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Abstract. Substantial biases exist in satellite precipitation es-
timates (SPEs) over complex terrain regions, and it has al-
ways been a challenge to quantify and correct such biases.
The combination of multiple SPEs and rain gauge obser-
vations would be beneficial to improve the gridded precip-
itation estimates. In this study, a two-stage blending (TSB)
approach is proposed, which firstly reduces the systematic
errors of the original SPEs based on a Bayesian correc-
tion model and then merges the bias-corrected SPEs with
a Bayesian weighting model. In the first stage, the gauge-
based observations are assumed to be a generalized regres-
sion function of the SPEs and terrain feature. In the sec-
ond stage, the relative weights of the bias-corrected SPEs
are calculated based on the associated performances with
ground references. The proposed TSB method has the abil-
ity to extract benefits from the bias-corrected SPEs in terms
of higher performance and mitigate negative impacts from
the ones with lower quality. In addition, Bayesian analysis
is applied in the two phases by specifying the prior distribu-
tions on model parameters, which enables the posterior en-
sembles associated with their predictive uncertainties to be
produced. The performance of the proposed TSB method is
evaluated with independent validation data in the warm sea-

son of 2010–2014 in the northeastern Tibetan Plateau. Re-
sults show that the blended SPE is greatly improved com-
pared to the original SPEs, even in heavy rainfall events. This
study can be expanded as a data fusion framework in the de-
velopment of high-quality precipitation products in any re-
gion of interest.

1 Introduction

High-quality precipitation data are fundamental to the un-
derstanding of regional and global hydrological processes.
However, it is still difficult to acquire accurate precipita-
tion information in the mountainous regions, e.g., the Tibetan
Plateau (TP), due to limited ground sensors (Ma et al., 2015).
Satellite sensors can provide precipitation estimates at a large
scale (Hou et al., 2014), but performances of available satel-
lite products vary among different retrieval methods and cli-
mate areas (Yong et al., 2015; Prat and Nelson, 2015; Ma et
al., 2016). Thus, it is suggested to incorporate precipitation
estimates from multiple sources into a fusion procedure with
full consideration of the strength of individual members and
associated uncertainty.
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Precipitation data fusion was initially reported by merg-
ing radar–gauge rainfall in the mid-1980s (Krajewski, 1987).
The Global Precipitation Climatology Project (GPCP) was
an earlier attempt for satellite–gauge data fusion, which
adopted a mean bias correction method and an inverse-error-
variance weighting approach to develop a monthly, 0.25◦

global precipitation dataset (Huffman et al., 1997). Another
popular dataset, the Climate Prediction Center Merged Anal-
ysis of Precipitation (CMAP), included global monthly pre-
cipitation with a 2.5◦× 2.5◦spatial resolution for a 17-year
period by merging gauges, satellites, and reanalysis data us-
ing the maximum likelihood estimation method (Xie and
Arkin, 1997). Since then, several blending approaches have
been developed to generate gridded rainfall products with
higher quality by merging gauge, radar, and satellite obser-
vations (e.g., Li et al., 2015; Beck et al., 2017; Xie and
Xiong, 2011; Yang et al., 2017; Baez-Villanueva et al., 2020).
Overall, these fusion methods follow a general concept by
eliminating biases in satellite and radar-based data and then
merging the bias-corrected satellite and radar estimates with
point-wise gauge observations. However, these efforts might
be insufficient for quantifying the predicted data uncertainty.
Some blended estimates are also partially polluted by the
poorly performing individuals (Tang et al., 2018).

This paper develops a new data fusion method that en-
hances the quantitative modeling of individual error struc-
tures, prevents potential negative impacts from lower quality
members, and enables an explicit description of a model’s
predictive uncertainty. In addition, a Bayesian concept for ac-
curate rainfall estimation is proposed based on these assump-
tions. The Bayesian analysis has the advantage of a statistical
post-processing idea that could yield a predictive distribution
with quantitative uncertainty (Renard, 2011; Shrestha et al.,
2015). For example, a Bayesian kriging approach, which as-
sumes a Gaussian process of precipitation at any location and
considers the elevation a covariate, is developed for merg-
ing monthly satellite and gauge precipitation data (Verdin
et al., 2015). A dynamic Bayesian model averaging (BMA)
method, which shows better skill scores than the existing
one-outlier-removed (OOR) method, is applied for satellite
precipitation data fusion across the TP (Ma et al., 2018; Shen
et al., 2014). Given the challenges of quantifying precipi-
tation biases in regions with complex terrain (Derin et al.,
2019), continuous efforts are required to extract the potential
merit of Bayesian analysis for this critical issue.

In this study, a two-stage blending (TSB) approach is
proposed for merging multiple satellite precipitation esti-
mates (SPEs) and ground observations. The experiment is
performed in the warm season (from May to September) dur-
ing 2010–2014 in the northeastern TP (NETP), where a rela-
tively denser network of rain gauges is available compared to
other regions of the TP. The TSB method is expected to help
with the exploration of multi-source/scale precipitation data
fusion in regions with complex terrain.

The remainder of this paper is organized below: Sect. 2 de-
scribes the experiment including the study region and precip-
itation data. Section 3 details the methodology, including the
TSB approach, and two existing fusion methods (i.e., BMA
and OOR). Results and discussions are presented in Sects. 4
and 5, respectively. The primary findings are summarized in
Sect. 6.

2 Study area and data

The study domain is located in the upper Yellow River basin
of the NETP (Fig. 1). As shown in the 90 m digital eleva-
tion data, the altitude ranges from 785 m in the northeast
to 6252 m in the southeast. The total annual precipitation is
around 500 mm, and the annual mean temperature is 0.7 ◦C
(Cuo et al., 2013). To avoid snowfall contamination in the
gauge observation in the cold season, satellite and ground
precipitation data from the warm season (May to September)
of 2010 to 2014 are collected for the case study.

Four mainstream SPEs are used, including Precip-
itation Estimation from Remotely Sensed Informa-
tion using Artificial Neural Networks – Climate Data
Record (PERSIANN-CDR) (Ashouri et al., 2015), Trop-
ical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA) 3B42 version 7 (3B42V7)
(Huffman et al., 2007), National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center (CPC)
Morphing Technique Global Precipitation Analyses Ver-
sion 1 (CMORPH) (Xie et al., 2017), and the Integrated
Multi-satellitE Retrievals for the Global Precipitation
Measurement (GPM) mission V06 Level 3 final run prod-
uct (IMERG) (Huffman et al., 2018). Basic information
on the SPEs is shown in Table 1. The IMERG has a
0.10◦× 0.10◦ resolution, and other SPEs have a spatial
resolution of 0.25◦× 0.25◦. To eliminate the scale difference
in the fusion process, IMERG is resampled from 0.10 to
0.25◦ using the nearest neighbor interpolation method in
advance.

The China Gauge-based Daily Precipitation Analy-
sis (CGDPA) is used as ground precipitation source. It is de-
veloped based on a rain gauge network of 2400 gauge sta-
tions in mainland China using a climatology-based optimal
interpolation and topographic correction algorithm (Shen
and Xiong, 2016). The 34 grid cells with the gauge sites
in the regions of interest are assumed as ground refer-
ences (GRs), and all of the grid cells are independent from
the Global Precipitation Climatology Center (GPCC) sta-
tions, which are used for bias correction of the TRMM/GPM-
era data (e.g., 3B42V7 and IMERG) and CMORPH (Huff-
man et al., 2007; Hou et al., 2014; Xie et al., 2017; Joyce et
al., 2004).
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Figure 1. Spatial map of the topography and GR network used in the study, where 27 black cells are used for model calibration and 7 red
cells are for model verification.

Table 1. Basic information of the original SPEs used in this study.

Short Full name Temporal Spatial Input Retrieval References
name and details resolution resolution data algorithm

PERCDR Precipitation Daily 0.25◦× 0.25◦ Warm Adaptive artificial Ashouri et al.
Estimation from season neural network (2015)
Remotely Sensed from 2010
Information using to 2014
Artificial Neural
Networks
(PERSIANN)
Climate Data
Record (CDR)

3B42V7 TRMM Multi- Daily 0.25◦× 0.25◦ Warm GPCC monthly Huffman et al.
satellite season gauge observation (2007)
Precipitation from 2010 to correct this bias
Analysis (TMPA) to 2014 of 3B42RT
3B42 Version 7

CMORPH NOAA Climate Daily 0.25◦× 0.25◦ Warm Morphing Xie et al. (2017)
Prediction Center season technique
(CPC) Morphing from 2010
Technique to 2014
(CMORPH) Global
Precipitation
Estimates Version 1

IMERG Integrated Multi- Daily 0.10◦× 0.10◦ Warm 2017 version of Huffman et al.
satellitE Retrievals season the Goddard (2018)
for the Global from 2010 profiling
Precipitation to 2014 algorithm
Measurement
(GPM) mission V06
Level 3 final run
product
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Figure 2. The diagram of the proposed TSB algorithm.

3 Methodology

3.1 TSB

The diagram of the TSB method is shown in Fig. 2. Stage 1
is designed to reduce the bias of the original SPEs based on
the GRs at the training sites with a Bayesian correction (BC)
procedure. In Stage 2, a Bayesian weighting (BW) model is
used to merge the bias-corrected SPEs.

3.1.1 Bias correction

(a) Model structure

Let R(st) denote near-surface precipitation at the GR cell s
and the t th day. The original SPEs and bias-corrected SPEs of
PERCDR, 3B42V7, CMORPH, and IMERG at the GR cell s
and the t th day are defined as (Y1(s, t), Y2(s, t), . . . ,Yp(s, t)
and (Y ′1(s, t), Y

′

2(s, t), . . . ,Y ′p(s, t)), respectively. For simpli-
fication purposes, and without losing generality, these data at
a particular GR cell and day will be denoted by R, (Y1–Y4),
and (Y ′1–Y ′4), while for all GR cells and days, they will be
denoted in bold R, (Y1–Y4), and (Y′1–Y′4).

In Stage 1, we perform a conditional modeling of GRs on
each SPE, i.e., the probabilistic distribution f (R) to improve
the accuracy of the original SPEs. Given that an appropriate
assumption of f (R) is necessary, the goodness-of-fit of the

lognormal, Gaussian, and gamma distribution for the GRs is
examined graphically by using a probability–probability (PP)
plot at the training sets (Fig. 3). It is found that the usage of
a gamma distribution is more reliable as the associated PP
plot is closer to the diagonal line than the others. For each
satellite product, the gamma distribution is parameterized as
follows:

R ∼ 0

(
αi,

αi

µi

)
, (1)

where i is the number of satellite products, and αi , µi , and
αi
µi

are the shape, mean, and rate parameters of the gamma
distribution, respectively. Let the ith SPE Yi and the associ-
ated terrain feature Z be covariates related to the GRs; the
mean µi in Eq. (1) can be described with generalized linear
regression of covariates Yi and Z, which is written as fol-
lows:

log(µi)= δi +βi · log(Yi)+ γi ·Z, (2)

whereZ, ranging from 0 to 1, is the normalized elevation fea-
ture of each site. θi = {αi , δi , βi , γi} (i = 1, . . . , 4) is summa-
rized as a parameter set and will be estimated in the Bayesian
framework. In the following, Z will be denoted as the collec-
tion of the normalized elevation feature for all training data.
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Figure 3. (a) The histogram density plot and (b) the corresponding probability–probability plot of GRs at the training grids in the warm
season of 2014 in the NETP, where the red, blue, and green lines shows the fitted gamma, lognormal, and Gaussian distribution, respectively.

According to Bayes’ theorem, the posterior probability
density function (PDF) of parameter set θi is expressed as

f (θi |R,Yi,Z)∝ f (R|θi,Yi,Z)f (θi) , (3)

where f (θi) is the prior distribution and implies parameter
information other than GR and SPE data, and f (R|θi , Yi , Z)
is the likelihood function that defines the conditional proba-
bility of GRs on the SPE and elevation. The priors of f (θi)
are initialized as a Cauchy distribution, with αi in terms of
its location at zero and scale as σαi in Eq. (4), and Gaussian
distribution, with δiβiγi in terms of its mean at zero and stan-
dard deviation (SD) at σδiσβiσγi in Eqs. (5)–(7), respectively.

αi ∼ Cauchy
(
0,σαi

)
(4)

δi ∼ Normal
(
0,σδi

)
(5)

βi ∼ Normal
(
0,σβi

)
(6)

γi ∼ Normal
(
0,σγi

)
(7)

Given that the assumption of the weakly informative priors
ensures the Bayesian inference in an appropriate range (Ma
et al., 2020b), the hyperpriors of σαi , σδiσβi , and σγi are spec-
ified as 2, 10, 10, and 10, respectively.

(b) Parameter estimation

The estimation of the posterior distribution f (θi |R, Yi , Z)
in Eq. (3) becomes difficult as its dimension grows with the
number of parameters (Renard, 2011; Ma and Chandrasekar,
2020). Robertson et al. (2013) obtained the maximum a pos-
teriori (MAP) solution for model parameters using a stepwise
method. Here, the Markov chain Monte Carlo (MCMC) tech-
nique with its sampling algorithm as the No-U-Turn Sam-
pler (NUTS) variant of Hamiltonian Monte Carlo in the Stan
program is performed to address this issue (Gelman et al.,
2013). The sampling records of model parameters are ob-
tained based on the training data in the warm season of 2014
in the NETP. Since we only have four parameters in this

model, the MCMC converges very quickly. Thus, we run a
chain of length 2000, removing the first 1000 iterations as
the warm-up period and retaining the second 1000 iterations.
The parameter samples of these 1000 iterations are the sam-
ples of the posterior distribution f (θi |R, Yi , Z).

(c) Bayesian inference

Based on the posterior distribution of parameter set θi of each
SPE, calculating the bias-corrected SPE R∗ at new site is of
interest. It can be quantitatively simulated from its posterior
distribution in Eq. (8) using the associated SPE Y ∗i , normal-
ized elevation Z∗i , and training data R, YiZ:

f
(
R∗|Y ∗i ,Z

∗

i ,R,Yi ,Z
)
=

∫
f
(
R∗,θi |Y

∗

i ,Z
∗

i ,R,Yi ,Z
)

dθi . (8)

Following the rule of joint probabilistic distributions, the
right term inside the integral of Eq. (8) can be written as

f
(
R∗,θi |Y

∗

i ,Z
∗

i ,R,Yi,Z
)
=f

(
R∗|Y ∗i ,Z

∗

i ,R,Yi,Z,θi
)

f
(
θi |Y

∗

i ,Z
∗

i ,R,YiZ
)
. (9)

Given that the new bias-corrected SPE R∗ is independent
from the training data, the first term of the right side in Eq. (9)
is transformed as

f
(
R∗|Y ∗i ,Z

∗

i ,R,Yi,Z,θi
)
= f

(
R∗|Y ∗i ,Z

∗

i ,θi
)
. (10)

Since the parameters θi are only dependent upon the training
data RYi , Z, the second term of the right side in Eq. (9) is
expressed as

f
(
θi |Y

∗

i ,Z
∗

i ,R,Yi,Z
)
= f (θi |R,Yi,Z) . (11)

Therefore, the predictive PDF of R∗ in Eq. (8) is written be-
low:

f
(
R∗|Y ∗i ,Z

∗

i ,R,Yi,Z
)
=

∫
f
(
R∗|Y ∗i ,Z

∗

i ,θi
)

f (θi |R,Yi,Z)dθi . (12)
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Since there is no general way to calculate the associated inte-
gral in Eq. (12), the prediction is performed using the MCMC
iterated samplings (Renard, 2011). As for each SPE, a nu-
merical algorithm is suggested below, where nsim stands for
the replicate of the post-convergence MCMC samples and is
set as 1000 in the case study. Thus, the predicted samples
for R∗ in Eq. (12) are iterated (k = 1 : nsim) as follows:

1. For the ith satellite product, randomly select a param-
eter sample θi = {αi , δi , βi , γi} from the MCMC sam-
ples.

2. Generate a valueR∗k from a 0(αi , αiµ∗i
), where log(µ∗i )=

δi +βi ·Y
∗

i + γi ·Z
∗.

Repeating step 1 and 2 nsim times, the samples R∗k (k = 1 :
nsim) are regarded as the realizations of the distribution of
the bias-corrected SPE associated with the satellite estima-
tion Y ∗i and normalized elevation Z∗. The mean value of the
samples R∗k , denoted by Y ′i , is regarded as the bias-corrected
SPE, and the associated credible intervals (e.g., 2.5 % and
97.5 % quantiles) are used for predictive uncertainty.

3.1.2 Data merging

Ideally, the blended SPE (B) should be close to GRs, i.e., R.
Given the gamma distribution of GRs in Step 1, the blended
SPE can be parameterized below:

B ∼ 0

(
αB ,

αB

µB

)
, (13)

where αB , µB , and αB
µB

are the shape, mean, and rate pa-
rameters, respectively. In this step, the bias-corrected SPEs
of four satellites are merged with weight parameters wi
(i = 1, . . . , 4), and ε is the residual error. The data fusion of
bias-corrected SPEs specified in the log scale is defined as
follows:

log(µB)=
4∑
i=1

log
(
Y ′i
)
·wi + ε (14)

4∑
i=1

wi = 1 (15)

ε ∼ Normal(0,σε) . (16)

Thereby, all parameters including αB ,wi , (i = 1, 2, . . . 4) and
σε can be estimated from the GRs and bias-corrected SPEs
at the training sites. The estimation process in a Bayesian
framework is similar to that described in Stage 1. After all
parameters are estimated, as similar to the Bayesian infer-
ence in Stage 1, the blended SPE at any site and time can
be derived with the bias-corrected SPEs and corresponding
weights using the MCMC iterations.

3.2 Comparison model

3.2.1 BMA

The BMA method is a statistical algorithm that merges pre-
dictive ensembles based on the individual SPE at the training
period in regions of interest. Here, the BMA result refers to
the ensemble SPE. Based on the law of total probability, the
conditional probability of the BMA data on the individual
SPEs is expressed as

f
(
BMA|Y1, . . ., Yp

)
=

p∑
i=1

f (BMA|Yi) ·wi, (17)

where f (BMA|Yi) is the predictive PDF given by the indi-
vidual SPE Yi , and wi is the corresponding weight. The log-
likelihood function l is applied to calculate the BMA param-
eter set ϑ , which is written as

l(ϑ)= log

(
p∑
i=1

wi × f (BMA|Yi)

)
. (18)

It is assumed that f (BMA|Yi) follows a Gaussian distri-
bution with its parameters as θi , and BMA is ideally close
to GRs at any site and time. Equation (18) is written as

l(ϑ)= log

(
p∑
i=1

wi × g (GR|θi)

)
, (19)

where g(·) stands for Gaussian distribution, and ϑ = {wi ,
θi , i = 1, . . . ,p}. The optimal BMA parameters ϑ are cal-
culated by maximizing the log-likelihood function using the
expectation–maximization algorithm. Before executing the
BMA method, both GR and SPE data are preprocessed us-
ing the Box–Cox transformation to ensure that f (BMA|Yi)
(i = 1, . . . , 4) is close to Gaussian distribution. As the BMA
weights, wi , i = 1, . . . , 4 are obtained, the BMA data are cal-
culated by weighted sum of the original SPEs at any site and
time. More details of the BMA method can be found in Ma
et al. (2018).

3.2.2 OOR

The OOR method is defined as the arithmetic mean of the in-
dividual SPEs by removing the feature with the largest offset.
It is written as

OOR=
1

p− 1

p−1∑
i=1

Yi, (20)

where Yi is the individual SPE, and p is the number of SPEs.
The original SPE with the largest offset among the satellite
products is removed, and the average of the remaining SPE
is regarded as the OOR result.
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3.3 Error analysis

To assess the performance of the proposed TSB method, sev-
eral statistical error indices including the root mean square
error (RMSE), normalized mean absolute error (NMAE), and
the Pearson’s correlation coefficient (CC) are used in this
study. The specific formulas of these metrics can be found
below:

RMSE=
√
< (Sim−Obs)2 > (21)

NMAE=
< |Sim−Obs|>

< Obs>
× 100% (22)

CC=
∑
[(Sim−< Sim>)(Obs−< Obs>)]√∑

(Sim−< Sim> )2
√∑

(Obs−< Obs> )2
,

(23)

where “Sim” and “Obs” stand for the simulated and observed
data, respectively; the angle brackets stand for the sample
average.

4 Results

In the experiment, model parameters are calibrated on the
daily precipitation of warm season in 2014, where GR data
at the 27 black grids in Fig. 1 are randomly selected for train-
ing the model. The model validation is performed under two
scenarios: Scenario 1 will validate the model in space based
on the data of the same period in validation stations (i.e., the
seven red grids in Fig. 1), and Scenario 2 will validate the
model in time based on the data of warm season from 2010
to 2013 at the same 27 black grids in Fig. 1. In addition,
we consider a 10-fold cross-validation in space by randomly
selecting 7 sites for model validation and the data of the re-
maining 27 sites as the training set. The performance of the
TSB approach is further compared with BMA and OOR in
the two scenarios.

4.1 Parameter estimates

Figures 4 and 5 show the posterior distribution curves of the
posterior parameters in Stage 1 and 2, respectively. As for
each parameter in the bias-corrected process, the individual
SPEs including PERCDR, 3B42V7, CMORPH, and IMERG
show a similar pattern (Fig. 4a to d). This shows that the bias
structures of the original SPEs have similar characteristics.
For all SPEs, the distribution mass of parameter βi is com-
pletely on the right side of zero, which implies that a sys-
tematic bias exists for all satellite products. When looking at
the effects of elevation, the posterior distribution of parame-
ter γi for PERCDR, 3B42V7, and CMORPH (Fig. 4a–c) has
a value zero in the middle range of the distribution, which
implies that elevation may have little impact on these three
satellite products, while for IMERG in Fig. 4d, the distri-
bution mass of parameter γi is mostly on the right side of

Table 2. Summary of statistical error indices (i.e., RMSE, NMAE,
and CC) of the original, bias-corrected, and blended SPEs in two
scenarios in the NETP.

Scenarios Product RMSE NMAE CC
(mm d−1) (%)

Scenario 1

PERCDR 7.15 70.2 0.382
3B42V7 8.56 80.3 0.383
CMORPH 6.25 60.6 0.556
IMERG 6.60 62.9 0.506
BC-PER 6.00 63.5 0.346
BC-V7 5.83 61.4 0.408
BC-CMO 5.43 56.3 0.533
BC-IME 5.44 56.0 0.530
Blended SPE 5.36 54.6 0.570

Scenario 2

PERCDR 9.19 79.3 0.261
3B42V7 8.38 71.3 0.403
CMORPH 7.20 61.9 0.493
IMERG 7.64 65.1 0.462
BC-PER 7.03 64.5 0.253
BC-V7 6.69 61.3 0.395
BC-CMO 6.41 58.2 0.480
BC-IME 6.44 57.7 0.470
Blended SPE 6.37 56.7 0.513

zero, which implies a clear effect of elevation on this satel-
lite product. In the data fusion step (Fig. 5), IMERG has the
highest weight and PERCDR has the lowest weight among
the four bias-corrected SPEs. Moreover, 3B42V7 and PER-
CDR have a similar contribution in the blended result. Ba-
sically, Bayesian analysis is able to simulate the parameter
uncertainty in contrast to traditional statistical methods.

4.2 Model validation under two scenarios

Table 2 presents the summary of the statistical error indices
including RMSE, NMAE, and CC of the original (i.e., PER-
CDR, 3B42V7, CMORPH and IMERG), bias-corrected (i.e.,
BC-PER, BC-V7, BC-CMO, and BC-IME), and blended
SPE under two scenarios in the NETP. Subsection 4.2.1
and 4.2.2 show the performance of the model validation un-
der Scenario 1 and 2, respectively.

4.2.1 Scenario 1

The original SPEs show large biases, with the RMSE,
NMAE, and CC indices ranging from 6.25–8.56 mm d−1,
60.6 %–80.3 %, and 0.382–0.556, respectively. 3B42V7 has
the worst skill, with the highest RMSE of 8.56 mm d−1,
the highest NMAE of 80.3 %, and the second lowest CC
of 0.383. CMORPH shows the best performance, with the
lowest RMSE of 6.25 mm d−1, the lowest NMAE of 60.6 %,
and the highest CC of 0.556, which presents its superiority
compared with the other original SPEs in the NETP. Based
on the BC model, all the bias-corrected SPEs have better
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Figure 4. The PDF curves of posterior parameter sets with regard to (a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG in the bias
correction process of Stage 1.

Figure 5. The PDF curves of posterior parameter sets in the data
fusion process of Stage 2.

agreement with GRs compared with the original SPEs. Their
RMSE scores range from 5.43 to 6 mm d−1 and decrease by
13 %–31.8 %, and their NMAE scores vary from 56.0 % to
63.5 %, and decline by 7.1 % to 23.5 %, respectively. Mean-
while, their CC values range from 0.346 to 0.533 after bias
correction. With the BW model, the blended SPE is closer

to GRs in terms of RMSE, NMAE, and CC at 5.36 mm h−1,
54.6 %, and 0.57, respectively, compared with both the orig-
inal and bias-corrected SPEs. The RMSE and NMAE values
of the blended SPE decrease by 14.3 %–37.4 % and 10 %–
32 %, respectively, and the CC value increases by 2.4 %–
49.2 %, accordingly, compared to the original SPEs. In addi-
tion, the RMSE, NMAE, and CC of the blended SPE increase
by 1.4 %–10.8 %, 2.5 %–14.1 %, and 6.8 %–64.8 %, respec-
tively, compared with the bias-corrected SPEs. This proves
that the blended SPE exhibits higher quality after Stage 2,
due to the ensemble contribution of the bias-corrected SPEs.
The relative weight of BC-PER, BC-V7, BC-CMO, and BC-
IME is 0.02, 0.038, 0.295, and 0.647, respectively. The BC-
IME and BC-PER have the highest and lowest weights, re-
spectively, and the BC-V7 and BC-CMO rank between BC-
IME and BC-PER (Fig. 6a). As for the original SPEs, it is
found that there is an overestimation when the rainfall is less
than 7.6 mm d−1 and an underestimation when the rainfall
is more than 7.6 mm d−1. Based on the proposed TSB ap-
proach, the blended SPE is closer towards the GRs (Fig. 6b
and c). Meanwhile, BC-PER seems to be clearly different
from the other bias-corrected SPEs, and up to this point in
the study has shown little value for it to be kept in considera-
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tion in the merging process. However, it is worth noting that
PERCDR can in fact be informative on a case-by-case basis.

4.2.2 Scenario 2

The proposed TSB approach is also validated in Scenario 2,
where the blended SPE shows better performance in terms
of its RMSE, NMAE, and CC at 6.37 mm h−1, 56.7 %, and
0.513, respectively, compared with both the original and
bias-corrected SPEs. It shows that the original SPEs includ-
ing PERCDR, 3B42V7, CMORPH, and IMERG have high
RMSE and NMAE scores in terms of 7.20–9.19 mm h−1 and
61.9 %–79.3 %, respectively, and low CC values in terms
of 0.261–0.493. After the bias correction, the four satellite
products have increased their performance, with lower er-
ror indices than the original SPEs. The RMSE indices of
the bias-corrected SPEs vary from 6.41 to 7.03 mm h−1, and
the corresponding NMAE and CC indices are from 57.7 %
to 64.5 % and from 0.253 to 0.48, respectively. Based on
the data fusion process, the error indices of the blended
SPE including RMSE, NMAE, and CC are 6.37 mm h−1,
56.7 %, and 0.513, respectively. It is found that the RMSE
and NMAE values of the blended SPE decreased by 11.5 %–
30.7 % and 8.4 %–28.5 %, respectively, and the CC value in-
creases by 4.1 %–96.6 % compared with the original SPEs.

As learned from the two validated scenarios, it is proven
that the TSB approach has the potential to improve the satel-
lite rainfall accuracy, and it has the ability to extract benefits
from SPEs in terms of higher performances and mitigate poor
impacts from the ones with lower quality.

4.3 Cross-validation

Figures 7 and 8 show the statistics of evaluation scores of
RMSE, NMAE, and CC for the original SPEs and blended
estimates at the validation grids, with 10 random tests of the
gauge locations in the warm season of 2014. For each test,
seven grid sites are randomly selected from the 34 grid cells
and used for model verification, and the remaining 27 grid
sites are used for training the model.

As for the blended SPE, it achieves similar scores at the
validation grids among the 10-fold random samples. The
blended SPE shows better skill compared with the origi-
nal SPEs for each test in terms of RMSE, NMAE, and CC
(Fig. 7). Statistically, the mean values of RMSE, NMAE,
and CC for the blended SPE are 5.75 mm h−1, 57.1 %,
and 0.551, respectively (Table 3). The averaged improve-
ment ratios of RMSE for the blended SPE are 27.6 %,
25 %, 10.6 %, and 13 % compared to the PERCDR, 3B42V7,
CMORPH and IMERG, respectively, and a similar perfor-
mance is seen for NMAE, with average improvement ratios
of 24.5 %, 22.3 %, 7.8 %, and 7.3 %, respectively (Table 4).
In summary, the 10-fold cross-validation further verified that
the blended SPE has a higher accuracy of gridded precipita-
tion than the original satellite products.

Table 3. Summary of the mean values of RMSE, NMAE, and CC
for the original and blended SPEs for 10 random verified tests in the
warm season of 2014 in the NETP.

Product RMSE NMAE CC
(mm d−1) (%)

PERCDR 7.96 75.9 0.330
3B42V7 7.72 73.8 0.424
CMORPH 6.59 63.1 0.520
IMERG 6.78 62.7 0.518
Blended SPE 5.75 57.1 0.551

4.4 Model comparison with BMA and OOR

To assess the performance of the proposed TSB approach,
it is beneficial to compare the TSB result with the existing
fusion approach. In this study, the BMA approach makes use
of four original satellite data and the corresponding GR data
at the 27 black grids shown in Fig. 1 in the warm season
of 2014 to estimate the optimal BMA weights. In Scenario 1,
the BMA data are calculated based on the BMA weights and
the original SPEs from the seven red grids in the warm season
of 2014, and the OOR data are calculated based on the OOR
method using the original SPE data from the seven red grids
in the warm season of 2014. In Scenario 2, the BMA data
are calculated based on the BMA weights and the original
SPEs from the 27 black grids in the warm season from 2010
to 2013, and the OOR result is calculated based on the OOR
method and the original SPE data from the 27 black grids
in the warm season from 2010 to 2013. Herein, we compare
the blended SPE with both the BMA and OOR predictions in
two scenarios, and their statistical error summary is shown in
Table 5.

In Scenario 1, the TSB method achieves better skill scores,
with RMSE, NMAE, and CC values of 5.36 mm d−1, 54.6 %,
and 0.57, respectively, as compared with the BMA and OOR
approaches. In addition, OOR shows the worst performance
in terms of RMSE, NMAE, and CC at 6.22 mm d−1, 59.7 %,
and 0.537, respectively. BMA shows better skill than OOR
but worse skill than TSB, in terms of the RMSE, NMAE,
and CC values at 5.78 mm d−1, 56.6 %, and 0.562, respec-
tively. In Scenario 2, a similar performance is found for the
TSB approach, which has a lower RMSE (6.37 mm d−1) and
NMAE (56.7 %) and higher CC (0.513) than both the OOR
and BMA results. Basically, as compared with the two exist-
ing fusion algorithms (BMA and OOR) in the two validated
scenarios, it is confirmed that the TSB method has the advan-
tage of combining the original SPEs and reducing the bias of
the satellite precipitation retrievals. It is noted that the daily
precipitation estimates follow a gamma distribution (Eq. 1)
in this study. In future work it would be interesting to exam-
ine whether the gamma distribution can be used in the BMA
algorithm without converting it to a Gaussian distribution.
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Figure 6. (a) The box-and-whisker plots of relative weights for the bias-corrected SPEs, (b) the scatter plots between GRs and the original
SPEs, and (c) the PDF of daily rainfall for the GRs and original and blended SPEs with various rain intensities in Scenario 1 in the NETP.

Table 4. Mean improvement ratios of statistical error indices of the blended SPE, in terms of RMSE, NMAE, and CC compared with the
original SPES for 10 random verified tests in the warm season of 2014 in the NETP.

Index PERCDR 3B42V7 CMORPH IMERG

Improvement RMSE (mm d−1) 27.6 25.0 10.6 13.0
ratio (%) NMAE (%) 24.5 22.3 7.8 7.3

CC 71.1 39.8 11.1 10.7

Table 5. Summary of statistical error indices (i.e., RMSE, NMAE,
and CC) for three fusion methods (i.e., OOR, BMA, and TSB) in
the two scenarios in the NETP.

Scenarios Method RMSE NMAE CC
(mm d−1) (%)

Scenario 1
OOR 6.22 59.7 0.537
BMA 5.78 56.6 0.562
TSB 5.36 54.6 0.570

Scenario 2
OOR 7.04 59.9 0.498
BMA 6.79 58.8 0.500
TSB 6.37 56.7 0.513

4.5 Model performance on a heavy rainfall case

Local recycling plays a premier role in the moisture sources
of rainfall extremes in the NETP (Ma et al., 2020a). The
22 September 2014 event was a storm that represents the
local heavy rainfall pattern in the warm season. Consider-
ing that accurate precipitation estimates for extreme weather
are very important for flood hazard mitigation, we investi-
gate the utility of the proposed TSB approach for this event to
quantify its performance in an extreme rainfall case (Fig. 9a).
The relative weights of BC-PER, BC-V7, BC-CMO, and BC-
IME for the blended SPE are 0.264, 0.14, 0.191, and 0.405,
respectively, for this event (Fig. 9b). It is found that the
IMERG data have the biggest contribution, and the 3B42V7

Table 6. Summary of statistical error indices (i.e., RMSE, NMAE,
and CC) for the original and blended SPEs during a heavy rainfall
event of 22 September 2014 in the NETP.

Product RMSE NMAE CC
(mm d−1) (%)

PERCDR 8.18 47.0 0.850
3B42V7 9.24 52.8 0.683
CMORPH 8.27 48.5 0.734
IMERG 8.63 49.1 0.642
Blended SPE 5.23 31.5 0.837

and CMORPH data have a nearly similar contribution in the
blended SPE.

Table 6 reports the evaluation statistics reflecting the
blended performance for this case. It shows that the RMSE,
NMAE, and CC values of the original SPEs range from
8.18–9.24 mm d−1, 47 %–52.8 %, and 0.642–0.85, respec-
tively. Compared to the original SPEs, the blended SPE has
a lower RMSE of 5.23 mm d−1, lower NMAE of 31.5 %,
and higher CC of 0.837, respectively. The RMSE and
NMAE values of the blended SPE decrease by 36.1 %–
43.4 % and 33 %–40.3 %, respectively. The performance
of the TSB approach is further explored at three gauge
cells (i.e., IDs 56171, 56173, 56067), with the top three
daily rainfall records on 22 September 2014. Figure 10
shows the PDF curves of blended samples at the three
sites in this case. It demonstrates that the blended SPE
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Figure 7. Statistical error indices of the original and blended SPEs
for 10 random verified tests in the warm season of 2014 in the
NETP: (a) RMSE, (b) NMAE, and (c) CC.

has the advantage in quantifying the predictive uncer-
tainty on rainfall extremes at each site. For example, at
ID 56171, the rainfall estimates that are derived from the
original SPEs are 19.8 mm (PERCDR), 35.3 mm (3B42V7),
26 mm (CMORPH), and 21.2 mm (IMERG), respec-
tively. 3B42V7 shows an overestimation, while PERCDR,
CMORPH, and IMERG underperform the daily rainfall at
the corresponding pixel (Fig. 10a). Based on the proposed
TSB approach, the mean value of the merging estimates is
28 mm d−1. At IDs 56173 and 56067, the mean values of
the blended SPE are 26.2 and 19.7 mm d−1, respectively,
and they are close to GRs with daily amounts of 30.9 and
28.7 mm, respectively (Fig. 10b and c). Overall, these anal-
yses reveal that the TSB algorithm could not only quantify
its predictive uncertainty, but also improve the daily rainfall
amount, even under heavy rainfall conditions.

Figure 8. The box-and-whisker plots of improvement ratios of
statistics for the blended SPE compared with the original SPEs, in-
cluding PERCDR, 3B42V7, CMORPH, and IMERG for 10 random
verified tests in the warm season of 2014 in the NETP: (a) RMSE,
(b) NMAE, and (c) CC.

4.6 Model application in a spatial domain

It is important to explore the Bayesian ensembles at unknown
sites in the domain. As learned from Fig. 11, it seems that
each of the original SPEs can capture the spatial pattern of
daily mean precipitation in the warm season but might fail in
the representation of the precipitation amount, partly because
of the satellite retrieval bias in complex terrain and limited
GR network. Thus, the TSB method is further applied in the
region of interest to demonstrate its performance for daily
precipitation in the warm season of 2010–2014 in the NETP.
It is found that the blended SPE shows high precipitation in
the southwest and low precipitation in the northwest, as well
as moderate precipitation in the eastern region. In addition,
as compared with the original SPEs, higher values disappear
from the spatial map except in the southwest corner for the
blended SPE. The possible reason is that daily mean rain-
fall is the highest in the southwest corner for most SPEs,
and larger value exists after the TSB approach. Meanwhile,
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Figure 9. (a) Spatial pattern of gauge-based measurements during a heavy rainfall case of 22 September 2014 in the NETP, where the site
IDs 56171, 56173, and 56067 report the top three daily rainfall amounts of 32.3, 30.9, and 28.7 mm, respectively. (b) The corresponding
box-and-whisker plots of relative weights of the bias-corrected SPEs in the data fusion process.

Figure 10. The PDF curves of blended SPE samples and the corresponding mean value at three gauge-based grids for a heavy rainfall case
on 22 September 2014: (a) ID 56171, (b) ID 56173, and (c) ID 56067. The original SPEs and GRs at each pixel are also indicated in each
panel.

the predictive Bayesian uncertainties including lower (2.5 %)
and upper (97.5 %) quantiles are displayed from Fig. 12b to c
to illustrate the blending variation in this application.

5 Discussion

In spite of the superior performance of the TSB algorithm,
some issues still need to be considered in practical applica-
tions, detailed in the following.

Because of limited knowledge on the influences of com-
plex terrain and local climate on the rainfall patterns in the
study area, the elevation feature is considered in the first
stage. Table 7 quantifies the impact of the elevation covariate
on the bias-corrected and blended SPE performances in Sce-
nario 1 in the warm season of 2014 in the NETP. It is found
that the inclusion of the elevation feature provides slightly
better skill compared with the results without terrain infor-
mation in this experiment. Considering that deep convective
systems occurring near the mountainous area have an effect
on the precipitation cloud (Houze, 2012), more attempts are

required to improve the orographic precipitation in the TP in
future.

The data fusion application is based on four mainstream
SPEs, and BC-IME and BC-PER show the best and worst
performances among the bias-corrected SPEs in Stage 1. It
raises a question as to why the first stage of bias correc-
tion is not simply applied and then the best-performing bias-
corrected SPE selected as the final product. To address this
issue, we investigate the statistical error differences among
the BC-IME and blended SPE before and after the removal
of BC-PER for 10-fold cross validation in the warm season
of 2014 in the NETP (Fig. 13). It is beneficial to involve
the Stage 2 in the TSB method because the blended SPE
performs better skill than the best-performed bias-corrected
SPE (i.e., BC-IME) in Stage 1. The primary reason is that
the BW model is designed to integrate various types of bias-
corrected SPE, which is limited in the BC model. In addition,
both the blended SPEs with and without the consideration of
PERCDR show similar performances of the RMSE, NMAE,
and CC indices (Fig. 13). It implies that the TSB approach
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Figure 11. Spatial patterns of the daily mean precipitation in terms of the original SPEs in the warm season of 2010 to 2014 in the NETP:
(a) PERCDR, (b) 3B42V7, (c) CMORPH, and (d) IMERG.

Figure 12. Spatial patterns of the blended SPE in terms of (a) mean, (b) lower quantile (2.5 %), and (c) upper quantile (97.5 %) of daily
mean precipitation in the warm season of 2010 to 2014 in the NETP.

has the advantage of not being impacted by the poor-quality
individuals (e.g., BC-PER), partly because the BW model
can reallocate the contribution of the bias-corrected SPEs
based on their corresponding bias characteristics.

In addition, as calculating the blended result at any new
sites, the model parameters derived from the training grid
sites are assumed to be applicable in the whole domain. Since
we have a relatively dense GR network in the survey region,
the current assumption is acceptable according to the perfor-
mance of the blended SPE. It is helpful to give some guide-
lines on how many training sites are needed to apply the
TSB approach in a region with complex terrain and limited
GRs. The sensitivity analysis of the number of training grid
cells on the performance of blended SPE at the validation
grids is explored in Fig. 14. As the number of training sites
is increasing, there is a decreasing trend for the RMSE and
NMAE values but a slight increasing trend for the CC value.

It seems that the performance of the blended SPE becomes
similar as the number of training sites increases to 21. We
admit that more information from the ground observations
would be more beneficial for the blended gridded product in
the region of interest. It is noted that, if extended to the TP or
global scale, the extension of model parameters and training
sites should be carefully considered. For instance, there are
few gauges installed in the western and central TP (Ma et al.,
2015); it might be a potential risk to directly apply this fusion
algorithm to these regions.

The aim of this study is not to model rainfall processes in a
target domain but to propose an idea to extract valuable infor-
mation from available SPEs and provide more reliable grid-
ded precipitation in the high–cold region with complex ter-
rain. Considering its spatiotemporal differences and the exis-
tence of many zero-value records, rainfall is extremely diffi-
cult to observe and predict (Yong et al., 2015; Bartsotas et al.,
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Table 7. Summary of statistical error indices (i.e., RMSE, NMAE,
and CC) for bias-corrected and blended SPEs with and without con-
sideration of terrain feature as a covariate in the TSB method in
Scenario 1 in the NETP.

Product Type RMSE NMAE CC
(mm d−1) (%)

BC-PER
No terrain 5.98 63.3 0.361
Terrain 6.00 63.5 0.346

BC-V7
No terrain 5.83 61.5 0.409
Terrain 5.83 61.4 0.408

BC-CMO
No terrain 5.48 56.9 0.520
Terrain 5.43 56.3 0.533

BC-IME
No terrain 5.48 56.3 0.519
Terrain 5.44 56.0 0.530

Blended SPE
No terrain 5.41 55.0 0.557
Terrain 5.36 54.6 0.570

2018). With regard to the probability of rainfall occurrence,
a zero-inflated model, which is coherent with the empirical
distribution of rainfall amount, is expected to improve the
proposed TSB algorithm. Also, hourly or even instantaneous
precipitation intensity is extremely vital for flood prediction,
which should be specifically designed when extending this
fusion framework in the next step.

6 Summary and prospects

This study proposes a TSB algorithm for multi-SPE data fu-
sion. A preliminary experiment is conducted in the NETP
using four mainstream SPEs (i.e., PERCDR, 3B42V7,
CMORPH, and IMERG) to demonstrate the performance of
this TSB approach. Primary conclusions are summarized be-
low:

1. This TSB algorithm has two stages and involves the
BC and BW models. It is found that this blended method
is capable of involving a group of original SPEs. Mean-
while, it provides a convenient way to quantify the fu-
sion performance and the associated uncertainty.

2. The experiment shows that the blended SPE has bet-
ter skill scores compared to the original SPEs in the two
validated scenarios. The 10-fold cross validation in Sce-
nario 1 further confirms the superiority of the TSB al-
gorithm. In addition, it is found that the TSB method
outperforms another two existing fusion methods (i.e.,
BMA and OOR) in the two scenarios. The performance
of this fusion method is also demonstrated for a heavy
rainfall event in the region of interest.

Figure 13. Statistical error indices (i.e., RMSE, NMAE, and CC)
of the best-performing bias-corrected SPE (i.e., BC-IME, black)
and blended SPE before (red) and after (blue) removing the worst-
performing BC-PER, for 10 random verified tests in the warm sea-
son of 2014 in the NETP.

Figure 14. Statistical error indices (i.e., RMSE, NMAE, and CC)
of the blended SPE at the validation grid locations in terms of a
different number of training sites in the warm season of 2014 in
the NETP.

Hydrol. Earth Syst. Sci., 25, 359–374, 2021 https://doi.org/10.5194/hess-25-359-2021



Y. Ma et al.: A two-stage blending approach for merging multiple satellite precipitation estimates 373

3. The application proves that this algorithm can allocate
the contribution of individual SPEs to the blended re-
sult because it is capable of ingesting useful informa-
tion from uneven individuals and alleviating potential
negative impacts from the poorly performing members.

Overall, this work provides an opportunity for merging SPEs
in the high–cold region with complex terrain. The evaluation
analysis of this TSB method for extended regions (e.g., TP)
in terms of higher temporal resolution (e.g., hourly) will be
performed in a future study.
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