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Abstract. Canada’s water cycle is driven mainly by
snowmelt. Snow water equivalent (SWE) is the snow-related
variable that is most commonly used in hydrology, as it ex-
presses the total quantity of water (solid and liquid) stored in
the snowpack. Measurements of SWE are, however, expen-
sive and not continuously accessible in real time. This moti-
vates a search for alternative ways of estimating SWE from
measurements that are more widely available and continuous
over time. SWE can be calculated by multiplying snow depth
by the bulk density of the snowpack. Regression models pro-
posed in the literature first estimate snow density and then
calculate SWE. More recently, a novel approach to this prob-
lem has been developed and is based on an ensemble of mul-
tilayer perceptrons (MLPs). Although this approach com-
pared favorably with existing regression models, snow den-
sity values at the lower and higher ends of the range remained
inaccurate. Here, we improve upon this recent method for
determining SWE from snow depth. We show the general
applicability of the method through the use of a large data
set of 234 779 snow depth–density–SWE records from 2878
nonuniformly distributed sites across Canada. These data
cover almost 4 decades of snowfall. First, it is shown that
the direct estimation of SWE produces better results than
the estimation of snow density, followed by the calculation
of SWE. Second, testing several artificial neural network
(ANN) structural characteristics improves estimates of SWE.
Optimizing MLP parameters separately for each snow cli-
mate class gives a greater representation of the geophysi-
cal diversity of snow. Furthermore, the uncertainty of snow
depth measurements is included for a more realistic estima-
tion. A comparison with commonly used regression models

reveals that the ensemble of MLPs proposed here leads to
noticeably more accurate estimates of SWE. This study thus
shows that delving deeper into ANN theory helps improve
SWE estimation.
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1 Introduction

Snowmelt plays a major role in the hydrological cycle of
many regions of the world. Casson et al. (2018) determined
that snow accumulation and melt are the main drivers of the
spring freshet in the Canadian subarctic region, and Pomeroy
et al. (2011) demonstrated that over 80 % of the annual runoff
in the Canadian Prairies is derived from snowmelt. An accu-
rate prediction of the accumulation and melting of snow is
therefore of interest for various applications, including the
management of reservoirs for hydroelectric power genera-
tion, irrigation and water supply, and climate impact studies.
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Consequently, many hydrological models include a snow
module to estimate the snow water equivalent (SWE). SWE
is of great interest in hydrology because it describes the vol-
ume of water stored in the snowpack (e.g., Kirnbauer et al.,
1994; Dozier, 2011; Hock et al., 2006; Barnett et al., 2005;
Seibert et al., 2014). Kinar and Pomeroy (2015) reviewed
techniques for measuring snowpack variables. The existing
techniques for determining SWE are either time-intensive,
due to manual snow surveys, or cost-intensive because of the
necessary and expensive equipment. Sturm et al. (2010) es-
timated SWE measurements to be 20 times more expensive
than snow depth measurements. SWE can also be calculated,
however, using snow depth and the volumetric mass density
of snow.

Snow depth can be measured inexpensively by ultrasonic
distance sensors. Furthermore, light detection and ranging
instruments (lidar) installed on aircraft can measure snow
depth remotely (e.g., Painter et al., 2016; Kim et al., 2017).
Lidar penetrates vegetation, which makes it a very good tool
for measuring snow depth in forested environments. These
observations also have a high spatial resolution, which makes
lidar particularly interesting in mountainous areas where
snow depth is highly spatially variable. At present, the high
cost of using manned aircraft prevents this technique from
becoming operational at a large scale, although Bühler et al.
(2016) have demonstrated the potential for unmanned aerial
surveys using low-cost, remotely piloted drones to mea-
sure snow depth at a large scale and at a high spatial res-
olution. Lettenmaier et al. (2015) discussed remote sensing
techniques in hydrology and concluded that measurement
of SWE from space “remains elusive”. However, Environ-
ment and Climate Change Canada (ECCC) and the Canadian
Space Agency (CSA) are currently collaborating on the Ter-
restrial Snow Mass Mission (Garnaud et al., 2019), a satel-
lite mission that aims to measure SWE with a dual Ku-band
radar.

A number of regression models have already been pro-
posed to convert snow depth to SWE (e.g., Jonas et al., 2009;
Sturm et al., 2010; Painter et al., 2016; Broxton et al., 2019).
In general, these models first estimate snow density from
snow depth and then calculate SWE. Sturm et al. (2010) ar-
gue that the variation of snow density is 4 times less than that
of snow depth. Therefore, a model that measures the more
dynamic parameter (snow depth) and estimates the more con-
servative parameter (snow density) offers promise. The mod-
els are trained on field measurements using regression anal-
ysis. Additional geophysical classifications are used to ob-
tain more precise results. For example, Sturm et al. (2010)
and Bormann et al. (2013) used the snow classification of
Sturm et al. (2009) in which individual regression models
were trained for each class. Another example of geophysical
classification is given by Jonas et al. (2009). They applied
an individual regression model to each month and elevation
class to separate the data both temporally and spatially.

Physics-based approaches have also been proposed for
converting snow depth to SWE. For instance, Painter et al.
(2016) used the snowmelt model iSnobal, which calculates
snow density while incorporating snow aging, mechanical
compaction, and the impact of liquid water with adjustments
for deposits of new snow. Input variables (e.g., incoming
longwave radiation, soil temperature, net solar radiation),
which are necessary for physical modeling, are not available
in real time in Canada. Furthermore, physical-based models
are, as Painter et al. (2016) mentioned, the logical choice for
distributed SWE estimates. However, we aim for a conver-
sion model that is based on data points which are sparsely
scattered in time and space and that uses only variables avail-
able in real time. Further, physics-based models can be com-
putationally expensive because of their complexity.

Recent studies have suggested the use of artificial neu-
ral networks (ANNs) to estimate SWE. Snauffer et al.
(2018) uses ANNs for multi-source data fusion over British
Columbia, Canada. SWE data from reanalysis products and
manual snow survey are used as network inputs, and grid-
ded SWE products are improved by the ANN. The follow-
ing two studies uses ANNs to model the relationship be-
tween snow depth and snow density, which could then be
used to obtain estimates of SWE. Broxton et al. (2019) ap-
plied an ANN model to a set of snow measurements at a very
high spatial resolution. Their study focused on two approx-
imately 100 km2 areas in Arizona, USA, for both mid- and
late-winter conditions, during which a total of 300 density–
depth tuples were obtained manually. These tuples were used
to train the neural network. Their model, which consisted
of a simple network structure with one hidden layer con-
taining 10 neurons, also incorporated other physiographic
factors obtained from lidar measurements. The Levenberg–
Marquardt algorithm optimized the model over a run of 50
epochs. The Broxton et al. (2019) approach allows for the
use of high-resolution lidar measurements of snow depth; the
ANN model then converts these measurements to snow den-
sity and subsequently to SWE to produce improved maps of
depth, SWE, and snow density at a very high resolution.

Odry et al. (2020) also applied ANNs to estimate snow
density from snow depth, but they focused on developing
a method that would be applicable over a very large spa-
tial extent. In their study, they used almost 40 000 mea-
surements from approximately 400 nonuniformly distributed
sites across the province of Quebec, Canada. This study cov-
ered a period of 45 years. In contrast to Broxton et al. (2019),
the available snow measurements were spatially distant and
temporarily irregular. The ANNs incorporated meteorolog-
ical data as additional explanatory variables to support the
estimation of density. Odry et al. (2020) used an ensemble
of multilayer perceptrons (MLPs, a type of ANN) to provide
estimates, at least in part, of the uncertainty associated with
converting snow depth to density. A comparison of the ANN
model of Odry et al. (2020) with the regression models of
Jonas et al. (2009) and Sturm et al. (2010) in a leave-one-out
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setup showed that the ANN model provided the most accu-
rate results. However, Odry et al. (2020) also noted that all
three models performed relatively poorly for very low or very
high snow densities. Given that high densities generally cor-
respond to the beginning of the melt period, it is particularly
crucial to obtain accurate SWE values for this period of the
year.

In this study, we build a model to estimate SWE from
in situ snow depth measurements and several indicators de-
rived from gridded meteorological time series. This study is
a follow-up to the work of Odry et al. (2020). Odry et al.
(2020) showed that ANN ensembles are a good method for a
snow depth–SWE conversion model but did little work on
the optimization of the architecture. Furthermore, we sus-
pect that ANNs are capable of estimating SWE being the
direct output of the ANN because in theory ANNs are ca-
pable of representing any continuous function, which is dis-
cussed in Sect. 2.1. Therefore, we will mainly test two hy-
potheses: (1) using SWE instead of density as the target vari-
able for the ANN produces more accurate estimates of SWE;
(2) testing several options of ANN structural characteristics
(e.g., optimization algorithm, activation function, parameter
initialization, increasing the number of parameters) improves
estimates of SWE. So far, also no input uncertainty is consid-
ered by Odry et al. (2020), which leads us to a small test of
input uncertainty on one input variable, snow depth. The in-
put variable section was determined by Spearman’s correla-
tion in Odry et al. (2020), indicating the monotonic relation-
ship. In this study we determine the input variables directly
on the network (expect for pre-filtering in Sect. 3.2) because
the monotonic relationship as the only criterion can be mis-
leading in representing the complexity of ANNs. When look-
ing at the snow classification scheme introduced by Sturm
et al. (2009), Odry et al. (2020) used a data set which con-
tains two snow classes. In this study we apply the proposed
snow depth–SWE conversion framework to an extended data
set scattered sparsely and nonuniformly over the entire area
of Canada, which tests its applicability to all proposed snow
class zones except that of ice. We will build two ANN mod-
els, one which takes the same architecture for the entire data
set and one which uses an individual architecture for each
snow class to give a greater representation of the geophysical
diversity of snow.

The remainder of the paper is organized as follows. In
Sect. 2, we present the main background elements and the es-
sential literature review. This review includes the mathemati-
cal theory of MLPs, the applied snow climate classes (Sturm
et al., 2009), the statistical regression models proposed by
Sturm et al. (2010) and Jonas et al. (2009) which are used
for comparison against our neural network models, and the
performance assessment metrics. Section 3 presents the ex-
perimental protocol, including the available data and input
variables, and the procedure for determining the MLP archi-
tecture. Results are presented in Sect. 4, and our conclusions
are summarized in Sect. 5.

2 Literature review

2.1 The multilayer perceptron as a basic tool

Following Goodfellow et al. (2016), a multilayer perceptron
(MLP) is a fully connected, feed-forward artificial neural net-
work, meaning that information can only travel in one direc-
tion within the network. Being fully connected entails that no
initial assumptions need to be made in regard to the data.

The goal is to approximate a desired function f such that
y = f (θ ,x), where y is the target variable (in our case SWE),
x represents the input variables, and θ represents some pa-
rameters, namely weights and biases. The use of nonlinear
activation functions in each neuron enables the network to
approximate nonlinear functions f .

To determine the parameters, one can perform an opti-
mization over the space of the weights and biases by using
a training data set. To do so, the parameters are initialized
commonly at random and close to zero by following either
a uniform or Gaussian distribution. For regression problems,
the mean square error (MSE) is commonly used as the ob-
jective function in the optimization. Goodfellow et al. (2016)
show a derivation of the MSE from the maximum likelihood
estimator. During training, the training data set is presented
multiple times to the model, and the term epoch is used to
denote one run over the entire training data set. It is recom-
mended that between each epoch, the order of the data points
of the training set is permuted. This prevents the model from
learning features in the order of insertion. The training of a
MLP is related to an ordinary optimization. The difference
is that we optimize directly for a training data set, with the
goal that the measure of performance of a validation data set
is also optimized. Commonly, there will be a turning point
where the training error continues to decrease, but the valida-
tion error starts to increase. For a single deterministic MLP,
this turning point would be chosen as the best number of
epochs for the model. When training an ensemble of MLP,
however, it is ideal to maintain diversity among the ensem-
ble members to cover the range of uncertainty pertaining to
the target variable. If all members of the ensemble were to be
trained until the aforementioned turning point, they would all
become very similar, and it would become pointless to use an
ensemble in the first place. For this reason, we adopt here the
protocol proposed by Boucher et al. (2010) and monitor in-
stead the performance of the entire ensemble at each epoch
(see Sect. 4.1).

During the optimization, a non-convex function is solved;
this function contains multiple minima having a similar per-
formance. The objective function with respect to the param-
eters is non-convex because of the several symmetric config-
urations of a neural network. Thus, exchanging the associ-
ated bias and weights of one neuron with another neuron in
the same layer entails the same results. Furthermore, ANN
applications usually use input variables that are related to
each other. The interchangeability of dependent input vari-
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ables results in multiple parameter sets having a similar per-
formance. The number of dimensions in the optimization
is equal to the number of parameters, and it is also argued
by Goodfellow et al. (2016) that local minima are rare in
high-dimensional spaces. Dauphin et al. (2014) point out that
with increasing dimensions, the ratio of the number of sad-
dle points to the number of local minima increases exponen-
tially. Therefore, an optimization method is needed that does
not become stuck in saddle points.

The concept of stochastic gradient methods has been in-
troduced to avoid saddle points. These methods are based on
the ordinary steepest gradient method; however, rather than
using the entire training data set (batch) at once, a number of
data records (or “minibatches”) are taken for each iteration
during the optimization. Consequently, the optimization sur-
face is slightly altered at each iteration. This can even some-
times help to escape shallow local minima. For the interested
reader, Goodfellow et al. (2016) provide an overview of var-
ious optimization algorithms.

The related studies of Broxton et al. (2019) and Odry et al.
(2020) both used the second-order Levenberg–Marquardt al-
gorithm. Broxton et al. (2019) worked with the MATLAB
Deep Learning Toolbox, and Odry et al. (2020) used an in-
house-built MATLAB toolbox by Dr Kris Villez, derived
from the MATLAB Deep Learning Toolbox. The conver-
sion of the codes into Python revealed that the Levenberg–
Marquardt algorithm has an oscillating convergence of the
training error because the minimum is over-jumped multiple
times. This results in a higher computational cost. The MAT-
LAB Deep Learning Toolbox only shows successful param-
eter updates where the error of the objective function is de-
creased. This conceals multiple failures. Further discussion
about the drawbacks of the MATLAB toolbox is available
in Kwak et al. (2011). Furthermore, the dimensions of opti-
mization increase exponentially with the size of a neural net-
work. Therefore, we will only consider first-order optimizers,
as these are computationally more efficient. Goodfellow et al.
(2016), in their overview of optimization methods, conclude
that stochastic gradient methods with adaptive learning rates
are the best choice for a first-order optimizer. Schaul et al.
(2014) compare stochastic gradient methods by testing them
on small-scale problems and found out that the algorithms
RMSProp and AdaDelta produce good results. The drawback
of RMSProp is the need for a global learning rate, which
must be defined by the user. To address this problem, Zeiler
(2012) introduced the algorithm AdaDelta, which eliminates
the requirement of this global learning rate.

There are several reasons that support the use of an en-
semble rather than a single model. First, random parameter
initialization can end up in different local minima on the pa-
rameter surface with similar performance. This situation is
related to the concept of equifinality, introduced by Berta-
lanffy (1968) for open systems stemming from the work of
the biologist Hans Driesch. Therefore, using an ensemble
accounts for the uncertainty of the model parameters. Sec-

ond, the ensemble offers the possibility of probabilistic sim-
ulations. Therefore, probabilistic evaluation methods, intro-
duced in Sect. 2.4, can be used. This leads to greater insight
into model performance. Third, the different members of the
ensemble can be used in a Kalman filter or a particle filter for
data assimilation in a hydrological model.

Finally, in regard to the architecture of the MLP, through
the universal approximation theorem, it is proven that any
continuous function can be approximated by a feed-forward
neural network with a single hidden layer under mild as-
sumptions. This theorem was first proven by Cybenko (1989)
for the sigmoid activation function. Hornik (1991) showed
the same theorem is independent of the choice of the acti-
vation function but assumes that the output layer is linear,
which is the case for regression problems. The theorem does
not make any claims about guidelines of the architecture or
about the learning ability of the model. In ANN applications,
therefore, the perfect approximation of the function is not
obtained. Rather, there is a trade-off between computational
cost, the time to test different architecture compositions, and
accurate approximation.

According to Goodfellow et al. (2016), the most common
activation functions are the hyperbolic tangent (tanh) and
the rectified linear unit (ReLU) functions. The calculation
of the derivative of tanh is computationally expensive, and
the derivative of the tanh function for large values is almost
zero, which slows down learning. The derivative of the ReLU
function is easy to compute, and the derivative stays constant
for large positive values. However, the derivative is zero for
negative values, which stops the training within the optimiza-
tion. This phenomenon is known as “dying neurons”. The
Leaky ReLU function can tackle this issue by assigning a
slightly positive slope, typically 0.01, to the negative part of
the ReLU function.

2.2 Snow classification

In this section, we introduce a snow classification scheme
proposed by Sturm et al. (2009). These snow classes are used
to train a different ensemble of MLP for each snow class. In
accordance with the findings of Sturm et al. (2010) and Bor-
mann et al. (2013), we expect that this approach will result
in an improved accuracy for estimates of SWE compared to
training an ensemble over the data for Canada as a whole.

The snow classification system separates the world map
into seven different snow classifications at a resolution of
0.5◦× 0.5◦. Snow can vary in character (e.g., snow found
in areas close to coasts consists mainly of wet snow, whereas
snow located in the continental interior is characterized by
dry snow). Therefore, the data within one snow class should
be systematically more consistent and may show less vari-
ability than taking the snow data as a whole. This can help
in our study, as the MLP must capture fewer features, which
may lead to a better optimization and, in turn, improved per-
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Figure 1. Snow classes across Canada as defined by Sturm et al.
(2009).

formance. The snow classes across Canada are presented in
Fig. 1.

Some sites close to the coast are classified as water be-
cause the resolution of the snow classification map is coarse.
Furthermore, the snow class ice only contains 124 records.
For these two classes, we assign them to the nearest – in
terms of physical distance – accepted snow class.

The empirical cumulative distribution function (ECDF) of
snow depth, SWE, and snow density for each snow class
is depicted in Fig. 2. The number of records in each snow
class is presented in Fig. 2b. The ephemeral snow class is
found only on Vancouver Island, which also explains the few
records of this class. Furthermore, the high annual precipita-
tion and marked variability in elevation across Vancouver Is-
land explains the very high variability of snow depth, SWE,
and snow density for this class. When comparing the taiga
and tundra snow classes, one can observe that snow depth
is lower in the tundra snow class. Sturm et al. (1995) point
out that tundra is characterized by a thin snow layer con-
sisting mainly of wind slabs and depth hoar. Nonetheless,
the density distribution of the tundra snow class is higher;
this may reflect the wind densification effect and compaction
of snow during a longer duration in this region. The mar-
itime, mountain, and ephemeral snow classes have a higher
density distribution than the prairie and taiga snow classes
because of the greater oceanic influence on the maritime and
ephemeral regions. This influence results in wetter snow and,
therefore, higher snow densities within these latter regions.
Most records of the mountain snow class are found in the
Rocky Mountains along the border of British Columbia and
Alberta, an area influenced by the Pacific Ocean, thereby
producing a higher density snow. A more thorough analy-
sis of the data revealed that the high number of records in the
maritime and mountain snow classes is due to records from
snow pillows in British Columbia, collected between 1996

and 2011. Snow pillows continuously measure the weight of
the snow, which is then presented as a daily measurement for
some sites in this data set. British Columbia contains almost
half of all snow data records for Canada.

2.3 Regression models

In this section we introduce two regression models from the
literature, which we use as benchmarks to compare with our
MLP-based conversion model, using the performance indi-
cators described in Sect. 2.4.

2.3.1 The Sturm model

Sturm et al. (2010) proposed a model to convert snow depth
into bulk density for the snow cover. The estimated density
is then used to calculate SWE. As observed by Dickinson
and Whiteley (1972), the range of snow density is smaller
than the range of snow depth. Therefore, Sturm et al. (2010)
claim that estimating the snow density is probably the most
accurate way to estimate SWE. The regression model is for-
mulated as

ρsim = (ρmax− ρ0)
[
1− e−k1SDobs−k2DOYobs

]
+ ρ0, (1)

where [ρmax,ρ0,k1,k2] are parameters, SDobs is the snow
depth, and DOYobs is the number of days since 1 Septem-
ber. The value of DOYobs is 0 on 1 January and, therefore,
corresponds to −122 for 1 September until 243 for 30 Au-
gust. A different regression model is run for each snow class.
The snow classes are defined by Sturm et al. (2009). The pa-
rameters for each snow class are obtained by carrying out an
optimization on a training data set associated with that snow
class. The root mean square error (RMSE) between the esti-
mated and the measured snow density is used as an objective
function in the optimization.

2.3.2 The Jonas model

Jonas et al. (2009) propose a simple linear regression model
that uses elevation classes to separate the data spatially and
divide the data into months. This model also estimates den-
sity, and from this density, it calculates the SWE. The regres-
sion is defined as

ρsim = aSDobs+ b+ offsetreg, (2)

where a and b are the parameters of the linear regression,
SDobs is the observed snow depth, and offsetreg is a regional
specific parameter. The data set is split by month and into
three elevation classes, denoted by x < 1400 m, 1400 m≤
x < 2000 m, and x ≥ 2000 m, where x is the elevation of the
site. After that, the parameters a and b are derived by fit-
ting a linear regression to each portion of the data set. This
process produces 36 independent linear regression models.
After solving for the parameters of the linear regressions, we
perform a simulation without offsetreg. The regional specific
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Figure 2. The empirical cumulative distribution function (ECDF) of the variables snow depth, SWE, and density for each snow class.

parameter offsetreg is thus the average of the model resid-
ual between the simulated and observed density of samples
in a given region. In our study, the snow classes defined by
Sturm et al. (2009) are used as these regions. Note that the
separation into the snow classes for the offsetreg calculation
is applied independently after the linear regressions are per-
formed for each month and elevation class. The offsetreg pa-
rameter eliminates the regional bias.

2.4 Model evaluation

In this section, we introduce deterministic evaluation metrics
(Sect. 2.4.1), followed by metrics that can be applied onto a
probabilistic ensemble simulation (Sect. 2.4.2–2.4.5). Gneit-
ing and Raftery (2007) evaluate the quality of ensemble sim-
ulation by scoring rules. A scoring rule quantifies the qual-
ity on the basis of the predicted distribution of the ensemble
and the observation. A strictly proper scoring rule is defined
such that it has a unique global minimum, which is the dis-
tribution of the observation itself. This minimum shows the
highest possible performance of the simulation. The proba-
bility density function (pdf) is usually derived by distribution
fitting to the members of the ensemble or by simply taking
the empirical cumulative distribution function (cdf) over the
members and deriving the pdf from this. In this study, only
the empirical case is used to eliminate the uncertainty added
by the distribution fitting.

Furthermore, an ensemble is said to be reliable if the rela-
tive frequency of the event, for a given simulation probability,
is equal to the simulation probability.

2.4.1 Deterministic evaluation metrics

Deterministic evaluation metrics quantify the performance
based on the single outcome of a deterministic model and the
observation. Here, the median of the ensemble is considered
as a deterministic simulation on which these metrics can be
applied. The most popular measures are the mean absolute
error, the root mean square error, and the mean bias error.

The mean absolute error (MAE), root mean square error
(RMSE), and mean bias error (MBE) are defined as

MAE=
1
n

n∑
i=1
|ysimi

− yobsi | (3)

RMSE=

√√√√1
n

n∑
i=1

(
ysimi
− yobsi

)2 (4)

MBE=
1
n

n∑
i=1

ysimi
− yobsi . (5)

In Eqs. (3)–(5), n is the number of records, ysimi
is the sim-

ulated output of the model, and yobsi is the observation, both
associated with the ith record. Note that the RMSE is simi-
lar to the MAE but gives records with large errors a greater
weight and, therefore, penalizes outliers more.

2.4.2 The ignorance score

Roulston and Smith (2002) introduced the ignorance score,
which is defined as

IGS(fM ,o)=−log2 (fM(o)) , (6)

where fM is the simulated pdf, and o ∈ R is the observation.
Since the values of a pdf are between 0 and 1, the ignorance
score takes values that are greater than or equal to 0. Fur-
thermore, it is not defined for fM(o)= 0. It assigns the min-
imum value of zero if the probabilistic forecast predicts the
observation with a probability equal to 1, indicating a per-
fect simulation. Therefore, the ignorance score is a strictly
proper scoring rule. To assess the model, the average of the
ignorance scores over all n records is taken, defined as

IGS=
1
n

n∑
j=1
−log2

(
fMj

(
oj
))
, (7)

where fMj is the pdf derived from the ensemble of the j th
simulation, and oj is the j th observation.

In the empirical case, i.e., without distribution fitting, we
consider the sorted predicted ensemble with m members by
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{s1, s2, . . ., sm}. The cumulative distribution function is sim-
ply the staircase function over the members. From this, we
construct a pdf by assigning each area between two mem-
bers:

fM(x)=
1

m(si − si−1)
∀x ∈ [si−1, si].

If the observation coincides with a member, the larger proba-
bility of the two adjacent areas is taken. Furthermore, fM(x)
is set to 0.001, if the observation lies outside of the ensemble.

2.4.3 The continuous ranked probability score

Given that the ignorance score evaluates the simulated prob-
ability function only at the point of observation, no infor-
mation about the area surrounding the observation or the
shape of the probability function is included. The continuous
ranked probability score (CRPS) addresses this drawback by
working directly on the cdf. The CRPS of one record is de-
fined as

CRPS(FM ,o)=

∞∫
−∞

(
FM(w)− 1[o,∞)(w)

)2dw, (8)

where FM is the cdf derived from the ensemble, and o ∈ R
is the observation. The integrand is the squared difference
between the cdf derived by the ensemble and the cdf derived
by the observation. The CRPS takes values in R+0 , where zero
is assigned if the predicted cdf is equal to the cdf derived by
the observation. This is the perfect simulation. This describes
the CRPS as a strictly proper scoring rule. When calculating
the empirical CRPS, the staircase function over the members
within the ensemble is taken as the cdf.

Hersbach (2000) presents a decomposition of the empiri-
cal CRPS into a reliability part and the potential CRPS. We
denote the ensemble of one record by {x1, . . .,xm}. The reli-
ability part is then defined as

Reli=
m∑
i=0

gi(oi −pi)
2, (9)

where oi is the relative frequency of the observation being
smaller than the midpoint of the bin [xi,xi+1], pi is i

m
, the

value of the cdf of the ensemble at xi , and gi is the average
bin size of [xi,xi+1]. To get the reliability score of the model,
the average over all records is taken.

Small values of the reliability portion testify to the high
reliability of the ensemble simulation. The reliability por-
tion is highly related to the rank histogram, introduced in the
next section (Sect. 2.4.4). The difference is that the reliability
part takes the spread of the ensemble into account, which is
not incorporated into the rank histogram. When the reliabil-
ity part is subtracted from the empirical CRPS, the potential
CRPS remains. The potential CRPS is the same as the CRPS
when the reliability part is equal to zero, which indicates a

perfectly reliable model. The potential CRPS is related to the
average spread of the ensemble. A narrow ensemble leads to
a small potential CRPS.

2.4.4 The rank histogram

The rank histogram was developed independently and almost
simultaneously by Anderson (1996), Hamill and Colucci
(1997), and Talagrand et al. (1997). It determines the rank
of each observation within the associated predicted ensem-
ble. The ranks of all observations are then presented in a
histogram. A perfectly reliable ensemble forecast shows a
flat rank histogram. Furthermore, the rank histogram can re-
veal information about bias and under- and overfitting. For
instance, if the rank histogram shows a decreasing trend with
higher ranks, the model has a positive bias. An increasing
trend with higher ranks shows a negative bias. Furthermore,
a u-shaped rank histogram indicates too small an ensemble
spread. This limited spread is related to an overconfident
model, which means that the model ignores some parts of
the uncertainty. Several reasons explain this, including the
fit of the model. If a model is trained too long, it is trained
too specifically on the training data. Consequently, the model
performs well on the training data, but it lacks generality,
meaning that the model is incapable of simulating an un-
seen data set. In contrast, a bell shape indicates too large an
ensemble spread. Note that a flat histogram is a necessary
condition for a model to be reliable, but this is not a suffi-
cient condition. Examples and further discussion are given
by Hamill (2001).

2.4.5 The reliability diagram

The reliability diagram is a visual tool for determining the
reliability of an ensemble forecast. The relative frequency
of the observation, given the probability of the ensemble, is
plotted against the probability of the ensemble.

To construct a reliability diagram, we work with the em-
pirical staircase function over the ensemble members as cdf.
Let us assume that we have k bins, denoted by b1, . . .,bk .
These bins represent a probability, and, therefore, their sizes
are bs1, . . .,bsk ∈ (0,1]. Furthermore, all bins are centered
on 0.5, therefore indicating an interval around the median.
Thus, a bin bi is indicated by the interval [si,ei]. We find the
si and ei quantiles within the ensemble distribution, denoted
by seni and eeni , respectively. Interpolation is used if si and
ei lie between the steps. Therefore, the interval [seni ,eeni ]

shows the interval around the median of the ensemble dis-
tribution, which has the probability equal to bsi . Then, we
determine the relative frequency of the observations found
within this interval, denoted by oi . The points (bsi,oi) are
plotted against the line of the identity function. If all points
fall on that line, the model is perfectly reliable, meaning that
the relative frequency of the observation is equal to the sim-
ulated frequency.
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2.4.6 Skill scores

Skill scores enable comparing simulated model outputs of
different magnitudes. The skill score (SS) is defined as

SS=
scores− scoreref

scoreperf− scoreref
, (10)

where scores is the score of the actual simulation, scoreref is
the score of a reference simulation, and scoreperf is the score
of a perfect simulation. Climatology or persistence is often
used as a reference simulation. A skill score takes values
from (−∞,1]. A value of 1 indicates that the actual simu-
lation is a perfect simulation. A negative skill score indicates
that the actual simulation is less accurate than the reference
simulation.

A variation of climatology is taken as a reference simu-
lation because SWE measurements are not continuous over
time in the data set. Records from the training and validation
data sets at the same location and within a time window of
±15 d around the date of the corresponding observation are
used to build up a reference ensemble having 20 members.
For 77 % of the testing records, an ensemble from climatol-
ogy could be obtained in this manner. In the calculation of the
skill score in Eq. (10), the mean over the individual scores is
taken within the fraction. This enables us to use only the por-
tion of records where we found the 20 members to calculate
the reference scores.

2.4.7 Sensitivity score

Following Olden and Jackson (2002), we set input–output
records as references where the output is the 20th, 40th, 60th,
and 80th percentiles of the target variable SWE in the valida-
tion data set. We take the average of 1000 records around the
percentile to maintain the generality of the reference record
because single records can deviate from normality. Subse-
quently, one input variable is perturbed at a time by tak-
ing uniformly distributed values between the maximum and
minimum values in the validation set of the considered input
variable. The perturbed inputs are inserted into the network,
and the perturbed output is generated. The sensitivity score
is then calculated by

SensS=
1
4

4∑
j=1

1
20

20∑
m=1

√√√√1
n

n∑
i=1

(
ypertim − yrefjm

)2
, (11)

where ypertim is the perturbed output of record i and ensem-
ble member m, and yrefjm is the output of the reference per-
centile j and ensemble memberm. Thus, the sensitivity score
is the RMSE between the perturbed and reference output, av-
eraged over the four reference percentiles and all members.
Therefore, it measures the change in the output of the trained
ensemble network associated with the change in one input
variable.

3 Experimental protocol

3.1 Data availability

Environment and Climate Change Canada (ECCC,
2019) through Brown et al. (2019) and Ministère de
l’Environnement et de la Lutte contre les Changements
Climatiques (MELCC, 2019) provided a Canada-wide
snow data set, which includes SWE, snow depth, and snow
density. For the remainder of this paper, this data set will be
denoted as the Canadian historical snow survey (CHSS).

For this study, we use the above-mentioned CHSS snow
data, collected from 1 January 1980 to 16 March 2017. The
data set consists of 234 779 measurements from 2878 sites.
Figure 3 presents some characteristics of the CHSS data set.
The distributions of SWE and SD present a right-skewed
gamma distribution. Snow density is almost normally dis-
tributed in a range from 50 to 600 kg m−3, with a few out-
liers at higher values. This distribution is related to the re-
trieval of two different data sets. The data from ECCC (2019)
are bounded by the interval [50,600] for snow density, re-
flecting snow having a density of up to 600 kg m−3. Above
this threshold, snow begins to transform into ice. The higher
densities encountered in the MELCC (2019) data are due to
the presence of an ice layer in the snowpack or to measure-
ment artifacts. Note that in Fig. 3a–c, the upper 0.1 % outliers
are excluded from the plot. Figure 3e shows a histogram of
the number of records for each site, where the upper 2.5 %
stations are excluded from the plot. The mean is about 82
records per site, and the maximum is 3203. This shows the
temporal sparsity of the data set. Figure 4 shows the location
of sites within the CHSS data set.

We retrieved daily total precipitation and snow density, as
well as the maximum and minimum temperatures for each
site of the CHSS from the ERA5 atmospheric reanalyses of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) provided by the C3S (2017). We apply a temper-
ature correction, dependent on elevation, to the minimum and
maximum temperatures because the reanalysis grid has a rel-
atively low spatial resolution. The modified temperature tmod
is defined as

tmod = torig+ lapserate
(
elevsite− elevgrid

)
, (12)

where torig is the original temperature of ERA5, and elevsite
and elevgrid are the elevation of the site and the grid point
of ERA5 reanalysis, respectively. We apply a constant lapse
rate of −6 ◦C km−1, a value consistent with studies in the
Rocky Mountains (e.g., Dodson and Marks, 1997; Bernier
et al., 2011), and a global mean environmental lapse rate of
−6.5 ◦C km−1 (Barry and Chorley, 1987).

3.2 Explanatory variables

From snow depth, snow density, total precipitation, and tem-
perature, we obtain the following explanatory variables. This
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Figure 3. Distribution of the records in the Canadian historical snow survey (CHSS) data set for (a) snow depth, (b) SWE, (c) snow density,
(d) elevation, and (f) the date of the record; the year starts on 1 September to cover the Northern Hemisphere winter season over 2 calendar
years. (e) Distribution of number of records for each site; upper outliers (0.1 %) are excluded in panels (a), (b), and (c). Furthermore, the
upper 2.5 % of stations are not shown in panel (e). The maximum in panel (e) is at 3203 and the mean at about 82 records for each station.

Figure 4. Location of the sites of the Canadian historical snow sur-
vey (CHSS) data set.

initial pool of variables is based on Odry et al. (2020), ex-
cept for snow density from ERA5. Snow density is included
to test its influence on the simulation. Snow density is not
available in real time and, thus, cannot be used in operation.

– averaged daily snow density (ERA5);

– snow depth;

– number of days since the beginning of winter;

– number of days without snow since the beginning of
winter;

– number of freeze–thaw cycles, with the threshold for
freezing and thawing set at −1 ◦C of the maximum and
at 1 ◦C of the minimum temperature, respectively;

– the degree-day index, i.e., accumulation of positive
daily temperatures since the beginning of the winter;

– the snowpack aging index, i.e., the mean number of days
since the last snowfall weighted by the total solid pre-
cipitation on the day of the snowfall;

– the number of layers in the snowpack estimated from
the timeline and intensity of solid precipitation, a new
layer being considered to be created if there is a 3 d gap
since the last snowfall;

– accumulated solid precipitation since the beginning of
the winter;

– accumulated solid precipitation during the last n d;

– accumulated total precipitation during the last n d;

– mean average temperature during the last n d (average
temperature is taken as the mean of the maximum and
minimum temperatures).

We set the beginning of winter as 01 September because
the seasonal distribution of the CHSS data set has the first
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Table 1. Variables having the largest absolute Spearman correlation
between the target variable and the last three explanatory variables
for n ranging between 1 and 10 d.

Variable SWE Snow
density

Accum. solid precipitation in the last 10 d 3 d
Accum. total precipitation in the last 10 d 10 d
Mean average temperature in the last 6 d 7 d

snow records starting from mid-September, with the excep-
tion of some outliers. The separation of precipitation into
solid and liquid parts is done by

p(tav)=
1(

1+ e−1.54+1.24tav
) , (13)

where p(tav) is the probability of snow, dependent on the av-
erage temperature tav. Jennings et al. (2018) showed by using
precipitation data from the Northern Hemisphere that this lo-
gistic regression model outperforms any temperature thresh-
old separation model. To determine how many days are con-
sidered in the last three explanatory variables, we calculate
the Spearman correlation between the target variable SWE
or snow density and the range of 1 to 10 d. The results are
presented in Table 1. The results in this table, along with the
other above-mentioned variables, are used as input variables
for the network. Note that for accumulated solid and total
precipitation the strongest correlation can be found at the up-
per limit for target variable SWE. However, we want to in-
clude the effect of short-term variables and consider only a
range of up to 10 d for the short-term variables. Further dis-
cussion is given in the Conclusions (Sect. 5).

Furthermore, we want to test the incorporation of input
uncertainty on one variable, namely snow depth. Accord-
ing to the WMO (2014), the error of snow depth measure-
ments should not exceed ±1 cm if the snow depth is less
than 20 cm and ±5 % if the snow depth is greater or equal
to 20 cm. To give an equal weight to the uncertainty of inputs
and parameters, we perturb each record of the training data
set 20 times with the above-mentioned variability. The model
is then trained on the perturbed data.

3.3 Tested characteristics

The data set is divided randomly into three parts: training,
validation, and testing sets (Hastie et al., 2009), each hav-
ing a proportion of one-third. The training set is used for
training the MLP ensembles. The validation set is used to
optimize the architecture of the network. The results are pre-
sented in Sect. 4.1. The testing set is used for the final model
evaluation on an unseen data set and to compare with the re-
gression models in Sect. 4.2 and 4.3, respectively. The Ref-
erence column in Table 2 shows the initial setup of a single
MLP. This setup is used for all 20 members in the ensemble.

Note that we always track the performance of the model on
the validation data set over a range of epochs until evalua-
tion metrics show worse results, indicating overfitting of the
model. This determines the correct training time. The num-
ber of neurons in the hidden layer for the reference setup is
derived from the proposed rules of thumb of Heaton (2008)
and Hecht-Nielsen (1989). The number of members is set
at 20 because this number showed consistent results during
several trials. The characteristics shown in Table 2 (first six
rows in the Options column) are tested one at a time accord-
ing to the ceteris paribus principle. Subsequently, character-
istics that show improvements are tested in combination. Fur-
ther testing of other combinations can reveal correlations be-
tween characteristics but will not be covered in this study.
The results of these tests are shown in Sect. 4.1.1. To deter-
mine the selection of input variables, we carry out a sensi-
tivity analysis of their importance. This refers to row seven
in Table 2. The sensitivity score, introduced in Sect. 2.4.7, is
used to determine the order of the importance of input vari-
ables. Subsequently, a stepwise reduction of input variables,
starting with the least important variable, is performed. The
results are shown in Sect. 4.1.2. Two models are then built.
One model uses the data set of the whole territory to train
on and consists of one ensemble of MLPs. For the other
model, the data set is split into snow classes, and this re-
sults in one individual ensemble for each snow class. Thus,
in the latter model, the snow class is determined, and the as-
sociated MLP ensemble is taken. This returns one ensemble
for one set of input variables, as in the single MLP ensemble
model. We will refer to the first model as the single MLP
ensemble model (SMLP) and to the latter as the multiple
MLP ensemble model (MMLP). For each model, we perform
a cross-analysis over the number of epochs and the num-
ber of hidden neurons. We showed in Sect. 2.2 that differ-
ent snow classes show different variability of snow records.
The MMLP model tries to capture this through ANN en-
sembles with different sizes because adding neurons to the
hidden layer increases the ability to approximate more com-
plex snow pattern. The number of parameters (the weights
and biases) of the model are thus increased. This complicates
the optimization and entails a longer training time to obtain
the desired parameters. The results are shown in Sect. 4.1.3
and 4.1.4 for the cross-analysis and the final structure of the
SMLP and MMLP model, respectively.

4 Results

The results are divided into three sections. In Sect. 4.1, we
discuss the determination of the MLP ensembles’ architec-
ture, following mainly the outline of Sect. 3.3. Section 4.2
presents the performance of the final SMLP and MMLP
models on the testing data set. In Sect. 4.3, we compare the
final SMLP and MMLP models and the regression models
introduced in Sect. 2.3.
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Table 2. A summary of the reference MLP ensemble setup and the tests performed to obtain the final MLP architecture. SMLP refers to the
single MLP ensemble model and MMLP to multiple MLP ensemble model; note that we track the performance of the model on the validation
data set over a range of epochs until evaluation metrics show worse results to determine the correct training time.

Tested for Characteristic Reference Options

SMLP Target variable SWE Density
Input uncertainty of snow depth No Yes
Activation function in the hidden layer tanh ReLU, Leaky ReLU
Optimization algorithm AdaDelta RMSProp

Parameter initialization U (−1,1) ∼ U
(
−

1√
m
, 1√

m

)1
, ∼ U

(
−

√
6

m+n ,

√
6

m+n

)2
, ∼ U(−2,2)3

Shuffling data before each epoch No Yes

SMLP Input variables 12 1–12

SMLP and Number of hidden neurons 10 2–200
MMLP Number of epochs suitable range suitable range

Not tested Batch size 100
Number of members in the ensemble 20

The parameter initialization 1 is given by Goodfellow et al. (2016), where m indicates the number of inputs, the parameter initialization 2 is given by Glorot and Bengio (2010),
where m and n indicate the number of inputs and outputs, respectively. The parameter initialization 3 is our suggestion.

4.1 Results for tested characteristics

First in Sect. 4.1.1, we discuss the results of the more gen-
eral architecture characteristics of the MLPs, referring to the
first six rows in Table 2. Sect. 4.1.2 contains the discussion
on input variable selection. In Sect. 4.1.3, we discuss the re-
sults used for the determination of the number of neurons and
number of epoch, for SMLP and MMLP models individually.
The final setup of both models is presented in Sect. 4.1.4.

4.1.1 Determination of the architecture of the MLPs

A comparison of the two target variables is performed by
using the initial MLP architecture presented in Table 2, and
Fig. 5 presents the results of this comparison. The ensem-
ble of MLPs, with SWE as the target variable, shows slightly
better values for the RMSE in Fig. 5d compared with Fig. 5a.
Furthermore, in Fig. 5e the reliability part of the CRPS in-
creases later when SWE is the target variable compared with
when the target is variable density (Fig. 5b). This behavior is
also consistent with the ignorance score, which has its min-
imum at epoch 20 in Fig. 5f, whereas in Fig. 5c, the igno-
rance score for snow density increases from the beginning.
This is consistent with the rank histograms in Fig. 6. The
higher variability of SWE has a positive effect on the rank
histogram, meaning that the spread of the ensemble remains
sufficiently large up to epoch 10. From these results, we can
derive that the lower variability of snow density results in
too little a spread of the ensemble already after one epoch.
This observation allows us to proceed with the target vari-
able SWE. Nonetheless, even with SWE, the spread of the
ensemble becomes too narrow, too quickly. This issue is ad-

dressed by incorporating input uncertainties, as we show in
the following section.

We apply input uncertainty because we cannot train for a
sufficient enough period to obtain the best error scores mea-
sured by RMSE, MAE, and CRPS. This inability is due to
a loss of reliability and overfitting. This type of overfitting
is related to the ensemble and does not describe the overfit-
ting of one single MLP. To better understand, we examine
the RMSE in Fig. 5, which is related to the MSE, the ob-
jective function in the optimization of the MLP. The RMSE
continues to decrease beyond 15 epochs (optimal trade-off
between accuracy and reliability). Therefore, the single MLP
remains in an underfit state. Adding regularization would
shift the MLP to a more underfit state by simplifying the net-
work. Table 3 shows that incorporating input uncertainty de-
creases the ignorance score, whereas the other measures are
unaffected. Therefore, input uncertainty widens the spread of
the ensemble. Further improvements can likely be achieved
by incorporating the input uncertainty of the meteorological
data through use of the ERA5 ensemble.

Table 3 presents all results for the tested characteristics
listed in row two to six in Table 2. The change of the ac-
tivation function from tanh in the reference setup to ReLU
and Leaky ReLU does not produce any improvement. Us-
ing the ReLU function as the activation function in the net-
work shows a similar but delayed behavior in the perfor-
mance scores. In terms of accuracy, we obtain similar results
as with the tanh case via longer learning. Nonetheless, the
increase of the reliability part is not delayed as much as the
decrease in accuracy. This entails a worse trade-off between
accuracy and reliability. When the activation function is set
to the Leaky ReLU activation function, we observe almost no
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Figure 5. Comparison of (a–c) snow density and (d–e) SWE as target variables. Panels (a) and (d) show the accuracy measures MAE,
RMSE, and MBE; panels (b) and (e) show the CRPS and its decomposition; and panels (c) and (f) show the ignorance score. The scores are
evaluated using the validation data set. We use the Reference setup presented in Table 2.

Table 3. Comparison of all tested characteristics worth considering. The number of epochs is selected so that the trade-off between reliability
and accuracy of the ensemble is increased. The numbers in bold indicate an improvement throughout the testing. Combo combines para.
init.3, shuffled data, and input uncertainty and is used as the final setup.

Ref. Input ReLU Leaky RMSProp Shuffle Para. Para. Para. Combo
uncert. ReLU (rate 0.0001) data init.1 init.2 init.3

Epochs 15 4 15 10 30 15 25 7 30 2
MAE 39.1 39.5 41.4 42.7 40.3 39.0 38.2 43.4 39.7 37.9
RMSE 76.5 78.5 82.3 87.3 78.1 75.7 72.1 80.2 79.4 76.4
MBE 2.1 1.9 1.7 1.7 1.0 0.4 2.8 1.6 1.9 0.3
CRPS 30.9 30.9 32.5 33.2 31.6 30.9 33.9 34.4 30.3 29.3
Reliability 11.8 11.5 11.7 10.4 10.6 11.9 25.2 13.6 7.5 8.9
Ign. score 7.79 7.49 7.83 7.86 7.81 7.76 8.35 7.94 7.77 7.4

Parameter initialization 2 and 3 is as in Table 2.

change relative to the ReLU case. The analogous argumenta-
tion can be applied.

For the RMSProp algorithm, we set the global learning
rate at 0.1, 0.01, 0.001, and 0.0001 during testing. The best
result is produced for the trial having a learning rate of
0.0001. The learning rate of 0.001 produces an earlier de-
crease in accuracy scores and an earlier increase for the reli-
ability part. The trials having a learning rate of 0.1 and 0.01
converge at higher values for RMSE and MAE. The higher
learning rates can over-jump desirable minima and end up
in worse ones. In summary, the overall learning rate must be
small enough to achieve the best results. Even lower learn-

ing rates will entail a later behavior. Therefore, the same
trade-off between reliability and accuracy can be obtained
if training time is increased. When we compare RMSProp
to AdaDelta, we note no improvement. Consequently, the
AdaDelta method is preferred because there are no learning
rates that need to be adjusted.

In regard to the parameter initialization, the equation 1 in
Table 2 is a uniform distribution U(−0.29,0.29) in our ap-
plication. The narrow interval results in too narrow an en-
semble, which entails a high value for the reliability part and
ignorance score. The second trial, using the parameter initial-
ization 2 (in our case U(−0.68,0.68)), shows a very similar
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Figure 6. Rank histogram for different numbers of epochs (a) with snow density and (b) SWE as the target variables. We use the reference
setup presented in Table 2.

behavior to the reference setup but with a lower number of
epochs. This matches the interval of the random initializa-
tion being more narrow than that in the reference setup. It
entails that the spread of the ensemble narrows more quickly
and results in an early increase of the reliability part and an
early minimum in the ignorance score at 10 epochs. The third
trial, using the parameter initialization 3, shows a delayed be-
havior. However, this initialization has a better score for the
reliability part of the CRPS but shows no improvement for
the accuracy scores. We can conclude that to maintain a reli-
able ensemble, the interval of the uniform distribution must
be sufficiently large. Nonetheless, an increase in the interval
does not offer much improvement for the trade-off between
reliability and accuracy.

Note that shuffling the data produces an almost identical
result as that for the reference setup. However, it eliminates
bias, which is almost zero beyond 15 epochs.

4.1.2 Input variable selection

The results of the sensitivity scores for each explanatory vari-
able are presented in Table 4. Recall that this sensitivity score
is the average RMSE of the four reference percentiles and all
ensemble members (see Sect. 2.4.7). Therefore, the value of
this score is proportional to the importance of a variable for
the conversion model. As shown in Table 4, snow depth is,
unsurprisingly, the most important input variable. The model
by Odry et al. (2020) uses six input variables, and five out
the six most important variables are coherent with the vari-
able selection by Odry et al. (2020). However, the order of
variables with scores lying close together can change, since
the parameters are initialized randomly.
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Figure 7. Stepwise reduction of input variables, ordered according to their influence as determined in Table 4. The scores are evaluated using
the validation data set. The Combo setup from Table 3 is used.

Table 4. Ordered results of the sensitivity analysis from the least
to most influential variable. The score is calculated following
Sect. 2.4.7. The value of this score is proportional to the importance
of a variable.

Variable Score

Snow density ERA5 23.2
Number of freeze–thaw cycles 34.6
Average temperature of the last 6 d 63.9
Number of layers in snowpack 102.4
Total precipitation in the last 10 d 102.5
Average age of the snow cover 116.9
Accum. positive degrees since the beginning of winter 124.9
Accum. solid precipitation since the beginning of winter 160.2
Number of days since the beginning of winter 184.6
Total solid precipitation in the last 10 d 191.0
Days without snow since the beginning of winter 193.2
Snow depth 972.0

Figure 7 illustrates how reducing the number of input vari-
ables gradually affects the SWE estimation error and the cor-
responding CRPS and ignorance score. This reduction fol-
lows Table 4; the least influential input variable (snow den-
sity from ERA5) is removed first, and so on. Figure 7a and b
show that the RMSE, MAE, and CRPS do not increase sig-
nificantly when the number of input variables decreases to
the six most influential variables. A larger increase (worsen-
ing) is only observed below this number. This pattern reflects
the input variables being dependent on each other as all, ex-
cept for snow density and snow depth, are derived from the
same meteorological data. Therefore, adding more variables
does not provide more information to the model. This result
is consistent with the study of Odry et al. (2020). When ob-
serving the reliability part of the CRPS (Fig. 7b), the score
begins to increase below 10 input variables. However, the ig-
norance score in Fig. 7c increases, even when only one vari-
able is eliminated. Thus, more input variables help widen the
spread of the ensemble. Nevertheless, the ignorance score
tends to flatten as the number of input variables increases.
Snow density from ERA5 shows the smallest importance
and, therefore, can be excluded for operational use. However,

we want to preserve the spread of the ensemble and obtain a
good portrait of the uncertainty of SWE estimation by using
all 12 variables as inputs in the final setup.

4.1.3 Determining the number of epochs and the
number of hidden neurons

First, we determine the number of hidden neurons and num-
ber of epochs for SMLP. Figure 8a–d show a general decrease
in the MAE, CRPS, ignorance score, RMSE, and the relia-
bility part of the CRPS when the number of neurons in the
hidden layer is increased. A greater number of neurons in the
hidden layer enables the model to learn more features of the
training data set. This entails a better performance of the val-
idation data set. However, there is a threshold beyond which
these accuracy values start degrading. This threshold occurs
at a smaller number of hidden neurons for a smaller num-
ber of epochs. For the MBE in Fig. 8f, we observe no spe-
cific trend. Note that the thresholds are earlier for the igno-
rance score than for the reliability part of the CRPS. Conse-
quently, one can assume that the reliability will also increase
for higher numbers of hidden neurons for three, four, and five
training epochs. The earlier increase in the ignorance score
can be explained by observing the rank histograms of 1–3
training epochs in Fig. 9. A bell shape in the rank histogram
indicates that the spread of the ensemble is too wide, result-
ing in low values overall for the empirical pdf. The igno-
rance score is computed using the logarithm of the probabil-
ity density corresponding to the observation. Therefore, over-
dispersed ensembles are strongly penalized by this score. The
formula of the reliability part of the CRPS in Eq. (9) demon-
strates that the difference between the observed frequency,
given the predicted distribution, and the predicted probability
is squared. Therefore, if the difference is small, this will dom-
inate the reliability part and result in a small value, even with
a large ensemble spread. Thus, the reliability score penalizes
the outliers in the trials having more than four or five epochs.
Therefore, we set the number of epochs at five and the num-
ber of neurons in the hidden layer at 120. This provides the
best trade-off between accuracy and reliability because 120
hidden neurons is the point where accuracy stagnates and
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where the ignorance score increases for five epochs. Except
for the case of one training epoch, the reliability part of the
CRPS is poorest for five epochs, but it also leads to an ac-
ceptable rank histogram in Fig. 9e. The ensembles trained
for two and three epochs show a bell shape, indicating un-
derdispersion, which is an unacceptable condition.

Second, we perform the same analysis for each snow class,
to finalize the ensembles, one for each snow class for the
MMLP model. Table 5 shows the optimal combination of
the number of hidden neurons and number of epochs for
each snow class. The behavior is similar to the previous case.
However, as the amount of available data to train decreases,
the number of required training epochs increases. Also, snow
classes with smaller data sets show smaller variability in the
records, which can be easily represented by a simpler net-
work with less hidden neurons because of the lower com-
plexity of the problem.

4.1.4 Final setup of SMLP and MMLP

Table 6 shows the final setup of the two models SMLP and
MMLP. The computational cost of training for the MMLP
model is 5 times larger than that of the SMLP model. The
training was performed in 13 and 62 min for the SMLP and
MMLP model, respectively. The simulations on the testing
data set take 3.5 and 18.1 s for the SMLP and MMLP, respec-
tively. The difference is mainly due to the loading process of
six ensembles for the MMLP compared to one loading pro-
cess for the SMLP because the actual computation should
be identical, except for assigning the records to the correct
ensemble in the MMLP model. All computations were per-
formed on a Dell XPS 13 9370 with an Intel(R) Core(TM)
i7-85550U CPU processor of 8 GB RAM.

4.2 MLP model performance on a testing set

In this section, we use the testing data set and evaluate the
performance of the SMLP and MMLP models. Table 7 re-
veals that the MMLP model has a better overall performance,
as all performance metrics are smaller, except MBE. Fig-
ure 10a and b show a scatter plot in which the median of the
simulated ensemble is plotted against the observations. Note
that both models simulate negative medians for some data
records. For the SMLP model, the minimum of the median is
−36 mm, and for 0.6 % of the records in testing data set the
model simulates negative SWE values. For the MMLP the
minimum is −42 mm, and the ratio of negative simulation
is 0.3 %. The reliability diagram, introduced in Sect. 2.4.5,
shown in Fig. 10c and d, reveals a closer fit to the identity
line for the MMLP model and, therefore, a more reliable es-
timate of SWE. The same conclusion can be drawn from the
rank histograms presented in Fig. 10e and f. As mentioned in
Sect. 2.4.4, a flatter rank histogram indicates a more reliable
estimate.

Figure 11 shows the distribution of the residuals of the
simulated ensemble median and the observations. The dis-
tribution of the residuals for the multiple MLP model is nar-
rower, indicating less error overall. Both are approximately
symmetrical around zero, which strengthens the result of the
MBE being almost zero (Table 7). For the SMLP model,
50 % of the errors are between [−17.1,18.4]mm, and 90 %
are between [−77.6,73.3]mm. For the MMLP model, 50 %
of the errors are between [−15.8,18.0]mm, and 90 % are be-
tween [−68.8.1,68.6]mm.

Next, we apply skill scores to ensure a valid comparison
between SWE estimates of differing magnitudes. The clima-
tology of SWE from the CHSS data set is used as the refer-
ence simulation (see Sect. 2.4.6).

The separation into different snow classes reveals that,
as expected, the multiple MLP model eliminates bias in all
snow classes, as shown in Fig. 12a. Furthermore, for all snow
classes, the two MLP models perform better than climatol-
ogy, as indicated by positive MAE, RMSE, and CRPS skill
scores in Fig. 12a and b.

Furthermore, Fig. 12a shows that both models perform
best within the ephemeral snow class in terms of accuracy,
although the results need to be taken with some reservations;
the low amount of data and the high variability of SWE in
this snow class induce a rather poor reference simulation (cli-
matology). Also, the reliability part of the CRPS in Fig. 12b
shows a large improvement of the multiple MLP model for
the ephemeral snow class. In contrast, the ignorance score
in Fig. 12c shows a slightly poorer skill score for this same
snow class. A deeper analysis of the ephemeral snow class in
Fig. 13 shows that the MMLP model leads to an almost reli-
able rank histogram, with only a slight tendency toward un-
derdispersion, whereas the single MLP model shows a over-
dispersed rank histogram. This pattern explains the large im-
provement in the reliability part of the CRPS. The average
spread of the ensemble for the multiple MLP model in this
class is twice that of the single MLP model. The larger spread
entails lower values in the empirical pdf and therefore lower
ignorance scores.

The tundra snow and taiga snow classes have the lowest
skill scores in terms of both accuracy and reliability. In par-
ticular, the reliability part of the CRPS in Fig. 12b results in a
large decrease of the skill score. As the variability of SWE is
low in these areas, as presented in Fig. 2, the reference simu-
lation based on climatology produces a reliable ensemble and
causes a poor reliability skill score for the actual simulation.

The maritime snow class shows a slightly better accuracy
than the mountain snow class. This difference may relate
to the complexity of snow accumulation patterns in moun-
tainous regions, owing to the high spatial and temporal vari-
ability of all physical processes and variables in these areas.
Also the temperature correction, as explained in Sect. 3.2, in-
duces larger errors where height is highly variable. The im-
proved reliability skill score for the multiple MLP model is
explained by fewer outliers for the mountain and maritime
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Figure 8. Results using the Combo setup from Table 3 for different numbers of training epochs and neurons in the hidden layer. It shows
(a) the MAE, (b) the RMSE, (c) the MBE, (d) the CRPS, (e) the reliability part of the CRPS, (f) the potential CRPS, and (g) the ignorance
score. The scores are evaluated on the validation data set.

Figure 9. Rank histograms of the single MLP ensemble (SMLP) with 120 neurons in the hidden layer for different numbers of epochs,
evaluated on the validation data set.

snow classes. The slight decrease in the ignorance skill score
for the maritime snow class can be explained by different av-
erage spreads of the simulated and reference ensembles.

In the next step, the testing data set is divided into eleva-
tion classes from 0 m to 2100 m, with a step size of 300 m and
one class for sites above 2100 m. The results are not shown,
as the main conclusions are identical to those obtained from
the separation into snow classes. Both types of MLP ensem-
bles (single and multiple) outperform climatology.

Furthermore, an analysis over the course of the year shows
an improved accuracy for the MLP models compared with
climatology for all months, except for July, August, and
September. During these 3 months, there is generally very
little snow across the country and, consequently, very little
data. Additionally, the beginning of the winter, subjectively
taken as 1 September, causes a reset to zero for several in-
put variables; the variables of temperature, snow depth, and
SWE data remain, however, within their usual ranges. This
greatly complicates the proper training of the MLPs. Overall,
except these three problematic months, the accuracy and re-

liability remain relatively constant throughout the year, with
a slightly improved performance in spring and early summer
compared with climatology.

4.3 Comparison of MLP models with regression
models

The regression models are trained and validated using the
same perturbed snow depth data sets that are used to opti-
mize the MLP models. The testing data set is then used for
comparison purposes in this section.

There is a possibility of producing an ensemble simulation
by performing the deterministic regression models on per-
turbed snow depth and obtaining multiple members. How-
ever, given that the spread in the simulated ensemble of the
MLP models is explained mainly by the various parameter
initializations, this approach entails an ensemble that is too
narrow when regression models are used. This leads to a
comparison of models that has little meaning: the optimiza-
tion of the Sturm model could be initialized with different
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Table 5. Optimal combination of the number of hidden neurons and number of epochs for each snow class within the multiple ensemble
model. Optimal combination is determined analogous to the single ensemble model in Fig. 8.

Ephemeral Prairie Tundra Taiga Mountain Maritime

No. records (training data set) 1124 3754 4451 7962 22 414 38 711
No. epochs 50 30 30 20 20 20
No. neurons 12 24 48 96 192 192

Table 6. Final setup of the MLPs for the single MLP ensemble model (SMLP) and the multiple MLP ensemble model (MMLP); the
ensembles in the MMLP model differ only in terms of their number of hidden neurons and number of epochs. As a comparison, the setup of
the ANN ensemble proposed by Odry et al. (2020) is presented as well.

Characteristic SMLP MMLP Odry et al. (2020)

Number of ensembles 1 6 (one for each snow class) 1
Target variable SWE SWE snow density
Input uncertainty of snow depth Yes Yes No
Activation function in the hidden layer tanh tanh tanh
Optimization algorithm AdaDelta AdaDelta Levenberg–Marquardt
Parameter initialization ∼ U(−2,2)3 ∼ U(−2,2)3 ∼ U(−1,1)
Shuffling data before each epoch yes yes no
Input variables 12 12 6
Number of hidden neurons 120 Table 5 6
Number of epochs 5 Table 5 10
Batch size 100 100 full data set
Number of members in the ensemble 20 20 20

Table 7. Performance evaluation of the model with a single MLP
ensemble covering Canada (SMLP) and the multiple MLP ensem-
bles (MMLP), evaluated using the testing data set.

SMLP MMLP

MAE 32.8 29.3
RMSE 61.0 51.5
MBE 0.4 0.6
CRPS 25.1 21.9
Reliability 6.4 3.7
Pot. CRPS 18.6 18.2
Ign. score 7.28 7.22

parameter sets; however, the Jonas model has a perfect set of
parameters. Therefore, we must compare the models using
exclusively deterministic evaluation techniques.

In addition to the regression models, we also considered a
simple benchmark model, which takes the average observed
snow density in the training and validation data sets as a con-
stant snow density and then calculates SWE for the testing
data set.

The results are presented in Table 8. Both models using
MLP ensembles outperform the simple benchmark, as well
as the Sturm and Jonas models.

Figure 14 compares the MLP models with the regressions
and the simple benchmark for each snow class. The two MLP

Table 8. Comparison of the overall performance evaluation using
deterministic performance evaluation metrics of the two MLP mod-
els and the regression models, evaluated using the testing data set.

Benchmark Jonas Sturm SMLP MMLP

MAE 74.2 44.5 47.7 32.8 29.3
RMSE 145.4 114.7 117.0 61.0 51.5
MBE −35.3 2.2 −0.5 0.4 0.6

models outperform both the regressions and the benchmark
model for all snow classes. The Sturm model eliminates the
bias, as depicted by the relative bias (RB) being equal to zero
in Fig. 14c. This removal of bias occurs because the model
uses an individual regression model for each snow class. In
Fig. 14a and b, the MAE and RMSE skill scores of the Sturm
and Jonas models mainly follow the skill scores of both MLP
models. However, the Sturm and Jonas models show a de-
crease in the RMSE-SS for the mountain snow and maritime
snow classes, which indicates a greater number of outliers.
One can derive that a single regression model is not sufficient
for the high variability in the mountainous region or the spa-
tially large maritime region, which includes two coasts. The
better performance of the Jonas model for the mountain snow
class reflects this model being built and tested for a moun-
tainous region in the Swiss Alps. The benchmark model per-
forms well in the Prairies; this result indicates a stable rela-
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Figure 10. The scatter plot in panels (a) and (b) shows the median of the simulated ensemble against the observation for the single MLP
ensemble (SMLP) and the multiple MLP ensembles (MMLP), respectively. Note that the axes are cut off at 2000 mm. Zoomed out scatter
plots are shown in Fig. 15. The reliability diagrams are presented in panel (c) for the SMLP and in panel (d) the MMLP. Further, the rank
histograms are presented in panel (e) for the SMLP and in panel (f) the MMLP. All results shown are for the testing data set.

tionship between snow density and snow depth in this snow
class. The poor performance of the taiga snow class for the
benchmark model is caused by the high positive RB of the
benchmark model, as presented in Fig. 14c.

Figure 15 shows the simulated SWE against the observed
SWE. The benchmark model can explain 81.3 % of the vari-
ability in SWE. Figure 15a shows that the model often un-
derestimates SWE, which also explains the negative bias
observed in Table 8. The Jonas and Sturm models explain
approximately 7 % more SWE variability. Figure 15b and
c reveal that outliers with high values occur for low- and
medium-range SWE observations. Note that the axes are cut
off at 4000 mm. Thus, 0.03 % and 0.01 % of the data points
are not shown for the Jonas and Sturm models, respectively.
The 17 SWE observations above 2500 mm in the testing data
set are consistently overestimated but follow the identity line.
Compared with the two MLP models, the Sturm and Jonas

models perform better at these higher values. The training
data set contains 18 SWE measurements above 2500 mm.
This small portion makes it problematic for any model to
properly train on. However, it seems that the linearity of
the Jonas model and the log-linearity of the Sturm model
can extrapolate high SWE values better than the MLP mod-
els. Overall, compared with the benchmark model, the single
and multiple MLP models explain approximately 15 % and
16 % more SWE variability, respectively. Figure 15d and e
show that up to 2500 mm, the estimates of both MLP models
mainly follow the identity line, with some outliers at approx-
imately 500 mm. Above 2500 mm, the model seems to have
an upper boundary that results in an underestimate. This up-
per boundary is less restrictive for the multiple MLP model,
which performs better for the high SWE records. The result-
ingR2 values for the benchmark and Sturm model are similar
to those in the study of Odry et al. (2020), which considered
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Figure 11. Distribution of the residuals of the simulated ensemble
median and the observations. The boundary of the box shows the
first and third quartiles; the caps at the end of the whiskers show the
5th and 95th percentiles.

only the province of Quebec. The MLP model in the latter
study achieved an R2 value of 0.919. Therefore, we improve
on this by 5 % and 6 % for the single and multiple MLP mod-
els, respectively.

5 Conclusions

This study tackles some important knowledge gaps regard-
ing the conversion of snow depth to SWE, using ANN-based
models. The main focus is on the architecture of the network,
and two hypotheses are tested. The first hypothesis holds that
using SWE rather than density as the target variable for the
ANN will produce more accurate estimates of SWE. The sec-
ond hypothesis states that in-depth testing of several ANN
structural characteristics (e.g., optimization algorithm, acti-
vation function, parameter initialization, increasing the num-
ber of parameters) can improve the estimates of SWE. We
thus investigate whether the ANN model must be trained
specifically for different regions, as determined by snow cli-
mate classes (Sturm et al., 2009), or whether the model could
be trained only once, for Canada as a whole. The uncertainty
of snow depth measurements is included. Furthermore, we
use existing regression models, developed for the same pur-
pose, as benchmarks to obtain a better perspective on how
our model performs. We were able to find a structural con-
figuration of the ANNs that leads to noticeable improvements
compared to the initial basic configuration proposed by Odry
et al. (2020). A final comparison is given in Table 6. There-
fore, hypothesis 2 is also verified, at least for the available
data in Canada.

Our snow-depth-to-SWE model uses the inputs of snow
depth, estimated snow density, and other explanatory vari-
ables derived from meteorological data. The available snow
data includes snow depth, SWE, and snow density measure-
ments from across Canada, collected over almost 40 years.

We then use an ensemble of multiple MLPs to address the
issue of the random parameter initialization during optimiza-
tion. The approach also provides a probabilistic estimate to
gain greater insight into model performance. A trade-off be-
tween reliability and accuracy is used as a means of evalu-
ation, which gives a more comprehensive analysis of SWE-
estimation models.

Many previous models (e.g., Odry et al., 2020; Jonas et al.,
2009; Sturm et al., 2010; Painter et al., 2016; Broxton et al.,
2019) determine SWE by estimating snow density and cal-
culating SWE on the basis of snow density and snow depth.
This study investigates a direct estimate of SWE. This ap-
proach shows a slight increase in accuracy and a large gain
in reliability compared to indirect estimates, as presented in
Figs. 5 and 6. Consequently, the study uses SWE as the target
variable rather than snow density.

In our investigation of model structures, we built two
models. One model uses a single MLP ensemble for all of
Canada. The second model trains one MLP ensemble for
each snow class, as defined by Sturm et al. (2009). Model
evaluation of the independent testing data set indicates that
the multiple ensemble model outperforms the single ensem-
ble model. Both models show weak performances for high
values of SWE. Furthermore, both MLP models outperform
existing regression models and a benchmark model based on
climatology, and they improve on the basic MLP ensemble
model proposed earlier by Odry et al. (2020). Also, the cur-
rent study uses a broad snow data set with records of all snow
classes (except the ice snow class, for which we have too lit-
tle records for a proper analysis) and thus considers diverse
snow characteristics across a large domain. Therefore, the
model structure is expected to be applicable to other areas in
the world. However, new training is advisable.

A sensitivity analysis reveals that a greater number of
input variables increases the reliability of the ensemble.
Therefore, adding more variables could further heighten the
model’s reliability. After proposing SWE as the new target
variable in this study, short-term and long-term variables re-
garding precipitation with respect to SWE need to be ana-
lyzed. In Table 1, different correlations were found for SWE
and snow density, when looking at short-term variables for 1
to 10 d. Odry et al. (2020) showed in their Table 4 that snow
density is negatively correlated with recent snowfall because
it is lighter than the underlying snow. This negative correla-
tion peaks at 3 d for the data set used in this study (Table 1).
The correlation between SWE and accumulated solid precip-
itation increases for variables of a larger time range due to
diverse densification factors, resulting in a more stable rela-
tionship between the two variables. Therefore, a deeper anal-
ysis of the information content carried by recent accumulated
solid precipitation with respect to SWE is favorable. Further-
more, topological variables such as the slope and aspect of
measurement site can be used. This might even improve the
estimation accuracy because these variables carry additional
information compared to input variables derived from meteo-
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Figure 12. Comparison of the performance of the single MLP (SMLP) and multiple MLP (MMLP) models using (a) the skill score (SS) of
the MAE, RMSE, and the relative bias (RB), (b) the skill score of the CRPS and reliability, and (c) the skill score of the ignorance score
evaluated for the different snow classes. All results are for the testing data set. (d) The number of records in each snow class within the
testing data set.

Figure 13. Comparison of the rank histogram of (a) the single MLP (SMLP) and (b) multiple MLP (MMLP) for the ephemeral snow class
using the testing data set.

rological data. To test the ability of ANNs in itself, the model
can be trained on more precise meteorological data on a lim-
ited number of sites close together to ensure a consistent data
set.

Regarding the limitations of this study, both models show
poor performance for high SWE values, mainly because the
amount of available training data is low for those extreme
values. Furthermore, the model is not predictive and espe-
cially cannot account for the effect of climate change. It
is noted that the models requires more data compared to

the regression models proposed by Sturm et al. (2010) and
Jonas et al. (2009) because multiple indicators are calculated
from temperature and precipitation time series. The amount
of data needed to train the model properly cannot be pre-
scribed universally, as it depends on the variability of the
data set. For instance, if an area shows many different snow
classes, more data are needed to obtain satisfactory results.
This also changes the number of epochs and number of neu-
rons needed. Since the testing of different characteristics in
Sect. 4.1.1 showed only little improvement, we expect that
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Figure 14. Comparison of the performance of the two MLP and regression models by using (a) the skill score of the MAE, (b) the skill score
of the RMSE, and (c) the relative bias (RB) of the SWE simulation, as evaluated for different snow classes. Results are shown for the testing
data set.

Figure 15. Scatter plot of median of the SWE ensembles and observed SWE for each model, evaluated on the testing data set; note that the
axes are cut off at 4000 mm; thus, 0.03 % and 0.01 % of the data points are not shown for the Jonas and Sturm models, respectively.

the determination of the importance of input variables and a
cross-analysis of the number of hidden neurons in the net-
work with the number of training epochs using a validation
data set is sufficient to obtain satisfactory results.

As mentioned in Sect. 4.1.2, snow density would not be
used in operational use. Furthermore, the recently available
Regional Deterministic Reforecast System (RDRS) would be
used for the meteorological data when training the model.
RDRS has similar dynamics and physics as the operational
Global Environmental Multiscale Model (GEM). This model
could then be used to simulate SWE from in situ snow depth
measurements by sonic sensors provided by Meteorologi-

cal Service of Canada and ECCC (2020). As meteorologi-
cal data, one could use an operational nowcast from an at-
mospheric model that include a land data assimilation sys-
tem such as the Canadian Land Data Assimilation System
(CaLDAS; Carrera et al., 2015). CalDAS is forced by real-
time precipitation analyses from the Canadian Precipitation
Analysis (CaPA; Fortin et al., 2015), which combines simu-
lated background precipitation fields with observed data (in
situ and radars). Furthermore, the proposed method can be
applied onto assimilated snow depth data in CaLDAS. Cur-
rently in CaLDAS, only snow depth data are assimilated and
subsequently converted to SWE using the simulated density
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to initialize the land surface scheme. The proposed method
would allow for two important upgrades: first, it would allow
snow depth data (converted to SWE) as well as SWE data
to be assimilated, thus increasing the quantity of assimilated
observations, and second, it would avoid using the simulated
density, which is very hard to simulate accurately.

Finally, this study shows an optimal performance of net-
works having large numbers of neurons in the hidden layer at
amounts far above the commonly used rules of thumb. This
provides a motivation to look into network structures hav-
ing multiple layers. Montúfar (2014) also showed that the
number of neurons needed to approximate a function in a
deep network with multiple layers increases exponentially in
a network with one hidden layer. Therefore, deep networks
are possibly more efficient. Goodfellow et al. (2016) pro-
vides multiple examples that foster this claim empirically.
As a result, there could remain numerous means of improv-
ing SWE estimates from snow depth using machine learn-
ing techniques, and the methods proposed here could be re-
fined. It could also be useful to investigate the application of
other types of machine-learning algorithms, including ran-
dom forests.

Code and data availability. The code including some
testing data is available on GitHub (https://github.com/
konstntokas/Hydrology_ANN_SD2SWE, Ntokas, 2020a;
https://doi.org/10.5281/zenodo.4276414, Ntokas, 2020b). The
whole data set, excluding data for which we did not have per-
mission to share (this is 2 % of the data set), is available through
the Harvard Dataverse (https://doi.org/10.7910/DVN/T46ANR;
Boucher, 2020).
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