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Introduction

This Supplementary Material is structured in three sections. Section 1 covers relevant aspects of copula theory to better under-
stand how the 2D and 3D copulas are obtained in this study. Section 2 presents a theoretical example to illustrate the impact that
conditioning the predictors on the impact variable has on the correlation coefficient and dependence patterns. Finally, Section

5 3 includes supplementary figures (S1-S13) that were referred to in the manuscript.
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1 Copula theory

Sklar (1959) describes the connection between a Copula C' and a bivariate cumulative distribution function (CDF) Fxy (z,y)

of any pair of variables (z,y) as:
ny(l',y):C[Fx(l'),Fy(Y)] (1)

where F'x () and Fy (y) are the univariate marginal distributions. The bivariate probability density function (PDF) has the

following form:

fxy(z,y) = ClFx(x), Fy (Y)]fx (z) fy (y) (2)

where fx(x) and fx (z) represent the marginal PDFs.

In higher dimensions, a joint probability distribution is obtained via pair-copula constructions, i.e., Vine Copulas (Aas
et al., 2009; Schepsmeier et al., 2018). This construction is hierarchical in nature and provides higher flexibility than other
multivariate distribution functions since different dependence structures between pairs of variables can be adopted. Assuming
the joint CDF continuous with strictly increasing marginal CDFs, vine copulas allow for the decomposition of an n-dimensional

copula density into the product of n(n—1)/2 bivariate copulas. A decomposition example of a three-dimensional f(x1,z2,x3)

is given as:

f(x1,20,23) = f3\12($3|$2»$1)f2\1($2|5L‘1)f1($1) 3)
where:
fon(@2,21) = cra(Fi(21), Fa(22)) f2(22) “)
fapa(@3|re,z1) = crap(Fujz(21]22), F3j2(23]22)) f3)2 (23] 72) o)
fa12(x3,22) = co3(Fa(22), F3(23)) f3(23) ©)
@)
Therefore, f(x1,x2,x3) can be expressed as:

f(@1,22,23) =f3(23) fa(22) f1(21) (marginals) ®)
cc12(Fi(x1), Fo(x2)) fa(x2) * caz(Fa(x2), F5(x3)) f3(z3) (unconditional pairs) 9
'013|2(F1|2($1|552)aF3|2(953|$2))f3|2(953|$2) (conditional pair) (10)
(11)

2 Impact of predictors conditioning on correlation

Here we present a simple theoretical test to illustrate the impact that the predictors’ conditioning (on the impact variable) has on

the Kendall’s rank correlation coefficient (7) (Kendall, 1938). Let A and B be two variables with standard normal distribution
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representing daily values of climate drivers. Let C' be the impact variable driven by A and B by means of this simple impa@t
function C' = A 4 B. The dependence pattern between A and B is modelled by a Gaussian copula with associated 7 ranging
from -0.9 to 0.9. We define the predictand (impact variable) as the annual maximum of C, noted as C,,,x, and the conditioned
and B¢

Figure S6 shows the scatter plots of randomly generated 50-year time series for each case and the corresponding conditioned

predictors as the values of A and B, respectively, when C\,,,x occurs, noted as A¢x

max max *

predictors (in red). The corresponding empirically estimated 7 are also indicated. We can observe that when we condition on
the impact variable (for which both drivers positively contribute) we extract a sub-sample of the drivers realizations for which
the correlation experiences a negative shift (as compared to the original sample). It can be observed, for instance, that for
independent drivers (7 between A and B equals to zero, framed case in Figure S6) we obtain a negative T between the
and B¢

corresponding Ac . From the latter we could not conclude, therefore, that the drivers are negatively correlated

max max

(i.e. the probability of concurrent large values of both A and B being lower than what we would randomly get by chance). In
that particular case, the drivers are actually independent. Only in the cases with very strong positive correlation between A and
and B¢

Therefore, a weak correlation between Ac

B, the associated T between Ac, remains positive (in the example of Figure S6 for 7 > 0.6 between A and B).

max max

and B¢, does not necessarily imply a weak correlation between the underlying

max max

drivers. In fact, we argue that, for a given case, if the 7 between A¢, _and B¢, is larger than the 7 between A¢,

and B¢

max,shuffled

as obtained from the corresponding independent case (A and B with the same marginal distributions but

max,shuffled

being the dependence pattern between them removed), then the underlying drivers A and B have a positive dependence pattern

(i.e. concurrent large values of A and B are more likely to happen than by chance).

3 Figures

Included here are additional Supplementary Figures S1-S13 that were referred to in the manuscript.
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Figure S1. W L.« obtained by RTC-tools vs. W Ly,ax obtained using the impact function based on Multiple Linear Regression with
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Figure S3. IWL return levels as generated from the RTC-Tools (green) and as obtained from the 2D case using the indicated impact functions:
Multiple Linear Regression with bin-sampling (MLRyi,), Multiple Linear Regression (MLR), Random Forest (RF) and artificial Neural
Networks (NN). The red dashed line (NAP + 7 cm) represents the flood warning level.
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Figure S4. W Lyax obtained by RTC-Tools vs. W L,ax obtained using the following impact functions with S72n mean, 112h,min and
Pi124 acum (3D case): Multiple Linear Regression with bin-sampling (MLRy,,), Multiple Linear Regression (MLR), Random Forest (RF)
and artificial Neural Networks (NN).
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Figure S5. IWL return levels as generated from the RTC-Tools (green) and as obtained from the 3D case using the indicated impact functions:
Multiple Linear Regression with bin-sampling (MLRyi,), Multiple Linear Regression (MLR), Random Forest (RF) and artificial Neural
Networks (NN). The red dashed line (NAP + 7 cm) represents the flood warning level.
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Figure S6. Scatter plot and estimated Kendall’s 7 correlation coefficient for simulated drivers (A and B) for different degrees of dependence

(in black), and for conditioned predictors (Ac,,,, and Bc,,,.) (in red). The independent case (7 = 0 between A and B) is highlighted with

a frame for reference.
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Figure S7. Seasonal statistics of the 12-day accumulative precipitation (blue color) and 36-h mean SWL (gray color): monthly maxima (a-b),

monthly frequencies (c-d), and annual maxima. Note that here neither SWL nor precipitation is conditioned to the annual maximum IWL.
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Figure S8. Monthly frequency of the tidal ranges indicated in the legend (shaded areas) relative to the total monthly frequency of W L ax

events occurring each month (thick black line).



12

0.45 : . 0.45 . .
a) b)
04 j 04F 1
+
T 0.35¢ i 0.35 -
E £ i
g 03 § 03 1
g 0.25f ; 025} 1
..q_). H
5 : —=
So15f ; g 015 1
o |
8 o01f i , 01 e — |
0.05 F : 0.05 - E
0 . . 0 . .
Dependence Shuffle 1 Dependence Shuffle 1

Figure S9. 800-year IWL return levels as obtained by calibrating the proposed statistical framework with original and shuffled data, respec-

tively, and by simulating 800-yr(a) and 100,000-yr(b) records, respectively. Only the first 800-year permutation of the shuffled data is used

here for illustration purposes.



13

BB1 270 F

O—©

(15—

Figure S10. Structure of the regular vine obtained for the 3D dependence case.

®

o
~
|
|

o
N
T

Inland water level [m]
o
|

RTC Dependence

RTC Shuffles

*  Copula Dependence |

*  Copula Shuffles
Copula Shuffles ClI

1 R R A | L 1 R R R A | L 1 N R R R A | L 1 L1
10’ 102 10° 10*
Return period [years]

Figure S11. IWL return level against estimate return period using a trivariate copula model (3D case). Blue and red dotted lines depict
the dependence and independence case, respectively. Transparent red denotes confidence intervals, which account for the uncertainty range

between the 5" and 95°" percentiles, as computed from all shuffles. Light blue and orange dots represent the curves empirically obtained.



14

25 T T T T 0.025

a) b) ——800-year fit
2 1 0.02} 50-year fit
215} 0015}
Q
®
8
xa 1 0.01
0.5 0.005
0 . . 0 . :
-2 -1.5 -1 -0.5 0 0.5 0 50 100 150
SWL [m] Accum. precipitation [mm]
25 T T T T 2.5
c) d)
2r 2
£ 15¢
=z
®
8
& T
0.5
. . 0 . . . L )
0 0.5 1 1.5 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4
Surge [m] Tide [m]

Figure S12. Variability of marginal probability density functions for 50-year runs (gray lines) and 800-year ensemble (black line) for the

following predictors (original data): (a) Sérgh’min, (b) Pi2d,acums (€) S72h,means (d) T124,min-
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Figure S13. IWL return level against estimated return period using a trivariate (vine) copula. Blue dots depict the return level estimates
obtained for the dependence using the proposed statistical framework. Transparent green illustrates the uncertainty associated to internal
climate variability, represented by bounds computed using the 5th and 95th percentiles from all 50-year ensembles, and the median value
(opaque green dots). Uncertainty is assessed for each component of the methodology: a) 50-year ensembles are used for all components; b)
same as a) but impact function using the bin sampling approach is trained with 800 years of data; c) 50-year runs are used for copula fitting
only; d) 50-year runs are used for surge marginal fitting only; e) 50-year runs are used for tide marginal fitting only; and f) 50-year runs are

used for precipitation marginal fitting only.
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