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Abstract. Bivariate wavelet coherency is a measure of cor-
relation between two variables in the location–scale (spatial
data) or time–frequency (time series) domain. It is particu-
larly suited to geoscience, where relationships between mul-
tiple variables differ with locations (times) and/or scales (fre-
quencies) because of the various processes involved. How-
ever, it is well-known that bivariate relationships can be mis-
leading when both variables are dependent on other vari-
ables. Partial wavelet coherency (PWC) has been proposed
to detect scale-specific and localized bivariate relationships
by excluding the effects of other variables but is limited
to one excluding variable and provides no phase informa-
tion. We aim to develop a new PWC method that can deal
with multiple excluding variables and provide phase infor-
mation. Both stationary and non-stationary artificial datasets
with the response variable being the sum of five cosine waves
at 256 locations are used to test the method. The new method
was also applied to a free water evaporation dataset. Our
results verified the advantages of the new method in cap-
turing phase information and dealing with multiple exclud-
ing variables. Where there is one excluding variable, the
new PWC implementation produces higher and more accu-
rate PWC values than the previously published PWC imple-
mentation that mistakenly considered bivariate real coher-
ence rather than bivariate complex coherence. We suggest
the PWC method is used to untangle scale-specific and lo-
calized bivariate relationships after removing the effects of
other variables in geosciences. The PWC implementations
were coded with Matlab and are freely accessible (https:

//figshare.com/s/bc97956f43fe5734c784, last access: 14 Jan-
uary 2021).

1 Introduction

Geoscience data, such as the spatial distribution of soil mois-
ture in undulating terrains and time series of climatic vari-
ables, usually consist of a variety of transient processes
with different scales or frequencies that may be localized in
space or time (Torrence and Compo, 1998; Si, 2008; Graf
et al., 2014). For example, time series of air temperature
usually fluctuate periodically at different scales (e.g., daily
and yearly), but abrupt changes in air temperature (e.g., ex-
tremely high or low) may occur at certain time points as a
result of extreme weather and climate events (e.g., heat and
rain). Wavelet methods are widely used to detect localized
features of geoscience data.

Wavelet analyses are based on the wavelet transform us-
ing the mother wavelet function, which expands spatial data
(or time series) into location–scale (or time–frequency) space
for identification of localized intermittent scales (or frequen-
cies). For convenience, we will mainly refer to location and
scale irrespective of spatial or time series data unless oth-
erwise mentioned. Bivariate wavelet coherency (BWC) is
widely accepted as a tool for detecting scale-specific and
localized bivariate relationships in a range of areas in geo-
science (Lakshmi et al., 2004; Si and Zeleke, 2005; Das and
Mohanty, 2008; Polansky et al., 2010; Biswas and Si, 2011).
The BWC partitions correlation between two variables into
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different locations and scales, which are different from the
overall relationships at the sampling scale as shown by the
traditional correlation coefficient. For example, BWC anal-
ysis indicated that soil water content of a hummocky land-
scape in the Canadian Prairies was negatively correlated with
soil organic carbon content at a slope scale (50 m), but they
were positively correlated at a watershed scale (120 m) in
summer because of the different processes involved at dif-
ferent scales (Hu et al., 2017b). Because the positive cor-
relation may cancel out with the negative one at different
scales and/or locations, the traditional correlation coefficient
between soil water content and soil organic carbon content
does not differ significantly from zero, which can be mis-
leading.

Recently, Hu and Si (2016) extended BWC to multiple
wavelet coherence (MWC) that can be used to untangle mul-
tivariate (≥ 3 variables) relationships in multiple location–
scale domains. This method has been successfully used in
hydrology (Hu et al., 2017b; Nalley et al., 2019; Su et al.,
2019; Gu et al., 2020; Mares et al., 2020) and other areas
such as soil science (Centeno et al., 2020), environmental
science (Zhao et al., 2018), meteorology (Song et al., 2020),
and economics (Sen and Choudhury, 2020). The MWC ap-
plication has shown that an increased number of predictor
variables does not necessarily explain more variations in the
response variable, partly because predictor variables are usu-
ally cross-correlated (Hu and Si, 2016). For the same rea-
son, bivariate relationships can be misleading if the predic-
tor variable is correlated with other variables that control
the response variable. Partial correlation analysis is one such
method to avoid the misleading relationships resulting from
the interdependence between predictor and other variables
(Kenney and Keeping, 1939). For example, soil water con-
tent of the root zone was found to be positively related to
grass yield throughout the year in a small watershed on the
Chinese Loess Plateau (Hu et al., 2017a). This was because
higher grass yield usually coincided with finer soils that usu-
ally have higher water-holding capacity. After removing the
effects of other factors including sand content, partial cor-
relation analysis indicated that soil water content was neg-
atively affected by grass yield during growing seasons and
not affected by grass yield during non-growing seasons as
expected. The study of Hu et al. (2017a) clearly demon-
strated that partial correlation analysis can be an effective
method to avoid misleading relationships between response
(e.g., soil water content) and predictor variables (e.g., grass
yield) when the latter was interdependent with other vari-
ables (e.g., sand content). However, the extension of partial
correlation to the multiple location–scale domain is limited.
In order to better understand the bivariate relationships at var-
ious scales and locations, BWC needs to be extended to par-
tial wavelet coherency (PWC) by eliminating the effects of
other variables.

BWC was extended to PWC by Mihanoviæ et al. (2009).
Their method has been widely used in the areas of marine sci-

ence (Ng and Chan, 2012a, b), meteorology (Tan et al., 2016;
Rathinasamy et al., 2017), and economics (Aloui et al., 2018;
Altarturi et al., 2018; Wu et al., 2020), as well as in the study
of greenhouse gas emissions (Jia et al., 2018; Li et al., 2018;
Mutascu and Sokic, 2020), among others. For example, PWC
analysis indicated that the Southern Oscillation Index and Pa-
cific Decadal Oscillation did not affect precipitation across
India, while this was misinterpreted by the BWC analysis
because of their interdependence on Niño 3.4, which af-
fects precipitation (Rathinasamy et al., 2017). Unfortunately,
the PWC implementation in many previous studies (Ng and
Chan, 2012b; Rathinasamy et al., 2017; Aloui et al., 2018;
Altarturi et al., 2018; Jia et al., 2018; Li et al., 2018; Mutascu
and Sokic, 2020; Wu et al., 2020) was based on an incorrect
Matlab code developed by Ng and Chan (2012a), who might
have misinterpreted the equation of Mihanoviæ et al. (2009)
and mistakenly used bivariate real coherence rather than bi-
variate complex coherence for calculating PWC. Moreover,
Mihanoviæ et al. (2009) considered only one excluding vari-
able (i.e., the variable that influences the response variable
is excluded) and did not include the phase angle difference
between response and predictor variables. The PWC values
between response and predictor variables can still be mis-
leading if more than one variable is interdependent with the
predictor variable. This is especially true if these variables
are correlated with the predictor variable at different loca-
tions and/or scales. Without phase information, it is hard to
tell whether the correlation at a location and scale is positive
or negative.

As an extension of previous studies (Mihanoviæ et al.,
2009; Hu and Si, 2016), this paper aims to develop a PWC
method that considers more than one excluding variable and
provides phase information. This new method reveals the
magnitude and type of bivariate relationships after remov-
ing the effects from all potentially interdependent variables.
We expect that the new method will produce more accu-
rate PWC values than the implementation of Ng and Chan
(2012a), where there is one excluding variable. The new
method is an extension of the multivariate partial coherency
in the frequency (scale) domain (Koopmans, 1974). The pro-
posed method is first tested with artificial datasets following
Yan and Gao (2007) and Hu and Si (2016) to demonstrate its
capability of capturing the known relationships of the artifi-
cial data. Then it is applied to a real dataset, i.e., time series
of free water evaporation at the Changwu site in China (Hu
and Si, 2016). Finally, the advantages and weaknesses of the
new method are discussed by comparing it with the previous
PWC method (Mihanoviæ et al., 2009) and implementation
(Ng and Chan, 2012a).

2 Theory

Wavelet analysis is based on the wavelet transform, which
includes continuous wavelet transform and discrete wavelet
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transform. While the discrete wavelet transform is mainly
used for data compression and noise reduction, the contin-
uous wavelet transform is widely used for extracting scale-
specific and localized features, as in the case of this study
(Grinsted et al., 2004). The wavelet transform decomposes
the spatial data (or time series) into a set of location- and
scale-specific wavelet coefficients, which are scaled (con-
tracted or expanded) and shifted versions of mother wavelets.
Different mother wavelets are available for wavelet trans-
form, among which the Morlet wavelet, composed of a com-
plex exponential multiplied by a Gaussian window, pro-
vides a good balance between location and scale localiza-
tion. Therefore, continuous wavelet transform with the Mor-
let wavelet is suitable for transforming spatial data (or time
series) into a location–scale (or time–frequency) domain,
which allows us to identify both location-specific amplitude
and phase information of wavelet coefficients at different
scales (Torrence and Compo, 1998). Wavelet coefficients and
their complex conjugates are used to calculate auto-wavelet
power spectra and cross-wavelet power spectra. BWC is cal-
culated as the ratio of smoothed cross-wavelet power spectra
of two variables to the product of their auto-wavelet power
spectra (Grinsted et al., 2004). Hu and Si (2016) extended
wavelet coherence from two to multiple (≥ 3) variables and
developed MWC. Detailed information on the calculations of
wavelet coefficients, auto- and cross-wavelet power spectra,
BWC, and MWC based on the continuous wavelet transform
can be found in previous studies (e.g., Torrence and Compo,
1998; Grinsted et al., 2004; Si and Farrell, 2004; Si, 2008; Hu
and Si, 2016; Hu et al., 2017b). Here, we will only introduce
the theory and calculation that are most relevant to PWC.

Similarly to BWC and MWC, PWC is calculated from
auto- and cross-wavelet power spectra, for the response vari-
able y, predictor variable x, and excluding variables Z (Z ={
Z1,Z2, . . .,Zq

}
). Koopmans (1974) developed the multi-

variate complex PWC in the frequency (scale) domain. Here,
we extend the Koopmans (1974) method from the frequency
(scale) domain to the time–frequency (location–scale) do-
main. Therefore, the complex PWC between y and x after
excluding variables Z at scale s and location τ , γy,x·Z(s,τ ),
can be written as

γy,x·Z(s,τ )=

(
1−R2

y,x,Z(s,τ )
)
γy,x(s,τ )√(
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) , (1)

where symbol · is the notation for excluding variables;
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following Hu and Si (2016) as
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Equation (1) can also be derived analogously from the com-
plex partial spectrum for the frequency domain according to
the definition of complex coherence between two variables in
the time–frequency domain (see Sect. S1 in the Supplement
for the derivation process). Note that R2

y,x,Z(s,τ ) is a ma-
trix with complex values, whileR2

y,Z(s,τ ) andR2
x,Z(s,τ ) are

matrices with real numbers. γy,x(s,τ ) is the complex wavelet
coherence between y and x, which can be written as
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where
↔
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where
↔
w
A,B

(s,τ ) is the smoothed auto-wavelet power spec-
tra (when A= B) or cross-wavelet power spectra (when
A 6= B) at scale s and location τ , respectively.

The squared PWC (hereinafter referred to as PWC) at
scale s and location τ , ρ2

y,x·Z , can be written as

ρ2
y,x·Z =

∣∣∣1−R2
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where R2
y,x(s,τ ) is squared BWC between y and x, which

can be expressed as

R2
y,x(s,τ )=

↔
w
y,x
(s,τ )

↔
w
y,x
(s,τ )

↔
w
y,y
(s,τ )

↔
w
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The phase angle (i.e., angle between two complex numbers)
between y and x after the excluding effect of Z is

ϑy,x·Z(s,τ )= ϕy,x·Z(s,τ )+ϑy,x(s,τ ), (11)

where

ϕy,x·Z(s,τ )= arg
(

1−R2
y,x,Z(s,τ )

)
, (12)
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and ϑy,x(s,τ ) is the wavelet phase between y and x, which
can be expressed as

ϑy,x(s,τ )= tan−1 (Im(W y,x(s,τ )
)
/Re

(
W y,x(s,τ )

))
, (13)

where arg denotes the argument of the complex number and
W y,x(s,τ ) is the cross-wavelet power spectrum between y
and x at scale s and location τ ; Im and Re denote the imagi-
nary and real parts of W y,x(s,τ ), respectively.

When only one variable (e.g., Z1) is excluded, Eq. (9) can
be written as (see Sect. S2 in the Supplement for the deriva-
tion process)

ρ2
y,x·Z1

=

∣∣∣γy,x(s,τ )− γy,Z1(s,τ )γx,Z1(s,τ )

∣∣∣2(
1−R2

y,Z1
(s,τ )

)(
1−R2

x,Z1
(s,τ )

) . (14)

The widely used Monte Carlo method (Torrence and
Compo, 1998; Grinsted et al., 2004; Si and Farrell, 2004) is
used to calculate PWC at the 95 % confidence level. In brief,
the PWC calculation is repeated for a sufficient number (i.e.,
minimum number required) of times using data generated by
Monte Carlo simulations based on the first-order autocorre-
lation coefficient (r1). The first-order autoregressive model
(AR(1)) is chosen because most geoscience data can be ef-
fectively simulated by it (Wendroth et al., 1992; Grinsted et
al., 2004; Si and Farrell, 2004), although we recognize that
a time series with long-range dependence is also common in
many areas such as hydrology (Szolgayová et al., 2014). Dif-
ferent combinations of r1 values (i.e., 0.0, 0.5, and 0.9) were
used to generate 10 to 10 000 AR(1) series with three, four,
and five variables. Our results indicate that the noise combi-
nation has little impact on the PWC values at the 95 % con-
fidence level as also found by Grinsted et al. (2004) for the
BWC case (data not shown). The relative difference of PWC
at the 95 % confidence level compared with that calculated
from the 10 000 AR(1) series decreases with the increase
in number of AR(1) series (Fig. S1 of Sect. S3 in the Sup-
plement). When the number of AR(1) is above 300, a very
low maximum relative difference (e.g., < 2 %) is observed.
Therefore, a repeating number of 300 seems to be sufficient
for a significance test. However, if calculation time is not a
barrier, a higher repeating number, such as≥ 1000, is recom-
mended. The 95th percentile of PWCs of all simulations at
each scale represents PWC at the 95 % confidence level. The
average PWC, percent area of significant coherence (PASC)
relative to the whole wavelet location–scale domain (Hu and
Si, 2016), and average value of significant PWC (PWCsig)
are also calculated for different location–scale domains.

In the case of one excluding variable (Z = {Z1}), Mi-
hanoviæ et al. (2009) suggested that PWC can be calculated
by an equation analogous to the traditional partial correla-
tion squared (Kenney and Keeping, 1939) without giving a
detailed derivation process. Their equation is the same as
Eq. (14). Unfortunately, Ng and Chan (2012a) might have
misinterpreted the equation of Mihanoviæ et al. (2009) and

developed Matlab code for calculating PWC using the equa-
tion expressed as

ρ2
y,x·Z1

=

∣∣Ry,x(s,τ )−Ry,Z1(s,τ )Rx,Z1(s,τ )
∣∣2(

1−R2
y,Z1

(s,τ )
)(

1−R2
x,Z1

(s,τ )
) , (15)

where Ry,x(s,τ ), Ry,Z1(s,τ ), and Rx,Z1(s,τ ) are the square
roots ofR2

y,x(s,τ ),R
2
y,Z1

(s,τ ), andR2
x,Z1

(s,τ ), respectively.
R2
y,Z1

(s,τ ) and R2
x,Z1

(s,τ ) can be calculated from Eq. (10)
by replacing y and x with their corresponding variables.
Equation (15) has been widely used to calculate PWC in
the case of one excluding variable (Ng and Chan, 2012b;
Rathinasamy et al., 2017; Aloui et al., 2018; Altarturi et al.,
2018; Jia et al., 2018; Li et al., 2018; Mutascu and Sokic,
2020; Wu et al., 2020). Note that complex coherence and
real coherence are involved in the numerators of Eqs. (14)
and (15), respectively, while the denominators are exactly the
same. Further comparison indicates that Eq. (15) underesti-
mates PWC value relative to Eq. (14) unless γy,x(s,τ ) and
γy,Z1(s,τ )γx,Z1(s,τ ) in Eq. (14) are collinear (i.e., their ar-
guments are identical) under which the two equations pro-
duce the same PWC values. Differences between Eqs. (14)
and (15) will be discussed further using both artificial data
and a real dataset. For comparison purposes, we refer to
Eqs. (14) and (15) as the new implementation and the classi-
cal implementation, respectively.

3 Method test using artificial data

3.1 Artificial data and analysis

PWC is first tested using the cosine-like artificial dataset pro-
duced following Yan and Gao (2007). The cosine-like arti-
ficial datasets are suitable for testing the new method be-
cause they mimic many spatial or time series data in geo-
science such as climatic variables, hydrologic fluxes, seis-
mic signals, El Niño–Southern Oscillation, land surface to-
pography, ocean waves, and soil moisture. The procedures to
test PWC are largely based on Hu and Si (2016), where the
same dataset has been used to test the MWC method (refer
to Hu and Si, 2016, for a detailed description of the artifi-
cial dataset). The response variable (y and z for the station-
ary and non-stationary cases, respectively) is the sum of five
cosine waves (y1 to y5 and z1 to z5 for the stationary and
non-stationary cases, respectively) at 256 locations (Hu and
Si, 2016). For y1 to y5, they have consistent dimensionless
scales of 4, 8, 16, 32, and 64, respectively, across the series.
From z1 to z5, the dimensionless scales gradually change
with location, with the maximum dimensionless scales of 4,
8, 16, 32, and 64, respectively. The variance of the response
variables y and z is 2.5. All other variables are orthogonal
to each other with equal variance of 0.5. The predictor and
excluding variables (Fig. S2 of Sect. S3 in the Supplement)
are selected from two of the five cosine waves (i.e., y2 and
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y4 or z2 and z4) and/or their derivatives. The exact variables
and procedures to test the new PWC method are explained
below.

First, PWC between response variable y (or z) and predic-
tor variable, i.e., y2 (or z2), is calculated after excluding the
effect of one variable. Four types of excluding variable are
involved (Fig. S2 of Sect. S3 in the Supplement): (a) original
series of y4 (or z4); (b) second halves of the original series
of y2 (or z2) are replaced by 0 to simulate abrupt changes
(i.e., transient and localized feature) in the spatial data. They
are referred to as y2,h0 (or z2,h0); (c) white noises with zero-
mean and standard deviations of 0.3 (weak noise), 1 (moder-
ate noise), and 4 (high noise) are added to y2 (or z2) as sug-
gested by Hu and Si (2016) to simulate non-perfect cyclic
patterns of the excluding variables. They are referred to as
y2,w (or z2,w), y2,m (or z2,m), and y2,s (or z2,s), respectively;
and (d) a combination of type b and type c. They are referred
to as y2,w,h0 (or z2,w,h0), y2,m,h0 (or z2,m,h0), and y2,s,h0 (or
z2,s,h0), respectively.

Second, PWC between response variable y (or z) and pre-
dictor variable, i.e., y24 (sum of y2 and y4) for the stationary
case or z24 (sum of z2 and z4) for the non-stationary case, is
calculated with two excluding variables, which is a combina-
tion of y4 (or z4) and y2 (or z2) or its noised series (y2,w or
z2,w, y2,m or z2,m, and y2,s or z2,s).

The merit of the artificial data is that we know the exact
scale-specific and localized bivariate relationships after the
effect of excluding variables is removed. Theoretically, we
expect that (a) PWC is 1 at scales corresponding to the rel-
ative complement of excluding variable scales in predictor
variable scales and 0 at other scales. For example, PWC be-
tween y and y24 after excluding the effect of y4 is expected
to be 1 at the scale of 8, which is the relative complement of
scale of excluding variable y4 (32) in scales of predictor vari-
able y24 (8 and 32), and 0 at other scales; (b) PWC remains
1 in the second half of series, where spatial series is replaced
by 0, and is 0 at the first half of the original series. For exam-
ple, PWC between y and y2 after excluding the effect of y2,h0
is expected to be 0 and 1 in the first and second halves of se-
ries, respectively, at the scale of 8; and (c) PWC increases
as more noises are included in the excluding variables. For
example, PWC between y and y2 after excluding the effect
of noised series of y2 is expected to increase with increasing
noises in an order of y2,w < y2,m < y2, s at the scale of 8.

3.2 PWC with artificial data

3.2.1 PWC with one excluding variable using the new
method

Figure 1 shows PWC between response variable y (or z) and
predictor variable y2 (or z2) by excluding one variable. For
the stationary case, there is one horizontal band (red color)
representing an in-phase high PWC value at scales around 8
for all locations after eliminating the effect of y4 (Fig. 1a).

Note that the PWC values between y and y2 after excluding
the effect of y4 are not exactly 1 as would be expected at all
location–scale domains, because of the effect of smoothing
along locations and scales. However, the PWC values at the
center of the significance band, which corresponds to the pre-
dictor variable y2 at exactly the scale of 8, are very close to
1 (0.996), and the mean PWCsig values are very high (i.e.,
0.96). The result is similar to the BWC between y and y2
(data not shown). This is understandable because y4 is or-
thogonal to y2, and excluding the effect of y4 does not affect
the relationship between y and y2 at all.

Compared with the case of the excluding variable of y4
(Fig. 1a), excluding the effect of y2,s (Fig. 1b) results in a
slightly narrower band of significant PWC and slightly re-
duced mean PWCsig (0.94 versus 0.96). When less noise
is included in the excluding variables (i.e., y2,m and y2,w)
(Fig. 1c and d), the significant PWC band becomes nar-
rower. The PASC values are 86 %, 77 %, and 32 % for ex-
cluding y2,s, y2,m, and y2,w, respectively, at scales of 6–10.
Moreover, the mean PWCsig decreases from 0.94 (y2,s) to
0.93 (y2,m) and 0.89 (y2,w) when progressively less noise is
added (Fig. 1b–d). For the non-stationary case, similar re-
sults are obtained (Fig. 1e–h). The only difference is that the
scales with significant PWC values change with location, as
is found for MWC (Hu and Si, 2016).

When the second half of the excluding variable series is re-
placed by 0, the PWC values in that half are close to 1, while
those in the first half of the data series are 0 at scales corre-
sponding to the predictor variable (Fig. 1i and m). For the sta-
tionary case, after excluding the effect of y2,h0, the PWC val-
ues are close to 1 (0.98) and 0 in the second and first halves
of the data series, respectively, at the dimensionless scale of
8 (Fig. 1i). Similar results are observed for the non-stationary
case (Fig. 1m). This is anticipated because the series of 0s is
independent of the predictor variable and hence has no ef-
fect on the correlations between response and predictor vari-
ables at these locations. If different magnitudes of noises are
added to the first half of the excluding variables (y2 or z2),
the significant PWC band in the first half becomes wider as
the magnitude of noises increases, while the significant PWC
band in the second half remains almost unchanged (Fig. 1j–
l and n–p). In the stationary case, for example, the PASC
values at scales of 6–10 are 40 % (y2,w,h0), 74 % (y2,m,h0),
and 86 % (y2,s,h0) in the first half, while those values vary
from 86 % to 90 % in the second half (Fig. 1j–l). Meanwhile,
the mean PWCsig in the first half at scales of 6–10 increases
from 0.91 to 0.94 in both the stationary (Fig. 1j–l) and non-
stationary (Fig. 1n–p) cases as more noises are added to the
excluding variables y2 or z2. This indicates that the new PWC
method can also capture the abrupt changes (Fig. 1i and m)
in the data series and has the ability to deal with localized
relationships.
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Figure 1. Partial wavelet coherency (PWC) between response variable y (or z) and predictor variable y2 (or z2) after excluding the effect
of variables y4 (or z4), y2,s (or z2,s), y2,m (or z2,m), y2,w (or z2,w), y2,h0 (or z2,h0), y2,w,h0 (or z2,w,h0), y2,m,h0 (or z2,m,h0), and y2,s,h0
(or z2,s,h0) for the stationary (or non-stationary) case using the new method. Arrows represent the phase angles of the cross-wavelet power
spectra between two variables after eliminating the effect of excluding variables. Arrows pointing to the right (left) indicate positive (negative)
correlations. Thin and thick solid lines show the cones of influence and the 95 % confidence levels, respectively. All variables were generated
by following Yan and Gao (2007) and Hu and Si (2016) and are explained in Sect 3.1 and shown in Fig. S2 of Sect. S3 in the Supplement.

3.2.2 PWC with two excluding variables using the new
method

When both y2 and y4 (or z2 and z4) are considered in the pre-
dictor variables, there are two bands of wavelet coherence of
1 between y (or z) and y24 (or z24) (Hu and Si, 2016), which
correspond to the scales of two predictor variables. However,
after the effect of y4 (or z4) is removed, only one band with
PWC of around 1 occurs at the scale of the predictor vari-
able y2 (or z2) (Fig. 2a and f). After both predictor variables
y2 and y4 (or z2 and z4) are excluded (Fig. 2b and g), PWC
between y (or z) and y24 (or z24) is 0 at all location–scale
domains as expected. When one of the excluding variables
y2 (or z2) is added with noises, the relationship between re-
sponse variable y (or z) and predictor variable y24 (or z24)
becomes significant at scales of the excluding variable y2 (or
z2) (Fig. 2c and h). Similar to the case of one excluding vari-

able (Fig. 1), less noise in the excluding variable of y2 (or
z2) results in a narrower significant PWC band and reduced
mean PWCsig values, e.g., from 0.96 (y2,s) to 0.90 (y2,w) in
the stationary case (Fig. 2c–e) and from 0.95 (z2,s) to 0.92
(z2,w) in the non-stationary case (Fig. 2h–j).

4 Method application with the real dataset

4.1 Description of the free water evaporation dataset

The free water evaporation dataset was used to test MWC
(Hu and Si, 2016). In brief, this dataset includes monthly free
water evaporation (E), mean temperature (T ), relative hu-
midity (RH), sun hours (SH), and wind speed (WS) between
January 1979 and December 2013 at the Changwu site in
Shaanxi province provided by the China Meteorological Ad-
ministration. During this period, the average daily tempera-
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Figure 2. PWC between response variable y (or z) and predictor variable y24 (or z24) after excluding the effect of variables y4 (or z4),
y2+y4 (or z2+z4), y2,s+y4 (or z2,s+z4), y2,m+y4 (or z2,m+z4), and y2,w+y4 (or z2,w+z4) for the stationary (or non-stationary) case
using the new method. All variables were generated by following Yan and Gao (2007) and Hu and Si (2016) and are explained in Sect. 3.1
and shown in Fig. S2 of Sect. S3.

ture was 9.4 ◦C, the average annual rainfall was 571 mm, and
annual potential evapotranspiration was 883 mm. Because of
its location between semi-arid and subhumid climates, agri-
cultural production at the Changwu site is constrained by wa-
ter availability. Results of the wavelet power spectrum of E
and BWC between every two variables are shown in Figs. S3
and S4 (Sect. S3 in the Supplement), respectively.

4.2 PWC with the free water evaporation dataset

The PWC analysis indicates that the correlations between E
and T after excluding the effect of each of the other three
variables (RH, SH, and WS) were almost the same as those
indicated by BWC (Figs. 3a–c and S4 of Sect. S3 in the Sup-
plement). For example, E and T , after excluding the effect
of RH, were positively correlated at the medium scales (8–
32 months). The PASC was 61 % and the mean PWCsig value
was 0.94. No significant correlations between E and T from
1979 to 1992 were found at scales around 64 months after
eliminating the influence of RH (Fig. 3a–c). This implies that
the influence of mean temperature on E at these scales and
years may be associated with the negative influence of RH
on both E and T (Fig. S4 of Sect. S3 in the Supplement).

PWC between E and RH depended on the excluding vari-
able and scale (Fig. 3d–f). The mean PWC and PASC be-
tween E and RH after excluding T were 0.60 and 34 %, re-
spectively, which are comparable with the mean BWC (0.62)
and PASC (40 %) between E and RH. The corresponding
values after excluding SH and WS were 0.50 and 0.53 (PWC)
and 22 % and 21 % (PASC), respectively. In addition, com-
pared with the BWC betweenE and RH (Fig. S4 of Sect. S3),
correlations between E and RH were weak at small scales
(< 8 months) and medium scales (8–32 months) after elimi-
nating the influence of SH and WS (Fig. 3e–f), respectively.

Figure 3. PWC between evaporation (E) and each meteorological
factor (T , mean temperature; RH, relative humidity; SH, sun hours;
WS, wind speed) after excluding the effect of each of the other three
meteorological factors.
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Therefore, excluding the variable of T had less influence on
the coherence between E and RH compared with exclud-
ing the variables of SH and WS. This is mainly because
RH and T are correlated with E at different scales (Fig. S4
of Sect. S3), i.e., mean temperature affected E mainly at
medium scales, while RH affected E across all scales. How-
ever, the domain where SH and WS were correlated with E
was a subset of that where RH andE were correlated (Fig. S4
of Sect. S3).

The relationships between E and SH after excluding the
other three factors were less consistent (Fig. 3g–h). The ar-
eas with significant corrections were scattered over the whole
location–scale domain but differed with excluding factor.
The PASC varied from 12 % (excluding RH) to 20 % (exclud-
ing T and WS), which is much lower than the PASC (28 %)
in the case of BWC. The significant relationships between
E and WS were only limited to very small areas except for
the case of SH being excluded, where E and WS were pos-
itively correlated at scales of 8–16 months most of the time
(Fig. 3j–l).

In general, PASC decreased after excluding the effects of
more factors (data not shown). The correlations between E
and each variable after eliminating the effects of all other
variables are shown in Fig. 4. The correlations between
E and T were still significant at the medium scales (8–
32 months) (Fig. 4a), where PASC value was 52 % with a
mean PWCsig of 0.92. The E was still correlated with RH at
large scales (> 85 months) (Fig. 4b), where PASC value was
35 % with a mean PWCsig of 0.96. Interestingly, the domain
with significant correlation between E and SH and WS was
very limited (Fig. 4c–d). This indicates that the influences of
SH and WS on E have already been covered by RH and T .
This is in agreement with the MWC results that RH and T
were best for explaining E variations at all scales (Hu and
Si, 2016). Although the RH had the greatest mean wavelet
coherence and PASC in the entire location–scale domains,
the PWC analysis seems to support mean temperature being
the most dominating factor for free water evaporation at the
1-year cycle (8–16 months), which is the dominant scale of
E variation (Fig. S3 of Sect. S3).

5 Discussion on the advantages and weaknesses of the
new method

5.1 Advantages

We extend the partial coherence method from the frequency
(scale) domain (Koopmans, 1974) to the time–frequency
(location–scale) domain. The new method is an extension of
previous work on PWC and MWC (Mihanoviæ et al., 2009;
Hu and Si, 2016). The method test and application have ver-
ified that it has the advantage of dealing with more than one
excluding variable and providing the phase information as-
sociated with PWC. In the case of one excluding variable,

Figure 4. PWC between evaporation (E) and each meteorological
factor (T , mean temperature; RH, relative humidity; SH, sun hours;
WS, wind speed) after excluding the effects of all three other fac-
tors.

Mihanoviæ et al. (2009) have suggested calculating PWC by
using an equation analogous to the traditional partial correla-
tion squared (Eq. 14), which can be derived from our Eq. (9).
However, their equation was, unfortunately, widely used by
replacing the complex coherence in Eq. (14) with real coher-
ence as expressed in Eq. (15) (Ng and Chan, 2012b, a; Rathi-
nasamy et al., 2017; Aloui et al., 2018; Altarturi et al., 2018;
Jia et al., 2018; Li et al., 2018; Mutascu and Sokic, 2020; Wu
et al., 2020). This mistake is corrected in this paper.

The differences between the new (Eq. 14) and classical
(Eq. 15) implementations are compared in the case of one
excluding variable using both the artificial and real datasets.
Except for the phase information, the two implementations
generally produce comparable coherence for the artificial
dataset (Fig. S5 of Sect. S3 in the Supplement). However,
the new implementation produces consistently and slightly
higher coherence than the classical implementation. For ex-
ample, their mean PWCs between y and y2 at the scale of
8 after excluding the effect of y4 are 1.00 and 0.97, re-
spectively. This indicates that the new implementation pro-
duces coherence between y and y2 at the scale (i.e., 8) of
y2, closer to 1 as we expect. While the classical implemen-
tation produces similar PWC between E and other meteoro-
logical factors in most cases, especially for the coherence be-
tween E and T after excluding the effects of others (Fig. S6
of Sect. S3 in the Supplement), large differences between
these two implementations can also be observed. For exam-
ple, while the new implementation recognizes the strong co-
herence between E and RH after excluding the effect of T at
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Figure 5. PWC between evaporation (E) and relative humidity
(RH) after excluding the effect of mean temperature (T ) using the
classical implementation (Eq. 15) (a) and differences in PWC be-
tween the new (Eq. 14) and classical implementations as a function
of scale (b).

scales of around 1 year (Fig. 3d), this coherence was negli-
gible by the classical implementation (Fig. 5a). Mean PWC
values by the new implementation were consistently higher
than the classical implementation, and the differences ranged
from 0.4 to 0.6 around the scale of 1 year (Fig. 5b). Consid-
ering the real coherence (Eq. 15) rather than complex coher-
ence (Eq. 14) between every two variables in the numerators
can potentially result in large underestimation of the partial
wavelet coherence. Therefore, the ability of the new method
and implementation to produce more accurate results than
the classical implementation is one of its advantages.

Compared with the Mihanoviæ et al. (2009) method, the
additional phase information from the new PWC is another
advantage of this new method. This is because phase infor-
mation is directly related to the type of correlation, i.e., in-
phase and out-of-phase indicating positive and negative cor-
relation, respectively. Different types of correlations were
usually found at different locations and scales (Hu et al.,
2017b). The phase information helps understand the differ-
ences in associated mechanisms or processes at different lo-
cations and scales. In addition, the phase information will al-
low us to detect the changes in not only the degree of correla-
tion (i.e., coherence), but also the type of correlation after ex-
cluding the effect of other variables. For example, E and RH
were positively correlated at the 1-year cycle (8–16 months)
from years 1979 to 1995. This is because higher evaporation
usually occurs in summer when high T coincides with high
RH as influenced by the monsoon climate in the study area
(Fig. S4 of Sect. S3). Interestingly, after excluding the effect
of T , E was negatively correlated with RH at the scale of
1 year as we expect (Fig. 3d).

Moreover, our new PWC method applies to cases with
more than one excluding variable, which is a knowledge gap.
When multiple variables are correlated with both the predic-
tor and response variables, the correlations between predictor
and response variables may be misleading if the effects of all
these multiple variables were not removed. For example, at
the dominant scale (i.e., 1 year) of E variation, contrasting
effects of RH on E existed after excluding the effects of T

(negative) or SH (positive) (Fig. 3d and e). However, after the
effects of all other variables were excluded, there were neg-
ligible effects of RH on E at this scale (Fig. 4b). In this case,
the relationship between E and RH at the scale of 1 year can
be misleading after removing the effects of only one vari-
able. In addition, the dominant role of mean temperature in
driving free water evaporation at the 1-year cycle was proved
by removing the effects of all other meteorological factors
(Fig. 4a). This also further verifies the suitability of the Har-
greaves model (only air temperature and incident solar ra-
diation required) (Hargreaves, 1989) for estimating potential
evapotranspiration on the Chinese Loess Plateau (Li, 2012).

5.2 Weaknesses

The new method has the risk of producing spurious high cor-
relations after excluding the effect from other variables. Take
the artificial dataset for example: at the scale of 32, PWC val-
ues between y and y2 after excluding y4 are not significant
but relatively high, partly because of small octaves per scale
(octave refers to the scaled distance between two scales, with
one scale being twice or half of the other, default of 1/12).
This spurious unexpected high PWC is caused by low val-
ues in both the numerator (partly associated with the low co-
herence between response y and predictor variables y2 at the
scale of 32) and denominator (partly associated with the high
coherence between response y and excluding variable y4 at
the scale of 32) in Eq. (9). The same problem also exists in
the classical implementation (Fig. S5 of Sect. S3). So, cau-
tion should be taken to interpret those results. However, it
seems that the domain with spurious correlation calculated
by the new method is very limited, and it is located mainly
outside of the cones of influence. Moreover, the unexpected
results can be easily ruled out with knowledge of BWC be-
tween response and predictor variables. It is expected that the
correlation between two variables should not increase after
excluding one or more variables. Therefore, BWC analysis
is suggested for better interpretation of the PWC results.

Similar to BWC and MWC, the confidence level of PWC
calculated from the Monte Carlo simulation is based on a
single hypothesis testing, but in reality, the confidence level
of PWC values at all locations and scales needs to be tested
simultaneously. Therefore, the significance test has the prob-
lem of multiple testing; i.e., more than one individual hypoth-
esis is tested simultaneously (Schaefli et al., 2007; Schulte et
al., 2015). The new method may benefit from a better statisti-
cal significance testing method. Options for multiple testing
can be the Bonferroni adjusted p test (Westfall and Young,
1993) or false discovery rate (Abramovich and Benjamini,
1996; Shen et al., 2002), which is less stringent than the for-
mer. The AR(1) model was used to generate noise series for
testing the confidence level of PWC. High-order autoregres-
sive models rather than AR(1) may be beneficial for a signif-
icance test where spatial data (or time series) are character-
ized by long-range dependence (Szolgayová et al., 2014).
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6 Conclusions

Partial wavelet coherency (PWC) is improved to investigate
scale-specific and localized bivariate relationships after ex-
cluding the effect of one or more variables in geoscience.
Method tests using stationary and non-stationary artificial
datasets verified the known scale and localized bivariate re-
lationships after eliminating the effects of other variables.
Compared with the previous PWC method, the new PWC
method has the advantage of dealing with more than one ex-
cluding variable and providing the phase information (i.e.,
correlation type) associated with PWC. In the case of one
excluding variable, the PWC implementation provided here
(in the paper and the published code) produces more accu-
rate coherence than the previously published PWC imple-
mentation that considered wrongly real coherence rather than
complex coherence between every two variables. Application
of the new method to the real dataset has further proved its
robustness in untangling the bivariate relationships after re-
moving the effects of all other variables in multiple location–
scale domains. The new method provides a much needed
data-driven tool for unraveling underlying mechanisms in
both temporal and spatial data. Thus, combined with wavelet
transform, BWC, and MWC, the new PWC method can be
used to analyze various processes in geoscience, such as
streamflow, droughts, greenhouse gas emissions (e.g., N2O,
CO2, and CH4), atmospheric circulation, and oceanic pro-
cesses (e.g., El Niño–Southern Oscillation).

Code and data availability. The Matlab codes for calculating
PWC, along with the updated MWC codes, are freely accessible
(https://doi.org/10.6084/m9.figshare.13031123; Hu and Si, 2020).
The codes are developed based on those provided by Aslak Grinsted
(http://www.glaciology.net/wavelet-coherence, last access: 14 Jan-
uary 2021). The meteorological dataset can be obtained from the
China Meteorological Administration.
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