snow without
a concurrent snowfall condition. The blowing snow frequency de-
notes the ratio between occurrences of blowing snow for a given
atmospheric condition divided by the total number of occurrences
of this atmospheric condition.

bond between snow particles depending on destructive meta-
morphism, melting, snow loading, and increased compaction
caused by overburden (Li and Pomeroy, 1997a, b; Oleson et
al., 2013). Newly fallen snow particles are characteristically
soft and powdery, with relatively low density, making new
snow particles much more likely to be lifted by the wind. The
occurrence of snowfall within the hourly measurement inter-
val is therefore the primary factor used to distinguish a blow-
ing snow event in the classification samples. Snowfall occurs
when a precipitation greater than 0 coincides with an air tem-
perature ≤ 0 ◦C. As cohesive resistance increases dramati-
cally once snow becomes wet, there are very considerable
differences in the frequencies of blowing snow occurrence in
dry snow and wet snow (Li and Pomeroy, 1997b). Thus, the
wet/dry snow condition is also used as an attribute in estab-
lishing the classification tree model. Wet snow refers to the
snow which has either melted or received liquid precipitation
since the last snowfall, while dry snow is defined as snow
that has not received temperatures of 0 ◦C or above or liquid
precipitation (Li and Pomeroy, 1997a). To accurately capture
the different effects of ambient atmospheric conditions on the
occurrence of blowing snow, the quality-controlled data were
categorized into three types: snowfall (SF), surface covered
by wet snow without concurrent snowfall (NoSF_SC_WET),
and surface covered by dry snow without concurrent snow-
fall (NoSF_SC_DRY). The occurrence frequencies of the
three types of blowing snow at each station and at all stations
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combined are shown in Fig. 2. A higher occurrence of blow-
ing snow events was detected under the concurrent falling
snow condition than other conditions.

2.2 Method

Decision tree analysis uses a machine-learning algorithm to
build a tree-like classification structure and regression model
to identify a set of characteristics that can best differenti-
ate between individual classes based on a categorical fea-
ture variable. This method has become increasingly popu-
lar in industrial applications and scientific research. It has
been proven to be a very useful and efficient technique in
processing remote-sensing images (Yang et al., 2017), pre-
dicting natural hazard events (Park and Lee, 2014; Ragettli
et al., 2017), and estimating hydro-meteorological variables
such as winter lake ice (Sharma et al., 2019) and snow depth
(Gharaei-Manesh et al., 2016).

A classification tree is composed of decision nodes that
represent attributes of the samples to be classified, branches
that represent the different possible outcomes of a decision
node, and leaves that represent the possible classification
(Fig. 1b shows a simple decision tree model). Building a clas-
sification tree requires two steps: a learning step and a clas-
sification step. In the learning step, a classification model is
developed based on multi-dimensional training data with la-
beled attributes. In this step, the maximum depth of the tree
can be used as a control variable for pre-pruning to optimize
the decision tree. In the classification step, independent data
are used to verify the accuracy of the constructed model.

In this study, we use the scikit-learn package (Pedregosa et
al., 2011), an open-source Python module for machine learn-
ing, to build DTMs and to identify the occurrence of blowing
snow events based on routine meteorological observations.
Information on the construction of the decision tree model is
detailed in the next section, for instance, the selection of key
characteristic variables used to build the tree and identifica-
tion of the optimal ratio between the training and validation
sets. We conducted three sensitivity tests to verify the spa-
tiotemporal prediction of the established DTMs (Table 2). In
Test 1, 80 % of the out-of-bag (OOB) observations from each
site and all stations were used to construct the site-specific
decision tree model (SSDTM) and site-independent decision
tree model (SIDTM). This test offers a comprehensive as-
sessment of the decision tree model in identifying the occur-
rence of blowing snow at both temporal and spatial scales. In
Test 2 and Test 3, only five stations were selected to train the
model. The main difference between these two tests lies in
the distribution characteristics of the feature variables among
stations; three stations (Fmor, Fcmb and Fmon) were both
involved in these two tests. Tests 2 and 3 serve as a com-
plementary test for further accuracy assessment of the spa-
tiotemporal prediction. The logical framework of this study
is presented in Fig. 1c.

To reduce the classification uncertainty attributable to
training data selection, 20 repetitions of a random sub-
sampling validation method were applied (with the optimal
ratio between the training and validation sets) in the construc-
tion of each decision tree model. In each cross-validation, the
vast majority of available observations were used for train-
ing, and the remaining set was used to validate the model.
At the end of the cross-validation, 20 testing probabilities
were created and averaged before the final analysis. The ac-
curacy of the model was first calculated by comparing the ac-
tual and predicted classifications. The correspondence of pre-
dicted and observed blowing snow events was then quantita-
tively assessed using the overall accuracy (OA) index, false
alarm rate (FAR), probability of detection (POD), Heidke
skill score (HSS) and missing rate (MR). These evaluation
metrics are defined from the contingency table of dichoto-
mous events in Table 3 and can be written in the form

OA= (a+ d)/(a+ b+ c+ d), (1)
FAR= b/(a+ b), (2)
POD= a/(a+ c), (3)

HSS=
2(ad − bc)

(a+ c)(c+ d)+ (a+ b)(b+ d)
, (4)

MR= c/(a+ c). (5)

The overall agreement between estimated and actual blow-
ing snow events is captured in OA, which ranges from 0 to 1,
with 1 representing a perfect classification. The FAR mea-
sures the fraction of forecasted events that did not actually
occur, and the MR denotes the proportion of blowing snow
events that actually occurred but were not captured by the
DTM model (both range from 0 to 1, with an optimal perfor-
mance of 0), and the POD is the fraction of observed blow-
ing snow events that were correctly identified by the models
(range from 0 to 1, with 1 representing the perfect score).
When one category is dominant, previous studies have re-
ported that the OA is not sufficient, as it can be hedged by
forecasting common events more frequently (Roebber et al.,
2003; Notarnicola et al., 2013). The HSS accounts for this
bias by characterizing the skill of the compared dataset with
regards to the no-skill random forecasts. The HSS ranges
from −1 to 1, with 1 representing a perfect classification
skill, 0 representing a random classification and negative val-
ues corresponding to a decision tree-based classification that
is less accurate than a random classification.

3 Results

3.1 Sensitivity to the proportion of training samples

Training a model is the first step in making good predictions.
Splitting the available dataset into a training portion and a
validation portion is therefore necessary to build a solid ba-
sis with which to train and test a model. Theoretically, the
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Table 2. Summary of three tests conducted to verify the performance of the spatiotemporal prediction of the DTM.

Test 1 Test 2 Test 3

Training 80 % of the observations Observations from five stations Observations from five stations
of each station; with homogeneous distribution of with heterogeneous distribution of
80 % of the observations feature variable (Fmor, Fcmb, feature variable (Fmor, Fcmb,
from all stations. Fmon, Fbon, Fche) Fmon, Fsal, Fcel)

Validation 20 % of the observations Observations from Fhue, Fber, Observations from Fhue, Fber,
of each station; Fgie, Fcel, Fsal Fgie, Fon, Fche
20 % of the observations
from all stations.

Table 3. Contingency table for blowing snow events and the corre-
sponding indices used for the computation of evaluation metrics.

Observed blowing
snow event

Yes No

Estimated blowing Yes a b
snow event No c d

DTM should be trained on a larger portion of the data to
more accurately capture the underlying spread and pattern
of data. However, real datasets are often imbalanced, with
random noise; therefore, a certain portion of the validation
dataset must be retained to verify the model’s ability to de-
rive the underlying pattern of observations and to ensure the
reliability of the assessment.

Sensitivity tests were conducted and evaluated to confirm
the appropriate ratio between the training subset and valida-
tion subset. Starting with observations from all stations (All),
a varying proportion of these stations was retained as the
training dataset (range from 0.5 to 0.9, at 0.01 increments),
from which 2400 DTMs were established (here, 2400=
40×3×20: this represents the 40 training sets from 0.5 to 0.9;
three groups SF, NoSF_SC_DRY and NoSF_SC_WET; and
20 repetitions of the random sampling). As listed in Ta-
ble 4, the overall classification accuracy of these models
ranged from 0.848 to 0.935, indicating that models predicted
the occurrence of blowing snow events very accurately. The
variation range and standard deviation of overall accuracy
changed slightly with decreasing sample size: the accuracy
range ranged from 1.06×10−3 to 7.19×10−3, and the stan-
dard deviation increased from 2.23×10−4 to 15.26×10−4 as
sample size decreased. According to the sensitivity analysis,
training sample size had a small influence on the classifica-
tion accuracy of the DTM. However, because the reliability
of the accuracy assessment decreased with decreasing val-
idation sample size, the training set proportion of 0.8 was
recommended in this study.

3.2 Sensitivity to the feature variables

The current decision tree uses a greedy algorithm, mean-
ing that an optimal node construction and attribute combi-
nations were selected to build the classification tree model.
To construct an efficient model capable of being applied
across broad spatial and temporal scales, a major challenge
is to select the fewest number of feature variables to con-
struct a model with the highest classification accuracy. Al-
though many factors (including land surface characteristics
and ambient meteorological conditions) can influence the oc-
currence of a blowing snow event, it is unrealistic to consider
all factors in the estimation because of the requirement for
spatiotemporal transferability. Therefore, the possible pre-
dictor variables used in this study comprise WS, WSMAX,
T and RH.

To assess the relative importance of each single feature
variable and to determine a suitable rule for training sam-
ples, nine combinations of feature variables for each of the
three conditions (SF, NoSF_SC_WET and NoSF_SC_DRY)
were selected from each station and all stations (All) to train
the decision tree model. That is to say, in theory, there will
be a total of 5400 DTMs trained (9×10×20×3). However,
the RH observations are only available at Fmor, Fcmb and
Fber stations (RH observations from Fhue and Fgie stations
were discarded due to their frequent and dramatic fluctua-
tions over short periods); therefore, 4680 DTMs were eventu-
ally obtained. Figure 3 displays the accuracy of these DTMs
in estimating the blowing snow occurrence in the validation
samples. The total score, which is a synthetic demonstra-
tion of the 20 random sampling tests of the DTMs, is also
shown in Fig. 3. The total scores are calculated by ranking
the accuracies of DTMs trained at each station with differ-
ent combinations of predictor variables (the model with the
highest accuracy scores the highest: 9 for All, Fmor, Fcmb
and Fber and 7 for the other stations without RH observa-
tions). Furthermore, as the mean accuracy was also included,
the maximum values of scores are 189 and 140 for stations
with and without RH observations, respectively. As shown
in Fig. 3, even though the same attribute combination was
used, model accuracy varied widely not only between sta-
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Figure 3. The mean overall accuracy (a–c) and scores (d–f) of the site-independent DTM (All) and the site-specific DTMs trained with
different feature variable combinations in snowfall conditions (SF), dry snow cover conditions (NoSF_SC_DRY) and wet snow cover con-
ditions (NoSF_SC_WET), and the mean scores of models constructed based on feature variable combinations with and without the RH in-
cluded (g–i). The pound sign (#) indicates that the SSDTM was not constructed using RH. WS is mean wind speed; WSMAX is the maximum
wind speed; T is air temperature; RH is relative humidity.

Table 4. Performance statistics of decision tree models constructed under different situations with varied ratios for training and testing
datasets (ranging from 0.5 to 0.9).

Condition∗ Sample Range Standard Max/min Description
size (10−3) deviation overall

(10−4) accuracy

SF 9251 7.19 15.26 0.855/0.848 Snowfall

NoSF_SC_DRY 74 915 2.26 4.66 0.871/0.869 No snowfall but with
dry snow cover

NoSF_SC_WET 258 872 1.06 2.23 0.935/0.934 No snowfall but with
wet snow cover

∗ The situations are listed based on sample size.
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tions, but also between different snow conditions. Generally,
models presented higher overall accuracies under dry snow
conditions than the other two conditions. Although models
derived for snowfall conditions produced accuracies com-
parable with models for the ground surface covered by wet
snow, the latter were more effective in accurately detecting
blowing snow occurrence than the former.

3.2.1 Air temperature and relative humidity

Of all the attribute combinations evaluated, models trained
merely with either T or RH presented the lowest accuracy
(Fig. 3a–c), indicating that the use of T or RH alone cannot
fully capture the variance in the validation samples. How-
ever, significant improvements were achieved when either
WS or WSMAX were accompanied by T or RH, even though
the single factors performed poorly when used alone. Taking
Fcmb station in snowfall conditions as an example, model
accuracy increased from 0.54 when the model trained merely
with T to 0.8 or 0.82 when WS or WSMAX was added, re-
spectively. These results suggest that neither T nor RH is
the guarantee of model accuracy, although the model with
more predictor variables used generally achieved relatively
high accuracy.

3.2.2 Mean and maximum wind speed

Models trained with a combination that included WAMAX
outperformed the other models, revealing that WSMAX
rather than WS contributed the most to the model accuracy,
highlighting the importance of WSMAX in constructing a
reliable DTM. The result is reasonable, as the fastest wind
speed acts as the primary driving force that allows wind shear
stress to overcome snow cohesion, bonding and frictional re-
sistance (He and Ohara, 2017). Wind transport of snow can
be initiated once the fastest wind speed exceeds the thresh-
old wind speed, and the blowing snow process can then be
sustained by relatively low wind speeds. In other words, the
fastest wind speed and the mean wind speed control the oc-
currence and persistence of blowing snow events, respec-
tively. Generally, model accuracy improved as more predic-
tor variables were used. However, strongly correlated feature
variables might slightly affect the model accuracy; this was
evident when WS was added to WSMAX in snowfall con-
ditions. Overall, this comparison indicates the superiority of
DTM as a means of blowing snow identification, which is
achieved by making full use of all available feature variables.

The model accuracy analyzed above presents the over-
all performance of models in identifying the occurrence of
blowing snow. Synthetic scores displayed in Fig. 3d–f show
that the attribute combinations including WSMAX generally
achieved a higher ranking. Model scores in either wet snow
cover or dry snow cover further indicated the need for assim-
ilating more attribute information to improve the classifica-
tion accuracy of models, particularly in wet snow conditions.

These results are closely consistent with the mean overall ac-
curacy results discussed above, implying that they are repre-
sentative of the mean overall accuracy. Moreover, synthetic
scores could reveal further information that the averaged ac-
curacy cannot clearly illustrate. For instance, except for the
models trained with only T or RH, there were no notable dif-
ferences in mean accuracy among the various combinations.
However, a substantial divergence of synthetic scores was
seen among different combinations. In snowfall conditions,
WSMAX scored highest at most of the stations, while the
combination of WS, WSMAX and T ranked highest in the
other two conditions. When the land surface was covered by
dry snow, the model scores were greatly increased with the
inclusion of T , demonstrating the key role of T in influenc-
ing the blowing snow occurrences. The contribution of T was
more important to the model accuracy than WS or WAMAX,
as the blowing snow occurrence regime of dry snow is more
sensitive to temperature variation than to shear stress (Li and
Pomeroy, 1997b). The scores shown in Fig. 3g–i are the inte-
grated scores across stations. One noticeable distinction be-
tween models trained with and without RH inclusion was in
the optimal attribute combination. When RH was included in
the feature variables, the models trained with the combina-
tion of WS, WSMAX, T and RH yielded the highest score
across all conditions, while the optimal combination varied
with conditions when RH was unavailable. This comparison
suggested that redundant information in the combinations
of WS, WSMAX and T might slightly weaken the efficiency
of the DTM and further demonstrated the importance of WS-
MAX in constructing an accurate and efficient DTM.

Finally, models were trained with only WSMAX in snow-
fall conditions, while the combination of WS, WSMAX,
T and RH (if available) was used for further analysis in snow-
covered conditions.

3.3 Validation of the SSDTMs and SIDTM

In this section, validations were conducted to assess the pre-
dictive performance of DTMs. Similarly to the sensitivity
tests conducted above, 20 DTMs were trained at each sta-
tion, based on randomly selected datasets comprising 80 %
of the sample observations. The optimal combinations of
feature variables determined in Sect. 3.2 were used. Each
DTM was evaluated by the remaining 20 % observations at
the corresponding training station and by all available obser-
vations from the other stations. The divergence between the
SSDTMs and SIDTM was compared for assessing the po-
tential of the DTM to be scaled to multiple stations across
regions. There were 660 (11× 20× 3) and 240 (4× 20× 3)
DTMs in total, trained with and without RH, respectively.
The mean OA, FAR, POD and HSS of the 20 random sam-
pling tests are compared and analyzed in this section.

According to the results in Fig. 4a–c, either the SSDTMs
or the SIDIM exhibited high overall accuracy throughout
the range of conditions (from 0.66 to 0.96 and 0.72 to 0.96
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Figure 4. The overall accuracy (OA) of the SIDTM and SSDTMs trained without (a–c) and with (d–f) RH, and their difference (g–i) in SF,
No_SF_DRY and No_SF_WET conditions, respectively. The x axis represents the SIDTM and SSDTMs constructed based on 80 % of
corresponding observations, and the y axis represents the validation stations.

for models trained with and without RH considered, respec-
tively). However, there were differences among stations and
conditions. The DTMs trained and evaluated with observa-
tions in wet snow conditions showed the best predictive per-
formance among three conditions except for the evaluations
conducted at Fmor station. Overall classification accuracy at
stations where SSDIMs were trained (those lying in the di-

agonal rising up to the right) was not always higher than the
accuracy evaluated at other stations, demonstrating the high
ability of DTMs in accurately capturing the blowing snow
occurrences outside the training range (both temporal and
spatial). When comparing the overall accuracy between mod-
els trained with and without RH at those stations with RH ob-
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Figure 5. The same as Fig. 4 but for the probability of detection (POD).

servations available (Fig. 4d–i), the inclusion of RH is seen
to increase the performance of DTMs to a certain extent.

Although OA represents the overall classification skill of
the models, POD is an important metric characterizing the
models’ ability to detect blowing snow events. As shown in
Fig. 5, the DTMs constructed under snowfall conditions were
generally more accurate in detecting blowing snow occur-
rences than the models established under the other two con-
ditions, and DTMs exhibited the lowest detective capacity

under wet snow conditions. However, there were clear differ-
ences for between both the SSDTMs and SIDTM in detecting
the blowing snow events that occurred at different stations.
At Fmor, Fcmb and Fhue stations, all the DTMs showed con-
sistently high skill in accurately identifying the true blowing
snow events (the POD values were above 0.82), even higher
than identifying the blowing snow events that occurred at
the stations used for training the DTMs. Taking the SSDTM
trained at Fgie station as an example, 98 %, 97 % and 96 %
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Figure 6. The relative probability and cumulative probability of blowing snow occurrences, plotted with the maximum wind speed. The
histogram is the relative probability and the orange solid curve is the cumulative probability, respectively. The orange dash line is the 50 %
cumulative probability.

of blowing snow events were accurately detected at Fmor,
Fcmb and Fhue stations, dropping to 45 % at Fgie station
(Fig. 5a). In snowfall conditions, the POD values dropped
sharply when DTMs were evaluated at Fgie and Fcel stations
(only up to 45 % and 68 % of blowing snow events occurring
at Fgie and Fcel stations were accurately identified, respec-
tively). Although these differences narrowed dramatically in
snow-covered conditions (Fig. 5b and c), the capabilities of
both the SSDTMs and SIDTM remain relatively low in de-
tecting the blowing snow events that occurred at Fgie sta-
tion; the performance deteriorated further when the surface
was covered by wet snow (only up to 29 % of blowing snow
events were detected). The low POD values corresponding to
the high miss rate indicate that blowing snow events occur-
ring at Fgie station were seriously underestimated by both the
SSDIMs and the SIDIM. The differences in POD shown in
Fig. 5g–i illustrate that the detective ability can be improved
when RH serves as a feature variable to train the DTM, as
was particularly noticeable in snow-covered conditions (with
maximum increases of 24 % and 18 % for dry snow cover
and wet snow cover, respectively). For snowfall conditions,

however, the improvement was more limited and was only
achieved in 5 of 13 tests (Fig. 5g).

The relatively low PODs at Fgie, Fcel and Fber stations
under snowfall conditions reflect the significantly lower max-
imum wind speeds at these stations when compared with
other stations. The relative probability and cumulative prob-
ability of maximum wind speed at each station, with concur-
rent blowing snow (Fig. 6), indicate that about 50% of the
blowing snow events occurred at Fgie, Fcel and Fber stations
occurred when maximum wind speed was below 10 m s−1

(Fig. 6g–i), demonstrating that most of the blowing snow
events at these three stations were initiated by relatively low
maximum wind speed; this was much lower than that at other
stations (Fig. 6a–f). DTMs trained with higher maximum
wind speeds generally choose a larger threshold WSMAX
for the occurrence of blowing snow, thus resulting in an un-
derestimation of blowing snow events when the models were
applied to stations with low maximum wind speed. To verify
this speculation, DTMs were assessed at Fsal station, since
relatively low maximum wind speeds were also reported at
this station. As expected, all the DTMs significantly under-
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Figure 7. The POD (a), FAR (b), MR (c), OA (d) and HSS (e) of SIDTM and SSDTMs assessed at Fsal station, where the maximum wind
speed was relatively low (similar to Fgie, Fcel and Fber stations).

estimated the frequency of blowing snow events at this sta-
tion (Fig. 7). However, in snow cover scenarios, and except
for Fgie and Fsal stations, the distribution of maximum wind
speeds was broadly consistent among the stations (figure not
shown), and thus the differences between the models evalu-
ated at these stations were small (Fig. 7).

The FAR values evaluated at each station were compared
in Fig. 8. In general, FAR was slightly lower when falling
snow was detected than that in other conditions. For exam-
ple, except for the model trained at Fgie station, the FAR
values for both the SSDTMs and SIDTM evaluated at Fmor,
Fhue and Fbon stations were below or equal to 10 %, accom-
panied by high OA and POD values, indicating a good re-
trieval performance in estimating blowing snow occurrence.
However, the blowing snow events under wet snow condi-
tions were more likely to be falsely identified. One obvi-
ous distinction in POD values between the SIDTM and SS-
DTMs trained with RH was that the SIDTM showed a robust
improvement in reducing the probability of false detection
whatever the circumstances, while its effectiveness for SS-
DTMs varied between stations and conditions.

Although blowing snow events frequently occur in the
study region, blowing snow is still a rather rare weather phe-
nomenon. Analysis of OA, POD and FAR demonstrated the
great ability of the DTMs in accurately identifying the oc-
currence of blowing snow; however, when considering the
impact of the imbalanced dataset, the HSS index, which is
particularly suitable for the evaluation of forecast skill for
rare events (Doswell et al., 1990), should be analyzed. De-
spite the considerable fluctuations in HSS across stations and
conditions as shown in Fig. 9, the generally high HSS indi-
cated that the DTMs showed promising agreement with in
situ blowing snow measurements (except for Fgie station,
where HSS values less than 0.4 were frequently observed).
Generally, the consistency between the actual blowing snow
events and estimates using the DTM was improved when

RH was included in the DTM training. In conclusion, even
though the datasets inevitably suffer from imbalanced ob-
servations, both the constructed SIDTM and SSDTMs are
promising in detecting blowing snow occurrence with con-
siderable accuracy.

3.4 Spatiotemporal transferability assessments

Spatial and temporal transferability refers to how applica-
ble a classifier model is across broad spatial and temporal
scales. Due to the temporal independence of the randomly
chosen 80 % of samples, the accuracy of the temporal predic-
tion of models can be assessed based on the remaining set.
Furthermore, the spatially independent datasets from other
validation stations can be used to assess the accuracy of spa-
tial prediction. As mentioned in the previous analysis, the
constructed DTMs performed commendably in temporal ex-
trapolation and are very much applicable to the estimation of
blowing snow occurrence at other stations outside the train-
ing range. In this section, sensitivity tests were conducted to
further evaluate and explore the spatiotemporal transferabil-
ity of the DTMs.

As shown in the assessment of SSDTM across differ-
ent stations, all the SSDTMs showed consistently accurate
performance in estimating the occurrence of blowing snow
events at the station the SSDTM trained, demonstrating the
high capacity of models in the temporal prediction of blow-
ing snow events. Meanwhile, the model accuracy obtained
at each validation station was comparable to, or even better
than, that assessed at the respective station where each model
was trained at. For example, the model trained at Fcmb sta-
tion yielded an overall classification accuracy of 0.82 when
evaluated at Fcmb station (Fig. 4a), but the model achieved
a markedly higher accuracy when applied at Fmor (0.89),
Fhue (0.92) and Fmon (0.92) stations. Notably, this pattern
was more pronounced in HSS (Fig. 9).

Hydrol. Earth Syst. Sci., 25, 3783–3804, 2021 https://doi.org/10.5194/hess-25-3783-2021



Z. Xie et al.: Decision tree-based detection of blowing snow events in the European Alps 3795

Figure 8. The same as Fig. 4 but for the FAR.

To explore the accuracy of temporal prediction further, two
datasets were created and used in two sensitivity experiments
(Test 3 listed in Table 2). Both datasets included observations
from five stations, and the major difference between them
was whether the differences in the distribution of feature vari-
ables across stations were significant. One dataset was com-
posed of observations from Fmor, Fcmb, Fmon, Fsal and
Fcel stations (Mix), with substantial differences in the dis-
tributions of feature variables between the first three stations

and the last two stations, particularly the WSMAX. The other
dataset contained a more homogeneous distribution of obser-
vations compared with the Mix (Homo; observations from
Fmor, Fcmb, Fmon, Fbon and Fche were included). When
models were trained with one of the datasets, observations
from the stations which were not included in the training
dataset were used to assess its predictive performance. The
results of these two sensitivity tests will also be compared
with the performance of models constructed using 80 % of
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Figure 9. The same as Fig. 4 but for the HSS.

observations from all stations to explore the effect of differ-
ent numbers of training stations on the model accuracy.

As shown in Fig. 10, the model trained with either the
Mix (Fig. 10i) or Homo (Fig. 10d) dataset presented simi-
lar OA to the SIDTM (Fig. 8n) when evaluated at the same
stations. The accuracies of these models were comparable
to that of the SIDTM and even to models constructed based
only on observations from an individual station. Moreover,
the source of the training samples had a minimal impact

on the model performance, as shown in the assessment con-
ducted at Fhue station (comparing the first and second rows
of Fig. 10). These results indicated that the DTM shows ro-
bust spatial transferability and, importantly, was indepen-
dent of the source of the training data and the number of
stations used. When compared at Fber, Fgie, Fcel and Fsal
stations, the model trained with observations from all sta-
tions (third row) outperformed the model trained with the
Homo dataset (second row) in terms of the POD and HSS
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Figure 10. The assessment indicators of DTMs trained based on observations from five stations with a homogeneous distribution (a–e),
inhomogeneous distribution (f–j) of the feature variable, and the DTM trained based on observations from all the stations.

indices; improvement was also noted in the MR. However,
poorer performance was noted at Fhue, Fbon and Fche sta-
tions when the model was trained with observations from
all stations instead of the Homo dataset, as evident form the
lower POD and HSS and larger MR (particularly in dry snow
cover conditions). This divergence may partly be explained
by the larger threshold maximum wind speed for the occur-
rence of blowing snow in models trained with observations
from all stations, which prevents the identification of blowing
snow events at stations with relatively high maximum wind
speed (see Fhue station in Fig. 11: the frequency of blowing
events follows WSMAX). Meanwhile, blowing snow is more
likely to be predicted at stations with relatively low maxi-
mum wind speeds (i.e., the Fgie and Fber stations) due to
the lower threshold maximum wind speed. The occurrence
of blowing snow events was underestimated at the relatively
low maximum wind speed stations (e.g., Fgie station). The
accuracy of estimating blowing snow events increased as the
threshold WSMAX decreased.

The DTMs were established on the principle of maxi-
mum inclusiveness, enabling their applicability across broad
spatial and temporal scales by synthesizing all the features
in the available observations. However, conventional algo-
rithms are often biased towards the majority class without
considering the data distribution. When there is a need to
handle heterogeneous data from various sources, the model
must seek a good compromise between accuracy, efficiency
and a good fit to all the training samples; therefore, the prob-
ability of compromise increases as data heterogeneity in-
creases. This is an important issue to be aware of when us-

ing DTMs. In this case, data preprocessing (e.g., the scenario
classification method used in this study) is an important and
effective step in reducing the heterogeneity of data and im-
proving the effectiveness of the model.

4 Discussion

4.1 Influence of training data on the DTM

At stations where a low probability of blowing snow detec-
tion was observed (i.e., Fber and Fgie: Fig. 5), a considerable
improvement in the OA, POD, HSS and MR was achieved
when the DTM was trained with the Mix dataset instead
of the Homo dataset. For example, a 17.3 % increase in the
POD, an increase in HSS from 0.59 to 0.64, and a decrease
in MR (−0.09) were achieved at Fber station under dry snow
cover conditions. Distinct difference was noted at Fber, Fgie,
Fcel and Fsal between models trained with or without hetero-
geneous training samples. However, the source of the train-
ing dataset and the distribution characteristics of predictor
variables exerted only a slight impact on the model perfor-
mance at other stations (e.g., Fhue). In general, using training
data with heterogeneous information can effectively improve
the classification accuracy while promoting the spatiotempo-
ral transferability of the DTM.

Models did not show consistent improvement in estimat-
ing blowing snow occurrence at all stations when trained
with 80 % of all observations. For example, as mentioned
earlier, the model showed a marked decrease in POD and
increase in MR in dry snow cover conditions at Fhue, Fche
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Figure 11. The same as Fig. 6 but only for the DTM constructed based on observations from all stations (All) and observations from
five stations with a heterogeneous distribution (Mix) and homogeneous distribution (Homo) of feature variables, respectively. DTMs were
assessed at stations with relatively high maximum wind speed (Fhue) and with relatively low maximum wind speed (Fgie and Fber).

and Fbon stations, revealing that heterogeneity of the train-
ing data is a key factor in influencing the performance of
the DTM. Meanwhile, the results also highlighted the im-
portance of a reliable and impartial training dataset; strongly
imbalanced datasets should be avoided.

4.2 Influence of meteorological and environmental
factors on the DTM

The occurrence of blowing snow events depends largely on
a combination of meteorological and environmental factors,
such as wind speed, wind direction, air temperature, topog-
raphy and vegetation. Wind speed serves as the driving force
for the initiation of blowing snow. As it is difficult to de-
termine the occurrence of blowing snow on a determinis-

tic, physical basis (Li and Pomeroy, 1997b), wind speed
has been widely used in empirical formulae as a critical in-
dicative parameter to simulate the wind transport of snow
(Schmidt, 1980; Pomeroy and Gray, 1990). A DTM is a
black-box model, in which it is difficult to envisage how the
different components operate and interact. However, sensi-
tivity tests have demonstrated that the maximum wind speed
played a decisive role in the model predictions. The thresh-
old wind speed for snow transport refers to the minimum
wind speed required to initiate the saltation of snow. Once
the fastest wind speed exceeds the threshold wind speed, the
wind shear stress overcomes the snow cohesion, bonding and
frictional resistance, thereby initiating a blowing snow event.
The blowing snow process can then be sustained by a rela-
tively low wind speed. Thus, the maximum wind speed (in-

Hydrol. Earth Syst. Sci., 25, 3783–3804, 2021 https://doi.org/10.5194/hess-25-3783-2021



Z. Xie et al.: Decision tree-based detection of blowing snow events in the European Alps 3799

stead of the mean wind speed) contributes most strongly to
the classification accuracy of the DTM.

Air temperature, one of the most critical parameters af-
fecting the microstructural structure and internal physical
properties of the snowpack, is associated with snow cohe-
sive resistance. Cohesive resistance increases considerably
when snow becomes wet, as water increases the cohesive
bonding force between particles. This leads to a sharp con-
trast of the threshold wind speed for snow transport be-
tween wet snow and dry snow. As demonstrated by Li and
Pomeroy (1997b), condensation and crystal growth occur
in the snowpack when the saturation vapor pressure is low,
leading to a gradual increase in snow particle bonding resis-
tance and lowering the probability of blowing snow occur-
rence. Relative humidity, the ratio of vapor pressure and sat-
uration vapor pressure, therefore has important implications
for snow aging processes (i.e., metamorphism, despite Arm-
strong and Brun (2008) reporting that snow metamorphism in
alpine snowpack is mainly driven by temperature gradient).
Wind direction is also an important factor influencing blow-
ing snow events and is closely associated with topography
and wind speed (Roebber et al., 2003). Wind speed can vary
considerably with wind direction, as site-specific topography
may preclude blowing snow under certain wind directions at
particular stations. Preliminary studies have suggested an im-
provement in blowing snow estimates when taking into con-
sideration the wind direction (Baggaley and Hanesiak, 2005;
Vionnet et al., 2018). However, for the consideration of the
highly site-specific wind speed and large variations of pre-
vailing wind speed across stations, the impact of wind direc-
tion is not considered in this study in constructing the DTMs.
Generally, snow is eroded from wind-exposed surfaces (e.g.,
flat surfaces, hilltops, windward slopes, and sparsely vege-
tated surfaces) and deposited in wind-sheltered areas such
as densely vegetated surfaces and topographic depressions
(Li and Pomeroy 1997a; Liston and Sturm, 1998; Xie et al.,
2019). The topography is also very site-specific, and quan-
tifying its potential impacts on blowing snow occurrence is
challenging. Thus, the temporal transferability of the DTM
is likely to drop sharply, and more widespread adoption of
the DTM will be hindered once the wind direction and to-
pography are used as feature variables. Vegetation can be ef-
fectively quantified by LAI or NDVI; however, the sparse
stations in the study region limit its usage here.

4.3 Potential sources of error in the DTM

The FlowCapt sensor is sensitive to soil particles, resulting in
false alarms for blowing snow events (Vionnet et al., 2018).
Therefore, one of the greatest uncertainties is attributed to
unreliable blowing snow events recorded by the FlowCapt
sensors. Although records corresponding to detected blow-
ing snow events with an absence of simultaneous snow cover
and snowfall were removed, unreliable blowing snow events
may still exist in the dataset with strict quality control ap-

plied. Internal defects of the FlowCapt sensor (in terms of
hardware and numerical processing) are another important
source of uncertainty (Trouvilliez et al., 2015), although the
suitability of the instrument in measuring blowing snow has
been evaluated and results have demonstrated its reliability
in blowing snow studies (Chritin et al., 1999; Cierco et al.,
2007; Das et al., 2012; Trouvilliez et al., 2015). Neverthe-
less, the rate of snow transported recorded by the FlowCapt
can be underestimated (Trouvilliez et al., 2015). Therefore,
as the occurrence of blowing snow events was determined
based only on the FlowCapt measurements, inevitable uncer-
tainties exist in this study. To minimize the underestimation
of blowing snow measured by the FlowCapt, all records with
blowing snow fluxes exceeding 0 were classified as blowing
snow events in this study. This is different from Trouvilliez
et al. (2015), who used a higher (non-zero) threshold value to
remove non-significant blowing snow occurrence when pro-
cessing FlowCapt measurements.

The problem of strongly skewed data distribution is rather
common in real-world applications and introduces unique
challenges when training machine-learning models. The term
“imbalanced data” typically refers to the problem where the
number of different classes of data is not equally distributed.
In this study, for example, the blowing snow events are gen-
erally outnumbered by the non-blowing snow events. Learn-
ing from imbalanced data has been the subject of many pa-
pers, workshops, special sessions and dissertations. How-
ever, there is no definite solution. In practice, data imbalance
is addressed by a number of methods: using ensemble cross-
validation to justify the model robustness, undersampling the
majority class or oversampling the minority class (Zhou and
Liu, 2006), or assigning different weights to balance the ratio
for each category (Jo and Japkowicz, 2004).

4.4 Comparison with other indirect methods

It was extremely difficult to distinguish unreliable records
in the quality-controlled data, and it is inevitable that the
use of these records in the construction of the DTMs neg-
atively affects the model’s skill in detecting blowing snow
events. Despite these shortcomings, the calculated accuracies
for both the SIDTM and SSDTMS were superior to (and in
most cases much better than) the empirical parameterization
schemes using (i) constant threshold wind speed (7.7 m s−1

for dry snow transport and 9.9 m s−1 for wet snow trans-
port, abbreviated as Constant_dry and Constant_wet, respec-
tively; Li and Pomeroy, 1997a), and (ii) the dynamic thresh-
old adapts to the evolution of air temperature (abbreviating
as Ut(10), Ut(10)_wet and Ut(10)_dry shares the same ex-
pression but used to detect wet snow and dry snow transport,
respectively; Li and Pomeroy, 1997a). As shown in Fig. 12,
the dynamic threshold wind speed outperforms overwhelm-
ingly the constant threshold wind speed in detecting blowing
snow occurrence, while the former’s performance evaluation
metrics (except for the FAR) characterizing the ability and ef-
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Figure 12. The POD (a), FAR (b), OA (c) and HSS (d) of indirect methods using constant threshold wind speed (7.7 m s−1 for dry snow
transport and 9.9 m s−1 for wet snow transport, abbreviated as Constant_dry and Constant_wet, respectively), and dynamic threshold adapts
to the evolution of air temperature (abbreviating as Ut(10), Ut(10)_wet and Ut(10)_dry shares the same expression but used to detect wet
snow and dry snow transport, respectively). Constant_overall and Ut(10)_overall are the synthetical metrics of wet snow and dry snow
conditions.

ficiency in blowing snow detection are inferior to the DTMs
obviously (corresponding metrics are shown in Figs. 4, 5,
8 and 9, respectively), particularly the POD and HSS. A
larger FAR achieved by DTMs indicates a high probability
of false blowing snow detection by the data-driven model.
When compared to the results from the S2M-Sytron (Vion-
net et al., 2018), an avalanche hazard forecast model driven
by high spatial and temporal resolution meteorological forc-
ing data downscaled by SAFRAN (Durand et al., 2009), the
values for POD and HSS in this study were similar to, or
better than, the skill reported for numerical simulations us-
ing the S2M-Sytron forced with downscaled SAFRAN in-
put. However, due to the limited capacity of DTMs to de-
tect real blowing snow occurrences, particularly under snow-
covered conditions, large differences exist when compared to
R2 (an S2M-Sytron simulation using an updated parameteri-
zation for falling snow properties) and R3 (uses the observed
10 m wind speed and direction based on R2). The wide gap
between the data-driven model and the physical constraints
model highlights the need to conduct further experimental
investigations and analyses to illustrate the limitations of the
DTM in detecting blowing snow occurrence. This could shed
more light on future developments.

We note that only those blowing snow events with a snow
flux exceeding a threshold of 1 g m−2 s−1 were analyzed and
that if this threshold value is applied in this study, the abil-
ity of the DTM to accurately detect blowing snow occur-
rence is projected to increase. In summary, a simple DTM
constructed from conventional meteorological observations
is therefore shown to be capable of detecting blowing snow
events with a skill superior to the commonly used empir-
ical parameterizations. However, there is still considerable
room for improvement when compared with numerical mod-
els containing detailed representations of physical processes,
but handling the data imbalance issue appropriately and min-
imizing the potential uncertainty resulting from blowing soil
particles are a top priority.

4.5 Possible future directions

Machine-learning techniques can be a suitable way to reduce
the process complexity and computational cost of traditional
physically based blowing snow models. The complex inter-
active processes of ambient atmospheric conditions make a
proper representation of blowing snow processes in the con-
ventional blowing snow model challenging. A major differ-
ence between the process-based algorithms and machine-
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learning-based models is that the model structure for the
former is based on underlying physical principles, whereas
a machine-learning-based model is completely data-driven.
Although machine-learning models have outperformed sim-
ple statistical models and have been widely used in the Earth
sciences, they tend to violate physical law constraints, lead-
ing to unrealistic predictions (Zhao et al., 2019). Physically
based models, although more complicated, tend to have su-
perior interpretability (Pan et al., 2020). Complementing a
physically based model and machine-learning-based model
is a feasible way for further development. Integrating these
two types of models with divergent model structures and
introducing physical constraints on machine-learning-based
models are two popular strategies (Pal and Sharma, 2021).
One common way to integrate the constructed DTMs with
blowing snow models in detecting blowing snow occurrence
is to ensure the application of DTM only when the clima-
tology shares a similar distribution property to the training
data. In this case, a huge amount of training data with differ-
ent distribution properties is an essential prerequisite for the
performance of DTMs applied over a large area; otherwise,
in case of rare events, the detection of blowing snow occur-
rence relies on the physically based blowing snow model. On
the other hand, using blowing snow model outputs to pose
physical constraints on the DTMs makes the hybrid model
capable of learning the nonlinear relations from the training
data while obeying the physical laws.

5 Conclusions

The accurate classification of blowing snow events is impor-
tant in numerical models which include blowing snow, as it
determines whether or not to invoke the parameterizations
for sublimation and transport associated with blowing snow
processes in the model (Lenaerts et al., 2012b; Xie et al.,
2019). This paper described the construction and evaluation
of the machine-learning-based DTM in detecting blowing
snow occurrence in the European Alps. Here, DTMs were
trained with routine meteorological observations (WS, WS-
MAX, T and RH).

An optimal ratio of 0.8 between the training subset and
validation subset was chosen here when accuracy, efficiency
and reliability of the DTM were taken into consideration. In
snowfall conditions, SSDTMs and the SIDTM were trained
based on WSMAX and RH (at stations where RH observa-
tions are available), while in snow-covered conditions, the
models were trained with WS, WSMAX, T and RH (at sta-
tions where RH observations are available). Twenty repeti-
tions of a random sub-sampling validation test showed that
the maximum wind speed contributes the most to the classifi-
cation accuracy of the DTMs, and models constructed using
additional characteristic attributes achieved higher classifi-
cation accuracy for blowing snow event detection. Both the
SSDTMs and SIDTM showed strong capabilities for accu-

rately detecting blowing snow; however, notable variations
were seen between stations and conditions. The actual blow-
ing snow events occurring in snowfall conditions were de-
tected accurately at all stations except for Fber, Fgie and
Fcel. However, in non-snowfall conditions, ambient meteo-
rological conditions exerted complex, nonlinear impacts on
the properties and structures of snow particles, hindering the
accurate detection of blowing snow occurrence. The rela-
tively low PODs at Fgie, Fcel and Fber were attributed to the
significantly lower maximum wind speed than that at other
stations, which cannot be well captured by the DTM. Over-
all, 73 % and 69 % of blowing snow events occurring under
snowfall conditions and dry snow cover conditions were ac-
curately detected by the SIDTM, but this proportion dropped
to 41 % for wet snow surfaces.

The constructed DTMs demonstrated good performance in
temporal extrapolation and were also able to accurately de-
tect blowing snow occurrence at stations outside the training
range. The spatial transferability is likely to decline when
models are trained with strongly heterogeneous feature vari-
ables. Therefore, in some cases, a few representative predic-
tor variables should be selected, and data preprocessing (e.g.,
the scenario classification method used in this study) should
be applied to reduce the heterogeneity of the dataset and im-
prove the effectiveness of the DTM. In summary, both the
SSDTMs and SIDTM are useful tools in detecting the occur-
rence of blowing snow events and achieve acceptable accu-
racy in terms of their spatiotemporal predictions.

Progress towards the accurate estimation of blowing snow
events at local scales relies largely on physically based blow-
ing snow models driven by high-resolution meteorological
inputs that include a detailed representation of the effects of
ambient atmospheric conditions on the initiation and persis-
tence of blowing snow processes. However, using such mod-
els can be challenging due to the high computation cost of
such simulations and the difficulty in obtaining reliable field
observations for the required input. The DTM, constructed
from limited available observations, may provide a useful al-
ternative method. Therefore, DTMs can facilitate research
into blowing snow in data-scarce areas such as the Tibetan
Plateau, where 10 FlowCapt instruments have been set up
and are currently in operation.

Data availability. Observation data from the ISAW stations can
be accessed at http://www.iav.ch (last access: 12 December 2020)
(IAV, 2020).

Code availability. The code to construct a decision tree model
in detecting the occurrence of blowing snow is available from
GitHub (https://github.com/zpxie-cas/DTM, last access: 12 Decem-
ber 2020) (Github, 2020).
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