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Abstract. In this paper, we present the Catchments Attributes
for Brazil (CABra), which is a large-sample dataset for
Brazilian catchments that includes long-term data (30 years)
for 735 catchments in eight main catchment attribute classes
(climate, streamflow, groundwater, geology, soil, topogra-
phy, land cover, and hydrologic disturbance). We have col-
lected and synthesized data from multiple sources (ground
stations, remote sensing, and gridded datasets). To prepare
the dataset, we delineated all the catchments using the Multi-
Error-Removed Improved-Terrain Digital Elevation Model
(MERIT DEM) and the coordinates of the streamflow sta-
tions provided by the Brazilian Water Agency, where only
the stations with 30 years (1980–2010) of data and less
than 10 % of missing records were included. Catchment
areas range from 9 to 4 800 000 km2, and the mean daily
streamflow varies from 0.02 to 9 mm d−1. Several signa-
tures and indices were calculated based on the climate and
streamflow data. Additionally, our dataset includes bound-
ary shapefiles, geographic coordinates, and drainage area
for each catchment, aside from more than 100 attributes
within the attribute classes. The collection and process-
ing methods are discussed, along with the limitations for
each of our multiple data sources. CABra intends to im-
prove the hydrology-related data collection in Brazil and
pave the way for a better understanding of different hydro-
logic drivers related to climate, landscape, and hydrology,
which is particularly important in Brazil, having continental-
scale river basins and widely heterogeneous landscape char-
acteristics. In addition to benefitting catchment hydrol-
ogy investigations, CABra will expand the exploration of
novel hydrologic hypotheses and thereby advance our un-
derstanding of Brazilian catchments’ behavior. The dataset

is freely available at https://doi.org/10.5281/zenodo.4070146
and https://thecabradataset.shinyapps.io/CABra/ (last access:
7 June 2021).

1 Introduction

The integrated assessment of large-sample catchment at-
tributes is fundamental for the description and classification
of landscape properties, leading to an improved understand-
ing of similarities (or dissimilarities) between catchments.
Large-sample catchment hydrology is essential in terms of
understanding hydrological processes (Addor et al., 2020;
Beven et al., 2020). It provides an attractive venue for gen-
eral inferences that would otherwise be impossible to study
based on individual or small groups of catchments, aside
from allowing for the testing of new and existing hypothe-
ses in hydrologic sciences (Addor et al., 2017; Gupta et al.,
2014; Lyon and Troch, 2010; Wagener et al., 2007).

A classic example of a large catchment-scale dataset
is the Model Parameter Estimation Experiment (MOPEX)
(Duan et al., 2006; Schaake et al., 2006), with hydrologic
time series from 438 catchments located within the conti-
nental US (CONUS). The MOPEX dataset has been used
in several studies supporting theoretic and modeling ad-
vances in hydrologic sciences (Ao et al., 2006; Ren et
al., 2016; Sawicz et al., 2011). A more recent example is
the Catchment Attributes and MEteorological for Large-
sample Studies (CAMELS; Addor et al., 2017), consisting
of a set of daily hydrometeorological time series data for
671 small- to medium-sized catchments for the CONUS,
aside from several landscape- and climate-related attributes.
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The CAMELS initiative has been widely used, and other
large-sample datasets have been recently developed follow-
ing the CAMELS format, such as CAMELS-GB for Great
Britain, covering 671 catchments, CAMELS-CL for Chile,
covering 516 catchments, and CAMELS-BR for Brazil,
covering 897 catchments. A list of available large-sample
datasets can be found in Addor et al. (2020).

Brazil is a country with continental dimensions, hosting a
wide range of climates, soils, geology, and land-cover types.
Despite covering almost 50 % of South America and hosting
between 12 % and 18 % of the world’s renewable freshwater
(Rodrigues et al., 2015; UNEP and ANA, 2007), Brazil suf-
fers from scarce allocation of funds for hydrological moni-
toring services, which creates great challenges for the proper
monitoring of the quality and quantity of its water resources.
While the density of streamflow gauges falls below the stan-
dards recommended by the World Meteorological Organiza-
tion (WMO) of one station for each 1000 km2, hydrologic
observations are often discontinued and lack proper length
(ANA, 2019a; WMO, 2010). An integrated dataset contain-
ing multiple levels of environmental information can be of
extreme importance to leverage investigations in hydrology
and related disciplines within the Brazilian territory.

Recently, two large-sample datasets for catchment at-
tributes were developed for Brazil: the Catchment Attributes
for Brazil (CABra) (first introduced in Oliveira et al., 2020)
and the Catchment Attributes and MEteorology for Large-
sample Studies (CAMELS-BR) (Chagas et al., 2020). Even
though both datasets aim to fill the lack of hydrological data
access in Brazil, the data sources, quality control, number,
and types of attributes differ significantly. To address the sim-
ilarities and differences between both datasets, an extensive
discussion comparing CAMELS-BR and CABra is also pre-
sented in our study.

In this paper, we present the CABra dataset, which is
a comprehensive, large-sample dataset for catchment at-
tributes in Brazil. We have synthesized several multi-source
data from eight main attribute classes (topography, climate,
streamflow, groundwater, soil, geology, land use and land
cover, and hydrologic disturbance) for 735 catchments in
Brazil. Our dataset covers all Brazilian administrative and
hydrographic regions, as well as its biomes. We have delim-
ited all the catchments using an error-corrected digital ele-
vation model employing automatic drainage area delineation
methods. For the area-averaged attributes, we have used na-
tional datasets from the Brazilian Water Agency (ANA),
Brazilian Agricultural Research Corporation (EMBRAPA),
and Xavier et al. (2016), and widely used global datasets,
such as ERA5, SoilGrids250, Global Land Evaporation Am-
sterdam Model (GLEAM), Global Lithologic Map (GLiM),
and GLobal HYdrogeology MaPS (GLHYMPS). Addition-
ally, a hydrologic disturbance index was created to indicate
the most human-impacted catchments. Finally, we discuss
the spatial variabilities of the attributes and their limitations
of application.

2 The CABra dataset

2.1 Overview

The CABra dataset is a multi-source, multi-temporal, and
multi-spatial resolution large-sample dataset for catchment
attributes for Brazilian catchments. Using an extensive lo-
cal and global high-quality data collection, we developed
CABra, considering eight main classes of attributes: topog-
raphy, climate, streamflow, groundwater, soil, geology, land
cover, and hydrological disturbance. Gridded datasets of var-
ious kinds were averaged onto the selected catchments lo-
cated over Brazil and neighboring countries, in the case of
transboundary catchments. Moreover, we provide daily time
series from climate and streamflow variables for a 30-year
period, covering the hydrological years from 1980 to 2010,
as described in Fig. 1.

The CABra dataset is recommended for a wide range of
users for decision-making at multiple scales – local, na-
tional, or regional – covering all Brazilian biomes (Amazon,
Cerrado, Atlantic Forest, Pantanal, Caatinga, and Pampa).
CABra was created to ensure easy access to its information
and provide high-quality data, with attributes useful for a
variety of hydrometeorological modeling and assessments.
Each catchment presents several attributes, ranging from the
file information described in Table 1 to the attributes de-
scribed throughout this article. Moreover, we made all the
geospatial data (shapefile of the boundaries) available to
users.

2.2 Catchment delineation and topography

Brazil does not have an official database for the na-
tional catchments boundaries, and the Brazilian Water
Agency (ANA) does not make its geospatial database avail-
able. Because of this and to avoid uncertainties in the ex-
isting datasets for South America, we freshly generated all
the CABra catchments boundaries used in this study. Dig-
ital elevation model (DEM) quality and resolution are cru-
cial at this stage since all the post-analyses with the multi-
source information utilized in the CABra dataset are area-
averaged. For example, it is well known that errors in to-
pographic indices, e.g., slope, catchment area, and bound-
ary, are dependent on and highly sensitive to DEM reso-
lution and accuracy, and it is suggested that, if available,
a high-resolution DEM should be used instead of a low-
resolution DEM due to the negative effects of terrain gen-
eralization caused by them (Mukherjee et al., 2012; Vaze
et al., 2010; Wechsler, 2007; Zhou and Liu, 2004). We de-
lineated the CABra catchments following the procedure de-
scribed in Maidment (2002), using streamflow gauges’ loca-
tion information from ANA’s database and a high-resolution
elevation product, i.e., the Multi-Error-Removed Improved-
Terrain Digital Elevation Model (MERIT DEM) with a 90 m
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Figure 1. Study delineation for the CABra dataset organization. From ANA’s database, 735 gauges were selected to integrate into our dataset
due to their high consistency and long time series of streamflow.

Table 1. General attributes of the CABra catchments.

Type Attribute Long name Unit

Identification
cabra_id CABra’s identification code of the streamflow gauge –
ana_id ANA’s identification code of the streamflow gauge –

Location

longitude Longitude coordinate of the streamflow gauge DD
latitude Latitude coordinate of the streamflow gauge DD
gauge_hreg Brazilian hydrographic region of the streamflow gauge location –
gauge_biome Brazilian biome of the streamflow gauge location –
gauge_state Brazilian state of the streamflow gauge location –

Quality
missing_data Percentage of missing data %
series_length Time series length of the streamflow gauge years
quality_index Quality index of the CABra catchment records –

– means dimensionless.

spatial resolution at the Equator (Yamazaki et al., 2017)
(Fig. 2).

In the first stage, which we call “terrain processing”, the
DEM was sink-filled to avoid possible errors due to peaks
or depressions. Then, the flow direction and flow accumu-
lation were calculated, which indicate the direction and ac-
cumulation of flow, respectively, in each grid cell within the
catchment. The next step was to define the stream network
in the catchment. For the definition of a river stream, we
considered a threshold of 100 cells accumulating water, and
this value was chosen considering the DEM spatial resolution
and the range of the size of the catchments. All the previous
steps were run for the South America extension. Even though
all outlets are located in the Brazilian territory, some of the
drainage areas include larger areas outside of it. The second
step was catchment delineation, for which the products gen-

erated in the previous step and the coordinates of the stream-
flow gauges were used. Each streamflow gauge coordinate
was first plotted as a point, and the position of it in relation
to the stream network was checked and corrected, if neces-
sary. The correction procedure was performed for 132 of the
CABra catchments. Then, each corrected point was used as
an outlet of the catchment, and the delineation of the drainage
area was performed using the ArcHydro tool. Aside from the
catchments limits, perimeters, and areas, we also extracted
the stream information, such as the stream network and hi-
erarchy (Strahler, 1952, 1957). It is important to highlight
that we manually inspected each catchment outlet and area to
overcome the limitation of unchecked boundaries of another
existing catchment dataset, such as Do et al. (2018), which
is based on a DEM with a spatial resolution of 500 m. More-
over, this presented itself as a crucial procedure for an accu-
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Figure 2. Location map of the streamflow gauges and CABra catchments. (a) Streamflow gauge coordinates of CABra catchments, (b) the
735 CABra catchment boundaries, (c) the 12 hydrographic regions of Brazil, (d) the six main biomes of Brazil, and (e) level of consistency
of the streamflow gauge records for each biome.

Table 2. Topography attributes of the CABra catchments.

Type Attribute Long name Unit

Elevation

elev_mean Mean elevation of the catchment m
elev_max Maximum elevation of the catchment m
elev_min Minimum elevation of the catchment m
elev_gauge Elevation of the streamflow gauge m

Area catch_area Area of the catchment km2

Slope catch_slope Mean slope of the catchment %

Drainage catch_order Strahler order of the catchment –

– means dimensionless.

rate delineation since several outlets’ positions needed to be
corrected to represent the real expected catchment boundary.
Once the catchment boundaries were delimited, we calcu-
lated seven attributes related to the topography of each catch-
ment: area; slope; maximum, minimum, and mean elevation;
streamflow gauge elevation; and catchment order. The catch-
ment boundaries and drainage network are also provided in
the CABra dataset.

Figure 3 summarizes the topographic attributes for the
CABra catchments. Catchment areas ranged from 9 to 4.8×
106 km2 (Fig. 3a). This large range of areas shows how
Brazilian hydrology can be, at the same time, local and con-

tinental, necessitating a better understanding of hydrologic
processes on different scales. Many of the largest catchments
are in the main streams of 1 of the 12 hydrologic regions
of Brazil, especially in the Amazon, Tocantins–Araguaia,
São Francisco, Paraguay, and Paraná. The mean elevation of
CABra catchments ranges from close to zero to up to 2000 m,
with the highest values found in the southern and southeast-
ern portions. In turn, steep areas can be found in the coastal
and mountainous areas of the southeast and south (Fig. 3b
and c). Most of the Brazilian catchments have a flat topog-
raphy though, with a mean slope of up to 10 %. Figure 3d
shows the gauge elevation. Note the difference between the
gauge elevation and the mean catchment elevation in Fig. 3b.
The gauge elevation considers only the elevation at the gauge
position in the landscape, thereby proving only the local in-
formation, while the mean catchment elevation considers the
average elevation for the entire catchment. An example of
this difference is the largest CABra catchment, i.e., the Ama-
zon. The mean elevation in the Amazon basin would be low;
however, the western part of the basin has some of the high-
est peaks of the Andes, where the gauge elevation would be
much higher.
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Figure 3. Spatial distribution of the topography attributes of the CABra catchments. (a) Stream order of Brazilian rivers; (b) area of the
catchments (in km2); (c) mean elevation of the catchments (in m); (d) mean slope of the catchments (in percent); (e) elevation of the
streamflow gauge (in m).

Uncertainty and limitations

The uncertainties related to the topography attributes are
mainly related to the model terrain and streamflow gauge
coordinates. The digital elevation model adopted for CABra
catchments, developed by Yamazaki et al. (2017), is an im-

proved product based on the composition of another base-
line terrain products, such as the SRTM3 DEM, AW3D-30 m
DEM, and Viewfinder Panoramas DEM. Moreover, there are
gaps in high-relief mountains and water bodies that were
filled manually for the final MERIT-DEM product, lead-
ing to 72 % of mapped area with a height accuracy better
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than 2 m when slope< 10 %. Regarding streamflow gauge
coordinates, there were inconsistences between the location
provided by ANA and the stream network generated using
the MERIT-DEM. We corrected the pair of coordinates, by
matching the point to the nearest stream network, in a way
that the area error against ANA’s area was minimized. Re-
garding the catchment delineation, the uncertainty related to
the automatic procedure conducted in the GIS environment
is mainly dependent on the accuracy, but some authors found
that channel heads (first-order catchments) are the most sub-
ject to the greatest uncertainties (Zandbergen, 2011).

2.3 Climate

2.3.1 Methodology

We present daily time series of area-averaged precipita-
tion, minimum, maximum, and mean temperatures, solar ra-
diation, relative humidity, wind speed, evapotranspiration,
and potential evapotranspiration (calculated by Penman–
Monteith, Priestley–Taylor, and Hargreaves methods). More-
over, we calculated several core climate indices, defined
by the Climate and Ocean: Variability, Predictability, and
Change (CLIVAR) project from the World Climate Research
Programme (WCRP). Two main climate datasets were used
in CABra. The first one, a high-resolution meteorologi-
cal gridded dataset (0.25◦× 0.25◦), developed by Xavier et
al. (2016) (referred to here as “REF”), is based on the spa-
tial interpolation of meteorological data from ∼ 4000 rain
gauges and wheatear stations in Brazil, from the ANA,
Brazilian Institute for Meteorology (INMET, in Portuguese),
and Water and Power Department of São Paulo (DAEE/SP,
in Portuguese), covering the period from 1980 to 2015. From
these sets of meteorological gauges, 2890 are limited to pre-
cipitation data. This dataset is available at http://careyking.
com/data-downloads/ (last access: 21 January 2020). This
product has a much finer spatial resolution and is based on
a higher number of rain gauge stations than other widely
used products (∼ 4000 stations for Brazil, in comparison to
∼ 600 stations for South America in the CRU TS3.1 prod-
uct). However, the REF dataset only covers the Brazilian ter-
ritory, while the CABra dataset has 20 catchments with up-
stream areas outside Brazil. To overcome this, we incorpo-
rated the ERA5 (Hersbach et al., 2020) climate data into the
CABra dataset (referred to here as “ERA5”).

ERA5 is the most recent version of climate reanalysis
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) and provides hourly, daily, and monthly data
on several atmospheric, sea, and land variables in a 0.25◦×
0.25◦ spatial resolution grid, from 1950 to the present. As
a reanalysis dataset, the ERA5 uses past observations and
models to generate accurate and consistent time series of cli-
mate variables and parameters and is one of the most widely
used datasets in geosciences (Hersbach et al., 2020). To in-
corporate and produce a more reliable product for all the

CABra catchments, we have generated an ensemble mean
product (referred to here as “ENS”) using both aforemen-
tioned datasets, i.e., REF and ERA5 climate products. The
procedure was conducted in the Climate Data Operators
(CDO; Schulzweida, 2019) and aimed at a better characteri-
zation and representation of the climate based on the two in-
dependent estimations, which generally imply a more robust
reproducibility of the phenomenon than in a single-member
analysis (Abramowitz et al., 2019). Newman et al. (2015)
also found that the ensemble product of precipitation and
temperature still captures the main features of the variables
and, moreover, improves the identification of extreme event
frequency, and it is known that an ensemble usually outper-
forms individual forecasts (Bellucci et al., 2015; Solman et
al., 2013; Tebaldi et al., 2005), being capable of detecting in-
ternal variability and seasonal patterns. The ENS dataset gen-
erated here can be useful for climate-related analysis through
the Brazilian territory, since it merges two high-resolution
and high-quality products.

The precipitation seasonality (Woods, 2009), which indi-
cates the timing of the precipitation seasonal cycle and the
temperature seasonal cycle, was calculated for the ensemble
product; values close to +1 indicate summer precipitation,
and values close to −1 indicate winter precipitation.

The actual evapotranspiration adopted in CABra is derived
from the Global Land Evaporation Amsterdam Model ver-
sion 3 (GLEAM v3; Martens et al., 2017), which is a set of
algorithms that estimate the many components of land evap-
oration based on satellite observations of climatic and en-
vironmental variables. The calculations of the actual evap-
otranspiration by GLEAM v3 take into account a poten-
tial evapotranspiration module (with the Priestley and Taylor
method), an interception loss module (with the Gash analyt-
ical model), and a stress module (with a semi-empirical rela-
tionship to root-zone moisture and vegetation optical depth).
The GLEAM dataset is one of the most commonly used
datasets in evapotranspiration applications (Forzieri et al.,
2018; Schumacher et al., 2019; Zhang et al., 2016).

Even though the REF dataset presents a reference
evapotranspiration product (calculated using the Penman–
Monteith method following FAO-56 guidelines), it only in-
cludes the Brazilian territory and did not comprise all the ar-
eas of the catchments included in the CABra dataset. To over-
come this limitation, we calculated the daily potential evap-
otranspiration (PET) using three different widely used meth-
ods based on energy balance and transfer mass, radiation, and
temperature, using meteorological variables from the ERA5
and the ensemble products as inputs. These three newly
products are, to the best of our knowledge, the most extent
datasets of potential evapotranspiration for Brazil, covering
a larger period than existent products, such as the one intro-
duced in Althoff et al. (2020) and Xavier et al. (2016).

The first method was the FAO-56 Penman–Monteith equa-
tion (Allen et al., 1998), which is the standard for refer-
ence evapotranspiration and assumes a hypothetical crop
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similar to the surface of small grass and uniform grass, ac-
tively growing and sufficiently watered. The FAO Penman–
Monteith (PM) equation considers the energy budget and the
aerodynamic and surface resistances of the crop and uses as
inputs the solar radiation, air temperature, humidity, and 2 m
wind speed data (Eq. 1).

PETPM =
0.4081(Rn−G)+ γ

900
T+273u2 (es− ea)

1+ γ (1+ 0.34u2)
, (1)

where PETPM is the reference evapotranspiration
(in mm d−1), Rn is the net radiation (in MJ m−2 d−1),
G is the soil heat flux (in MJ m−2 d−1), T is the mean daily
temperature at 2 m height (in ◦C), u2 is the wind speed at 2 m
height (in m s−1), es is saturation vapor pressure (in kPa),
ea is the actual vapor pressure (in kPa), 1 is the slope vapor
pressure curve (in kPa ◦C−1), and γ is the psychrometric
constant (in kPa ◦C−1).

The radiation-based method chosen for the CABra dataset
is the Priestley–Taylor equation (PT) (Priestley and Taylor,
1972). The PT considers that when large areas, such as catch-
ments, are saturated, the main force that governs the evapo-
ration is the net radiation, and under certain conditions, the
knowledge of net radiation and the ground dryness is enough
to determine the vapor and sensible heat fluxes at the sur-
face. Moreover, it is one of the most commonly used mod-
els to estimate evapotranspiration due to its requirement of
a low number of inputs (Maes et al., 2019; McMahon et al.,
2013; Shuttleworth, 1996). The PT equation takes the follow-
ing form:

PETPT = α
1

1+ γ
(Rn−G), (2)

where PETPT is the potential evapotranspiration
(in mm d−1), α is the Priestley–Taylor constant (di-
mensionless), Rn is the net radiation (in MJ m−2 d−1), G is
the soil heat flux (in MJ m−2 d−1), 1 is the slope vapor
pressure curve (in kPa ◦C−1), and γ is the psychrometric
constant (in kPa ◦C−1). Considering that PT only considers
daytime evapotranspiration, and G is negligible during the
daytime, we used G= 0 in our calculations.

Priestley and Taylor (1972) empirically determined α for
many locations and conditions in the world, ranging be-
tween 1.08 and 1.34. The authors concluded the best esti-
mation for α should be an overall mean of 1.26. However, it
is known that the α value is scenario-dependent, and its vari-
ability is not taken into account when using the mean value
proposed in its development (Guo et al., 2007).

The third method adopted here is the Hargreaves equation.
The method was developed by Hargreaves (1975) for irriga-
tion planning and design, and it is a temperature-based equa-
tion widely used to calculate the potential evapotranspiration
due to its easy application and low input requirement (Eq. 3).

PETHG = 0.0135Rs (Ta+ 17.8) , (3)

where PETHG is the potential evapotranspiration
(in mm d−1), Rs is the solar radiation ( in MJ m−2 d−1), and
Ta is the daily mean temperature ( in ◦C).

From the climatic variables and attributes, we carried
out an analysis of the annual water balance in the Budyko
space, an empirical approach applied to the study of the hy-
drological behavior of catchments. The Budyko hypothesis
(Budyko, 1948, 1974) considers that the ratio between the
long-term annual actual evapotranspiration (ET) and precipi-
tation (P ) is a function of the ratio between the long-term po-
tential evapotranspiration (PET) and precipitation (P ). The
Budyko framework has been used to assess global impacts
of climate change on water resources (Berghuijs et al., 2017;
Roderick et al., 2014) and to gain further insight into the wa-
ter balance controls at mean annual timescales (Donohue et
al., 2007; Berghuijs et al., 2017; Meira Neto et al., 2020).

2.3.2 Results and discussion

Figure 4 shows some of the climate attributes for the CABra
dataset. Regarding the precipitation derived from our ensem-
ble of Xavier et al. (2016) and ERA5 (Fig. 4a), we found
the highest values, reaching up to 10 mm d−1, in the north-
ern portion, and the lowest values, below 1 mm d−1, in the
northeastern portion. Despite the wide range in the daily pre-
cipitation, most of the catchments (∼ 80 %) presented area-
averaged precipitation between 3 and 6 mm d−1.

Figure 4d shows the area-averaged solar radiation reaching
the surface, ranging from 10 to 20 MJ m2 d−1, with most of
the catchments with daily values higher than 15 MJ m2 d−1.
The spatial distribution of solar radiation is reflected in the
temperature values in CABra catchments (Fig. 4e and f). The
southern and southeastern portions present the lowest values
of both the maximum and minimum temperatures. This is
due to the lower values of solar radiation and high altitudes
found in these regions of Brazil. Other areas of Brazil are
located in higher latitudes and are subject to higher solar ra-
diation, and due to its flat relief, the temperatures are higher
than in the south. Figure 4b indicates that, in most of the
CABra catchments (∼ 85 %), the precipitation seasonal cy-
cle coincides with the temperature seasonal dynamics, which
means that most of the precipitation occurs in the summer
(seas> 0). There are only a few catchments in the north-
ern portion of Brazil that have precipitation in the winter
(seas< 0), and this can be explained by the high influence
of sea breeze on convective precipitation in this region. Ac-
cording to Ahrens (2010) and Kousky et al. (1984), the Ama-
zonian coastal area is highly influenced by the sea breeze,
which can occur in 3 out of every 4 d, with the formation of
convective activity inland.

Our results of the computed potential evapotranspiration
are presented in Fig. 5a–c. They are related to three different
methods for PET calculation, being potential evapotranspira-
tion for a reference crop using the Penman–Monteith equa-
tion, potential evapotranspiration using the Priestley–Taylor
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Table 3. Daily series of meteorological variables and climate indices for the CABra catchments.

Type Attribute Long name Unit

Precipitation
p_ref Daily precipitation from the REF dataset mm d−1

p_era5 Daily precipitation from the ERA5 dataset mm d−1

p_ens Daily precipitation from the ENS dataset mm d−1

Temperature

tmax_ref Daily maximum temperature from the REF dataset ◦C
tmin_ref Daily minimum temperature from the REF dataset ◦C
tmax_era5 Daily maximum temperature from the ERA5 dataset ◦C
tmin_era5 Daily minimum temperature from ERA5 dataset ◦C
tmax_ens Daily maximum temperature from the ENS dataset ◦C
tmin_ens Daily minimum temperature from the ENS dataset ◦C

Solar radiation
srad_ref Daily mean solar radiation from the REF dataset MJ m2 d−1

srad_era Daily mean solar radiation from the ERA5 dataset MJ m2 d−1

srad_ens Daily mean solar radiation from the ENS dataset MJ m2 d−1

Wind
wnd_ref Daily mean 2m wind speed from the REF dataset m s−1

wnd_era5 Daily mean 2 m wind speed from the ERA5 dataset m s−1

wnd_ens Daily mean 2 m wind speed from the ENS dataset m s−1

Evaporation

et_act Daily actual evapotranspiration from the GLEAM v3 mm d−1

pet_pm Daily potential evapotranspiration (Penman–Monteith method) mm d−1

pet_pt Daily potential evapotranspiration (Priestley and Taylor method) mm d−1

pet_hg Daily potential evapotranspiration (Hargreaves method) mm d−1

Climate indices

clim_p Long-term mean daily precipitation (1980–2010) mm d−1

p_seasonality Seasonality and timing of precipitation (1980–2010) –
clim_rh Long-term mean daily relative humidity (1980–2010) %
clim_tmin Long-term mean daily minimum temperature (1980–2010) ◦C
clim_tmax Long-term mean daily maximum temperature (1980–2010) ◦C
clim_et Long-term mean daily actual evapotranspiration (1980–2010) mm d−1

clim_pet Long-term mean daily potential evapotranspiration (1980–2010) mm d−1

aridity_index Aridity index (clim_p/clim_pet) of the catchment –
clim_srad Long-term mean daily solar radiation (1980–2010) MJ m2 d−1

clim_quality
Quality index of climate indices (indicates the source meteorological

–
daily series used for long-term mean calculation)

– means dimensionless.

equation, and potential evapotranspiration using the Harg-
reaves equation. All the equations generated similar results
of PET ranging from 3 to 6 mm d−1, with similar spatial vari-
ability. The highest values were found for the northeastern
portion of Brazil, with the Penman–Monteith results being
slightly higher than the other equations. This could be related
to the wind component in the method, which is not taken into
account in the Priestley–Taylor and Hargreaves methods.

The Budyko framework (Budyko, 1948, 1974) shows that
half of CABra catchments are water-limited, and the other
half are energy-limited (Fig. 6). The lowest aridity index val-
ues are found in the Amazon and the Atlantic Forest, while
a warmer and drier climate can be found in the Cerrado and
Caatinga biomes. This may be correlated with the physiog-
nomies of vegetation found in these biomes, i.e., tropical
forests for the first group and grass and shrub for the sec-
ond one, and, especially, with the water availability and radi-

ation incidence of these above-mentioned biomes. Although
we have found some outliers which are not explained by the
Budyko hypothesis, most of the CABra catchments follow
the expected behavior of the long-term mean water balance
proposed by Budyko (1948, 1974). Moreover, we can note
that the main climate features are captured by all the datasets,
with catchments in Caatinga being more arid, followed by the
Cerrado. The Atlantic Forest is in the same location at the
Budyko space, while some catchments in the Amazon only
appear in the ERA5 and ENS dataset, due to their extension
outside REF. This shows the consistency between all datasets
adopted in CABra.

2.3.3 Uncertainty and limitations

The climate data provided by the CABra dataset have limita-
tions related to the number and spatial distribution of rainfall
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Figure 4. Spatial distribution of climate indices of the CABra catchments. (a) Mean daily precipitation (in mm d−1); (b) precipitation
seasonality (dimensionless); (c) aridity index (dimensionless); (d) mean daily solar radiation (in MJ m2 d−1); (e) mean daily minimum
temperature (in ◦C); (f) mean daily maximum temperature (in ◦C).

Figure 5. Spatial distribution of the PET calculated from three different methods of the CABra catchments. (a) Penman–Monteith method,
(b) Priestley and Taylor method, and (c) Hargreaves method.

gauges in Brazilian territory that must be pointed out. Since
REF and ERA5 datasets are, respectively, ground-based and
reanalysis gridded data, they are subject to uncertainties of
the density of the rainfall gauge network and in its post-
processing procedures, which include geospatial interpola-
tion and data modeling and assimilation. In addition, the REF
dataset is not present in all of the 735 catchments due to its

spatial extent, which only covers the Brazilian territory. The
quality of the data is presented for users with flags though.

The potential evapotranspiration calculated for the CABra
catchments is also subject to uncertainties related to the equa-
tions chosen for the study and propagation of errors of input
variables from climatic data. The golden standard for ref-
erence potential evapotranspiration is the Penman–Monteith
method, and the main limitations are related to the other
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Figure 6. Distribution of the CABra catchments in the Budyko framework from the three different climate datasets of CABra: REF, ERA5,
and ENS. Values of E were estimated from the relation P = E+Q, considering long-term means.

two methods: on the application of the Priestley and Taylor
method, the requirement of the Priestley–Taylor constant α,
which is related to the ratio between the actual evapotranspi-
ration and the equilibrium evaporation rate (Eichinger et al.,
1996), is one of the greatest sources of uncertainty because
it is scenario-dependent, and its variability is not considered
using the mean value (α = 1.26) proposed in its development
(Guo et al., 2007). On the other hand, the main limitation of
the Hargreaves equation for potential evapotranspiration is
that the estimations are subject to error due to a large range
of temperatures caused by weather fronts on a daily scale. On
the other hand, it is a less biased model, when compared to
other methods, when applied to small and not well-watered
catchments (Hargreaves and Allen, 2003).

2.4 Streamflow and hydrologic signatures

2.4.1 Methodology

The CABra dataset provides daily streamflow records for
735 catchments in Brazil. We used data from streamflow
gauges of ANA, where each gauge is related to one of
the above-mentioned catchments. This dataset is available
in the HIDROWEB database (see http://www.snirh.gov.br/
hidroweb/, last access: 8 January 2020). ANA’s database con-
tains raw time series of dozens of thousands of gauges of
streamflow, precipitation, water quality, and sediment dis-
charge, with a consistency level for each observation. Due
to the inconsistencies and missing records in the streamflow
data provided by ANA, we implemented filters to take into
account only the reliable data for the CABra dataset.

During our analysis, we found four main issues with
ANA’s database collected from HIDROWEB: (a) missing
streamflow values for a period of the time series; (b) du-
plicate streamflow values with different consistency levels;
(c) duplicate values with the same consistency level; and
(d) duplicate dates with different values and consistent lev-
els. In the first filter step, we overcame the last three issues by
picking up only one of the duplicated values/dates based on
the best level of consistency. The first issue is more complex

and difficult to overcome as in some cases the missing data
reach almost 100 % for some gauges. Since a long time se-
ries of streamflow is needed for reliable hydrologic investiga-
tions, we defined a threshold for the selection of the stream-
flow gauges considered in the CABra dataset based on the
following conditions: at least 30 years of data, comprising the
hydrologic years from 1980 to 2010, with up to 10 % of miss-
ing data. The application of these filters led to 735 stream-
flow gauges and, consequently, 735 catchments. During the
analysis, we also noted inconsistencies in streamflow gauge
data, such as extremely high values (up to 1000 mm d−1) and
unexpected changes in daily streamflow values. Such incon-
sistencies can lead to an under-/overestimation of signatures
based on mean values (e.g., mean daily flow, aridity index,
runoff ratio), and, when repeated for a long time, they can
modify signatures based on the frequency and dynamics of
streamflow (e.g., flow duration curve, high and low flows fre-
quency and duration). To avoid carrying these issues to the
signature calculation, we checked for outliers in the stream-
flow data by comparing each value to its neighbors. Elements
with a value larger than 5 times the median of a sliding 10-
element window (centered in “x”) were considered to be an
invalid value (NaN).

After the employment of the filters, we calculated, for the
735 selected catchments, a variety of hydrological signatures,
which can provide a better understanding of the patterns of
functionality and behavior of the catchments. From the quan-
tification of hydrological characteristics, it is possible to ex-
plain the variability in responses to climate forcings. We se-
lected hydrological signatures obtained from widely avail-
able hydrological series (see Table 4), as well as from Saw-
icz et al. (2011) and Westerberg and McMillan (2015). A list
with more hydrological signatures can be found in Yadav et
al. (2007). All the hydrological signatures were calculated
considering the hydrological years (1 October–30 Septem-
ber) from 1980 to 2010, as adopted by the Brazilian Water
Agency in their annual reports (ANA, 2020a).

The hydrological signatures were based on the distribution
of the streamflow. We have used the daily streamflow and its
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Table 4. Hydrological signatures of the CABra dataset.

Type Attribute Long name Unit

Distribution

q_mean Mean daily streamflow mm d−1

q_1 Very low streamflow (1st quantile) mm d−1

q_5 Low streamflow (5th quantile) mm d−1

q_95 High streamflow (95th quantile) mm d−1

q_99 Very high streamflow (99th quantile) mm d−1

q_hf Frequency of high-streamflow events d yr−1

q_hd Duration of high-streamflow events d
Frequency q_lf Frequency of low-streamflow events d yr−1

and duration q_ld Duration of low-streamflow events d
q_hfd Half-flow date day of the year
q_zero Frequency of zero-flow events d yr−1

Dynamics

baseflow_index Baseflow index –
q_cv Coefficient of variation of daily streamflow –
q_lv Coefficient of variation of low flows –
q_hv Coefficient of variation of high flows –
q_elasticity Elasticity of daily streamflow –
fdc_slope Slope of flow duration curve (between 33rd and 66th percentiles) –

Runoff runoff_coef Runoff ratio –

– means dimensionless.

quantiles to define the mean daily streamflow, very low, low,
high, and very high flows. For the calculation of frequency
and duration of the streamflow, besides the number of days
with no flow, the number of days with 0.2 and 9 times the
mean daily streamflow was identified (low flows and high
flows) as well as the number of days in sequence. The half-
flow date corresponds to the day of the year in which the cu-
mulated annual streamflow reaches half of the annual totals.
The baseflow index was calculated using a recursive digi-
tal filter proposed by Lyne and Hollick (1979), presented in
Ladson et al. (2013). Additionally, regarding the dynamics of
streamflow, we calculated the coefficients of variation of the
streamflow (mean, low, and high), the streamflow elasticity
proposed by Sankarasubramanian et al. (2001), which indi-
cates the impact of changes in precipitation to the streamflow,
and the slope of the flow duration curve between 33rd and
66th quantiles, which is a good indicator of the perennial and
non-perennial condition of the catchment. We also calculated
the runoff coefficient for each catchment, which indicates
how much of the precipitated water becomes streamflow us-
ing the simple ratio between the mean daily streamflow and
mean daily precipitation.

2.4.2 Results and discussion

Figure 7 shows the hydrologic signatures calculated for the
CABra catchments for the period between the hydrologic
years 1980 and 2010. The mean daily flow for the Brazil-
ian catchments ranges from less than 1 mm d−1 to up to
9 mm d−1, with an overall mean of 2 mm d−1. The highest

values were found in the extreme north of Amazon, where
the daily flows reached 8 mm d−1 due to high amounts of
precipitation through the year, and in the Atlantic Forest,
in the southeast, where we also have steepness relief with
higher values of the slope, providing the runoff instead of
the infiltration process. This can be seen in Fig. 7b, related
to the runoff coefficient, where we noted the high values in
the southern and northwestern portions of Brazil. Most of the
CABra catchments presented a runoff coefficient of up to 0.5
though.

Our results also revealed the Brazilian catchments to be
mainly dependent on the baseflow since all of them presented
a baseflow index greater than 70 %. The lowest values were
found in the Caatinga biome, where we also found the low-
est mean daily flows. The half-flow date (considering 1 Oc-
tober as the beginning of the hydrologic year) indicates that
∼ 80 % of Brazilian catchments reach the half of total accu-
mulated annual flow in fewer than 200 d (Fig. 7d), showing
the high correlation with the seasonal cycle of precipitation.
The catchments with later dates of the half-flow day can be
found in the Pampa biome, where there is no well-defined
rainy/dry season, and in the Amazon, where the amounts of
accumulated annual streamflow are too high, and the peak of
precipitation is near the end of the hydrologic year (Almagro
et al., 2020). The analysis of the slope of the flow duration
curve, in Fig. 7e, shows the lowest values in a great portion
of Brazil, ranging from the Cerrado to the Atlantic Forest and
Pampa biomes.
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Figure 7. Spatial distribution of the hydrological signatures of the CABra catchments. (a) Mean daily streamflow (in mm d−1); (b) runoff
ratio (dimensionless); (c) baseflow index (dimensionless); (d) half-flow day (in day of the year); (e) the slope of the flow duration curve
(dimensionless); (f) elasticity of daily streamflow (dimensionless); (g) low streamflow (in mm d−1); (h) frequency of low-streamflow events
(in d yr−1); (i) duration of low-streamflow events (in d); (j) high streamflow (in mm d−1); (k) frequency of high-streamflow events (in d yr−1);
(l) duration of high-streamflow events (in d).
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In our analyses, we also found zero values between the
33rd and 66th percentiles of the slope of flow duration
curve in the northeastern portion of Brazil, in the Caatinga
biome, which indicates the existence of catchments with non-
perennial rivers in that region, which are mainly dependent
on direct runoff of rainfall. This can be also seen when ana-
lyzing Fig. 7f, related to the streamflow elasticity. The high-
est values, up to 4, are located in catchments within the same
above-mentioned region, indicating the strong dependence
of those catchments on precipitation events to generate its
streamflow. Moreover, we can note that most Brazilian catch-
ments are inelastic to changes in precipitation. This fact can
be explained by the high values of the baseflow index, which
maintain the streamflow through the year. Figure 7g–i show
the results related to the low flows of CABra catchments.

In general, Brazilian catchments present a low flow
(fifth quantile) lower than 1 mm d−1, up to 50 d through
the year, with a mean duration of up to 25 following days.
Despite the mean values, we can note high values (up to
3 mm d−1) in the Amazon. Additionally, higher values of fre-
quency and duration of low flows can be found in the north-
eastern portion of Brazil, with the mean frequency reach-
ing 150 d and mean duration reaching 100 d for some catch-
ments. In turn, Fig. 7j–l show the information about high
flows in CABra catchments. Most CABra catchments present
high flows up to 10 mm d−1, but in some catchments, this
value can reach 30 mm d−1. As seen in the low flow analyses,
the mean frequency of high flow does not exceed 50 d yr−1

for most of the catchments. The frequency, instead, lasts for
a lower time, up to 10 d.

2.4.3 Uncertainty and limitations

Uncertainties in the hydrologic signatures are mainly re-
lated to the daily streamflow data, which are, in turn, mainly
related to the river discharge measurements and database
maintenance by the ANA. Data collection and streamflow
measurements are not the same in all catchments, varying
from using current meters to the most advanced acoustic
Doppler profilers. The daily discharge of sections, with well-
established beds and long enough series of measurements,
is estimated by rating curves, which are more susceptible
to errors than direct measurements (Tomkins, 2014). Despite
this, daily streamflow records are provided with a consistence
level which can be “raw”, meaning that data were not quality-
checked, or “consistent”, meaning that data were quality-
checked. The consistence level is provided along with each
daily record in the CABra dataset, allowing the user to iden-
tify the best and worst periods of streamflow measurements
in each catchment. Although it is impossible to accurately
measure the uncertainties (as much as eliminate them) in a
large-sample dataset such as the CABra dataset, it is impor-
tant to indicate the possible sources of them, since they are
widespread in any hydrological modeling. This way we can

indicate best periods for calibration and validation, increas-
ing the reliability of the dataset and its application.

2.5 Groundwater

2.5.1 Methodology

The CABra dataset presents eight attributes regarding the
groundwater at the catchments (Table 5). They are related to
the water table (water table depth and height above the near-
est drainage) and to the aquifer in which the catchment is lo-
cated (aquifer name and rock type). The first attribute is the
area-averaged water table depth. This information was ex-
tracted from Fan et al. (2013), who generated a global water
table depth map using a climate–sea–terrain coupled model.
The results were validated against observations and show the
global patterns of shallow groundwater, making the under-
standing of how groundwater affects terrestrial ecosystems,
such as the soil moisture and land hydrology, in a deficiency
of rain (Fan et al., 2013; Lo et al., 2010) possible.

The second attribute is the height above the nearest
drainage (HAND), also related to the water table but is an
indirect way to infer the water table depth. The HAND is
a normalized drainage version of a digital elevation model,
where the height is defined as the vertical distance from a
hillslope (at the surface cell) to a respective “outlet-to-the-
drainage” cell, as defined by Nobre et al. (2011). Consider-
ing the local gravitational potential, the HAND model shows
robust correlations between soil water conditions and its val-
ues. Additionally, the authors created three classes to easily
infer information about the water table depth (if at the sur-
face, shallow or deep) only using a digital elevation model,
which is commonly a piece of difficult and scarce informa-
tion on a large scale. We also present the aquifer in which the
catchment is located (most of the area) and the most common
type of rock of the aquifer. This information was provided by
the ANA database, and it is important for the knowledge of
the aquifer geology and its implications for the groundwa-
ter storage and recharge. We also have included data from
experimental wells on the CABra catchments, when avail-
able. The data were provided by the Integrated Groundwater
Monitoring Network (RIMAS) from the Geological Survey
of Brazil (CPRM) and include the location of each well and
its static and dynamic levels.

2.5.2 Results and discussion

Our analyses showed a close relationship between the wa-
ter table depth from Fan et al. (2013) and the HAND. In
the northern portion of Brazil, especially in the Amazon, we
can find shallow water table depths, while in the southeastern
portion, especially in the Atlantic Forest, we noted the deep-
est values for the water table depths (see Fig. 8a and b). This
could be related to the altitudes of each catchment since the
HAND is a product derived from a digital elevation model.
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Table 5. Groundwater attributes of the CABra catchments.

Type Attribute Long name Unit

Water table catch_wtd Water table depth m

Height above catch_hand Height above the nearest drainage m
nearest drainage hand_class Class of the height above the nearest drainage –

Aquifers
aquif_name Aquifer name –
aquif_type Aquifer rock type –

Wells
well_number Number of experimental wells –
well_static Static level of water table depth m
well_dynamic Dynamic level of water table depth m

– means dimensionless.

Figure 8. Spatial distribution of the groundwater attributes of the CABra catchments. (a) Water table depth (in m); (b) height above the
nearest drainage (in m); (c) type of aquifer bedrock; (d) number of experimental wells; (e) static level (in m); (f) dynamic level (in m).

If a catchment lies at a high elevation, the water table depth
is deeper than the other catchments in low elevations. This
is particularly noted in the coastal area of the Atlantic For-
est, which presents high altitudes and, at the same time, is
close to the sea level. Values of water table depth and HAND
are also in accordance with the experimental wells for catch-
ments where it was possible for this analysis to be carried out.
Despite this, the low density of experimental wells shows the
lack of field data about groundwater in Brazil.

Figure 8c shows that most of the CABra catchments are
dominated by fractured and porous rocks. The fractured
rocks store the water in fractures, creating large pockets of
water. The porous rocks store water in the soil pores (espe-
cially in sandy soils originated by sedimentary rocks), and it
is common to find large amounts of water in them. Two of
the world’s largest aquifers are in Brazil and are porous, the
Guarani Aquifer in the Cerrado biome and the Alter do Chão
Aquifer in the Amazon biome. The third aquifer type found
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in CABra catchments is the karstic one. This can be found in
the São Francisco River basin.

2.5.3 Uncertainty and limitations

Due to the lack of a robust monitoring network for ground-
water resources in Brazil, most of the data for covering the
Brazilian territory are based on in situ observations of wa-
ter table depth and groundwater model forced by climate,
terrain, and sea level, only up the year 2013 (Fan et al.,
2013). For South America, there were 34 508 observation
sites, most of them in Brazil, but they are concentrated in
the Atlantic coastal area, with few observations in most of
the Brazilian area. Moreover, the global dataset provided by
Fan et al. (2013) neglects local perched aquifers, groundwa-
ter pumping, irrigation, drainage, and any other complexity
of human interaction. The HAND product, in turn, is not
based on observations, but it is a simplified way to correlate
the water table depth with terrain elevation, and it is mainly
subject to errors in the digital elevation model used as input,
especially in flat areas, where there are uncertainties during
the flow direction determination (Nobre et al., 2011). The
information of aquifers presented in the CABra dataset, pro-
vided by the Brazilian Water Agency, was developed with a
previous and rigorous consistency analysis of geological and
hydrogeological studies in Brazil, followed by the classifi-
cation in three main classes, as fractured, karstic, or porous.
The mapping of aquifers systems was based on the analysis
of consistency, adequacy, and reclassification of existing geo-
logical and hydrogeological information. The reclassification
of polygons from geological units and their groupings was
conducted according to their hydrogeological characteristics.
Data sources had different scales, which might be a source of
uncertainty for the aquifer data. The sources and spatial map
of the aquifers are not available through the CABra dataset,
in which we only present the most common aquifer in each
catchment.

2.6 Soil

2.6.1 Methodology

The CABra dataset has eight attributes related to the soil
type, properties, and texture (Table 6). The soil type of the
catchment presented here is the most common type for each
catchment (bigger percentage of the different types) derived
from the Brazilian soil map developed by the Brazilian Agri-
cultural Research Corporation (EMBRAPA, in Portuguese)
(Santos et al., 2011). To meet with the international standards
for soil classification, we converted the classes to the widely
used World Reference Base (WRB) (FAO, 2014). Due to the
high importance of the knowledge of the soil depth, density,
texture, and organic matter to the understanding of soil-water
dynamics and root growth (Dexter, 2004; Saxton et al., 1986;
Saxton and Rawls, 2006; Shirazi and Boersma, 1984), we

also present the mean areal attributes for them. These fields
were taken from the SoilGrids250m, a global high-resolution
gridded soil information database based on field measure-
ments, data assimilation, and machine learning. This is the
most detailed and accurate global soil product and is cru-
cial for the development of large-scale studies in many fields
(ecology, climate, hydrology). However, despite all the im-
provements brought by SoilGrids250m, the data still have
limitations, and one of the biggest is the high uncertainty lev-
els for some of its products, such as the depth to bedrock and
coarse fragments. In addition, we also employed the United
States Department of Agriculture (USDA) soil texture clas-
sification, which is a widely used method for soil definition
based on the mechanical limits of soil particles. Previous
studies have shown that the USDA soil texture classification
can potentially reflect other soil parameters and characteris-
tics (Groenendyk et al., 2015; Twarakavi et al., 2010), mak-
ing it a powerful tool with a low input requirement.

2.6.2 Results and discussion

The catchments presented 12 main soil classes, with Ferra-
sols, Acrisols, and Nitisols being the most common soil types
in more than 90 % of the CABra catchments (Fig. 9a). Fer-
rasols were the dominant soil type in approximately 75 %
of the catchments, typical of equatorial and tropical regions,
which have an advanced stage of weathering of their consti-
tutive material, being normally deep (> 1 m), well-drained,
and acidic soils (high pH levels can occur in areas with a
strong dry season, such as that observed in the Caatinga
biome). Acrisols are formed mainly by minerals, with an ev-
ident increase in the clay content from the surface to hori-
zon B, with variable depth and drainage but always with
high acidity. The third most common soil type is the Nitisols,
which have a clay texture, with a well-developed B horizon
structure, and are usually deep and well-drained with moder-
ate acidity (EMBRAPA, 2018).

We noted that most of the catchments present soil tex-
ture dominated by sand and clay (Fig. 9c–e). Southeastern,
northern, and central regions of Brazil are dominated by
sandy clay loam soils, while the southern portion is domi-
nated by clay, which can reach up to 80 %, making this region
one of the most productive in terms of agriculture in Brazil.
Through the employment of the USDA texture triangle, we
found six classes: clay, clay loam, loam, sandy clay, sandy
clay loam, and sandy loam (see Fig. 9b). The soils presenting
a clay and clay loam texture are in the southern portion, espe-
cially where the Nitisols occur, which is also the region with
a significant portion of Brazilian agricultural production.

Most of the catchments present a mix of texture, the sandy
clay loam, which covers an area from the south through the
central to the northern regions of Brazil. There is a spatial
correlation between the soil organic carbon, bulk density, and
the distance to the bedrock, as we can see in Fig. 9f–h. In the
southern and southeastern portions, especially in the Atlantic
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Table 6. Soil attributes of the CABra catchments.

Type Attribute Long name Unit

Soil type soil_type Most common soil type –

Soil depth soil_depth Soil depth to bedrock m

Soil density soil_bulkdensity Soil bulk density g cm−3

Soil texture

soil_sand Sand portion in soil first layer %
soil_silt Silt portion in soil first layer %
soil_clay Clay portion in soil first layer %
soil_textclass Soil texture classification (USDA) –

Organic content soil_carbon Organic carbon content in soil first layer ‰

– means dimensionless.

Forest biome, there is a combination of high soil organic car-
bon, low bulk density, and low distance to the bedrock. These
characteristics, combined with the favorable climate, made
this region attractive to agriculture. Conversely, other Brazil-
ian regions present the opposite.

2.6.3 Uncertainty and limitations

The main limitation of the database used in the CABra
dataset as the source for soil attributes, the SoilGrids250
(Hengl et al., 2017), is related to the interpolation of pre-
dicted data (through machine learning algorithms), which are
based on data observed by soil profiles. In this aspect, Brazil
has a good starting point, with a dense and uniform distribu-
tion of in situ samples. However, authors state that, although
most properties are unbiased, coarse fragments and depth to
bedrock present relatively high uncertainties, as well as over-
estimations in low values of organic carbon content. Uncer-
tainties are also related to the need of translation from the
Brazilian classification system to the World Reference Base
and USDA classification systems, where some information
could be missed or misunderstood.

2.7 Geology

2.7.1 Methodology

The CABra dataset presents four attributes related to the
geology of the catchments (Table 7), being the predomi-
nant lithology class, the porosity, the saturated permeability,
and the saturated hydraulic conductivity. The lithology class
is derived from the Global Lithologic Map (GLiM) (Hart-
mann and Moosdorf, 2012). The GLiM is a high-resolution
global dataset that describes the geochemical, mineralogi-
cal, and physical properties of the rocks in 16 main litho-
logical classes. Moreover, GLiM allows us to better un-
derstand the geology of smaller areas, such as our CABra
catchments. Also, we are using a GLiM-derivate product
of porosity and permeability named GLobal HYdrogeology

MaPS (GLHYMPS), developed by Gleeson et al. (2014). The
GLHYMPS is the first large-scale high-resolution mapping
tool of porosity and permeability and fills the gap caused by
the lack of a robust and spatially distributed subsurface geol-
ogy map.

The porosity is how the void spaces in a material (soil
in our case) control how much fluid (water) can be stored
in this material or in the soil subsurface. The movement of
the stored water in the soil is controlled by the permeabil-
ity, which is the capacity of a porous material (again, soil)
to transmit fluids. Both parameters are fundamental to the
knowledge of the fluid rate and its impacts on Earth’s sub-
surface. When using this kind of high-resolution data for
large-scale studies, we can improve our understanding of the
dynamics between groundwater and land surface. Consid-
ering the saturated hydraulic conductivity to be one of the
most important physical properties for the quantitative and
qualitative assessment of the water movement in the soil, we
presented its values in the CABra dataset. Following the as-
sumption that the hydraulic conductivity is separable into the
contributions of the porous matrix of the soil and the density
and viscosity of the fluid, we also estimated the saturated hy-
draulic conductivity of the CABra catchments using its rela-
tion to the permeability (Eq. 4), as described in Grant (2005).

K =
kρg

µ
, (4)

where K is the saturated hydraulic conductivity, k is the
saturated permeability, ρ is the density of the fluid, g is
the gravitational constant (9.8 m s−2), and µ is the viscos-
ity of the fluid. In our study, we have considered the wa-
ter as the fluid, so we have used ρ = 999.97 kg m−3 and
µ= 0.001 kg m−1 s−1.

2.7.2 Results and discussion

Related to the lithology class, the catchments present 10 dif-
ferent classes according to the GLiM dataset: siliciclastic
sedimentary rocks, acid volcanic rocks, unconsolidated sed-
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Figure 9. Spatial distribution of the soil attributes of the CABra catchments. (a) The most common type of soil in the catchment; (b) the
class of texture based on USDA classification; (c) the clay fraction of the soil (in percent); (d) the sand fraction of the soil (in percent); (e) the
silt fraction of the soil (in percent); (f) the organic carbon content of the soil (in per mill); (g) the bulk density of the soil (in g cm−3); (h) the
depth to soil bedrock (in m).

Table 7. Geological attributes of CABra catchments.

Type Attribute Long name Unit

Lithology catch_lith Most common lithology class –

Subsurface geology
sub_porosity Porosity –
sat_permeability Saturated permeability m2

sat_hconduc Saturated hydraulic conductivity m s−1

– means dimensionless.
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Figure 10. Spatial distribution of geology attributes of the CABra catchments. (a) Most common lithology class in the catchment; (b) porosity
(dimensionless); (c) saturated permeability (in m2); (d) saturated hydraulic conductivity (in m s−1).

iments, acid plutonic rocks, metamorphic rock, mixed sed-
imentary rocks, basic volcanic rocks, carbonate sedimen-
tary rocks, intermediate volcanic rocks, and pyroclastic rocks
(Fig. 10). We found that 35 % of the catchments have meta-
morphic rocks as the most common lithologic class, a result
of continuous weathering on the original rock. These catch-
ments are located especially in the southern portion of Brazil,
in mountainous areas. Approximately 39 % of CABra catch-
ments are formed by sedimentary rocks, considering its sub-
division in siliciclastic, unconsolidated, and mixed resulted
from sediment deposition. They are mostly located in flat
areas, such as in the Paraná River basin and São Francisco
River basin, in the central and northeastern portion of Brazil.
A portion of 25 % of catchments present igneous rocks (plu-
tonic and volcanic) as the most common lithology class, re-
sulted from volcanic eruptions. These catchments are located
mainly in the Atlantic Forest biome, although we can find
some catchments in the Amazon.

In respect to the porosity, most CABra catchments pre-
sented values lower than 20 %, with a mean value of 10 %.
Catchments in the Atlantic Forest presented the lowest val-
ues of the catchment set. Results regarding the saturated per-
meability and hydraulic conductivity reinforce the hetero-

geneity and random occurrence of these soil properties. As
we can see in Fig. 10 and d, there is no well-defined spa-
tial behavior for them. Saturated permeability ranges from
−14 to−12 m2 in log scale, with a mean of−13.4 m2, while
the saturated hydraulic conductivity, which presented a mean
value of−6.4 m s−1 on the log scale, varies between−10 and
−4 m s−1 on the log scale.

2.7.3 Uncertainty and limitations

The geological map of the CABra dataset is derived from
the GLiM dataset (Hartmann and Moosdorf, 2012), which is,
in turn, the main source for the development of the hydro-
geological map used in the CABra dataset, the GLHYMPS
(Gleeson et al., 2014). Authors state that the global litho-
logical map is still subject to significant uncertainty in rock
properties in some of its lithological classes, mainly because
of the scale of the maps. About 14.6 % of the map’s area is
covered by mixed sediments, explicating the large amount of
area subject to undistinguishable properties. In addition, the
quality of literature used to identify lithology in rare loca-
tions may have introduced some uncertainty level on GLiM.
As mentioned before, the GLiM map was employed as a
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Table 8. Land-cover attributes of CABra catchments.

Type Attribute Long name Unit

Land cover and land use

cover_main Dominant cover type –
cover_bare Bare soil fraction of cover %
cover_forest Forest fraction of cover %
cover_grass Grass fraction of cover %
cover_shrub Shrub fraction of cover %
cover_moss Moss fraction of cover %
cover_crops Crops fraction of cover %
cover_urban Urban fraction of cover %
cover_snow Snow fraction of cover %
cover_waterp Water fraction of cover (permanent) %
cover_waters Water fraction of cover (seasonal) %

Vegetation

ndvi_djf DJF normalized difference vegetation index –
ndvi_mam MAM normalized difference vegetation index –
ndvi_jja JJA normalized difference vegetation index –
ndvi_son SON normalized difference vegetation index –

– means dimensionless.

basemap for the GLHYMPS permeability product, imply-
ing that all uncertainty associated to GLiM might be prop-
agated to it. Moreover, Gleeson et al. (2014) present an un-
certainty map of permeability, showing high standard devi-
ation values for central portions of Brazil, especially in the
Tocantins—Araguaia catchment. Finally, authors also rec-
ommend a careful use of the dataset where unsaturated zone
processes are dominant, since GLHYMPS only takes satu-
rated permeability into account.

2.8 Land cover

2.8.1 Methodology

The CABra dataset presents 15 attributes regarding the land
cover and land use of the Brazilian catchments (Table 8).
They are related to the area-averaged land cover and land
use itself (dominant cover type and the cover fractions of
nine main classes of use: bare soil, forest, grass, shrub, moss,
crops, urban, snow, and water) and to the area-averaged intra-
annual variability of the vegetation biomass, represented here
by the normalized difference vegetation index. The land-
cover and land-use map used in the CABra dataset is the
Copernicus Global Land Cover, which has 100 m spatial res-
olution, is a result of a classification of the PROBA-V satel-
lite observations of the year 2015, and follows the UN FAO
Land Cover Classification System (Buchhorn et al., 2019)
available at https://land.copernicus.eu/global/lcviewer (last
access: 21 May 2020).

As an indicator for the vegetation biomass of the land
cover through the year, we are using the seasonal NDVI for
each CABra catchment. The NDVI is widely used, is eas-
ily accessible, and has high-temporal availability, which can
be useful for many purposes in hydrology, from an annual

precipitation cycle indicator to input for soil erosion assess-
ments. We adopted a product derived from the Long Term
Statistics (LTS) based on the normalized difference vegeta-
tion index (NDVI) from the Copernicus Global Land ser-
vices. This dataset is an NDVI mean for each month of the
year during the 1999–2017 period, obtained from the SPOT-
VGT and PROBA-V sensors in a 1 km spatial resolution,
available at https://land.copernicus.eu/global/products/ndvi
(last access: 27 May 2020). The NDVI is obtained by cal-
culating the spectral reflectance difference between red and
near-infrared bands of the satellite image (Tucker, 1979)
(Eq. 5) and ranges from −1 to +1, with the highest values
attributed to areas with greater vegetation cover.

NDVI=
(

NIR−RED
NIR+RED

)
, (5)

where NIR is the surface spectral reflectance in the near-
infrared band, and RED is the surface spectral reflectance in
the red band.

2.8.2 Results and discussion

We observed that most of the Brazilian catchments are cov-
ered by forest and grassland (Fig. 11). The shrub is the dom-
inant cover for most of Caatinga catchments, while the grass
is the dominant one in the Cerrado (tropical savannah). The
forest cover is dominant, especially in the Amazon and At-
lantic Forest, as these two biomes are known for tropical for-
est occurrence, but even though the forest cover is not the
most common for all the CABra catchments,∼ 85 % of them
present at least 20 % of it (Fig. 11b). The grass cover fraction
presented values up to 40 % of the area for most of the catch-
ments but reached 60 % in some cases (Fig. 11c). The highest
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Figure 11. Spatial distribution of the land-cover and land-use attributes of the CABra catchments. (a) The most common land-cover type in
the catchment; (b) forest fraction of land cover (in percent); (c) grass fraction of land cover (in percent); (d) shrub fraction of land cover (in
percent); (e) crops fraction of land cover (in percent); (f) urban fraction of land cover (in percent).

values were found in the Cerrado and Atlantic Forest biomes,
in central and southeastern portions of Brazil.

Large areas of natural cover were converted to agri-
cultural lands (including crops and pasture) in past years
(Gibbs et al., 2010, 2014), and satellite sensors and classi-
fiers algorithms cannot separate natural grassland and pas-
ture/managed grasslands, as described in the PROBA-V doc-
umentation. Figure 11d gives us a better idea of this. The
fraction of the shrub cover of the Cerrado is probably the
natural cover remaining for this biome since this is the ex-
pected type of vegetation. As seen in Fig. 11e, a few numbers
of catchments present the crops as the dominant cover type,
mostly in the central and southern region, but we can also see
a great fraction of crop cover in the Matopiba region, one of
the largest agriculture frontiers in Brazil (Gibbs et al., 2014;
Pires et al., 2016; Spera et al., 2016). Figure 11f shows that
there are only a few cases of urban catchments, within or
close to major Brazilian cities that present this type of cover,
showing that the CABra dataset is mainly composed of either
natural or minimally (hydrologically) modified catchments.

The seasonal variability of the NDVI can be seen in
Fig. 12. Although the mean seasonal values for the entire
country are similar (0.65 for DJF, 0.69 for MAM, 0.64 for
JJA, and 0.56 for SON), the spatial variability of the NDVI

values is noticeable. There is a clear relationship with the
annual cycle of precipitation, and that is why it is so impor-
tant to consider the seasons to analyze the NDVI. Higher val-
ues of NDVI occur in accordance with the seasonal cycle of
precipitation in all the biomes, especially in DJF and MAM
months. Even in the Amazon, we can see a considerable de-
crease in the NDVI values for the catchments in the dry sea-
sons (JJA and SON), as well as the other biomes and regions
of Brazil. NDVI reaches the lowest values at the end of the
hydrological year, and the values only start to increase at the
beginning of the rainy season, i.e., DJF. Intermediate values
in the central portion of Brazil are very likely to be linked to
agricultural production, leading the values to be lower than
the natural cover.

2.8.3 Uncertainty and limitations

Although the CABra dataset presents one of the most high-
accuracy spatial resolutions on a global scale, the data are re-
lated to the year 2015, which is not within the 1980–2010 pe-
riod adopted in the hydrological analyses.

As authors from the Copernicus Global Land Cover
(Buchhorn et al., 2019) state, the global land-cover data
should be used with confidence but with careful and criti-
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Figure 12. Spatial distribution of the seasonal NDVI of the CABra catchments. (a) NDVI in the summer season (DJF); (b) NDVI in the
autumn season (MAM); (c) NDVI in the winter season (JJA); (d) NDVI in the spring season (SON).

cal analysis by the users, due to the land change commis-
sions and omissions. Uncertainty analyses conducted in three
aggregated classes (forest, crops, and natural vegetation)
showed high accuracy in all regions of the world, when com-
pared with more than 200 000 sample points, even though
there is some level of overestimation in the forest class, lead-
ing to a careful assessment of land cover in Amazon and At-
lantic forest catchments. At the same time, due to the 100 m
spatial resolution, small villages and highly fragmented land-
scapes might be indistinguishable and/or mixed with differ-
ent classes.

The NDVI dataset, also provided by Copernicus Global
Land Cover, should be used as a qualitative indication of the
biomass in the catchment, due to it relatively low spatial res-
olution (300 m). There are also uncertainties related to the ra-
diometric calibration of the images and anisotropic surfaces,
aside from the fact that the products did not consider adja-
cency effects and slope correction.

2.9 Hydrologic disturbance

2.9.1 Methodology

The CABra dataset presents 10 attributes related to the hy-
drologic disturbances on catchment water fluxes (Table 9).
Anthropic changes in water flux patterns, which happen out-
side the range of natural flow and climate extremes, can
directly impact the water availability and quality, stream
channel geometry and sedimentation, and the equilibrium
of ecosystems (Boulton et al., 1992; Coleman et al., 2011;
Whited et al., 2007). Natural conditions of catchments are
constantly modified by human interactions such as land-
cover and land-use changes, flow regulation, water abstrac-
tion, soil impermeability, and many others, which can dras-
tically alter the way hydrologic fluxes in the catchments re-
spond. Therefore, our goal was to create a simple index, with
easily accessible inputs, that is capable of measuring how
disturbed a catchment is in relation to its hydrology. Since the
beginning of CABra development, it was known that most of
the catchments were minimally urbanized but some of them
with changes in the original land cover (conversion of natu-
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Table 9. Hydrologic disturbance attributes of CABra catchments.

Type Attribute Long name Unit

Reservoirs

res_number Number of catchment’s reservoirs –
res_area Total area of catchment’s reservoirs km2

res_area_% Catchment’s area percentage covered by reservoirs %
res_volume Total volume of catchment’s reservoirs hm3

res_regulation Reservoir’s regulation capacity of the mean annual flow –

Water demand water_demand Water demand in the catchment mm yr−1

Land cover
cover_urban Urban fraction of cover %
cover_crops Crops fraction of cover %
dist_urban Distance from gauge to nearest urban cover km

Hydrologic disturbance index hdisturb_index Index of hydrologic disturbance in the catchment –

– means dimensionless.

ral vegetation to cropland/pasture). Some studies conducted
in Brazil found that, in addition to the interference by the
conversion of natural vegetation to pasture, this led to mini-
mal changes in the surface hydrology of the catchment, be-
ing more relevant to groundwater recharge and soil chem-
istry (de Bacellar, 2005; Lanza, 2015; Nepstad et al., 1994;
Salemi et al., 2012). Additionally, it has been seen that the
human-induced impact of the reservoirs can be more rele-
vant than the natural ones and can significantly alter nat-
ural hydrological processes (Zhao et al., 2016), leading to
an increase/decrease of streamflow and hydrological drought
characteristics (Wanders and Wada, 2015; Ye et al., 2003;
Zhang et al., 2015). Moreover, Zhang et al. (2015) found
that hydrologic vulnerability is also directly related to hu-
man water abstraction, but this can be compensated for by
streamflow regulation of the reservoirs. This led us to an in-
tegrated analysis of the reservoir regulation and human water
abstraction to reach the optimal balance on our index.

Based on the above-mentioned information, we have de-
cided to use weighted information about the land cover,
reservoirs, and water demand of each catchment. We con-
sidered the reservoir-based information with more impact:
regulation capacity with 40 % and number of reservoirs and
its percentage of catchment area each with 5 %. The second
most impacting factor of the index is the non-natural land
cover in the catchment, which can lead to modification of
hydrological surface and subsurface processes, with 40 % of
the weight. Finally, the water abstraction of the catchment
was considered to have 10 % weight.

In the development of this index, we have considered the
fraction of urban cover in each catchment, the distance to
the nearest urban area of each catchment (considering any
pixel of urban area), the number of reservoirs in each catch-
ment (ANA, 2020b), the total volume of reservoirs in each
catchment (ANA, 2020b), and its flow regulation capacity,
the fraction of reservoir area of each catchment area (ANA,
2020b), and the annual water demand (ANA, 2019b). The

equation related to the hydrologic disturbance index can be
found in the following Eq. (6):

HDindex = 0.4([UC ·UD]+CRC)+ 0.05RN+ 0.05R%A

+ 0.4RR+ 0.1WD, (6)

where HDindex is the hydrologic disturbance index (dimen-
sionless);UC is the normalized fraction of urban cover;UD is
the normalized distance to the nearest urban area; CRC is
the normalized fraction of crops cover; RN is the normalized
number of reservoirs; R%A is the normalized percentage of
catchment’s area covered by reservoirs; RR is the normalized
reservoirs’ regulation capacity of catchment’s mean annual
flow; andWD is the normalized catchment’s annual water de-
mand.

The result is the hydrologic disturbance index (HDI),
which will easily provide the degree of human interactions
that can modify water fluxes in each catchment for CABra
users. Additionally, we also applied a random forest algo-
rithm for a regression analysis to show if and how the hydro-
logical signatures are captured by the HDI.

2.9.2 Results and discussion

The results of the spatial distribution of the hydrological dis-
turbance index and its components are shown in Fig. 13.
Most CABra catchments are close to urban cover (it can be a
large city or a small village), with a distance of up to 10 km.
However, we also could find catchments with up to 100 km
of distance to the urban cover. As seen in Fig. 13b and c,
most CABra catchments present a fraction of urban cover of
up to 10 %, with the highest values close to large cities, and a
fraction of crop cover of up to 40 %, with the highest values
in central and southern portions. As these factors present a
high weight on the hydrological disturbance index, they are
a good clue for the most disturbed catchments.

Results from the reservoirs in CABra catchments are
shown in Fig. 13d–g. The number of reservoirs in the catch-

Hydrol. Earth Syst. Sci., 25, 3105–3135, 2021 https://doi.org/10.5194/hess-25-3105-2021



A. Almagro et al.: CABra: a novel large-sample dataset for Brazilian catchments 3127

Figure 13. Spatial distribution of the hydrologic disturbance attributes of CABra catchments. (a) Distance from urban cover to the streamflow
gauge (in km); (b) urban fraction of land cover (in percent); (c) crops fraction of land cover (in percent); (d) the number of reservoirs in the
catchment; (e) reservoir fraction of land cover (in percent); (f) the total volume of the reservoirs in the catchment (in km3); (g) the capacity
of the reservoirs in the catchment to regulate the mean annual streamflow (dimensionless); (h) multi-purpose water demand in the catchment
(in mm yr−1); (i) hydrologic disturbance index (HDI) of the catchment (dimensionless). The HDI is a weighted relationship between all the
anthropogenic factors of the catchments.

ment ranges from zero to 48 404. Even though we found the
largest number of reservoirs in a large catchment, this rela-
tionship is not linear. There are some catchments, especially
in the São Francisco River basin, which present an extremely
high number of reservoirs due to the low amounts of annual
precipitation and intensive drought in the region. Moreover,
catchments in the São Francisco River basin present the high-
est values of the total volume of reservoirs. These reservoirs

are used for many anthropogenic purposes, such as hydro-
electric power plants, irrigation, drinking water supply, fish
farming, and recreation. These high values of the total vol-
ume of reservoirs, especially in the drier regions, could lead
to a strong streamflow regulation, as seen in Fig. 13g. In most
of the CABra catchments, reservoirs can regulate up to 25 %
of the annual flow, but there are some cases in the Caatinga
biome where the regulation capacity reaches up to 10 times
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the annual flow, making these catchments susceptible to non-
natural events.

The water demand on CABra catchments ranges from zero
(in Amazon) to 171 mm yr−1 (in Caatinga), and it is related
to drinking water supply and irrigation of agricultural areas
(Fig. 13h). The integrated analysis of the above-mentioned
attributes is shown in Fig. 13i as the new hydrological distur-
bance index. Most of the CABra catchments present an index
value of up to 0.2, indicating a low anthropic interference on
water fluxes. Higher values, above 0.4, indicate catchments
with some significant interference on water fluxes, which
may be related to one or more terms of the equation. High
values of the hydrological disturbance index in the central
and southern portion of Brazil may be related to agriculture
development, while in the southeastern part, they may be re-
lated to urbanization, and in the northeastern part, they may
be related to the presence of numerous voluminous reser-
voirs. As expected, in the Amazon and mountainous areas
of Atlantic Forest, low values were found. The creation of
the hydrological disturbance index can be especially useful
for the users of the CABra dataset, allowing them to quickly
view the general state of the anthropogenic interferences on
water fluxes, which is an important consideration in a wide
range of studies.

The random forest regressor algorithm (Fig. 14) showed
us the most relevant hydrological signatures captured by the
hydrologic disturbance index. About 25 % of the variance of
the HDI is explained by the half-flow day and the stream-
flow elasticity, which are two signatures extremely sensitive
to streamflow regulation and to the generation of runoff in
the catchment. Our results show us that the index is capa-
ble of capturing what it was intended to: catchments with
higher values present a large number or high regulation ca-
pacity of reservoirs or a great percentage of non-natural ar-
eas. Medium values present some level of non-natural areas
(pasture or crops), but there is not a high hydrological dis-
turbance. Finally, lower values of HDI indicate minimally
human-impacted catchments.

2.9.3 Uncertainty and limitations

Uncertainties in hydrological disturbance are mainly related
to the components of the index. As mentioned before, there
is a limitation of use in the land-cover maps for small vil-
lages, urban areas, fragmented areas, and transitional areas
of croplands, due to the spatial resolution of the land-cover
maps. Because of this, small areas of urban fraction (UC),
and consequently the distance to the urban area (UD), and
crop area (CRC) might be undetected and this fraction of
the index – representing 40 % – disconsidered or underes-
timated. Another 50 % of the HDI is derived from reservoir
data, from the ANA database. Although the reservoir data
have been extensively improved through the years, there are
still uncertainties related to the many sources of them. Differ-
ent sources do not use the same satellite products or method-

Figure 14. Hydrological signatures as predictors of the hydrologic
disturbance index. The random forest regressor algorithm assesses
how much each signature increases the error of an HDI predic-
tion when randomly sorted. The higher the deviation caused by a
predictor, the higher the influence of the hydrological signature on
the HDI.

ology to identify and catalog the reservoirs. Additionally, the
latest inclusions of reservoirs were automatically made, and
there was no quality check of these data. Due to the crucial
importance of reservoirs to the HDI, unrealistic number, ar-
eas, and volumes of reservoirs can lead to unrealistic values
of the index. The last component considered here is the wa-
ter demand (WD), which is an area-averaged estimation that
accounts for both consumptive and non-consumptive water
abstraction, possible leading to higher values than real ab-
straction. Even though it represents 10 % of the HDI compo-
sition, it should be taken into account in post-processing.

3 Comparison with the CAMELS-BR and broader
implications for hydrological studies

The CABra and the CAMELS-BR (Chagas et al., 2020) both
contain large samples of hydroclimatic, landscape, and other
attributes for Brazilian catchments. Their striking similarities
in concept and goals highlight nothing but the urgent need
for the creation of such a database for Brazilian catchments.
However, it is important to notice that multiple differences
between both datasets exist, as we will discuss below.

The first main difference between CABra and CAMELS-
BR is related to the catchment delineation procedures
adopted. CAMELS-BR uses the basin masks from the GSIM
(Do et al., 2018) product, where a 500 m digital elevation
model was used for the delineation of catchment boundaries
and extraction of topographic indices. GSIM has a quality
filter allowing for up to 50 % of error in the catchment area
when compared with ANA’s value, as described in Do et
al. (2018). As previously explained, the CABra catchment
boundaries (delineated using streamflow gauge location from
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Figure 15. Scatter plots and correlation coefficients between hydrological signatures of CABra and CAMELS-BR catchments. There were
607 catchments and 13 hydrological signatures that overlapped in both datasets.

ANA) uses a high-definition (90 m) elevation product. We
have manually inspected each of the 735 catchments to mini-
mize further errors, correcting the geographic position of the
outlet to coincide with the stream network, achieving a mean
error of 2 % against ANA’s areas. It is important to highlight
that a suitable watershed delineation is of paramount impor-
tance for catchment hydrology studies because errors in these
processes are further propagated for all computed attributes
dependent on area and location. In addition, we provide the
drainage network or CABra catchments.

Related to the daily streamflow data, in the CABra dataset
we have retained catchments with less than 10 % missing
streamflow records over 30 hydrologic years (1980–2010),
which resulted in the final selection of 735 catchments. On
the other hand, CAMELS-BR contains 897 catchments with
less than 5 % missing data, while considering 20 hydrologic
years (1990–2009). Additionally, CAMELS-BR also pro-
vides longer time series when available for the gauge. Our

choice for a longer time series was predicated on the com-
monly adopted rationale which assumes 30 years as the ba-
sis for establishing long-term climatology as well as hydro-
logic indices (Huntingford et al., 2014; Tetzlaff et al., 2017),
which we in turn believe will lead to better characterization
of hydrological and climatological processes taking place. A
correlation test between hydrological signatures of 607 over-
lapping catchments in CABra and CAMELS-BR datasets is
shown in Fig. 15. The signatures based only on daily stream-
flow values, such as daily mean streamflow (q_mean) and
5th and 95th quantiles of daily streamflow (q_5 and q_95),
are quite similar between CABra and CAMELS-BR, show-
ing that both periods of analysis were capable of capturing
the streamflow patterns of the catchments. When compar-
ing signatures related to frequency and duration of low- and
high-streamflow events, we can note little variation but still
good agreement between datasets. In this case, the distinct
period for hydrological signature calculation (1980–2010 in
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CABra and 1990–2009 in CAMELS-BR) might be the cause
of deviations. The slope of the flow duration curve and the
runoff coefficient are in a very good agreement (r2 > 0.95),
demonstrating that both datasets are using precipitation prod-
ucts with good reliability. The streamflow elasticity and
baseflow index have presented notable differences between
CABra and CAMELS-BR. This might be due to the different
components adopted in the equations of Woods (2009) and
Ladson et al. (2013), which were implemented for elasticity
and baseflow index calculations.

Another important difference between both datasets is re-
lated to the choice of databases used for providing the daily
meteorological time series and estimating the related indices.
While CAMELS-BR uses three widely used gridded datasets
(based on remote sensing/reanalysis/gauge blends of rain-
fall), i.e., the CHIRPS v2.0, CPC, and MSWEP v2.2, the first
one being chosen for the climatic indices (because of its spa-
tial resolution of 0.05◦× 0.05◦), the CABra uses the Xavier
et al. (2016) dataset and the ERA5 reanalysis. The Xavier et
al. (2016) dataset was produced based on observations from
3625 rain gauges and 735 wheatear stations in the Brazilian
territory and is extensively used as the ground-truth reference
for the validation of precipitation products, including the
CHIRPS, MSWEP, and the soil moisture satellite-corrected
estimates (SM2RAIN; Brocca et al., 2014; Paredes-Trejo et
al., 2018), the Global Precipitation Measurement (GPM; Hou
et al., 2014); Gadelha et al., 2019), and the Tropical Rainfall
Measuring Mission (TRMM; Huffman et al., 2007; Melo et
al., 2015). Other uses of this dataset include the evaluation of
precipitation from downscaled global circulation models (Al-
magro et al., 2020), as well as other meteorological variables
used in regional studies (Battisti et al., 2019; Bender and Sen-
telhas, 2018; Monteiro et al., 2018), aside from being widely
used for hydrological studies (Almagro et al., 2017; Avila-
Diaz et al., 2020; Lima and AghaKouchak, 2017; Souza et
al., 2016). The main limitation of Xavier’s dataset it that it
only covers Brazil.

Additional differences belonging to the meteorological
time series section are also worth noting. CAMELS-BR pro-
vides the model-based PET estimates extracted from the
GLEAM product (Martens et al., 2017), while daily temper-
atures (maximum, minimum, and average) are the only PET-
related variable provided in a daily time series format. The
CABra dataset provides the computed PET following three
widely used methods, along with all necessary variables for
its computation, such as solar radiation, wind speed, temper-
ature, and relative humidity. Our choice for the computation
of PET instead of using model-based estimates should allow
for more transparency and reproducibility of results obtained
using our dataset. Also, the choice of providing a wider range
of meteorological variables allows the user to estimate PET
based on different methods while enhancing the reach of our
dataset for studies that might benefit from additional meteo-
rological variables.

While the soil and geology attributes of both CABra and
CAMELS-BR are derived from the same data sources, (i.e.,
the SoilGrids250, the GLiM, and the GLHYMPS v2.0),
CABra provides the following additional variables not avail-
able in CAMELS-BR: saturated permeability (saturated hy-
draulic conductivity for geology attribute), soil type, textural
class, and soil bulk density – which can be used to estimate
soil porosity. Regarding groundwater attributes, CABra con-
tains the rock type and name of the aquifer and water table
depths from Fan et al. (2013) and the HAND estimates, while
CAMELS-BR only contains the water table depth estimates
from Fan et al. (2013).

In terms of land-cover attributes, CABra and CAMELS-
BR present similar attributes, but the data source is different.
CABra adopted a product with a higher spatial resolution
(100 m against 300 m) and more recent observation (2015
against 2009) than in CAMELS-BR. Due to this better spatial
resolution. we chose to use the most recent land cover, even
though it is outside of the time span of hydrologic time series.
CABra also brings information about the seasonal vegetation
biomass of the catchment, in terms of NDVI, which is not
present in CAMELS-BR.

Finally, both datasets take into account the human influ-
ence within each catchment, which is essential to a holis-
tic understanding of the catchment behavior due to anthro-
pogenic interactions and a lack of most of the large-sample
datasets (Addor et al., 2020). CAMELS-BR presents data
about water use, the volume of reservoirs, and the degree
of regulation of the reservoirs. However, there is no com-
bination or integration of these attributes in a specific index
or approach. On the other hand, CABra presents eight at-
tributes, i.e., distance to urbanization, the fraction of non-
natural land cover (crops and urban areas), water demand,
reservoirs’ count, area, volume, and streamflow regulation
capacity (the last two are also found in CAMELS-BR), which
can affect the hydrologic behavior of the catchment in terms
of water quantity, quality and regulation. Additionally, we
developed a new hydrologic disturbance index (HDI), which
considers all of these above-mentioned eight attributes. The
HDI is a quantitative index of the level of anthropization
that is reproducible and practical to identify a more or less
human-impacted catchment.

4 Conclusions

In this study, we have collected, synthesized, organized, and
made available more than 100 topography, climate, stream-
flow, groundwater, soil, geology, land use and land cover,
and hydrologic disturbance attributes for 735 catchments in
Brazil. To do so, we have used several sources, such as ob-
served time series, observed and modeled gridded data, re-
mote sensing data, and reanalysis data. Moreover, we have
calculated some attributes for providing more accurate data
than those available in the literature, including potential
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evapotranspiration, and for providing data that have not ex-
isted until now, such as the hydrological disturbance in-
dex. As this dataset deals with catchment-scale averaged at-
tributes, we have paid particular attention to DEM resolu-
tion and catchment delineation while also manually inspect-
ing each of the CABra catchments.

The development of the CABra dataset opens up several
opportunities to test and develop a hypothesis in a unique
environment like Brazil, with its vast and rich diversity in
hydrology and landscapes. Finding relationships between the
catchments’ attributes will enable hydrologists to identify the
drivers of the water fluxes in the catchment. We hope our
dataset will aid catchment classification efforts that will ulti-
mately unravel the underlying dominant controls of Brazilian
regional hydrology across space and time. At the same time,
the CABra dataset covers fundamentally different hydrocli-
matologic and ecologic regions than those covered by other
similar large-sample datasets (United States, Great Britain,
Chile, etc.) and so is a complement for global assessments
and expands the possibility of the use of our dataset for mul-
tiple scientific areas, such as geology, agronomy, and ecohy-
drology.

We intend to expand the CABra dataset in the future. In-
formation and attributes related to relevant fields of work,
such as soil erosion, ecology, biology, and chemistry, as well
as climate change projections, will be added to the CABra
dataset in future update releases. Thus, CABra represents
a robust multi-source data collection effort for Brazil and
is intended to play a key role in advancing the scientific
understanding of climate–landscape–hydrology interactions.
As such, we hope it will guide large-sample hydrology in-
vestigations and pave the way for testing novel hypotheses
by both the Brazilian and the international scientific commu-
nity.

Data availability. The datasets underlying the CABra dataset are
available at https://doi.org/10.5281/zenodo.4070146 (Almagro et
al., 2021a). We also developed a website with a user-friendly in-
terface for easy access: https://thecabradataset.shinyapps.io/CABra/
(last access: 7 June 2021 (Almagro et al., 2021b).
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Wright, M. N., Geng, X., Bauer-Marschallinger, B., Gue-
vara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H.,
Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil informa-
tion based on machine learning, PLoS One, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G.,
Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming,
J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy,
S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloy-
aux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum,
I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kum-
merow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi,
T.: The global precipitation measurement mission, B. Am. Me-
teorol. Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-
00164.1, 2014.

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin,
E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and
Wolff, D. B.: The TRMM Multisatellite Precipitation Analy-
sis (TMPA): Quasi-global, multiyear, combined-sensor precip-
itation estimates at fine scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.

Huntingford, C., Marsh, T., Scaife, A. A., Kendon, E. J., Han-
naford, J., Kay, A. L., Lockwood, M., Prudhomme, C., Rey-
nard, N. S., Parry, S., Lowe, J. A., Screen, J. A., Ward, H.
C., Roberts, M., Stott, P. A., Bell, V. A., Bailey, M., Jenkins,
A., Legg, T., Otto, F. E. L., Massey, N., Schaller, N., Slingo,
J., and Allen, M. R.: Potential influences on the United King-
dom’s floods of winter 2013/14, Nat. Clim. Change, 4, 769–777,
https://doi.org/10.1038/nclimate2314, 2014.

Kousky, V. E., Kagano, M. T., and Cavalcanti, I. F. a: A re-
view of the Southern Oscillation: oceanic-atmospheric circula-
tion changes and related rainfall anomalies, Tellus A, 36, 490–
504, https://doi.org/10.1111/j.1600-0870.1984.tb00264.x, 1984.

Ladson, A. R., Brown, R., Neal, B., and Nathan, R.: A standard
approach to baseflow separation using the Lyne and Hollick filter,
Aust. J. Water Resour., 17, 25–34, https://doi.org/10.7158/W12-
028.2013.17.1, 2013.

Lanza, R.: Hidrologia comparativa e perda de solo e água em ba-
cias hidrográficas cultivadas com eucalipto e campo nativo com
pastagem manejada, MS Thesis, Santa Maria, 150 pp., 2015.

Lima, C. H. R. and AghaKouchak, A.: Droughts in Ama-
zonia: Spatiotemporal Variability, Teleconnections, and Sea-
sonal Predictions, Water Resour. Res., 53, 10824–10840,
https://doi.org/10.1002/2016WR020086, 2017.

Lo, M. H., Famiglietti, J. S., Yeh, P. J. F., and Syed, T. H.:
Improving parameter estimation and water table depth simu-
lation in a land surface model using GRACE water storage
and estimated base flow data, Water Resour. Res., 46, 1–15,
https://doi.org/10.1029/2009WR007855, 2010.

Lyne, V. and Hollick, M.: Stochastic Time-Variable Rainfall-Runoff
Modeling, in: Hydrology and Water Resources Symposium, In-
stitution of Engineers National Conference Publication, Perth,
89–92, 1979.

Lyon, S. W. and Troch, P. A.: Development and application of a
catchment similarity index for subsurface flow, Water Resour.
Res., 46, 1–13, https://doi.org/10.1029/2009WR008500, 2010.

Maes, W. H., Gentine, P., Verhoest, N. E. C., and Mi-
ralles, D. G.: Potential evaporation at eddy-covariance sites

https://doi.org/10.5194/hess-25-3105-2021 Hydrol. Earth Syst. Sci., 25, 3105–3135, 2021

https://doi.org/10.1126/science.aap9664
https://doi.org/10.1016/j.atmosres.2018.12.001
https://doi.org/10.1073/PNAS.0910275107
https://doi.org/10.1126/science.aaa0181
https://doi.org/10.1002/2014GL059856
https://doi.org/10.1016/B0-12-348530-4/00379-9
https://doi.org/10.1016/B0-12-348530-4/00379-9
https://doi.org/10.1371/journal.pone.0131299
https://doi.org/10.1007/s10652-007-9033-8
https://doi.org/10.5194/hess-18-463-2014
https://doi.org/10.13031/2013.36722
https://doi.org/10.1061/(ASCE)0733-9437(2004)130:5(447.2)
https://doi.org/10.1061/(ASCE)0733-9437(2004)130:5(447.2)
https://doi.org/10.1029/2012GC004370
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1038/nclimate2314
https://doi.org/10.1111/j.1600-0870.1984.tb00264.x
https://doi.org/10.7158/W12-028.2013.17.1
https://doi.org/10.7158/W12-028.2013.17.1
https://doi.org/10.1002/2016WR020086
https://doi.org/10.1029/2009WR007855
https://doi.org/10.1029/2009WR008500


3134 A. Almagro et al.: CABra: a novel large-sample dataset for Brazilian catchments

across the globe, Hydrol. Earth Syst. Sci., 23, 925–948,
https://doi.org/10.5194/hess-23-925-2019, 2019.

Maidment, D. R.: Arc Hydro: GIS for Water Resources, ESRI, Inc.,
Redlands, CA, 203 pp., 2002.

Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De
Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W.
A., and Verhoest, N. E. C.: GLEAM v3: Satellite-based land
evaporation and root-zone soil moisture, Geosci. Model Dev., 10,
1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.

McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and
McVicar, T. R.: Estimating actual, potential, reference crop
and pan evaporation using standard meteorological data: A
pragmatic synthesis, Hydrol. Earth Syst. Sci., 17, 1331–1363,
https://doi.org/10.5194/hess-17-1331-2013, 2013.

Meira Neto, A. A., Roy, T., de Oliveira, P. T. S., and
Troch, P. A.: An Aridity Index-Based Formulation of
Streamflow Components, Water Resour. Res., 56, 1–14,
https://doi.org/10.1029/2020WR027123, 2020.

Melo, D. D. C. D., Xavier, A. C., Bianchi, T., Oliveira, P. T. S., Scan-
lon, B. R., Lucas, M. C., and Wendland, E.: Performance evalua-
tion of rainfall estimates by TRMM Multi-satellite Precipitation
Analysis 3B42V6 and V7 over Brazil, J. Geophys. Res.-Atmos.,
120, 9426–9436, https://doi.org/10.1002/2015JD023797, 2015.

Monteiro, L. A., Sentelhas, P. C., and Pedra, G. U.: Assessment
of NASA/POWER satellite-based weather system for Brazilian
conditions and its impact on sugarcane yield simulation, Int.
J. Climatol., 38, 1571–1581, https://doi.org/10.1002/joc.5282,
2018.

Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D.,
and Mukhopadhyay, A.: Evaluation of vertical accuracy of open
source Digital Elevation Model (DEM), Int. J. Appl. Earth Obs.
Geoinf., 21, 205–217, https://doi.org/10.1016/j.jag.2012.09.004,
2012.

Nepstad, D. C., Carvalho, C. R. De, Davidson, E. A., Jipp, P. H.,
Lefebvre, P. A., Negrelros, G. H., Sllva, E. D., Stone, T. A.,
Trumbore, S. E., and Vieira, S.: The role of deep roots in the hy-
drological and carbon cycles of Amazonian forests and pastures,
Nature, 372, 666–669, 1994.

Newman, A. J., Clark, M. P., Craig, J., Nijssen, B., Wood, A., Gut-
mann, E., Mizukami, N., Brekke, L., and Arnold, J. R.: Grid-
ded ensemble precipitation and temperature estimates for the
contiguous United States, J. Hydrometeorol., 16, 2481–2500,
https://doi.org/10.1175/JHM-D-15-0026.1, 2015.

Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D.,
Rodrigues, G., Silveira, A., Waterloo, M., and Saleska,
S.: Height Above the Nearest Drainage – a hydrologi-
cally relevant new terrain model, J. Hydrol., 404, 13–29,
https://doi.org/10.1016/j.jhydrol.2011.03.051, 2011.

Oliveira, P. T. S., Almagro, A., Pitaluga, F., Meira Neto, A. A., Dur-
cik, M., and Troch, P. A.: CABra: a novel large-scale dataset for
Brazilian catchments, in: EGU General Assembly, Vienna, 4–
8 May 2020, https://doi.org/10.5194/egusphere-egu2020-12138,
2020.

Paredes-Trejo, F., Barbosa, H. A., and Spatafora, L. R.: Assess-
ment of SM2RAIN-derived and state-of-the-art satellite rain-
fall products over Northeastern Brazil, Remote Sens., 10, 1093,
https://doi.org/10.3390/rs10071093, 2018.

Pires, G. F., Abrahão, G. M., Brumatti, L. M., Oliveira,
L. J. C., Costa, M. H., Liddicoat, S., Kato, E., and

Ladle, R. J.: Increased climate risk in Brazilian double
cropping agriculture systems: Implications for land use in
Northern Brazil, Agr. Forest Meteorol., 228–229, 286–298,
https://doi.org/10.1016/j.agrformet.2016.07.005, 2016.

Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Sur-
face Heat Flux and Evaporation Using Large-Scale Parameters,
Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-
0493(1972)100<0081:otaosh>2.3.co;2, 1972.

Ren, H., Hou, Z., Huang, M., Bao, J., Sun, Y., Tesfa, T.,
and Ruby Leung, L.: Classification of hydrological param-
eter sensitivity and evaluation of parameter transferability
across 431 US MOPEX basins, J. Hydrol., 536, 92–108,
https://doi.org/10.1016/j.jhydrol.2016.02.042, 2016.

Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general
framework for understanding the response of the water cycle to
global warming over land and ocean, Hydrol. Earth Syst. Sci., 18,
1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.

Rodrigues, D. B. B., Gupta, H. V., Serrat-Capdevila, A., Oliveira,
P. T. S., Mario Mendiondo, E., Maddock, T., and Mahmoud, M.:
Contrasting American and Brazilian systems for water alloca-
tion and transfers, J. Water Resour. Plan. Manage., 141, 1–11,
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000483, 2015.

Salemi, L. F., Groppo, J. D., Trevisan, R., Seghesi, G. B., Moraes,
J. M., Ferraz, S. F. B., and Martinelli, L. A.: Consequên-
cias hidrológicas da mudança de uso da terra de floresta para
pastagem na região da floresta tropical pluvial Atlântica, Am-
bient. e Agua – An Interdiscip. J. Appl. Sci., 7, 127–140,
https://doi.org/10.4136/ambi-agua.927, 2012.

Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Cli-
mate elasticity of streamflow in the United States, Water Resour.
Res., 37, 1771–1781, https://doi.org/10.1029/2000WR900330,
2001.

Santos, H. G., Carvalho Júnior, W., Dart, R. O., Áglio, M.
L. D., Sousa, J. S., Pares, J. G., Fontana, A., Martins,
A. L. S., and Oliveira, A. P. O.: O novo mapa de solos
do Brasil: legenda atualizada, Embrapa Solos, availableat:
https://www.embrapa.br/busca-de-publicacoes/-/publicacao/
920267/o-novo-mapa-de-solos-do-brasil-legenda-atualizada
(last access: 15 March 2020), 2011.

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and
Carrillo, G.: Catchment classification: empirical analysis of
hydrologic similarity based on catchment function in the
eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911,
https://doi.org/10.5194/hess-15-2895-2011, 2011.

Saxton, K. E. and Rawls, W. J.: Soil Water Characteris-
tic Estimates by Texture and Organic Matter for Hydro-
logic Solutions, Soil Sci. Soc. Am. J., 70, 1569–1578,
https://doi.org/10.2136/sssaj2005.0117, 2006.

Saxton, K. E., Rawls, W. J., Romberger, J. S., and Papen-
dick, R. I.: Estimating Generalized Soil-water Characteris-
tics from Texture, Soil Sci. Soc. Am. J., 50, 1031–1036,
https://doi.org/10.2136/sssaj1986.03615995005000040039x,
1986.

Schaake, J., Cong, S., and Duan, Q.: The US mopex data set, IAHS-
AISH Publ., 307, 9–28, 2006.

Schulzweida, U.: CDO User guide (1.9.6), 2015, Zenodo,
https://doi.org/10.5281/zenodo.2558193, 2019.

Schumacher, D. L., Keune, J., van Heerwaarden, C. C., Vilà-
Guerau de Arellano, J., Teuling, A. J., and Miralles, D.

Hydrol. Earth Syst. Sci., 25, 3105–3135, 2021 https://doi.org/10.5194/hess-25-3105-2021

https://doi.org/10.5194/hess-23-925-2019
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.5194/hess-17-1331-2013
https://doi.org/10.1029/2020WR027123
https://doi.org/10.1002/2015JD023797
https://doi.org/10.1002/joc.5282
https://doi.org/10.1016/j.jag.2012.09.004
https://doi.org/10.1175/JHM-D-15-0026.1
https://doi.org/10.1016/j.jhydrol.2011.03.051
https://doi.org/10.5194/egusphere-egu2020-12138
https://doi.org/10.3390/rs10071093
https://doi.org/10.1016/j.agrformet.2016.07.005
https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
https://doi.org/10.1016/j.jhydrol.2016.02.042
https://doi.org/10.5194/hess-18-1575-2014
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000483
https://doi.org/10.4136/ambi-agua.927
https://doi.org/10.1029/2000WR900330
https://www.embrapa.br/busca-de-publicacoes/-/publicacao/920267/o-novo-mapa-de-solos-do-brasil-legenda-atualizada
https://www.embrapa.br/busca-de-publicacoes/-/publicacao/920267/o-novo-mapa-de-solos-do-brasil-legenda-atualizada
https://doi.org/10.5194/hess-15-2895-2011
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.2136/sssaj1986.03615995005000040039x
https://doi.org/10.5281/zenodo.2558193


A. Almagro et al.: CABra: a novel large-sample dataset for Brazilian catchments 3135

G.: Amplification of mega-heatwaves through heat torrents
fuelled by upwind drought, Nat. Geosci., 12, 712–717,
https://doi.org/10.1038/s41561-019-0431-6, 2019.

Shirazi, M. A. and Boersma, L.: A Unifying Quantitative Anal-
ysis of Soil Texture, Soil Sci. Soc. Am. J., 48, 142–147,
https://doi.org/10.2136/sssaj1984.03615995004800010026x,
1984.

Shuttleworth, W. J.: Evaporation, in: Handbook of Hydrology,
edited by: Maidment, D. R., McGraw-Hill Education, New York,
p. 824, 1996.

Solman, S. A., Sanchez, E., Samuelsson, P., da Rocha, R. P., Li,
L., Marengo, J., Pessacg, N. L., Remedio, A. R. C., Chou, S. C.,
Berbery, H., Le Treut, H., de Castro, M., and Jacob, D.: Evalua-
tion of an ensemble of regional climate model simulations over
South America driven by the ERA-Interim reanalysis: Model
performance and uncertainties, Clim. Dynam., 41, 1139–1157,
https://doi.org/10.1007/s00382-013-1667-2, 2013.

Souza, R., Feng, X., Antonino, A., Montenegro, S., Souza, E., and
Porporato, A.: Vegetation response to rainfall seasonality and in-
terannual variability in tropical dry forests, Hydrol. Process., 30,
3583–3595, https://doi.org/10.1002/hyp.10953, 2016.

Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N., and Mus-
tard, J. F.: Land-use change affects water recycling in Brazil’s
last agricultural frontier, Global Change Biol., 22, 3405–3413,
https://doi.org/10.1111/gcb.13298, 2016.

Strahler, A. N.: Hypsometric Area-Altitude Anal-
ysis of Erosional Topography, Bull. Geol. Soc.
Am., 63, 1117–1142, https://doi.org/10.1130/0016-
7606(1952)63[1117:HAAOET]2.0.CO;2, 1952.

Strahler, A. N.: Quantitative Analysis of Watershed Geomorphol-
ogy, T. ASAE, 38, 913–920, 1957.

Tebaldi, C., Smith, R. L., Nychka, D., and Mearns, L. O.: Quan-
tifying uncertainty in projections of regional climate change:
A Bayesian approach to the analysis of multimodel ensembles,
J. Climate, 18, 1524–1540, https://doi.org/10.1175/JCLI3363.1,
2005.

Tetzlaff, D., Carey, S. K., McNamara, J. P., Laudon, H., and
Soulsby, C.: The essential value of long-term experimental data
for hydrology and water management, Water Resour. Res., 53,
2598–2604, https://doi.org/10.1002/2017WR020838, 2017.

Tomkins, K. M.: Uncertainty in streamflow rating curves: Meth-
ods, controls and consequences, Hydrol. Process., 28, 464–481,
https://doi.org/10.1002/hyp.9567, 2014.

Tucker, C. J.: Red and Photographic Infrared, near Combinations
for Monitoring Vegetation, Remote Sens. Environ., 8, 127–150,
1979.
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