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Abstract. We apply the hydrologic landscape (HL) concept
to assess the hydrologic vulnerability of the western United
States (U.S.) to projected climate conditions. Our goal is to
understand the potential impacts of hydrologic vulnerability
for stakeholder-defined interests across large geographic ar-
eas. The basic assumption of the HL approach is that catch-
ments that share similar physical and climatic characteristics
are expected to have similar hydrologic characteristics. We
use the hydrologic landscape vulnerability approach (HLVA)
to map the HLVA index (an assessment of climate vulnerabil-
ity) by integrating hydrologic landscapes into a retrospective
analysis of historical data to assess variability in future cli-
mate projections and hydrology, which includes temperature,
precipitation, potential evapotranspiration, snow accumula-
tion, climatic moisture, surplus water, and seasonality of wa-
ter surplus. Projections that are beyond 2 standard deviations
of the historical decadal average contribute to the HLVA in-
dex for each metric. Separating vulnerability into these seven
separate metrics allows stakeholders and/or water resource
managers to have a more specific understanding of the po-
tential impacts of future conditions. We also apply this ap-

proach to examine case studies. The case studies (Mt. Hood,
Willamette Valley, and Napa–Sonoma Valley) are important
to the ski and wine industries and illustrate how our approach
might be used by specific stakeholders. The resulting vul-
nerability maps show that temperature and potential evapo-
transpiration are consistently projected to have high vulner-
ability indices for the western U.S. Precipitation vulnerabil-
ity is not as spatially uniform as temperature. The highest-
elevation areas with snow are projected to experience sig-
nificant changes in snow accumulation. The seasonality vul-
nerability map shows that specific mountainous areas in the
west are most prone to changes in seasonality, whereas many
transitional terrains are moderately susceptible. This paper il-
lustrates how HL and the HLVA can help assess climatic and
hydrologic vulnerability across large spatial scales. By com-
bining the HL concept and HLVA, resource managers could
consider future climate conditions in their decisions about
managing important economic and conservation resources.
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1 Introduction

A stable and predictable water supply is imperative for food
security, ecosystem sustainability, economic stability, and
even national security (National Intelligence Council, 2012)
and is related to the threats of increased flooding, droughts,
wildfire, and more extreme temperatures (Mancosu et al.,
2015; Mekonnen and Hoekstra, 2016). The recognition of
the potential socio-ecological threats of climate change to
the water supply is a critically important topic, and the de-
velopment of planning tools that identify vulnerabilities to
these systems could help decision-makers assess the risks of
environmental changes imposed by climate as well as other
contemporary risks (e.g., population growth and habitat con-
version) (Glick et al., 2011; Lawler et al., 2010). Climatic
and hydrologic change will not impact stakeholders equally
across sectors, and thus the specific concerns and adapta-
tion strategies of different industries threatened by those risks
will vary. The hydrologic landscape vulnerability assess-
ment described herein provides a relatively simple approach
for assessing hydrologic vulnerability based upon inferences
of hydrologic behavior (using hydrologic landscapes) in re-
sponse to climatic impacts. This approach can be applied
across large geographic regions and can potentially benefit
numerous sectors, including environmental, economic, and
other ecosystem services.

Numerous studies have examined projected changes in
climate and hydrology on regional and national scales that
relate to this study in the western United States (U.S.).
Climate-related risk to snow-dominated areas and ski ar-
eas was identified by Nolin and Daly (2006) in the Pacific
Northwest (PNW, which includes Washington, Oregon, and
Idaho), whereas observations and modeled simulations for
snow water equivalents (SWEs) were found to be similar in
the western U.S. (Mote et al., 2005). Barnett et al. (2005)
found potential climate-driven water supply deficits in snow-
dominated areas around the globe. McAfee (2013) examined
projected changes in potential evapotranspiration (PET, cal-
culated using numerous methods) and found regional analy-
ses to be more inconsistent than studies across the conter-
minous U.S., which indicated sensitivities to the methods
used. Hill et al. (2013, 2014) predicted thermal vulnerabil-
ity of streams and river ecosystems to climate across the
U.S., while Battin et al. (2007) found that salmon habitat
in snow-dominated streams was more vulnerable than habi-
tat in lowland streams. The relevant analyses of Nijssen et
al. (2001) on hydrologic sensitivity of rivers globally found
(1) ubiquitous warming, with the greatest warming in win-
ter months at higher latitudes, (2) more precipitation with
high variability, (3) early to mid-spring snowmelt causing
increased spring streamflow peak in the coldest basins, de-
creased spring runoff, and increased winter runoff in transi-
tional basins, and 4) increased annual streamflow with high-
latitude basins. While snow-fed streams in the western U.S.
seem less likely to change flow regimes, perennial and inter-

mittent rain-fed streams are more likely to change in flow
regime (Dhungel et al., 2016). In response to droughts of
the recent past, Mann and Gleick (2015) highlight the strong
correlation between very hot years and very dry years; thus
as temperatures increase at the upper extreme, precipitation
is becoming more scarce. A study by Cook et al. (2015)
found a growing risk of unprecedented drought in the west-
ern U.S. based on temperature projections and no clear pat-
tern in future precipitation. This sampling of the existing re-
search highlights the cross-cutting hydrological changes that
are occurring across the nation and illustrates how different
sectors and geographies are experiencing different impacts.

“Vulnerability” has been defined in many ways, depending
upon discipline and application (Adger, 2006; Füssel, 2007).
Vulnerability assessments often integrate exposure, sensitiv-
ity, and adaptive capacity to stressors (Adger, 2006; Füs-
sel, 2007; Füssel and Klein, 2006; IPCC, 2014). Researchers
have studied vulnerability at varying scales across numerous
regions for a diversity of stakeholders, and they tend to fo-
cus on the most relevant metrics for their particular applica-
tion (Farley et al., 2011; Glick et al., 2011; IPCC, 2014; No-
lin and Daly, 2006; U.S. Global Change Research Program,
2011; Watson et al., 2013). However, better products and ser-
vices are needed to enable local communities to plan for and
respond to hydrologic change, which includes services that
improve understanding, observing, forecasting, and warning
about significant hydrologic events (Tansel, 2013). Glick et
al. (2011) and Lawler et al. (2010) both emphasize the im-
portance to managers of understanding the potential impacts
of climate on the resources that they manage.

There have been many efforts to assess hydrologic vulner-
ability related to specific stakeholders, ecosystems, or loca-
tions. For example, Vörösmarty et al. (2000) examined the
vulnerability of global water resources to changes in climate
and population growth. Hill et al. (2014) assessed stream
temperature vulnerability to climate for sites across the U.S.
In another example, Winter (2000) suggested that the vulner-
ability of wetlands to changes in climate depended upon their
position within the hydrologic landscape.

There are opportunities to build upon previous efforts to
map hydrologic vulnerability across large geographic areas
while creating tools that stakeholders may use to understand
the potential impacts for their asset of interest in specific
watersheds. Winter (2001) described the concept of classi-
fying the physical landscape and climatic properties of large
landscape units based on hydrologic landscape (HL). Sur-
face water and groundwater availability in watersheds is im-
pacted by differences in geology, terrain, soils, seasonal tem-
perature patterns, precipitation magnitude, and precipitation
timing (Tague et al., 2013; Winter, 2001) and is not uniform
across regions (Hamlet, 2011; Jung and Chang, 2012; Tague
and Grant, 2004). Catchments that share similar key physical
and climatic characteristics are expected to have similar hy-
drologic characteristics; i.e., surface water and groundwater
interactions, deposition, timing, and accumulation of precip-
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itation, surface runoff patterns, and groundwater flow (Nolin,
2011; Thompson and Wallace, 2001).

The HL concept has been applied to the U.S. using a
clustering method (Wolock et al., 2004) to develop 20 non-
contiguous regions, which were much larger than the catch-
ment scale. Since that effort, modified approaches have not
used clustering approaches but have used catchment-based
classification in Oregon (Leibowitz et al., 2014; Patil et al.,
2014; Wigington et al., 2013), Nevada (Maurer et al., 2004),
the PNW (Comeleo et al., 2014; Leibowitz et al., 2016),
and Bristol Bay, Alaska (Todd et al., 2017). In applying
the HL approach in Oregon and the PNW, the clustering
approach was abandoned for a conceptual approach based
upon important factors known to contribute to hydrologic
flow (Wigington et al., 2013), where two climatic factors
and three landscape characteristics were categorized for each
catchment; the resulting classification allows the estimation
of catchment-scale hydrologic behavior across large spatial
scales. The approach shows promise in predicting seasonal
and monthly hydrologic patterns (Leibowitz et al., 2014).
Leibowitz et al. (2014) adapted the classification system ap-
plied by Wigington et al. (2013) to illustrate the applicabil-
ity of HLs at the watershed scale for representing normal
(1971–2000) monthly average streamflow in three case study
watersheds in Oregon. They used climate projections (2041–
2070) to estimate hydrologic behavior of watersheds relative
to 1971–2000. Leibowitz et al. (2016) expanded the approach
and applied the HL classification to Oregon, Washington, and
Idaho. The more recent studies using the hydrologic land-
scape classification approach have been applied at a water-
shed scale (Patil et al., 2014; Leibowitz et al., 2016; Todd et
al., 2017).

A number of tactics have been used to investigate the in-
fluence of climate on hydrologic behavior (Luce and Holden,
2009; Safeeq et al., 2014; Vano et al., 2015). To extend
the work previously completed from HL-based climate pro-
jections, we assess hydrologic vulnerability at the catch-
ment scale by integrating the HL approach into an anal-
ysis of climatic variability. Our hydrologic landscape vul-
nerability approach (HLVA) provides spatially continuous,
application-specific estimates of climatic vulnerability (maps
of the HLVA indices). One of the benefits of the HLVA is
to place recent and projected environmental changes in the
context of available historic data. In the HLVA, we use prox-
ies for the three components of vulnerability: (a) historic cli-
mate data and their derivatives as proxies for sensitivity (the
sensitivity of a particular system to each variable); (b) cli-
mate projections as proxies for exposure (the future projected
condition increases or decreases a system’s exposure to a
change); and (c) qualitative considerations of ecosystems,
stakeholders, or industries as proxies for adaptive capacity
(the presence of a system in a location is indicative that the
system has historically had sufficient adaptive capacity to ex-
ist in that area). Using HLVA, we examine vulnerability to
changes in temperature, precipitation, potential evapotranspi-

ration, snow accumulation, surplus water, climatic moisture,
and seasonality of the water surplus. This method highlights
areas that are projected to experience deviations from historic
conditions to understand the patterns in magnitude, timing,
and type of precipitation and the quantity and seasonality of
available water at a catchment scale. These estimates of hy-
drologic vulnerability could offer important insight into the
potential resilience of socially and economically valuable lo-
cations and stakeholders in an area.

We assess the hydrologic vulnerability of socially and eco-
nomically valuable locations by applying the HL concept us-
ing climatic projections in the western U.S. We analyzed the
output from the HL analyses to address three research ob-
jectives: (1) develop an index of vulnerability based on cli-
mate; (2) map areas that are projected to be more vulnerable
to environmental change; and (3) determine the vulnerabil-
ity indices for socially and economically valuable locations,
including three example case studies for regional industries
that are economically important in the region. By integrat-
ing the concept of hydrologic landscape classification, hy-
drologic vulnerability, and climatic impacts, this study lays
the groundwork for making spatially explicit generalizations
about the hydrologic vulnerability of socially and economi-
cally valuable locations across large landscapes.

2 Methods

2.1 Study area

The study area includes the states of Washington, Oregon,
Idaho, California, Nevada, and Arizona in the western U.S.
(Fig. 1). These states extend across a wide range of cli-
mates and diverse physiographic settings. The lowest eleva-
tion across the six states is 85 m below sea level (Death Val-
ley, California), while the highest elevation is 4421 m above
sea level (Mt. Whitney, California) (U.S.G.S. National Ele-
vation Dataset available at https://nationalmap.gov/elevation.
html, last access: 3 June 2021). The Sierra Nevada moun-
tain range is oriented in a north–south direction near the
eastern border of California and transitions to the Cascade
mountain range that is oriented north–south through Ore-
gon and Washington (US Topo Quadrangles available at
https://nationalmap.gov/ustopo). There are numerous other
mountain ranges in the other states as well. The Sierra
Nevada and Cascade mountain ranges generate orographic
effects that cause upwind areas to the west to have greater
precipitation relative to the downwind, eastern regions (Det-
tinger et al., 2004; Siler et al., 2013). High-elevation ar-
eas receive most of their precipitation as snow (Brekke et
al., 2009; Mote et al., 2005), while lowland and coastal ar-
eas receive predominantly rain (Brekke et al., 2009; Mock,
1996), but much of the study area receives a balance of snow
and rain. The topographic differences drive precipitation pat-
terns across the area and cause differences in the total an-

https://doi.org/10.5194/hess-25-3179-2021 Hydrol. Earth Syst. Sci., 25, 3179–3206, 2021

https://nationalmap.gov/elevation.html
https://nationalmap.gov/elevation.html


3182 C. E. Jones Jr. et al.: Hydrologic landscapes and climatic time series for assessing hydrologic vulnerability

Figure 1. Study area showing a map with the six states
of WA, OR, ID, CA, NV, and AZ. Also shown are the
seven EPA Level II Ecoregions (https://www.epa.gov/eco-research/
ecoregions-north-america, last access: 3 June 2021) and 45 loca-
tions identified by numbered circles with three case study locations
in black circles (Table 2). State boundaries are indicated by black
dashed lines.

nual precipitation or the seasonality of maximum precipita-
tion (Mock, 1996). In the arid southwest, summer monsoons
deliver most of the annual precipitation, whereas in the PNW,
winter rains and snows prevail (Mock, 1996). However, the
western U.S. is regularly affected by atmospheric rivers that
deliver large quantities of rain or snow over short periods
(Dettinger, 2011; Hidalgo et al., 2009). The seasonal vari-
ability of surface air temperature varies widely across the
study area. Portions of each state are classified as deserts
with summer maximum temperatures regularly exceeding
40 ◦C (NOAA State Climate Extremes Committee, 2016).
Each state has also recorded temperatures less than −40 ◦C
(NOAA State Climate Extremes Committee, 2016). Some ar-
eas have mild climates with little seasonal variation in tem-
perature (Daly, 2016b). Geology in the study area varies from
high-permeability sedimentary deposits or relatively recent
volcanic deposits to low-permeability igneous metamorphic
and sedimentary formations and older volcanics (Comeleo et
al., 2014; Stratton et al., 2016).

2.2 Hydrologic landscape classification

Assessment units (AUs) are aggregations of NHDPlusV2
catchments (McKay et al., 2012) that were grouped to have a
target area of 80 km2, as described in Leibowitz et al. (2016).
In this study, the same assessment units used in the Leibowitz
et al. (2016) study have been used and their method applied
to the expanded six-state study region to delineate 29 097 as-
sessment units for the study’s expanded six-state study re-
gion. For this analysis, we retain an AU if its centroid was
located within the boundary of our project area or if the AU
extended across an international boundary. All AU polygons
are clipped to the international boundary of the U.S. These
conditions allow us to avoid edge effects at international and
state borders by avoiding overlapping AUs at state bound-
aries and analyzing the HLs up to all international borders.

Building upon Winter’s (2001) approach and the Wolock
et al. (2004) clustering approach, Wigington et al. (2013) de-
veloped their simple conceptual HL classification based on
climatic and physical characteristics of the physical water-
shed. They combined five indices related to hydrologic flow
(Fig. 2a) to characterize the major drivers that control the
magnitude and timing of water movement through the land-
scape and into the groundwater or stream network: (1) cli-
mate, which describes the overall water availability, (2) sea-
sonality of water surplus, which is the season when the max-
imum excess of water is available to infiltrate into the soil or
flow as surficial runoff, (3) subsurface permeability, (4) ter-
rain, and (5) surface permeability. Note that Wigington et
al. (2013) referred to subsurface and surface permeability as
aquifer and soil permeability, respectively. The five HL in-
dices, described in more detail below (Sect. 2.2.1 through
2.2.5), are concatenated into a five-character HL code (e.g.,
WsLMH, SwHTH, or DfHfL) that characterizes an AU.

Leibowitz et al. (2016) modified the Wigington et
al. (2013) approach by including the use of assessment units
based on National Hydrography Dataset Plus V2 catchments,
a modified snowmelt model that was validated over a broader
area, a subsurface permeability index that does not require
pre-existing aquifer permeability maps, and a surface perme-
ability threshold based on objective criteria. Using this mod-
ified method (herein described as the modified Wigington et
al., 2013, approach), they developed an HL map of the PNW.
Here, we used the modified Wigington et al. (2013) approach
to develop an HL classification of California, Nevada, and
Arizona. This was then combined with the PNW map (Lei-
bowitz et al., 2016) to create an HL map of the study area.

2.2.1 Climate

The Wigington et al. (2013) approach derived the climate
index from the Feddema Moisture Index (FMI) (Feddema,
2005):

FMI=
{

1− PET
P

ifP ≥ PET,
P

PET − 1 ifP < PET,
(1)
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Figure 2. Mapping of hydrologic vulnerability. (a) A hydrologic landscape map is developed for six western states using 1971–2000 normals
for climate (Feddema Moisture Index; FMI) and seasonality, along with surface permeability, terrain, and subsurface permeability geophys-
ical data. (b) Historical decadal analysis is run from 1901 through 2010 for each of seven metrics: monthly temperature, precipitation,
potential evapotranspiration, surplus water, snow water equivalent, FMI (shown), and seasonality. (c) Future predicted behavior is estimated
for each of the seven metrics, based on 10 climate model projections (FMI shown). (d) Vulnerability is then defined as the number of climate
projections that lie outside of the historical 2 standard deviation threshold (example for FMI from Napa–Sonoma shown). (e) Vulnerability
values are then mapped for each metric across the six-state study area (FMI shown).

where FMI (Eq. 1) values range from −1.0 (arid) to 1.0
(very wet). P is the mean precipitation (mm) over a 30-
year period, which is derived from climate data described in
Sect. 2.3, and PET is the potential evapotranspiration (mm)
calculated using the Hamon (1963) method that utilizes mean
daily temperature, daytime length (calculated based on lati-
tude), and a calibration coefficient. The range of FMI val-
ues was the basis for defining a climate index consisting
of six classes: arid (A; −1.0≤ FMI<− 0.66), semi-arid
(S; −0.66≤ FMI<− 0.33), dry (D; −0.33≤ FMI<0.0),
moist (M; 0.0≤ FMI<0.33), wet (W; 0.33≤ FMI<0.66),
and very wet (V; 0.66≤ FMI<1.0) (Wigington et al., 2013).
FMI was calculated using regional precipitation and temper-
ature rasters (described in Sect. 2.3) for each period of inter-
est. The FMI value was then averaged over each AU.

2.2.2 Seasonality

We used the Leibowitz et al. (2016) approach to develop a
seasonality index that identifies the season of the maximum
monthly average snowpack-corrected surplus water (S′m):

S′m = Sm− 1PACK∗m,

S′m = (Pm− PETm)−
(
PACK∗m−PACK∗m−1

)
, (2)

where S′m (Eq. 2) is the average snowpack-corrected wa-
ter surplus (mm) for month m, Sm is monthly water sur-

plus (P −PET), and Pm and PETm are monthly precipita-
tion and monthly PET, respectively. PACK∗m is a monthly
bias-corrected snowpack value (in millimeters of SWE) re-
stricted to values greater than zero, based on the Leibowitz et
al. (2016) modifications to the Leibowitz et al. (2012) snow-
pack model. Note that 1PACK∗m can have negative values,
which represents snowmelt. For each month, S′m was cal-
culated for the regional raster before identifying the month
of maximum S′m for the majority of pixels in each AU. The
month of maximum S′m was used to identify the season of
maximum S′m based upon four seasonality classes: fall (f;
October–December), winter (w; January–March), spring (s;
April–June), and summer (u; July–September). The PNW
analysis by Leibowitz et al. (2016) only included two sea-
sonality classes: summer seasonality did not occur, while fall
and winter were combined into a winter class, since this rep-
resented the PNW’s wet season. For this analysis, winter and
fall were separated and all four seasonality classes were used,
because fall and winter are distinct seasons in other parts of
the nation.

2.2.3 Subsurface permeability

Leibowitz et al. (2016) utilized the Comeleo (2014) aquifer
permeability dataset. We applied a similar approach to the
Stratton et al. (2016) aquifer permeability datasets, which is
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herein referred to as subsurface permeability. Each dataset
classifies the subsurface permeability into high- (H) and low-
permeability (L) classes, which are assigned with a threshold
of 8.5×10−2 m d−1 hydraulic conductivity. Using these data,
we analyzed the subsurface permeability of each AU by iden-
tifying the subsurface permeability class for the majority of
pixels within each AU in California, Nevada, and Arizona.

2.2.4 Terrain

To classify terrain, we used the same approach as Wigington
et al. (2013). We analyzed a 30 m digital elevation model to
classify the landscape based upon the topographic character-
istics of each AU. “Mountainous” (M) areas had AUs with
<10 % of the area identified as flat (<1 % slope) and greater
than 300 m of total relief. AUs with more than 50 % area with
<1 % slope were classified as “flat” (F). All other AUs were
identified as “transitional” (T).

2.2.5 Surface permeability

For surface permeability, the Leibowitz et al. (2016) HL ap-
proach utilized the STATSGO soil permeability raster de-
veloped by the Pennsylvania State University Center for
Environmental Informatics (http://www.cei.psu.edu/, last ac-
cess: 3 June 2021) for the top 10 cm of soil (Miller and
White, 1998) in the conterminous U.S. The STATSGO soils
database was selected because of its complete coverage of the
conterminous U.S., despite SSURGO’s higher spatial resolu-
tion yet incomplete coverage of the study area. Leibowitz et
al. (2016) identified whether the majority of each AU had
high (H; >1.52 cm h−1) or low (L; ≤ 1.52 cm h−1) soil per-
meability. We applied the same approach to classify the sur-
face permeability of each AU into two classes throughout the
region.

2.3 Climate analyses

2.3.1 Climate normal (1971–2000)

The climate normal was defined as the 1971–2000 pe-
riod to align with the Leibowitz et al. (2016) study. Aver-
age monthly precipitation and mean temperature were ac-
quired from Parameter-elevation Regressions on Independent
Slopes Model (PRISM; Daly, 2016b) data for our normal cli-
matic period at a resolution of approximately 400 m. The
PRISM Climate Mapping Program is an ongoing effort to
produce detailed, spatial climate datasets (Daly, 2016a; Daly
et al., 2000). PRISM uses point measurements of climate data
and a digital elevation model to map climate across the U.S.
from 1895 to the present, including regions impacted by high
mountains, rain shadows, temperature inversions, coastal re-
gions, and associated complex meso-scale climate processes.
Using ArcGIS (ESRI, 2016), the data were clipped to the
project boundary and used to calculate the average for seven
metrics: monthly temperature (◦C), precipitation (mm), PET

(mm), surplus water (mm), snow water equivalent (mm), the
FMI climate index (unitless), and seasonality of water sur-
plus (unitless). Each metric is an input to or products of the
HL classification process.

2.3.2 Historical climate analyses (1901–2010)

Unlike the 1971–2000 monthly precipitation and tempera-
ture data, a time series of gridded monthly historical climate
data at a spatial resolution of 400 m was not available with-
out paying a fee. However, daily PRISM data were freely
available at 4 km resolution, so we used these to develop the
historical climate analyses for the 1901–2010 period. These
gridded data for daily mean temperature and precipitation
were clipped to the project boundary and averaged for each
month over each decade (i.e., 1901–1910, 1911–1920, etc.).
The data were then statistically downscaled to 400 m using
the delta method (Hijmans et al., 2005; Ramirez-Villegas
and Jarvis, 2010) to match the spatial and temporal resolu-
tion of the climate normal data (using the 400 m resolution,
monthly PRISM climate normal for the 1971–2000 period
as the high-resolution dataset). We acknowledge the inaccu-
racies and uncertainty imposed in the temperature and pre-
cipitation datasets by applying the downscaling functions to
the original climate projections. While the 400 m data clearly
have greater resolution and less error than the 4 km data,
these data were to be aggregated to assessment units with
a mean area of 56 km2. In practice, the larger 4 km resolu-
tion of the downscaled historical analysis should still be ap-
propriate for the scale of the assessment units, and thus the
trade-offs were deemed acceptable and preferable for char-
acterizing the hydrology and climate for these analyses with
no additional budget requirements.

Based on the approaches described, the downscaled data
were used to calculate the average monthly PET, surplus wa-
ter, snow water equivalent, FMI, and seasonality of water sur-
plus for each decade (Fig. 2b). Summary figures were gen-
erated from these data, depicting spatial distribution of cli-
mate and seasonality for each decade across the project area.
These data were compared to the climate normals using spa-
tially continuous time series analyses (Fig. S1).

2.3.3 Future climate analyses (2041–2070)

In order to explore the potential range of modeled cli-
matic response for the study area, we selected 10 cli-
mate model projections from the full ensemble of the
World Climate Research Programme’s Coupled Model In-
tercomparison Project phase 5 multi-model ensemble cli-
mate dataset projections (WCRP CMIP5; https://esgf-node.
llnl.gov/projects/esgf-llnl/, last access: 3 June 2021; Taylor
et al., 2012). These models are based on the Representa-
tive Concentration Pathway (RCP) 8.5 emissions scenario,
which assumes the highest rate of emissions into the 21st
century and most closely relates to conditions observed to
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Table 1. CMIP5 Climate Model summary for 2041–2070 precipitation and temperature data (Bureau of Reclamation, 2014).

WCRP CMIP5 Climate Model Model Model Abbreviated name
abbreviated realization used in Fig. 3
name used herein for realization

Canadian Earth System Model CanESM2 r5i1p1 CanESM2
Community Climate System Model CCSM4 r1i1p1 CCSM4
Community Climate System Model CCSM4 r4i1p1 CCSM4-R4
Community Earth System Model CESM1 r3i1p1 CESM1
Commonwealth Scientific and Industrial Research Organisation Mark 3.6 CSIRO-Mk3-6-0 r5i1p1 CSIRO
Geophysical Fluid Dynamics Laboratory Coupled Climate Model GFDL-CM3 r1i1p1 GFDL
Hadley Global Environment Model HadGEM2-AO r1i1p1 HadGem
Institute for Numerical Mathematics Climate Model INM-CM4 r1i1p1 inmcm4
Model for Interdisciplinary Research on Climate MIROC-ESM r1i1p1 MIROC
Meteorological Research Institute MRI-CGCM3 r1i1p1 MRI-CGCM3

date (Schwalm et al., 2020). To reduce the complexity of the
analyses, we used only this one emissions scenario. To select
the specific model simulations to use in this study, we used
the U.S. Environmental Protection Agency’s (EPA) LASSO
tool (https://lasso.epa.gov/, last access: 3 June 2021; U.S.
EPA, 2020) to generate a scatterplot comparing future tem-
perature and precipitation change for the different CMIP5
models over the project area. Using the scatterplot and the
approach described by the U.S. EPA (2020), we subjectively
selected 10 models that spanned the entire range of predicted
climatic responses of the full ensemble in a distributed man-
ner (Fig. 3), including drier, wetter, colder, and warmer re-
sponses. Average monthly precipitation and temperature for
the 10 projections (Table 1) were acquired from the monthly
Bias Correction and Spatial Disaggregation (BCSD) archive
(Bureau of Reclamation, 2014) for the 2041–2070 period.
These data were clipped to the project boundary and resam-
pled to a 400 m grid using a bilinear approach (ESRI ArcGIS
v10.4) to match the resolution and spatial extent of the cli-
mate data. The average monthly PET, surplus water, snow
water equivalent, FMI, and seasonality of water surplus were
calculated from the future climate data for each assessment
unit. Example figures were generated that illustrate the spa-
tial distribution of the differences in FMI (Figs. S1 and S2)
and seasonality of water surplus (Figs. S3 and S4) from the
normal period for each climate projection (Fig. 2c).

2.4 Mapping vulnerability indices

As discussed in the introduction, vulnerability can be mea-
sured by assessing the exposure, sensitivity, and adaptive ca-
pacity of a system to change (Adger, 2006; Füssel, 2007;
Füssel and Klein, 2006; IPCC, 2014). Hydrology and climate
are primary forcing factors for ecosystems (Nelson, 2005)
and are critical to certain industries and stakeholders in par-
ticular areas, and thus analyses of historic variation in hydrol-
ogy and climate in an area can serve as proxies for the his-
torical sensitivity of those systems to environmental change.

Likewise, we used future climate projections as a proxy for
exposure. Projections that fell outside of historic observa-
tions were assumed to be associated with increased exposure
to the forcing factors for environmental change, which in-
clude hydrology and climate. In terms of adaptive capacity,
we assumed that the systems present in a location are adapted
to the historic variability in conditions. We also assumed that
the systems would become stressed by conditions far outside
of those previously experienced. Further, we suggest that the
greater the number of future climate projections that exceed
or fall far below the historic range, the more vulnerable a sys-
tem will be with respect to climate-induced changes. Thus,
HLVA places projected environmental changes in the con-
text of historic trends. The HLVA assesses vulnerability to
changes in temperature, precipitation, potential evapotranspi-
ration, surplus water, snow accumulation, climatic moisture,
and seasonality of the water surplus by identifying areas that
are projected to experience future deviations from historic
conditions (Fig. 2e).

The 10 future climate projections (for the 2041–2070 pe-
riod) were compared to the decadal averaged data from 1901
to 2010 for each AU. We calculated the historical standard
deviation of each metric for each AU within the project area.
For each metric, we assume that any projection within 2 stan-
dard deviations of the historical climate values does not con-
tribute to an increase in vulnerability, whereas projections
outside of that range increase the vulnerability. We then de-
fine vulnerability for a given metric as the number of the 10
projections that are outside of the historical 2 standard devia-
tion threshold. Thus, the HLVA index assesses the likelihood
that a given metric will exceed a 2 standard deviation thresh-
old from the decadal mean under future climate scenarios.
Because individual models exceed the threshold of 2 stan-
dard deviations from the mean in both the higher and lower
directions, there is no unique direction of change associated
with the vulnerability index. Thus, the vulnerability index, as
defined, does not convey information about the projected di-
rection of change. A vulnerability index of 10 indicates that
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Figure 3. Scatterplot showing the range of mean temperature and precipitation projections for the 2041–2070 climate models across the
study area. The circled data points identify the climate projections used in our analyses. Climate models are enumerated using the key to
the right of the scatterplot. Subscripts denote the realization number of each unique projection. Legend colors are used to improve legibility
where scatterplot symbols overlap.

all 10 climate projections were beyond 2 standard deviations
from the historical mean and that the area is expected to expe-
rience projected conditions that it is not adapted to. The least
vulnerable areas will have an index of zero, which indicates
that all future climate projections fell within the 2 standard
deviation threshold to which systems are adapted. The use of
standard deviations is not an appropriate threshold metric for
seasonality, because it is a categorical variable. For the sea-
sonality metric, any projected seasonality value that has not
been observed decadally between 1900 and 2010 increases
the seasonality vulnerability index. For example, consider an
AU that had predominantly experienced spring seasonality,
with the occasional fall seasonality, and that 7 of 10 climate
models project fall seasonality and 3 of 10 models predict
winter seasonality for 2041–2070. Since winter seasonality
was not observed for any decade between 1900 and 2010, the
three predictions for winter seasonality would contribute to a
vulnerability index of 3 for seasonality in that case. Finally,
we analyzed the dominant HL code by area of the most vul-
nerable AUs (those having a vulnerability index greater than
7 on a scale of 10) for each metric in order to gain insight
into the dominant HL characteristics that relate to hydrologic
vulnerability.

2.5 Locational time series analyses

Forty-five locations (Fig. 1 and Table 2) were selected for
potential applications of the HL approach to demonstrate the
method’s relevance to potential water resource stakeholders

to identify areas where we thought results could be of use to
land managers. Specific sites were selected subjectively so
that we could examine representative climate impacts at sites
that may be of general interest. These sites include cities,
national parks, mountains, national forests, and areas with
hydrologically sensitive economic interests. AUs were used
to represent a geographic feature if its centroid was located
within the geographic boundary of a location of interest. The
location boundary was defined by merging these AUs into a
single polygon. For instance, the Great Basin National Park
(GBNP) was covered by a single AU rather than numerous
AUs because the centroid of only one AU was within the park
boundary, whereas all other AU centroids were located out-
side of the GBNP boundary. The time series for the decadal
averages for each of the climate-related HL metrics were an-
alyzed for the AUs associated with each location. Decadal
averages were plotted at the decadal midpoint for each 10-
year period from 1901 to 2010. In addition, the 1971–2000
normal average for each variable and 10 climate projections
(2041–2070) were also plotted. The HLVA was then used to
determine the mean vulnerability index and the dominant HL
code for the AUs associated with each location (Fig. 2d).
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Table 2. Summary table for 45 study locations (sorted by decreasing latitude) providing a numeric ID from Fig. 1, total analysis area,
dominant HL class (representing climate, seasonality, subsurface permeability, terrain, and surface permeability), percent area represented
by the dominant HL class, latitude and longitude of the center point of the area, and vulnerability indices for temperature, precipitation,
potential evapotranspiration (PET), surplus water (S′), snow water equivalent (snow), Feddema Moisture Index (FMI), and seasonality.

Site Name Area Dominant Dominant Coordinates Vulnerability index

no. (km2) HL class* % area Lat. Long. Temp. Precip. PET S′ Snow FMI Seasonality

1 Bellingham 212 WfLTH 99 % 48.77 −122.45 10 5 10 1 0 9 0
2 Spokane 592 DfHTH 80 % 47.64 −117.43 10 6 10 7 10 3 1
3 Seattle 669 WfLTH 78 % 47.60 −122.25 10 4 10 1 0 5 2
4 Mt. Rainier 718 VsLMH 76 % 46.85 −121.79 10 4 10 2 7 4 2
5 Yakima 438 SfHTH 86 % 46.63 −120.60 10 3 10 6 0 0 0
6 Portland 932 WfHTH 67 % 45.53 −122.66 10 3 10 2 0 6 0
7 Mt. Hood 834 VsHMH 81 % 45.37 −121.70 10 3 10 3 7 4 3
8 Umatilla NF 2147 MsLMH 29 % 44.87 −118.70 10 6 10 3 6 3 4
9 Willamette 1234 WfHTH 83 % 44.84 −123.14 10 3 10 2 0 4 0
10 Challis NF 4348 WsLMH 74 % 44.55 −114.75 10 6 10 0 3 2 0
11 Bend 948 SfHTH 68 % 44.21 −121.26 10 4 10 8 0 3 0
12 Eugene 523 WfHFH 64 % 44.10 −123.15 10 3 10 1 0 2 0
13 Boise 594 SwHTH 51 % 43.61 −116.24 10 8 10 8 0 2 0
14 Malheur NWR 1355 SwHFH 69 % 43.27 −119.04 10 6 10 7 0 2 0
15 Crater Lake 1721 WsHTH 45 % 42.98 −122.08 10 3 10 2 9 3 10
16 Pocatello 349 DwHTH 45 % 42.88 −112.43 10 7 10 7 0 1 0
17 Siskiyou NF 926 VwLMH 100 % 42.36 −124.29 10 2 10 0 0 2 0
18 Medford 375 DfLTH 60 % 42.34 −122.89 10 1 10 5 0 2 0
19 Six Rivers 1527 VwLMH 100 % 41.63 −123.79 10 2 10 2 0 4 0
20 Mt. Shasta 956 WwHMH 49 % 41.36 −122.23 10 1 10 2 0 3 0
21 Ruby Mtn 1132 DfLTH 44 % 40.68 −115.31 10 6 10 5 9 4 0
22 Arcata-Humboldt Co 2511 WwLMH 63 % 40.62 −124.01 10 3 10 2 0 3 0
23 Redding 478 MwHTH 59 % 40.56 −122.38 10 2 10 2 0 2 0
24 Battle Mtn 902 SwLMH 75 % 40.09 −116.71 10 6 10 7 0 4 0
25 Reno 382 SwHTH 40 % 39.54 −119.80 10 4 10 7 0 3 0
26 Great Basin NP 38 MsLMH 100 % 39.01 −114.26 10 4 10 5 0 4 1
27 Sacramento 855 SwHFH 88 % 38.57 −121.39 10 6 10 7 0 3 0
28 Napa–Sonoma 1867 MwHTH 61 % 38.37 −122.53 10 6 10 5 0 3 0
29 Yosemite NP 2455 VsLMH 44 % 37.93 −119.55 10 4 10 4 9 3 0
30 San Francisco Bay 3356 DwHMH 19 % 37.44 −122.29 10 6 10 5 0 5 0
31 Sierra NF 5349 WwLMH 31 % 37.17 −119.05 10 4 10 4 0 2 0
32 High Sierras 2239 WsLMH 32 % 37.15 −118.81 10 2 10 4 1 2 0
33 Nevada Test Site 3121 AwHMH 67 % 36.96 −116.22 10 5 10 10 0 4 0
34 Fresno 1393 AwHFH 100 % 36.74 −119.91 10 5 10 8 0 4 0
35 Death Valley NP 7862 AwHMH 50 % 36.45 −117.03 10 5 10 10 0 5 0
36 Las Vegas 977 AwHTH 65 % 36.23 −115.26 10 4 10 10 0 4 0
37 Grand Canyon NP 3475 SwHMH 28 % 36.22 −112.11 10 4 10 10 0 6 0
38 San Luis Obispo 2653 DwLMH 98 % 35.36 −120.63 10 4 10 4 0 4 0
39 Bakersfield 3399 AwHFH 96 % 35.33 −119.14 10 4 10 9 0 4 0
40 Flagstaff 365 DwHMH 51 % 35.19 −111.60 10 3 10 4 0 4 0
41 Joshua Tree NP 2599 AwLMH 68 % 33.92 −115.99 10 5 10 7 0 5 0
42 White Mtns 4855 WfLMH 23 % 33.87 −109.53 10 4 10 3 0 3 0
43 Phoenix 2304 AwHFH 63 % 33.52 −112.11 10 3 10 10 0 2 1
44 San Diego 1276 SwLMH 37 % 32.90 −117.06 10 4 10 6 0 4 0
45 Tucson 1838 AwHTH 62 % 32.19 −110.95 10 3 10 9 0 1 2

∗ Climate class (1st letter): V: very wet; W: wet; M: moist; D: dry; S: semi-arid; A: arid. Seasonality class (2nd letter): f: fall; w: winter; s: spring; u: summer.
Subsurface permeability class (3rd letter): L: low; H: high. Terrain class (4th letter): M: mountain; T: transitional; F: flat. Surface permeability class (5th letter): L: low;
H: high.

3 Results

3.1 Hydrologic landscape summary

Table 3 shows the percent coverage of the HL categories for
the six states. Thirty percent of the region is mountainous (el-

evation relief of AU >300 m and <10 % of AU area has slope
<1 %) and 7 % is flat (AUs with more than 50 % area having
<1 % slope). The remaining area is classified as transitional.
According to the soil permeability dataset (Miller and White,
1998) produced from the STATSGO soils database (Soil Sur-
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Table 3. Percent of area of each HL category and classification
within the six-state region (1971–2000).

Category Classification Area (%)

Climate Arid 21 %
Semi-arid 34 %
Dry 15 %
Moist 9 %
Wet 14 %
Very wet 7 %

Season Spring (AMJ1) 13 %
Summer (JAS2) 1 %
Fall (OND3) 24 %
Winter (JFM4) 63 %

Subsurface permeability Low 40 %
High 60 %

Terrain Flat 7 %
Transitional 63 %
Mountain 30 %

Surface permeability Low 2 %
High 98 %

1 AMJ: April, May, and June. 2 JAS: July, August, and September. 3 OND:
October, November, and December. 4 JFM: January, February, and March.

vey Staff, 2016), 98 % of the surface soils (defined as the
top 10 cm) are highly permeable (>4.23 µm s−1). Stratton et
al. (2016) and Comeleo et al. (2014) classified the subsurface
permeability of the six-state region as 60 % high permeabil-
ity and 40 % low permeability. During the 1971–2000 cli-
mate normal period, most of the area has the highest monthly
water availability (seasonality) during the winter (63 %), fol-
lowed by 24 % of the area showing fall seasonality, 13 % hav-
ing spring seasonality, and only 1 % experiencing summer
seasonality. In addition, 30 % of the area is classified as hav-
ing a moist, wet, or very wet climate, while 70 % is dry, semi-
arid, or arid. The HL maps for the study area are included in
the Appendix (Fig. A1). HL maps for the remainder of the
conterminous U.S. are also available and are included in the
Supplement (Fig. S6; although subsurface permeability maps
are not available for all of the lower 48 states).

3.2 Climate vulnerability analyses

Using the analyses of historic and future climate, the vulner-
ability indices were mapped for all seven metrics (examples
are provided for FMI and seasonality in the Supplement).
The vulnerability maps (Fig. 4) identify areas that are subject
to extreme future climatic and hydrologic variability (similar
vulnerability maps for the conterminous U.S. are included in
the Supplement, Fig. S6). Note that while it is possible to
evaluate direction of change (greater than or less than 2 stan-
dard deviations) for the projection of an individual climate
model, the vulnerability index is the integration of 10 indi-

Figure 4. Vulnerability indices for temperature, precipitation, po-
tential evapotranspiration, snow water equivalent (1 April), S′

(available water), Feddema Moisture Index, and seasonality. The
least vulnerable locations are those projected to be within 2 stan-
dard deviations of the historic (1901–2010) mean in all 10 climate
models.

vidual models. Therefore, it is possible for individual mod-
els to exceed the threshold of 2 standard deviations from the
mean in either the higher or lower directions; thus there is no
unique direction of change associated with our vulnerability
index as it has been defined.

All climate projections indicate that temperature will
change almost ubiquitously across the Pacific west, indicat-
ing uniformly high vulnerability. However, changes in pre-
cipitation are much more spatially variable. The cold deserts
and Mediterranean California Ecoregions (Ecoregion level 2)
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have higher vulnerability, i.e., are more consistently pro-
jected to experience changes in precipitation than has been
observed since 1901 on a decadal basis. In contrast, ma-
jor portions of Arizona, Washington, Oregon, and Califor-
nia have areas with low vulnerability to change with respect
to precipitation. The PET vulnerability map is similar to
the temperature vulnerability map, which is not surprising
since the Hamon (1963) method of calculating monthly PET
uses temperature as the major input. The 1 April snow ac-
cumulation (snow water equivalent) vulnerability map shows
high vulnerability in many mountainous areas throughout the
west. This seems to indicate that snow accumulation will
change, particularly in transitional areas, compared to the
most snow-prone areas of the west. S′ is a measure of avail-
able water (excess water available for soil infiltration or over-
land flow) and has less spatial uniformity of vulnerability
than temperature or PET. The map for S′ suggests that the
Warm Desert and Marine West Coast Forest Ecoregions are
more likely to experience substantial changes in available
water (i.e., high vulnerability) in the future. The FMI is cal-
culated from the ratio of PET and precipitation as per Eq. (1).
The FMI vulnerability map indicates that the Level-2 west-
ern Cordillera Ecoregion through northern Idaho (Fig. 1),
a band of the western Cordillera running north and south
through west of central Washington and Oregon (which in-
cludes portions of the Cascade Range), and portions of the
cold desert ecoregions in southeastern Washington and north-
western Arizona (Fig. 1) are more likely to see substantial
changes to the FMI. The regional time series analyses (be-
low) provide more information about whether those areas
are expected to become wetter or drier. The seasonality vul-
nerability map identifies AUs that are likely to have changes
in seasonality. Portions of the western Cordillera Ecoregion
(Fig. 1, which includes the Sierra Nevada in California, the
Cascade Mountains in Washington and Oregon, and transi-
tional terrain in Idaho) are projected to be more vulnerable
to changes in seasonality. Otherwise, large portions of the
study area are not projected to be vulnerable to changes for
seasonality.

3.2.1 Vulnerability of hydrologic landscapes

Table 4 summarizes an analysis of the HL classifications of
the most vulnerable AUs for each metric. For example, 75 %
of the AUs identified as vulnerable for snow accumulation
(SWE) were classified as dry, moist, or wet, and therefore
very wet, semi-arid, and arid AUs are less likely to be vul-
nerable to changes in snow accumulation. Likewise, 76 % of
AUs vulnerable to changes in seasonality had a spring sea-
sonality during the 1971–2000 normal period. The physical
properties represented by the dominant HL classes in Table 4
could help determine how various climate vulnerabilities are
ultimately expressed. For example, vulnerability to changes
in snow or FMI mostly occur in regions with wetter climates
(moist, wet, or very wet climate), with fall or spring season-

ality, in areas with low subsurface permeability. This could
result in increased precipitation, with quicker runoff in areas
that currently have delayed release of water. Similarly, areas
vulnerable to changes in surface runoff are arid landscapes
with winter seasonality and highly permeable subsurface par-
ent materials. This means that these changes in runoff could
have a large impact on subsurface recharge and, ultimately,
baseflow.

3.2.2 Case studies and locational time series

Hydrologic vulnerability analyses have been performed for a
total of 45 exposure areas of ecological, economic, or social
significance (Fig. 1 and Table 2; see Appendix A, Fig. A2).
The vulnerability index for each location is also listed in Ta-
ble 2 for each metric. Three case study locations that are
of economic interest are explored in detail and include Mt.
Hood (site no. 7), the Willamette Valley (site no. 9), and
the Napa–Sonoma Valley (site no. 28). During the normal
period, 61 % of the 1867 km2 Napa–Sonoma Valley had an
MwHMH HL classification, and thus much of the area was
classified as having a moist climate with winter seasonal-
ity, high subsurface permeability, mountain terrain, and high
surface permeability. Eighty-three percent of the 1234 km2

Willamette Valley AUs had an HL code of WfHTH during
the normal period. Overall, the Willamette Valley had a wet
climate dominated by fall seasonality, high subsurface per-
meability, transitional terrain, and high surface permeability.
Table 2 indicates that 81 % of the 834 km2 area analyzed for
Mt. Hood had an HL code of VsHMH (very wet climate with
spring seasonality, high subsurface permeability, mountain-
ous terrain, and high surface permeability).

Figure 5 depicts line graphs of the historic and projected
changes for the three case study locations (Mt. Hood, site no.
7, Willamette Valley, site no. 9, Napa–Sonoma Valley, site
no. 28). The number in the lower left corner of each graph in
Fig. 5 indicates the vulnerability index for the specific metric
and location. For instance, precipitation at Mt. Hood has a
vulnerability index of “3”, which indicates that three of the
climate projections exceed the threshold of 2 standard devia-
tions from the historic mean.

The time series in Fig. 5 (and Fig. A2) illustrate the trend
in average decadal temperature, precipitation, SWE, PET,
climate, seasonality of water surplus, and S′. Note that each
future (2041–2070) climate projection is represented by a
single data point that characterizes the 2041–2070 30-year
range and is connected in Fig. 5 to the 2001–2010 decade
with a dotted red line. Additional figures for 42 other lo-
cations are provided in Appendix A (Fig. A2). Given that
Figs. 5 and A2 represent case study examples, Figs. 4 and S6
provide better insight into the spatial distributions of the vul-
nerability assessments for the western and continental U.S.
Each of the three example case studies is predicted to be
warmer in the 2041–2070 future climate projections. Further,
these projected temperatures are almost always outside of the
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Table 4. Hydrologic landscape characteristics of assessment units identified as vulnerable (having a vulnerability index greater than 7 on a
scale of 10) for each metric.

% assessment units that share HL classification

Climate1 Seasonality2 Subsurface Terrain4 Surface
permeability3 permeability3

Temperature 70 % D, S, or A 87 % f or w 60 % H 93 % M or T 98 % H

V
ul

ne
ra

bi
lit

y
pa

ra
m

et
er Precipitation 72 % D or S 79 % f or w 71 % H 97 % M or T 98 % H

PET 70 % D, S, or A 87 % f or w 60 % H 93 % M or T 98 % H

Surplus water 92 % A or S 79 % w 75 % H 87 % M or T 99 % H
(S′)

Snow water 75 % D, M, or W 87 % f or s 53 % L 82 % M 100 % H
equivalent (SWE)

FMI 71 % V or W 65 % f 75 % L 75 % M 100 % H

Seasonality 75 % W or M 76 % s 51 % H 83 % M 99 % H

1 A: arid, S: semi-arid, D: dry, M: moist, W: wet. 2 f: fall, w: winter, s: spring. 3 L: low, H: high. 4 T: transitional, M: mountainous.

historic (1901–2010) temperature range, and so all locations
have high vulnerability with respect to future temperatures.
None of the three case studies shows a strong trend relating
to future precipitation projections. Mt. Hood appears to ex-
hibit increasing precipitation since 1901, but there is no evi-
dence that the projected increases in precipitation are outside
of historic behavior, and so the site has low vulnerability for
that metric. Napa–Sonoma and the Willamette Valley have
low vulnerability for change in snow, while Mt. Hood has
high vulnerability for April 1 snow water equivalent in the
2041–2070 period. PET is calculated directly from tempera-
ture, and so its vulnerability is strongly correlated with tem-
perature. There are no obvious trends in S′ for the future pro-
jections in the three case studies; vulnerability of these sites
for S′ is low to moderate. The FMI projections for the Napa–
Sonoma Valley, the Willamette Valley, and Mt. Hood are out-
side of 2 standard deviations of historical trends in 3 to 4 out
of 10 of the projections (Table 2). In terms of seasonality,
the vulnerability index is equal to zero in the Willamette and
Napa–Sonoma valleys. For Mt. Hood, vulnerability is low,
with all the future climate projections indicating that there
will no longer be spring seasonality (the predominant histor-
ical season for runoff). Only three climate models suggest
that decadal seasonality would transition to winter seasonal-
ity, which has not occurred since at least 1901.

4 Discussion

4.1 Analyses of retrospective and projected climate and
hydrologic vulnerability

Vulnerability maps (Fig. 4) were developed to facilitate long-
term planning for stakeholders for assessing their risk of cli-

matic impacts. It is possible that ecosystems, businesses, and
communities in areas mapped as vulnerable may struggle
to adapt to stresses imposed by future environmental condi-
tions. As mentioned previously, the vulnerability index offers
no information about the directions of change projected by
the 10 different models. Further, the RCP 8.5 pathway was
selected because it most closely resembles observed condi-
tions (Schwalm et al., 2020).

The consistently projected high temperature vulnerability
could lead to problems related to heat stress (e.g., human-
related physical and mental health issues), urban heat is-
lands (particularly in areas with little tree cover), and other
temperature-related problems (USGCRP, 2018). PET vulner-
ability would be problematic for agricultural systems, for-
est disease, and sectors that are drought sensitive (USGCRP,
2018). Precipitation vulnerability maps are important in spe-
cific areas with regards to flooding, landslides, and drought
sensitivities. The vulnerability maps for snow accumulation
and S′ (surplus water available for runoff or infiltration) show
that the areas mapped as most vulnerable for the two metrics
are almost reversed, other than central Idaho and the coastal
areas of California, Oregon, and Washington. According to
the snow vulnerability map, it appears that most areas that
receive large amounts of snow are projected to experience
significant changes in future snow accumulation. In a related
study on snow cover, Nolin and Daly (2006) found that the
areas with the warmest winter temperatures are most at risk
of having no snow cover in the future. Areas vulnerable for
snow could impact not only the ski industry, but also water
supply and streamflows, while the surplus water availabil-
ity (S′) vulnerability metric relates more directly to stream-
flow and flooding. Most of the study area is not vulnerable
to changes in FMI (Fig. 4), which is an assessment of over-
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Figure 5. Time series of average decadal temperature, precipitation, snow (1 April snow water equivalent – mm), potential evapotranspiration
(PET), climate (FMI), seasonality, and available water (S′) for three specific locations in the western U.S. For the climate/FMI figures, the
FMI values range from 1 to −1 (primary y axis on the left), whereas the categorical version of the index ranges from arid to very wet
(secondary y axis on the right). Dotted black line represents the 1971–2000 base period; the dashed red line connects the 2001–2010 value to
the 2041–2070 climate projections for each of the 10 models. The gray shaded area represents the range of model projections. The number
in the lower left indicates the vulnerability index for the metric and location depicted in the associated graph.

all water availability, although some areas are more vulnera-
ble (the Willamette Valley in Oregon, east of Puget Sound in
Washington, and the northern panhandle in Idaho). The vul-
nerability map for seasonality (Fig. 4) shows that portions
of the western Cordillera (Fig. 1), including the high Sierra
Nevada in California, the Cascade Mountains in Oregon and
Washington, and the mountainous areas in Idaho, have higher
vulnerability indices, which indicates susceptibility regard-
ing water supply, flooding, and streamflows.

Our retrospective analysis of PRISM time series data pro-
vided an understanding of environmental conditions since
1901. We are aware of a few that have used retrospective
analyses to inform their mapping efforts (Deviney et al.,
2006; Kim et al., 2011; O’Brien et al., 2004) but are not
aware of studies that have mapped resource vulnerability at
a large scale using such data. Our definition of vulnerability

is based on agreement of climate models leading to condi-
tions that are outside of historic ranges. Our hypothesis is
that systems experiencing future climate conditions outside
of the historic range will not have the capacity to adapt to
future conditions and therefore are vulnerable. The vulnera-
bility issue is complicated by the fact that these vulnerability
maps (Fig. 4) do not show how downstream areas could be
impacted by these changes.

These vulnerability factors may be of interest to resource
managers and decision makers, some of whom might con-
sider high vulnerability for a single metric to be problematic.
Yet for others, the additive or multiplicative impacts of nu-
merous vulnerabilities may be of greater concern. For exam-
ple, urban areas might be more impacted when vulnerable to
multiple metrics, whereas PET vulnerability could be detri-
mental to agricultural or forested areas. Similarly, changes

https://doi.org/10.5194/hess-25-3179-2021 Hydrol. Earth Syst. Sci., 25, 3179–3206, 2021



3192 C. E. Jones Jr. et al.: Hydrologic landscapes and climatic time series for assessing hydrologic vulnerability

in seasonality from a snow-dominated system to rain could
have profound implications across many sectors.

For this analysis, the 30-year normal climate conditions
were compared to decadal climate conditions since 1901. In
addition, the 30-year normals for future projections (2041–
2070) were compared to the historic range of decadal climate
data. While comparing 30-year normals in a decadal analy-
sis might appear to be a discrepancy in the analysis, the in-
tention was to conservatively quantify vulnerability indices.
Thirty-year normals exhibit less variability than decadal av-
erages or annual averages. By comparing decadal averages to
the 30-year future climate normals, we are not treating past
data the same as future climate projections. However, the re-
sulting vulnerability conclusions are conservative, because if
we had used decadal projections for future climate data, vari-
ability in the range of output would have increased and our
vulnerability indices could have increased for all parameters.

4.2 Hydrologic response and hydrologic landscape
classification

The HL class for an AU can provide insight into its hydro-
logical response, given changes in the quantity (FMI) or tim-
ing of surplus water (seasonality) on a landscape. Yet these
factors only account for a portion of the water balance. How-
ever, when moisture is available as surface runoff, it may in-
filtrate into the ground or act as surface runoff, depending on
the HL surface permeability class. Water may enter and flow
through the subsurface layers (depending on the HL subsur-
face permeability) towards a stream channel. If the water was
directed as surface or subsurface runoff, it may be transported
more quickly in the downhill direction and into a stream
channel depending upon the HL terrain class, which governs
steepness. As it relates to streamflow, the unique combination
of the five HL characteristics (climate, seasonality, surface
permeability, subsurface permeability, and terrain) allows for
the hydrologic response to be assessed relative to changes in
temperature and climate (Leibowitz et al., 2014; Patil et al.,
2014). At its coarsest application as it relates to this study,
the transition from spring to winter seasonality for the Mt.
Hood case study would result in a shorter ski season with
snow conditions that could be less ideal for winter sports.
However, this transition would also have many downstream
impacts that could include flooding or habitat impacts. The
HL approach could also be used to determine any relation-
ships between HL characteristics and hydrologic vulnerabil-
ity, while case studies can show how the HLVA could be use-
ful.

4.3 Case studies

Case studies are useful for illustrating how future climate
conditions may impact important economic and conservation
resources. It is necessary for a stakeholder to understand the
parameters most important to their ecosystem, industry, or

resource of interest, so that they can utilize location-specific
information about their potential climatic impacts (Glick et
al., 2011; Lawler et al., 2010). In Fig. 5, case study examples
(Mt. Hood, site no. 7, Willamette Valley, site no. 9, Napa–
Sonoma Valley, site no. 28) demonstrate how the HLVA can
assist in understanding how climate can impact important lo-
cal water resources.

The wine and ski industries are important stakeholders
in the western U.S. that may experience impacts from hy-
drological changes. The Napa–Sonoma and Willamette val-
leys are known for their vineyards and associated wineries.
Regarding their HL characteristics, they differ in their FMI
class (Willamette is wet, whereas Napa–Sonoma is moist)
and their seasonality (Willamette has a fall seasonality, while
Napa–Sonoma has a winter seasonality). Due to the impor-
tance of the pinot noir varietals in the Willamette Valley
(Olen and Skinkis, 2018) and their temperature sensitivity
(Burakowski and Magnusson, 2012; Jones et al., 2010), lo-
cal viticulturalists are likely more concerned with changes in
temperature than FMI. The Napa–Sonoma region is recog-
nized for a variety of grape cultivars (Elliott-Fisk, 1993) that
are less sensitive to temperature fluctuations (Jones et al.,
2010). Both the Willamette Valley and Napa–Sonoma have
temperature vulnerability indices of 10 out of 10, and both
have FMI vulnerability indices of 3 out of 10 (Fig. 5). These
indices suggest that both locations are projected to have fu-
ture temperatures that are different than historic tempera-
tures. However, the Willamette Valley pinot noir grapes are
more sensitive to temperature than in the Napa and Sonoma
valleys. In addition, while both locations have the same
FMI vulnerability indices, Fig. 5 illustrates that FMI pro-
jections for Napa–Sonoma are much more variable than for
the Willamette Valley. Thus, there is more uncertainty in the
modeled water availability for Napa–Sonoma. These results
suggest that a vintner growing warm-temperature grapes in
the Willamette Valley may have more confidence in their in-
vestments relative to a vintner in Napa–Sonoma, where there
is more uncertainty regarding long-term water availability.

The skiing industry is economically important, and the im-
pact between a high- and low-snowfall year for the State of
Oregon is USD 38.1 million, while California is estimated
to lose more than USD 75 million in low-snow years (Bu-
rakowski and Magnusson, 2012). Mt. Hood is known for its
winter snow sports and tourism and would be impacted dif-
ferently by the seven metrics than the Willamette and Napa–
Sonoma case studies (Fig. 5). Thus, resource managers and
business leaders at Mt. Hood are likely more concerned about
snow accumulation in their watershed than those in the wine
and grape industries (although a grape grower’s ability to ir-
rigate may be impacted by snow accumulation in the region).
According to our analyses, Mt. Hood is generally character-
ized by having a spring seasonality and has a snow vulnera-
bility index of 7 out of a maximum of 10. Also, the analysis
of HL seasonality suggests some chance of a shorter ski sea-
son due to the risk of spring runoff occurring earlier and im-
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posing on the winter season. Even though these conditions
have occurred in the past (Fig. 5), this may be much more
deleterious to the economics of the future ski industry than
it was in the 1900s, because it contributed much less to the
historic economy (for additional examples, refer to Appendix
A2).

5 Summary and conclusions

The hydrologic landscape (HL) concept is useful for gain-
ing a better understanding of hydrologic behavior at the as-
sessment unit and watershed scales across large geographic
regions. By applying the HL concept to climatic and vulner-
ability analyses, we provide a planning approach that allows
resource managers to determine how vulnerable their loca-
tion is to changes associated with climate that are important
for a particular industry or application. Assessment of ex-
pected hydrologic response based upon physical and climatic
characteristics has the potential to offer further insight into
the idiosyncrasies of the threats faced by a stakeholder or in-
dustry across large geographic areas. This will allow them
to make informed decisions about the risk imposed by po-
tential changes that could affect their long-term planning ef-
forts. The methodology also allows stakeholders to focus on
specific areas of interest, which provides the flexibility nec-
essary for the information to be relevant across applications
and sectors. Examples of another phenomenon that could be
examined using a similar or modified approach could include
vulnerability associated with wildfire, landslides, snowmelt-
related flooding, wetland persistence, and flow permanence,
among others. Other industries that could also be analyzed
could include those associated with water-reliant industries,
such as agriculture (timber, fruit crops, seed crops, etc.),
freshwater fisheries, and winter-tourism industries. By apply-
ing the modified Wigington et al. (2013) approach across the
western U.S., resource managers will be able to base man-
agement decisions on assessments of climatic impacts of wa-
ter resource-related vulnerabilities.
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Appendix A

Figure A1. Component hydrologic landscape maps of Washington, Idaho, Oregon, California, Nevada, and Arizona were used in the analysis
of the HLVA indices: (a) subsurface permeability, (b) seasonality of precipitation surplus, (c) surface permeability, (d) climate, and (e) terrain.
Notes: the seasonality map for the PNW has been updated from the original Leibowitz et al. (2016) HL map, as we separated their winter
seasonality into two seasons (winter and fall).
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Figure A2.
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Figure A2.
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Figure A2.
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Figure A2.
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Figure A2.
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Figure A2.
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Figure A2.
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Figure A2. Time series of average decadal temperature, precipitation, snow (1 April snow water equivalent), potential evapotranspiration
(PET), climate (FMI), seasonality, and available water (S′) for 45 specific locations in the western U.S. For the climate/FMI figures, the FMI
values range from 1 to −1 (primary y axis on the left), whereas the categorical version of the index ranges from arid to very wet (secondary
y axis on the right). Dotted black line represents the 1971–2000 base period; the dashed red line connects the 2001–2010 value to the 2041–
2070 climate projections for each of the 10 models. The gray shaded area represents the range of model projections. The number in the lower
left indicates the HLVA vulnerability index for the metric and location depicted in the associated graph. Note that Oregon, Washington, and
Idaho locations are displayed first in alphabetical order and are followed by those of California, Nevada, and Arizona.
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