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S1  Derivation of the complex PWC Eq.(1) 

Complex partial spectrum from frequency (scale)domain (Makhtar et al., 2014) can be used to 

define that of time-frequency (location-scale) domain, 
𝑊
↔𝑦,𝑥∙Z (𝑠, 𝜏), which is expressed as  

𝑊
↔𝑦,𝑥∙Z (𝑠, 𝜏) =

𝑊
↔𝑦,𝑥 (𝑠, 𝜏) − 𝑊

↔𝑦,Z(𝑠,𝜏)
𝑊
↔𝑥,Z(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑍,Z(𝑠,𝜏)

      (S1) 

where ∙ is the notation for excluding variables,  
𝑊
↔  is the smoothed cross spectrum, ()̅ is the 

complex conjugate operator, 𝑦, 𝑥, and 𝑍 (𝑍 = {𝑍1, 𝑍2, ⋯ , 𝑍𝑞}) refer to the response variable, 

predictor variable, and excluding variables, respectively. 𝑠 and 𝜏 refer to scale (frequency) and 

location (time), respectively. 

Given the definition of coherence between two variables 𝑦 and 𝑥, their complex coherence 

𝛾𝑦,𝑥(𝑠, 𝜏) (Eq.(5)) can be re-written as 

𝛾𝑦,𝑥(𝑠, 𝜏) =
𝑊
↔𝑦,𝑥(𝑠,𝜏)

√𝑊
↔𝑦,𝑦(𝑠,𝜏) 

𝑊
↔𝑥,𝑥(𝑠,𝜏)

        (S2) 

Then we can define complex partial coherence as  

𝛾𝑦,𝑥∙Z(𝑠, 𝜏) =
𝑊
↔𝑦,𝑥∙Z(𝑠,𝜏)

√
𝑊
↔𝑦,𝑦∙Z(𝑠,𝜏) 

𝑊
↔𝑥,𝑥∙Z(𝑠,𝜏)

                                     (S3) 

Based on Eq. (S1) and Eqs 2, 3, and 4  (𝑅𝑦,𝑥,𝑍
2 (𝑠, 𝜏) = 𝑊

↔𝑦,𝑍(𝑠,𝜏)
𝑊
↔𝑍,𝑍(𝑠,𝜏)−1

𝑊
↔𝑥,𝑍(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑦,𝑥(𝑠,𝜏)

  , 

𝑅𝑦,𝑍
2 (𝑠, 𝜏) = 𝑊

↔𝑦,𝑍(𝑠,𝜏)
𝑊
↔𝑍,𝑍(𝑠,𝜏)−1

𝑊
↔𝑦,𝑍(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑦,𝑦(𝑠,𝜏)

   , and  𝑅𝑥,𝑍
2 (𝑠, 𝜏) = 𝑊

↔𝑥,𝑍(𝑠,𝜏)
𝑊
↔𝑍,𝑍(𝑠,𝜏)−1

𝑊
↔𝑥,𝑍(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑥,𝑥(𝑠,𝜏)

  ) 

 we obtain 

𝑊
↔𝑦,𝑥∙Z (𝑠, 𝜏) =

𝑊
↔𝑦,𝑥 (𝑠, 𝜏) (1 − 𝑊

↔𝑦,𝑧(𝑠,𝜏) 
𝑊
↔𝑥,𝑍(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑍,𝑍(𝑠,𝜏) 

𝑊
↔𝑦,𝑥(𝑠,𝜏)

) =
𝑊
↔𝑦,𝑥 (𝑠, 𝜏) (1 − 𝑅𝑦,𝑥,𝑍

2 (𝑠, 𝜏)) (S4) 

𝑊
↔𝑦,𝑦∙Z (𝑠, 𝜏) =

𝑊
↔𝑦,𝑦 (𝑠, 𝜏) (1 − 𝑊

↔𝑦,𝑧(𝑠,𝜏) 
𝑊
↔𝑦,𝑍(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑍,𝑍(𝑠,𝜏) 

𝑊
↔𝑦,𝑦(𝑠,𝜏)

) =
𝑊
↔𝑦,𝑦 (𝑠, 𝜏) (1 − 𝑅𝑦,𝑍

2 (𝑠, 𝜏)) (S5) 

𝑊
↔𝑥,𝑥∙Z (𝑠, 𝜏) =

𝑊
↔𝑥,𝑥 (𝑠, 𝜏) (1 − 𝑊

↔𝑥,𝑧(𝑠,𝜏) 
𝑊
↔𝑥,𝑍(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑍,𝑍(𝑠,𝜏) 

𝑊
↔𝑥,𝑥(𝑠,𝜏)

) =
𝑊
↔𝑥,𝑥 (𝑠, 𝜏) (1 − 𝑅𝑥,𝑍

2 (𝑠, 𝜏)) (S6) 

Inserting Eqs S4, S5, and S6 into Eq. (S3), we have 



 

 

 

 

𝛾𝑦,𝑥∙Z(𝑠, 𝜏) =
𝑊
↔𝑦,𝑥(𝑠,𝜏) (1−𝑅𝑦,𝑥,𝑍

2 (𝑠,𝜏))

√
𝑊
↔𝑦,𝑦(𝑠,𝜏) (1−𝑅𝑦,𝑍

2 (𝑠,𝜏)) 
𝑊
↔𝑥,𝑥(𝑠,𝜏) (1−𝑅𝑥,𝑍

2 (𝑠,𝜏))

=

𝑊
↔𝑦,𝑥(𝑠,𝜏) (1−𝑅𝑦,𝑥,𝑍

2 (𝑠,𝜏))

√𝑊
↔𝑦,𝑦(𝑠,𝜏)

𝑊
↔𝑥,𝑥(𝑠,𝜏)√(1−𝑅𝑦,𝑍

2 (𝑠,𝜏))  (1−𝑅𝑥,𝑍
2 (𝑠,𝜏))

 =  
 (1−𝑅𝑦,𝑥,𝑍

2 (𝑠,𝜏)) 𝛾𝑦,𝑥(𝑠,𝜏)

√(1−𝑅𝑦,𝑍
2 (𝑠,𝜏))  (1−𝑅𝑥,𝑍

2 (𝑠,𝜏))

                                  (S7)                                                      

                                                                                                                                                                 

Obviously, Eq. (S7) and Eq. (1) are identical.       

 

S2  Derivation of the PWC in case of one excluding variable (Eq.14) from Eq. (9) 

 

When only one variable (e.g., 𝑍1) is excluded, Eq.(9)  (𝜌𝑦,𝑥∙𝑍
2 =

|1−𝑅𝑦,𝑥,𝑍
2 (𝑠,𝜏)|

2
𝑅𝑦,𝑥
2 (𝑠,𝜏)

(1−𝑅𝑦,𝑍
2 (𝑠,𝜏))(1−𝑅𝑥,𝑍

2 (𝑠,𝜏))
  ) 

can be written as 

𝜌𝑦,𝑥∙𝑍1
2 =

|1−𝑅𝑦,𝑥,𝑍1
2 (𝑠,𝜏)|

2
𝑅𝑦,𝑥
2 (𝑠,𝜏)

(1−𝑅𝑦,𝑍1
2 (𝑠,𝜏))(1−𝑅𝑥,𝑍1

2 (𝑠,𝜏))
                                                              (S8) 

Based on Eq. (2),  

𝜌𝑦,𝑥∙𝑍1
2 =

|1 − 𝑊
↔𝑦,𝑍1 (𝑠, 𝜏)

𝑊
↔𝑍1,𝑍1 (𝑠, 𝜏)−1

𝑊
↔𝑥,𝑍1 (𝑠, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑊
↔𝑦,𝑥 (𝑠, 𝜏)

   |

2
|
𝑊
↔𝑦,𝑥 (𝑠, 𝜏)|

2

𝑊
↔𝑦,𝑦 (𝑠, 𝜏)

𝑊
↔𝑥,𝑥 (𝑠, 𝜏)

   

(1 − 𝑅𝑦,𝑍1
2 (𝑠, 𝜏)) (1 − 𝑅𝑥,𝑍1

2 (𝑠, 𝜏))
  

 

=  
|
𝑊
↔𝑦,𝑥(𝑠,𝜏)−𝑊

↔ 𝑦,𝑍1(𝑠,𝜏)
𝑊
↔ 𝑥,𝑍1(𝑠,𝜏)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑊
↔ 𝑍1,𝑍1(𝑠,𝜏)

   |

2

 

𝑊
↔𝑦,𝑦(𝑠,𝜏)

𝑊
↔𝑥,𝑥(𝑠,𝜏)(1−𝑅𝑦,𝑍1

2 (𝑠,𝜏))(1−𝑅𝑥,𝑍1
2 (𝑠,𝜏))

  

= 

1

√(
𝑊
↔ 𝑦,𝑦(𝑠,𝜏)

𝑊
↔ 𝑥,𝑥(𝑠,𝜏))

2
|
𝑊
↔𝑦,𝑥(𝑠,𝜏)−𝑊

↔ 𝑦,𝑍1(𝑠,𝜏)
𝑊
↔ 𝑥,𝑍1(𝑠,𝜏)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(√
𝑊
↔ 𝑍1,𝑍1(𝑠,𝜏))

2    |

2

 

(1−𝑅𝑦,𝑍1
2 (𝑠,𝜏))(1−𝑅𝑥,𝑍1

2 (𝑠,𝜏))
      

=

|| 𝑊
↔𝑦,𝑥 (𝑠, 𝜏) 

√
𝑊
↔𝑦,𝑦 (𝑠, 𝜏)√

𝑊
↔𝑥,𝑥 (𝑠, 𝜏)

− 𝑊
↔𝑦,𝑍1 (𝑠, 𝜏) 

𝑊
↔𝑥,𝑍1 (𝑠, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 √
𝑊
↔𝑦,𝑦 (𝑠, 𝜏)√

𝑊
↔𝑥,𝑥 (𝑠, 𝜏)√

𝑊
↔𝑍1,𝑍1 (𝑠, 𝜏)  √

𝑊
↔𝑍1,𝑍1 (𝑠, 𝜏)  

   ||

2

 

(1 − 𝑅𝑦,𝑍1
2 (𝑠, 𝜏)) (1 − 𝑅𝑥,𝑍1

2 (𝑠, 𝜏))
 



 

 

 

 

=

|| 𝑊
↔𝑦,𝑥 (𝑠, 𝜏) 

√
𝑊
↔𝑦,𝑦 (𝑠, 𝜏)√

𝑊
↔𝑥,𝑥 (𝑠, 𝜏)

− 𝑊
↔𝑦,𝑍1 (𝑠, 𝜏) 

 √
𝑊
↔𝑦,𝑦 (𝑠, 𝜏)√

𝑊
↔𝑍1,𝑍1 (𝑠, 𝜏)  

 
 
𝑊
↔𝑥,𝑍1 (𝑠, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 √
𝑊
↔𝑥,𝑥 (𝑠, 𝜏)√

𝑊
↔𝑍1,𝑍1 (𝑠, 𝜏)  

   ||

2

 

(1 − 𝑅𝑦,𝑍1
2 (𝑠, 𝜏)) (1 − 𝑅𝑥,𝑍1

2 (𝑠, 𝜏))
 

=
|𝛾𝑦,𝑥(𝑠,𝜏)−𝛾𝑦,𝑍1(𝑠,𝜏)𝛾𝑥,𝑍1(𝑠,𝜏)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
2

(1−𝑅𝑦,𝑍1
2 (𝑠,𝜏))(1−𝑅𝑥,𝑍1

2 (𝑠,𝜏))
                                                                          (S9) 

 

 

 

S3  Supplementary data and analyses 

 

 
Figure S1. Relationship between maximum relative difference (%) of PWC compared to that 
calculated from 10 000 AR(1) series (surrogate dataset) versus the number of AR(1) series during 
the significance test using the Monte Carlo test. Number of scales per octave is 12. The first-
order autocorrelation coefficients (r1) in brackets refer to those for the response variable (first), 
predictor variable (second), and excluding variables (third and onwards).   



 

 

 

 

 

Figure S2. Variables used to test partial wavelet coherency. Black and blue lines represent 

variables for stationary (i.e., y, y2, y4, y2,h0, y2,w, y2,m, y2,s, y24, y2,w,h0, y2,m,h0, and y2,s,h0) and non-

stationary (e.g., z, z2, z4, z2,h0, z2,w, z2,m, z2,s, z24, z2,w,h0, z2,m,h0, and z2,s,h0) cases, respectively. All 

variables are explained in Sect. 3.1 of the main body of the paper. 

 

Figure S3. Wavelet power spectrum of free water evaporation (E) at the Changwu site in 

Shaanxi, China. Thin solid lines demarcate the cones of influence, and thick solid lines show the 

95% confidence levels. 



 

 

 

 

 

Figure S4. Bivariate wavelet coherency between every two meteorological factors (E, 

evaporation; T, mean temperature; RH, relative humidity; SH, sun hours; WS, wind speed) at the 

Changwu site in Shaanxi, China. Arrows show the phase angles of the wavelet spectra. Thin solid 

lines demarcate the cones of influence, and thick solid lines show the 95% confidence levels. 

 



 

 

 

 

 

 

Figure S5.  Partial wavelet coherency (PWC) between response variable y (or z) and predictor 

variable y2 (or z2) after excluding the effect of variables y4 (or z4), y2,s (or z2,s), y2,m (or z2,m), y2,w (or 

z2,w), y2,h0 (or z2,h0), y2,w,h0 (or z2,w,h0), y2,m,h0 (or z2,m,h0), and y2,s,h0 (or z2,s,h0) for the stationary (or 

non-stationary) case using the classical implementation (Eq. 15). Thin and thick solid lines show 

the cones of influence and the 95% confidence levels, respectively. All variables were generated 

by following Yan and Gao (2007) and Hu and Si (2016) and are explained in Sect. 3.1 and are 

shown in Fig. S2 of Sect. S3 in the Supplement. 



 

 

 

 

 

 

Figure S6.  Partial wavelet coherency (PWC) between evaporation (E) and each meteorological 

factor (T, mean temperature; RH, relative humidity; SH, sun hours; WS, wind speed) after 

excluding the effect of each of other three meteorological factors using the classical calculation 

(Eq. 15).  
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