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Abstract. Excessive nutrient loading is a major cause of
water quality problems worldwide, often leading to harm-
ful algal blooms and hypoxia in lakes and coastal systems.
Efficient nutrient management requires that loading sources
are accurately quantified. However, loading rates from vari-
ous urban and rural non-point sources remain highly uncer-
tain especially with respect to climatological variation. Fur-
thermore, loading models calibrated using statistical tech-
niques (i.e., hybrid models) often have limited capacity to
differentiate export rates among various source types, given
the noisiness and paucity of observational data common to
many locations. To address these issues, we leverage data
for two North Carolina Piedmont river basins collected over
three decades (1982–2017) using a mechanistically parsi-
monious watershed loading and transport model calibrated
within a Bayesian hierarchical framework. We explore tem-
poral drivers of loading by incorporating annual changes in
precipitation, land use, livestock, and point sources within
the model formulation. Also, different representations of ur-
ban development are compared based on how they constrain
model uncertainties. Results show that urban lands built be-
fore 1980 are the largest source of nutrients, exporting over
twice as much nitrogen per hectare than agricultural and
post-1980 urban lands. In addition, pre-1980 urban lands are
the most hydrologically constant source of nutrients, while
agricultural lands show the most variation among high- and
low-flow years. Finally, undeveloped lands export an order of
magnitude (∼ 7–13×) less nitrogen than built environments.

1 Introduction

Eutrophication stimulated by anthropogenic nutrient load-
ing is a common cause of water quality problems world-
wide (Smith et al., 1999). In North Carolina (NC, USA),
watershed-level nutrient management strategies have been
developed for major reservoirs like Jordan Lake (JL)
and Falls Lake (FL) using various process-based models
(NC DWR, 2009; Tetra Tech, 2014). Such models can oper-
ate on fine temporal scales (i.e., days) and characterize vari-
ous mechanistic processes related to the transfer of water and
nutrients through watersheds. However, due to the large num-
ber of uncertain parameters (i.e., rates, coefficients) included
in these models, multiple parameter sets may appear to fit the
observational data equally well (Beven, 2006) without ben-
efits to predictive performance (Jackson-Blake et al., 2017).
Related to these issues, there is critical need for systematic
model calibration and uncertainty quantification, if modeling
results are to inform management decisions (Reckhow, 1994;
NRC, 2001; Reichert, 2020).

Hybrid (empirical–mechanistic) watershed models, which
represent nutrient loading, transport, and retention using
simple mechanistic relationships and statistical calibration
techniques (e.g., nonlinear regression, Bayesian inference),
have also been developed for nutrient source apportionment.
For example, numerous applications of the SPAtially Refer-
enced Regressions of contaminant transport On Watershed
attributes (SPARROW) model have been applied to many
large river basins (Preston et al., 2011; Hoos and McMa-
hon, 2009; Garcia et al., 2011). SPARROW is calibrated
using nonlinear regression that allows for parameter uncer-
tainty quantification (i.e., confidence intervals). A limitation
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of SPARROW is that it models long-term average conditions
and does not directly consider variability due to changes in
precipitation (e.g., wet versus dry years) and watershed de-
velopment, which have been shown to greatly affect nutrient
loading (Howarth et al., 2012; Sinha and Michalak, 2016;
Strickling and Obenour, 2018).

Methodological enhancements to SPARROW and simi-
lar hybrid watershed models have been proposed over time
(Qian et al., 2005; Wellen et al., 2012; Xia et al., 2016). Re-
cently, a Bayesian–hierarchical hybrid watershed model was
developed to leverage temporal variability in source distribu-
tions and precipitation over multiple decades, providing an
assessment of how land use change and hydroclimatological
variations have affected nutrient loading over time (Strick-
ling and Obenour, 2018). Additionally, this approach system-
atically incorporated and updated prior information on nutri-
ent export and retention rates from previous studies through
Bayesian inference. At the same time, Bayesian hybrid mod-
els often show limited capacity to differentiate loading rates
among multiple source types (e.g., different land uses). Pre-
vious applications typically included only a small number of
source types or had wide posterior credible intervals for ex-
port rates (e.g., Qian et al., 2005; Wellen et al., 2012; Strick-
ling and Obenour, 2018).

The goal of this study is to improve our understanding of
nitrogen export within two highly managed NC basins that
feed critical water supply reservoirs. Using a Bayesian hy-
brid watershed modeling approach, we characterize export
rates from several different land uses, livestock types, and
point sources. In particular, we explore how nitrogen-loading
estimates vary among different types of urban lands based
on density and the age of construction, considering how im-
proved regulations and building practices may influence nu-
trient export. In addition, we demonstrate a novel approach
for characterizing interannual variability in both nitrogen ex-
port and stream and water-body retention, based on mean
annual precipitation. This study benefits from a relatively
high-resolution monitoring network (with a mean watershed
monitoring unit of just 321 km2, compared to 1535 km2 in
Strickling and Obenour, 2018) and over 30 years of load-
ing data (1982–2017). Finally, we characterize instream re-
tention rates and partition reservoir loading into various up-
stream sources based on varying hydro-climatological con-
ditions to help inform watershed management.

2 Methods

2.1 Study area

JL and FL, located in the Piedmont region of NC (Fig. 1),
were impounded by the US Army Corps of Engineers in the
early 1980s. Portions of each reservoir have exceeded NC
water quality criteria, particularly for algae (chlorophyll a;
NC DWR, 2020). JL watershed planning has been ongo-

ing since the early 2000s, and initial total nitrogen (TN) re-
ductions were set at 35 % for the New Hope (NH) Creek
basin and 8 % for the Haw River (HR) basin. FL water-
shed planning was formalized in 2011, and Phase I goals of
the Falls Lake Rules included a TN reduction of 40 % from
major sources in the watershed (http://portal.ncdenr.org/web/
fallslake/, last access: 12 March 2021). JL and FL fall within
the Cape Fear River basin and Neuse River basin, respec-
tively, but both share similar underlying hydroclimatic and
soil conditions and comparable levels of anthropogenic de-
velopment (Markewich et al., 1990; Strickling and Obenour,
2018).

2.2 Load monitoring sites (LMSs)

Nutrient load monitoring sites (LMSs) were identified based
on locations that had sufficient flow and nutrient sampling
data to calculate yearly TN loads. To be included, a site
needed a minimum of 5 years of daily flow records and at
least 50 water quality samples during that period of record.
While somewhat context specific, these minimum conditions
are generally consistent with previous studies using USGS
WRTDS for load estimation (Chanat et al., 2012; Hirsch
and De Cicco, 2015). All flow data were obtained from the
United States Geological Survey (USGS), whereas nutrient
data were obtained from the Water Quality Portal (WQP;
Read et al., 2017) as well as local city managers (e.g., city
of Durham). The two largest sources of nutrient data (from
the WQP) came from the USGS and the NC Department of
Environmental Quality (NCDEQ). Sites from these different
entities were often located in close proximity. Data from wa-
ter quality sites with less than 5 % deviations in watershed
area and no intervening point sources were compiled together
(Table 1).

In many cases, ample water quality data were available
at the location of the USGS flow monitoring station. How-
ever, if little or no water quality data were located at the flow
station, a nearby water quality station was used instead, as-
suming there was less than a 20 % change in watershed area
between the flow and water quality monitoring stations. If
multiple water quality sites were located close to the flow
station, only the site with the longest record was chosen. In
one exception, two water quality sites utilized the same flow
monitoring station (NH1 and NH6; Table 1), which was done
to include two substantial data records collected above and
below a major point source on Morgan Creek. In such cases,
the LMSs were represented at the location of the water qual-
ity monitoring sites, and flows were adjusted based on the
drainage area ratio between the two sites adjusting for any
intervening wastewater flow.

There were 25 LMSs in our study area (Fig. 1; Table 1).
Stations were split into three major basins for classification
purposes: the HR basin of JL, the NH Creek basin of JL, and
the FL basin. LMSs captured 85 % of the HR basin, 49 % of
the NH basin, and 62 % of the FL basin. Three LMSs were
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Figure 1. The load monitoring sites (LMSs) in Jordan and Falls Lake watersheds shown with their incremental watersheds. Also shown are
the 79 subwatersheds along with point sources (major and minor wastewater treatment plants – WWTP). Major basins are delineated by thick
black lines.

located directly downstream of major impoundments (HR4,
FL6, and FL9; Fig. 1; Table 1).

2.3 Delineation of incremental watersheds and
subwatersheds

Watersheds for LMSs were delineated using Spatial Analyst
tools in ArcMap 10.6.1 (ESRI, 2018). Watershed drainage
areas ranged from 11 km2 to over 3000 km2 (Table 1) with a
median value of 106 km2. Often, LMS watersheds had one
or more LMS contained within their upstream watershed
(Fig. 1). In order to accommodate nested LMS watersheds,
we determined incremental watersheds by subtracting out
any upstream LMS watersheds that were contained in a larger
(downstream) LMS watershed (Schwarz et al., 2006). If a
LMS did not have any upstream LMSs in its watershed, its
incremental watershed was equal to its total watershed. Note
that the loads associated with these incremental watersheds
formed the main response variable in our model (Sect. 2.7).

To more accurately account for nitrogen transport and re-
tention, incremental watersheds were divided into subwa-
tersheds (Fig. 1). Most data (e.g., land use, precipitation,
livestock) were compiled at the subwatershed level. The
largest possible subwatershed corresponded to a USGS 12-
digit hydraulic unit code (HUC; https://water.usgs.gov/GIS/
huc.html, last access: 15 April 2020). If a LMS was located
in the middle of a HUC, the HUC was split into two. Seventy-
nine subwatersheds were located within the study area, with

a mean drainage area of 63 km2, minimum of 11 km2, and
maximum of 146 km2.

2.4 Anthropogenic factors

2.4.1 Land uses

Land use variables were derived from the US conterminous
Wall-to-wall Anthropogenic Land use Trends (NWALT)
dataset (Falcone, 2015). We aggregated NWALT land use
designations into three major categories: urban (including
residential, transportation, industrial, and commercial devel-
opment), agriculture (pasture and crop), and undeveloped
(semi-developed, low use, and wetlands). Semi-developed
land was included with undeveloped because it is mostly
comprised of forested land in central NC (Miller et al., 2019).
We further split urbanization constructed before and after a
given date (e.g., 1980, 2000) and between low and high den-
sity. To determine when urbanization occurred in the region,
we interpolated available NWALT data (1974, 1982, 1992,
2002, and 2012) to obtain year-specific land use values for
each subwatershed. Since our study extended beyond 2012,
we also used linear extrapolation for years 2013–2017 based
on 2002 and 2012 values. Land use trends throughout the
study period were generally gradual, such that modest linear
extrapolation was considered reasonable (Fig. 2; top row).
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Table 1. Load monitoring stations (LMSs) located in the Jordan (JL) and Falls Lake (FL) basins along with their complete drainage areas.
LMSs belong to either New Hope Creek (NH) or Haw River basins of JL or FL. Years of record correspond to time that loadings could be
estimated (i.e., when daily flow and monthly water quality sampling was performed). The number of total nitrogen (TN) samples available
is also shown.

LMS Name Reservoir Drainage Years of record No. TN
area samples

(km2)

NH1 Morgan Creek, Jordan Lake JL 121.4 1994–2017 578
NH2 New Hope Creek JL 203.9 1994–2017 575
NH3 Northeast Creek JL 53.6 1996–2017 430
NH4 White Oak Creek JL 31.1 2000–2017 106
NH5 Morgan Creek, White Cross JL 21.4 2000–2017 116
NH6 Morgan Creek, Chapel Hill JL 103.2 2001–2013 141
NH7 Sandy Creek, Cornwallis JL 12.1 2009–2017 133
NH8 Third Fork Creek JL 41.2 2009–2017 107
HR1 Haw River, Bynum JL 3296.4 1994–2017 590
HR2 Cane Creek JL 19.6 1989–2017 227
HR3 Haw River, Burlington JL 1562.1 1994–2017 268
HR4 Reedy Fork, Gibsonville JL 316.6 1981–1986, 2001–2017 341
HR5 N. Buffalo Creek JL 96.2 1999–2017 394
HR6 S. Buffalo Creek JL 88.6 2000–2017 343
HR7 Reedy Fork, Oak Ridge JL 53.4 2001–2017 255
FL1 Ellerbe Creek, Gorman FL 54.8 2006–2017 280
FL2 Ellerbe Creek, Murray FL 11.2 2009–2013 100
FL3 Eno River, Durham FL 367.2 1994–2000, 2004–2017 375
FL4 Eno River, Hillsborough FL 171.0 1990–2017 223
FL5 Little River, Orange Factory FL 202.7 1988–2000, 2005–2017 381
FL6 Little River, Fairntosh FL 246.4 1996–2011 196
FL7 Mountain Creek FL 20.8 1995–2011 156
FL8 Flat River, Bahama FL 385.9 1981–2011 472
FL9 Flat River, Dam FL 434.4 1983–1990, 2003–2017 225
FL10 Knap of Reeds Creek FL 111.4 2006–2017 142

2.4.2 Point sources

Point sources included major (> 0.044 m3 s−1) and minor
wastewater treatment plants (WWTPs) (Figs. 1 and S1 in
the Supplement, Table S1 in the Supplement). Discharge data
were obtained from NC DEQ and included monthly TN and
flow values. However, many WWTPs had numerous miss-
ing months, so we determined annual loads as the product
of yearly median concentrations and flows for each WWTP.
LMSs with major WWTPs in their watersheds were only
modeled starting in 1994 due to a lack of discharge data be-
fore that year (i.e., HR1, 3, 5, NH1–3, and FL1, 3, 10), while
LMSs without major WWTPs were modeled from 1982 de-
pending on data availability. Only one LMS (HR4) with pre-
1994 monitoring data included a minor WWTP in its water-
shed. Since the minor WWTP represented< 3 % of the LMS
mean load, we assumed the pre-1994 load was equal to the
mean post-1994 load. TN trends of point source discharges
aggregated by basin are shown in Fig. 2 (middle row).

2.4.3 Livestock

The livestock in subwatersheds were estimated from county-
level US Department of Agriculture (USDA) census and
survey reports (https://www.nass.usda.gov/, last access:
15 April 2020). Cow and swine data covered our entire study
period (1982–2017), while chicken data were available every
5 years beginning in 1997. For missing years between cen-
sus dates, chicken counts were interpolated, whereas chicken
counts before 1997 were assumed to be equal to 1997 values.
Only two incremental watersheds (HR1, 3) had large chicken
counts (> 1000000 and > 150000, respectively), and these
watersheds were not modeled before 1994 (as they were also
missing major WWTP discharge data).

To represent the locations of livestock throughout the re-
gion, county-level data were assigned to incremental wa-
tersheds based on an area ratio. Major urban areas were
excluded when calculating these proportions, as livestock
were assumed to be located outside cities. Livestock counts
were then divided into the subwatersheds (using area ratios).
However, chickens in Chatham County were accounted for
differently because a majority of Chatham’s chicken farms
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Figure 2. Land use, point sources, and livestock trends from 1994–2017 in the Haw River, New Hope, and Falls Lake basins.

(> 90 %) are located outside of the JL basin, and the county
has a relatively high chicken count (> 3000000; USDA).
Chatham County records (https://opendata-chathamncgis.
opendata.arcgis.com/, last access: 15 April 2020) were used
to estimate that 8.2 % of the county’s chickens were within
the JL basin. Basin level trends of livestock are shown in
Fig. 2 (bottom row).

2.5 Precipitation

Monthly precipitation estimates for this study were ob-
tained from the PRISM Climate Group (http://www.prism.
oregonstate.edu/, last access: 15 May 2019). These data were
processed using the R package “raster” (Hijmans, 2015;
R Core Team, 2019) to determine mean annual precipita-
tion for each subwatershed. There was substantial variation
in precipitation among years (0.82–1.59 m yr−1) and among
different subwatersheds within the same year (Fig. S2).

2.6 Nutrient load calculations

Our model required yearly TN loadings at each LMS for
Bayesian inference (i.e., calibration). Most riverine moni-
toring programs measure streamflow daily, whereas nutrient
concentrations are sampled less frequently (e.g., monthly).
In this study, daily TN concentrations were estimated us-
ing WRTDS (Hirsch et al., 2010). WRTDS develops a semi-
parametric regression for each day in the estimation period
where observations that are collected under similar condi-

tions to the estimation date (in terms of time, discharge, and
season) are more heavily weighted. For some LMS sites,
there were abrupt temporal changes in nutrient loading as-
sociated with WWTP upgrades. In these cases, WRTDS was
run separately before and after the upgrade date to avoid
smoothing out these transitions (Table S2).

Some LMSs had incomplete monitoring data (daily flow
or water quality samples) during our study period (Table 1).
If a LMS was missing flow data for a given year, that year
was omitted. However, WRTDS is able to calculate loads for
years with missing water quality data. Gaps in water qual-
ity samples of up to 1 year were considered acceptable in
our study, as preliminary analysis (removing single years of
observational data at random) showed that a 1-year gap af-
fected loading estimates by less than 1 %, and this is more
conservative than WRTDS guidelines (Hirsch and De Cicco,
2015). In addition, at least six samples were required in both
the beginning and ending year of each loading record.

Uncertainties in loading estimates were determined
through subsampling of three NC stations that had nearly
daily TN observations for at least 7 consecutive years (Strick-
ling and Obenour, 2018). By comparing TN loads based on
the full dataset and different subsets, we estimated the coeffi-
cient of variation (and standard deviation, SD) of WRTDS es-
timates based on the number of water quality samples avail-
able for a given year (Fig. S3). Accounting for these uncer-
tainties allowed us to give more weight to loading estimates
based on a larger number of nutrient samples (Sect. 2.7).
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The response variable in our model was the change in nu-
trient load across an incremental watershed, defined as the
difference between the load at an incremental watershed’s
downstream LMS and the cumulative load from any up-
stream LMSs. For sites with no upstream LMSs, the incre-
mental load was equal to its total load. The uncertainties of
incremental loads for LMSs with upstream LMSs were cal-
culated based on the relationship between correlated random
variables (Eq. 1; Kottegoda and Rosso, 2008):

σ̃ 2
i,t = σ

2
i,t − 2

n∑
k=1

ρi,kσi,tσk,t +

n∑
k=1

n∑
l=1

ρk,lσk,tσl,t , (1)

where σ̃ 2
i,t is the incremental load variance for a given incre-

mental watershed (i) in year (t), with n upstream LMSs (max
n= 3 for HR3; Fig. 1; Table 1). Here, σ 2

i,t is the error vari-
ance at the downstream LMS, σk,t and σl,t are the WRTDS
SDs at upstream LMSs, and ρi,k and ρk,l are correlation co-
efficients between LMS loadings from different sites.

2.7 Model construction

Our model is formulated similar to Strickling and Obe-
nour (2018). Within a Bayesian framework, we relate deter-
ministically predicted incremental loads (ŷi,t ; Eq. 2) to an
inferred incremental load (yi,t ). The watershed-level random
effect (αi ; Gelman et al., 2014) accounts for spatial variabil-
ity not explained by the deterministic prediction (ŷi,t ), and
the residual error (with SD σε) primarily accounts for tem-
poral variability unexplained by the deterministic prediction.
The hyperdistribution of the normally distributed watershed-
level random effect is centered on zero, with variance σ 2

LMS.

L
(
yi,t
)
∼N

(
L
(
ŷi,t +αi

)
,σε

)
αi ∼N (0,σLMS) (2)

L(y) is the natural log transformation of y+ 105 (kg yr−1

of TN). This transformation reduces heteroscedasticity in
residuals while accounting for any negative incremental
loads that would produce non-real values when log trans-
formed. Negative incremental loads are possible in this
model, especially for incremental watersheds with large im-
poundments that retain a substantial portion of the load from
upstream LMSs. The largest negative loads were on the order
of 5× 104 kg yr−1.

The inferred incremental load (yi,t ; Eq. 2) is related to the
WRTDS incremental estimates (ỹi,t ; Eq. 3) by taking into
account the estimation uncertainty (σ̃i,t ; Eq. 1).

ỹi,t ∼N
(
yi,t , σ̃i,t

)
(3) (3)

Within the model, the deterministic prediction (ŷi,t ) is cal-
culated by aggregating incremental watershed source contri-
butions and subtracting in-stream losses from upstream LMS
loads (Eq. 4).

ŷi,t = Li,t,ur1+Li,t,ur2+Li,t,ag+Li,t,und+Li,t,ps

+Li,t,ch+Li,t,sw+Li,t,cw−Ui,t · rt,z (4)

Contributions are calculated for two urban (Li,t,ur1; Li,t,ur2),
agricultural (Li,t,ag), and undeveloped (Li,t,und) lands, point
sources (Li,t,ps), chickens (Li,t,ch), swines (Li,t,sw), and
cows (Li,t,cw). Loads from upstream incremental water-
sheds (Ui,t ) are reduced by their expected in-stream and
reservoir losses (rt,z; Eq. (2); see “Nitrogen retention”). Each
source-specific load is calculated as follows:

Li,t,x = βx

(
p̃
γx
i,t

)
· aTi,t,x ·

(
1− r i,t

)
(land use) (5a)

Li,t,x = βx

(
p̃
γx
i,t

)
·hTi,t,x ·

(
1− r i,t

)
(livestock) (5b)

Li,t,x = βps ·w
T
i,t ·

(
1− r i,t

)
(point source), (5c)

where Li,t,x (kg yr−1) represents the total contributed load
for a given LMS (i), source (x), and year (t). Parameter
βx represents a land or livestock export coefficient (EC;
kg ha−1 yr−1 or kg per animal (an) per year) or the point
source (i.e., WWTP) delivery coefficient (unitless, 0–1). Pa-
rameter γx is the precipitation impact coefficient (PIC, unit-
less) for a given nonpoint source, which is parameterized
as a power relationship with the export coefficient (Eq. 5).
PICs differ by source but are related to each other through a
common hyperdistribution with mean µγ and SD σγ (Ta-
ble S3). This formulation differs from the linear relation-
ship between precipitation and loading used in Strickling
and Obenour (2018) and avoids potentially negative load-
ing values during extremely low-flow years. Point sources
do not have a PIC term (Eq. 5c) as the WWTP data al-
ready account for yearly variation. Scaled annual precipita-
tion (p̃i,t ) for each incremental watershed is determined by
dividing by the mean precipitation of the study area. Often, a
given source type was distributed among multiple locations
(e.g., subwatersheds) within an incremental watershed. To
account for this, aTi,t,x , hTi,t,x , and wT

i,t,x are transposed vec-
tors of sources (i.e., hectares of land use, counts of livestock,
and load from WWTPs, respectively) across different loca-
tions that are multiplied by a vector (r i,t ) of location-specific
stream and reservoir retention losses.

2.8 Nutrient retention

Nitrogen retention in streams is represented based on a
first-order decay rate (−κ , d−1) and mean stream residence
time (τz, d) for each path (z) from a given source (subwa-
tershed or point source) to its downstream LMS. Estimated
mean stream velocities are from the National Hydrography
Dataset Plus (NHD+; Moore and Dewald, 2016). Travel dis-
tance was estimated as half the distance of the longest flow
path within the source subwatershed plus the distance from
the subwatershed to the downstream LMS. Nitrogen reten-
tion in reservoirs is modeled as a function of hydraulic load-
ing rates (ratio of flow to surface area, qw, m yr−1) for each
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water body (w) and a mass transfer coefficient (ω; m yr−1;
Kelly et al., 1987). An overall retention rate (rt,z), combin-
ing streams and reservoirs, for each path (z) and year (t) is
determined as

rt,z = 1− exp
(
−κ · τ ′t,z

)
·

∏
w

exp
(
−ω

q ′t,w

)
, (6)

allowing for multiple waterbodies along each flow path (i.e.,
the product function). While Strickling and Obenour (2018)
used constant retention rates, here we allow rates to vary
interannually by relating travel time and hydraulic loading
to annual precipitation. Specifically, annual stream travel
times (τ ′t,z) and reservoir hydraulic loading rates (q ′t,w) are
determined based on a retention PIC (γret) and normalized
yearly precipitation (pt ; yearly precipitation minus mean
precipitation divided by SD), specific to each incremental
watershed and year (Eq. 7a and b):

τ ′t,z =
τz

(1+ γret ·pt )
(7a)

q ′t,w = qw · (1+ γret ·pt ) . (7b)

2.9 Bayesian inference

All model parameters were assigned prior probability distri-
butions (Table S3). Informative priors were used when previ-
ous studies reporting similar parameters were available. Prior
distributions for land export rates were taken from Dodd et
al. (1992), while stream retention rates were adapted from
previous SPARROW studies (Hoos and McHahon, 2009;
Garcia et al., 2011). Prior distributions for chicken and swine
TN export coefficients were adapted from Strickling and
Obenour (2018) to represent kilograms of TN per animal per
year. Essentially uninformative priors (i.e., wide uniform pri-
ors) were used for the remaining parameters.

For comparison, models were calibrated with urban lands
split in four different ways: (1) pre- and post-1980 urban
lands, (2) pre- and post-2000 urban lands, (3) low- ver-
sus high-density urban (high-density residential only), and
(4) low- vs. high-density urban (high-density residential, in-
dustrial, and commercial). Cut-offs of 1980 and 2000 were
chosen to represent urban areas built before and after chang-
ing NC environmental regulations related to erosion and sed-
iment control (1980) and stormwater quality control mea-
sures (2000) that have come into effect over the past 50 years
(Howells, 1990; USEPA, 2005; NC DEMLR, 2020). In or-
der to evaluate the best representation, we compared model
fit and the degree of overlap between the marginal posterior
parameter distributions of the two different urban export co-
efficients within each model.

Models were parameterized within the Bayesian frame-
work using RStan software in R (R Core Team, 2019; Stan
Development Team, 2020). RStan uses Hamiltonian Monte
Carlo sampling of the posterior distribution and often con-
verges faster than other samplers (Gelman et al., 2015).

Three parallel chains of 20 000 iterations with a burn-in pe-
riod of 5000 iterations (which were discarded) created 9 000
posterior samples after thinning (accepting every fifth itera-
tion). Parameters were considered to have converged when
their scale reduction coefficient (R̂) was below 1.1 (Gelman
and Rubin, 1992).

2.10 Model assessment and validation

Predictive performance was assessed using the coefficient of
determination (i.e., variance explained, R2; Faraway, 2016)
for incremental nutrient loads. Predicted incremental loading
estimates (ŷi,t ) were derived using the Bayesian mean poste-
rior values and compared to WRTDS loading estimates (ỹi,t ).
Model performance was assessed for LMSs in the HR, NH,
and FL watersheds with and without their watershed-level
random effects. To test the ability of the model to make out-
of-sample predictions, we performed a 3-fold cross valida-
tion (Elsner and Schmertmann, 1994). The data were split
into three groups by major basin (HR, NH, and FL), and the
model was trained on two of the three watersheds, in turn.
Predictions were then made on the excluded basin (in turn).

3 Results

3.1 In-stream nutrient loading estimates

WRTDS-derived annual loading estimates are quite noisy
(Figs. 3 and S4) due largely to hydrologic variability, while
flow-normalized estimates help illustrate long-term trends
(Hirsch et al., 2010). TN loads in all basins decrease substan-
tially from 1980 to the late 1990s. However, post-2000 load-
ing patterns are inconsistent both within and across basins
(Fig. 3). In the HR watershed, TN loading has steadily in-
creased since 2000. In the NH watershed, substantial in-
creases in loads are seen after 1995, though subsequent
WWTP improvements reduced loading in some tributaries
(Figs. 3 and S4). In FL, large post-2000 TN reductions ap-
pear in FL1 and FL10 (Fig. 3), both of which have major
WWTP discharges, while loadings in other FL watersheds
have remained constant or trended upwards.

3.2 Comparing different urban land classifications

The hybrid watershed model explains the spatial and tem-
poral variability of in-stream (WRTDS-derived) TN loads
based on precipitation and nutrient source distributions. To
explore urban TN sources in more detail, we compare the
posterior parameter distributions of different classifications
of urban land use that consider the age, density, and type
of urban development (Table 2). We find that a classifica-
tion based on a pre-/post-1980 split results in significantly
different export rates, with the pre-1980 urban lands export-
ing more than twice the amount of post-1980 urban lands.
Here, “significantly different” implies a > 95 % probability
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Figure 3. Weighted-regression on time, discharge, and season (WRTDS) annual nutrient loading estimates (points) and flow-normalized
estimates (lines) for TN in the Haw River (HR) and New Hope Creek (NH) basins of Jordan Lake (JL) and Falls Lake (FL). For clarity,
results are only shown for the most downstream load monitoring site (LMS) of each tributary to Jordan and Falls Lake. The only downstream
LMS for Haw River is HR1. WRTDS loading estimates for other LMSs are provided in the Supplement (Fig. S4).

Table 2. Posterior means and 95 % credible intervals (CIs) of urban export coefficients (ECs) split by age and development density (low-
density (LD) vs. high-density (HD) urbanization). The probability (P ) that older urban lands (or HD urbanization) export more nitrogen
than other urban lands was calculated by comparing Bayesian posterior draws. R2 represents the ability of the model to predict temporal
variability of loading at each LMS. Mean R2 was determined by averaging the R2 of all 25 LMSs.

Case Export coefficient Mean 95 % CI P Mean
(EC) (TN ha−1 yr−1) (EC1>EC2) R2

A
1. Pre-1980 urban 9.4 7.3–11.3

98 % 0.476
2. Post-1980 urban 3.9 0.9–7.3

B
1. Pre-2000 urban 8.1 6.0–9.9

71 % 0.471
2. Post-2000 urban 6.5 2.3–10.8

C
1. HD residential 8.2 4.5–12.0

57 % 0.439
2. Other urban 7.6 4.9–10.1

D
1. All HD urban 7.9 5.6–10.0

72 % 0.468
2. Other urban 6.5 3.0–10.0

based on samples from the joint posterior parameter distri-
bution. In addition, the pre-/post-1980 division leads to the
highest R2 values for individual LMSs. None of the other
urban splits result in significantly different parameter esti-
mates. However, export rates from high-density and older
urbanization are consistently higher than the less dense and
newer urban lands. Among the two splits based on density,
combining high-density residential, industrial, and commer-
cial lands has higher predictive power than just separating
high-density residential from other urbanization (R2

= 0.47
vs. 0.44; Table 2).

3.3 Model posterior parameter estimates

The posterior ECs (βx) of the preferred model (with the
pre-/post-1980 urban split) show that urban and agricul-

tural lands both contribute substantial TN per hectare (Ta-
ble 3; Fig. 4). In particular, pre-1980 urban development ex-
ports 9.4 kg ha−1 yr−1 of TN (coefficient of variation (CV)
of 11 %; Table 3), while post-1980 development exports
3.9 kg ha−1 yr−1 (CV= 41 %). Agriculture also contributes
a substantial 4.0 kg ha−1 yr−1 (CV= 21 %), while undevel-
oped lands export a relatively low 0.7 kg ha−1 yr−1. In ad-
dition to pre-1980 urban export being significantly greater
than other forms of development, undeveloped land has sig-
nificantly less export than all developed lands, despite having
a high CV (50 %; Table 3). Model posterior distributions in-
dicate that parameter uncertainties are reduced substantially
relative to the prior distributions (Fig. 4), consistent with
Strickling and Obenour (2018), who found that priors had
a relatively small influence on parameter estimates relative
to the data (i.e., the likelihood).
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Figure 4. Prior (dotted lines) and posterior (solid lines) distributions for selected model parameters. Note that priors and posteriors are
provided for all parameters in Tables 3 and S3.

Table 3. Mean posterior parameter estimates for export and delivery
coefficients (β; EC, DC), retention rates (κ , ω), and precipitation
impact coefficients (γ ; PIC) along with 95 % credible intervals (CI).
Note that subscripts are same as defined in Eq. (4).

EC, DC, and retention PIC

Parameter Mean 95 % CI Parameter Mean 95 % CI

βag 4.0 2.3–5.6 γa 4.0 2.8–5.1
βur1 9.4 7.3–11.3 γur1 1.2 0.7–1.8
βur2 3.9 0.9–7.3 γur2 2.2 0.5–4.1
βund 0.7 0.1–1.5 γund 2.9 0.8–5.2
βch 0.01 0–0.02 γch 2.0 0.4–3.9
βsw 0.04 0.01–0.07 γsw 2.0 0.3–3.8
βcw 0.52 0.06–0.95 γcw 1.9 0.3–3.8
βps 0.83 0.73–0.92 γret 0.07 0–0.16
κ 0.04 0.01–0.07 µγ 1.8 1.1–2.4
ω 11.2 8.7–13.7 σγ 1.1 0.7-1.6
σε 0.07 0.07–0.08
σLMS 1.34 0.90–1.91

Land use ECs represent expected nutrient export for a
year with mean annual precipitation (i.e., p̃i,t = 1; Eq. 5a).
Because the relationship between export and precipitation
is nonlinear, the export coefficients represent median (but
not mean) loading rates. The precipitation impact coeffi-
cients (PICs) can be used to calculate TN export during low-
and high-flow years. Agriculture has the largest PIC (4.0; Ta-
ble 3), implying that export from agricultural lands (crop and
pasture) varies the most due to rainfall. During a high-flow
year (90th percentile p̃i,t = 1.18), nutrient export for agricul-
ture would almost double from 4.0 to 7.7 kg ha−1 yr−1. For
a low-flow year (10th percentile p̃i,t = 0.81), nutrient export

for agriculture (1.7 kg ha−1 yr−1) is less than half the median
export. Pre-1980 urban lands show the lowest variation due
to precipitation, ranging from 81 % of median export in low-
flow years to 122 % in high-flow years.

3.4 Spatial variation in nutrient export and retention

The TN export from nonpoint sources is calculated for each
subwatershed (Fig. 5a) using mean precipitation and mean
posterior land and livestock ECs (βec; Table 3). Since the
most intensive nutrient export comes from pre-1980 urban
lands, subwatersheds intersecting the urban cores of major
cities (Fig. 5a) have the largest expected export. Predom-
inantly rural watersheds export between 1–3 kg ha−1 yr−1

of TN, while urban cores export over 6 kg ha−1 yr−1.
On average, 13 % of TN is retained within streams and

waterbodies (Fig. 5b). Little TN is retained in subwatersheds
close to JL and FL and along higher-order streams, while
large TN removal rates (> 70 %) occur for subwatersheds
located upstream of reservoirs in the upper northwest por-
tions of the JL basin. Overall, more TN retention occurs in
reservoirs than in streams. Residence times and hydraulic
loading rates are also affected by precipitation as modu-
lated by the PIC for stream retention (γret; 0.07; Table 3).
For 1 SD increase in yearly precipitation (17.1 cm), expected
stream residence times and hydraulic loading rates decrease
roughly 7 % (Table 3; Eq. 7a and b). During low-precipitation
years (lower 33 %), 15% of TN is retained in the JL and
FL networks, while 12 % is retained during normal and high-
precipitation years (upper 67 %).

Watershed-level random effects account for unexplained
spatial variations in nutrient loading. For example, the neg-
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Figure 5. TN export (a) from land use and livestock by subwatershed; fraction of TN export from each subwatershed that is retained (b) in
streams and reservoirs prior to reaching Jordan and Falls Lakes. Point source loads are shown separately as dots.

ative random effects for small watersheds comprised of
mostly pre-1980 urban development (NH7, NH8, FL2) im-
ply these watersheds export less TN (−2.5, −1.8, and
−1.2 kg ha−1 yr−1, respectively; Fig. S5) than typical pre-
1980 urban lands (9.4 kg ha−1 yr−1; Table 3). Similarly, two
LMSs (FL6, FL9) located directly downstream of large im-
poundments had negative random effects, implying these
impoundments may be particularly efficient at trapping nu-
trients. On the other hand, three watersheds (NH1, HR5,
and FL1) located just downstream of major WWTP dis-

charges have elevated TN watershed-level effects, suggesting
loads may be underestimated by the available point source
data (Fig. S5).

3.5 Nutrient source allocations over time

Yearly TN loadings from 1994–2017 are reported based on
mean model parameters, land use, livestock counts, and pre-
cipitation. Only the NH watershed shows a clear down-
ward trend in TN loading, which appears to be largely
driven by WWTP discharge reductions (Fig. 6). In both the
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Figure 6. Total nitrogen export by year and major basin separated by source. The star (∗) represents the total TN load that reached Jordan or
Falls Lake.

HR and FL watersheds, annual loadings nearly tripled from
the lowest- to highest-precipitation years due to high levels
of agricultural lands which substantially increase export dur-
ing wet years (Fig. 6). This high level of interannual vari-
ation makes it difficult to distinguish any positive or nega-
tive trends in these basins over the study period. Addition-
ally, model residuals show no noteworthy temporal trends
(Fig. S6).

3.6 Model skill assessment

The full hybrid model, including random effects, explains
95 % of the variation in the WRTDS loading estimates at
LMSs (Fig. S7). Discounting the random effects, the model
still explains 93 % of TN loading variability. The model (with
watershed-level random effects) explains 96 % of the vari-
ation in the HR, 92 % in NH, and 83 % in FL (Fig. S7),
suggesting some spatial variability in model performance. In
cross validation, the predictive ability of the model remains
high, with the R2 of the full TN model (without watershed-
level random effects) dropping slightly from 93 % to 90 %.
R2 values are also reported for individual LMSs to charac-
terize the model’s ability to predict the temporal variability.
These R2 values range greatly from below 0 (FL2, JL2, JL7)
to above 0.80 (JL4, FL7, FL10) with a mean of 0.48 (Ta-
ble 2).

4 Discussion

4.1 Nutrient export rates and discharge coefficients

In this study, we aim to enhance our understanding of nitro-
gen export, especially as it relates to land use and different
types of urbanization. Variation in urban TN export has of-
ten been associated directly with population density (Bales
et al., 1999; Burns et al., 2005; Line, 2013; Tetra Tech, 2014)
or with proxies for density like net food imports (Hong et
al., 2011; Sinha and Michalak, 2016). In this study, we com-
pare variations in urban export due to the age of the urban-
ization versus different urban land covers (e.g., high- and
low-density residential, commercial). Pre-1980 urban lands
and high-density residential are moderately correlated in our
study area (r2

= 0.64), yet Bayesian posterior parameter es-
timates show that exports from low- and high-density urban
areas are not statistically different from each other. However,
TN exports from pre- and post-1980 urban areas are signif-
icantly different (Table 2). This suggests that urban infras-
tructure age and historical development practices are more
important than population density.

Various mechanisms, beyond density, could explain why
older urban areas export more TN than recently constructed
urban areas. Increased impervious connectivity in pre-1980
urban areas may lead to elevated runoff and nutrient washoff
(Wollheim et al., 2005). In addition, pre-1980 urban devel-
opment generally lacked stormwater management and ero-
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sion control measures (Howells, 1990; NC DEMLR, 2019).
Therefore, streams in these areas have legacy sediments and
often exhibit the urban stream syndrome with altered ge-
omorphology and low biological health (Paul and Meyer,
2001; Bernhardt and Palmer, 2007; Miller et al., 2019),
which can affect downstream nutrient loads and uptake
(Meyer et al., 2005). Older neighborhoods are also likely to
have larger trees and thus more leaf litter over impervious
surfaces, which can also increase nutrient export (Janke et
al., 2017). Finally, leaky sewer infrastructure in pre-1980 ur-
ban areas might be a substantial source of nutrients (Kaushal
et al., 2011; Pennino et al., 2016) as compared to newer and
more reliable infrastructure in post-1980 urban areas.

Model results indicate that post-1980 urban and agricul-
tural lands exported similar amounts of nitrogen (3.9 and
4.0 kg ha−1 yr−1, respectively; Table 3). Our estimated agri-
cultural export rate is lower than in previous studies (Dodd
et al., 1992; Strickling and Obenour, 2018), which may be
related to the fact that over 90 % of agricultural lands in our
study area are pasturelands, rather than croplands (Falcone,
2015). Post-1980 urban export shows the most uncertainty
in model posteriors (Table 3; Fig. 4). This might be due to
the inconsistency of regulations being applied both tempo-
rally and spatially from 1980 to the present, and it might also
indicate variation in the best management practices (BMPs)
used in the region. Finally, undeveloped lands have very low
export (0.7 kg ha−1 yr−1; Table 3) with moderate uncertainty
(0.1–1.5 95 % interval; Table 3). This mean value is roughly
3 times lower than previous studies in the region (Tetra Tech,
2014; Strickling and Obenour, 2018).

Livestock export coefficients for chickens, swine, and
cows (0.01, 0.04, and 0.50 kg yr−1, respectively) imply that
less than 1 % of the TN produced by these animals (i.e., 0.6,
9.9, and 54.8 kg an yr−1, respectively; Ruddy et al., 2006)
results in excess TN pollution in our study area. Overall,
livestock-related nutrient export appears to account for <
2 % of nutrient loading to the downstream reservoirs (Fig. 6;
Table S4). Per hectare of agricultural land, livestock export
averages just 0.5 kg ha−1 yr−1, about an order of magnitude
less than the baseline agricultural land use export. It is impor-
tant to note that livestock waste used to replace other (e.g.,
synthetic) fertilizers is generally represented by the agricul-
tural land export. The livestock rates reported here represent
TN export in excess of typical pasture and cropland export.

Our point source coefficient discounts WWTP loads by
nearly 20 % (βps = 0.83; Table 3). One potential explanation
for this result is that TN from WWTPs (primarily nitrate) is
processed and retained in stream networks more efficiently
than TN from nonpoint sources. For example, increased den-
itrification rates have been observed downstream of WWTPs
due to altered biochemical conditions (Wakelin et al., 2008;
Rahm et al., 2016).

4.2 Interannual variability

Our analysis of interannual variability is facilitated through
two enhancements to the hybrid watershed modeling ap-
proach of Strickling and Obenour (2018). First, we allow
for retention to vary across years due to changes in precip-
itation, represented parsimoniously by a PIC for stream resi-
dence times and reservoir hydraulic loading rates (γret; Eq. 7a
and b). This modification produces a±8 % variation in reten-
tion for±1 SD change in annual precipitation. In this region,
we find that the majority of retention occurs in reservoirs.
Our mean stream retention rate (0.04 d−1; Table 3) is com-
parable in magnitude to regional hybrid models (Strickling
and Obenour, 2018; Gurley et al., 2019) but lower than previ-
ous watershed process models (Tetra Tech, 2014). Accurately
quantifying stream retention rates is important to operators of
WWTPs and regulators in order to accurately determine nu-
trient offsets for projects, which are often valued in millions
of dollars (Jim Hawhee, NC DEQ, personal communication,
2020).

Second, we model the effects of precipitation variability
on land use export using power functions (γx ; Eq. 5) instead
of linear relationships (Strickling and Obenour, 2018). The
new formulation recognizes that as precipitation increases,
its marginal effect on nutrient loading may intensify, as in-
filtration and evapo-transpiration rates are exceeded (Chin,
2013). Consistent with this explanation, agriculture has the
highest PIC (4.0; Table 3), indicating that when annual pre-
cipitation is 20 % higher than the mean, TN export from agri-
cultural lands will approximately double. On the other hand,
pre-1980 urban lands, which are substantially impervious,
have the lowest PIC values and only export 24 % more TN
for a 20 % increase in annual precipitation.

By compiling nitrogen loads throughout the major
basins (1994–2017; Fig. 6), we can analyze interannual
trends and variability in TN sourcing. Interannual variation
is large (∼ 3× difference from lowest to highest year) in
both HR and FL, yet NH loadings show relatively little vari-
ation. This is due to high percentages of agricultural lands
in HR and FL, which have the highest PICs. NH loadings,
in contrast, are dominated by pre-1980 urbanization (lowest
PIC) and point sources. By separating TN loadings into their
sources, we are able to identify trends in specific nitrogen
sources that could help inform management of individual wa-
tersheds. For example, though loadings in the NH watershed
appear to decline over the study period from 6× 105 to 4×
105 kg yr−1, this trend was driven by a nearly 50 % reduction
in point sources (4× 105 down to 2.1× 105 kg yr−1). At the
same time, loading attributable to post-1980 urbanization in-
creased almost 2-fold, from 0.2×105 up to 0.4×105 kg yr−1

(Fig. 6).
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4.3 Potential nutrient reductions

Model results strongly indicate that the majority of nutri-
ent inputs to JL and FL are from anthropogenic sources.
Based on identified sources of TN in the watershed, four
management strategies would potentially lead to large nu-
trient load reductions: (1) reduction of point source loadings
(i.e., WWTPs), which remain the largest individual source
of TN, (2) retrofitting or replacing infrastructure in older ur-
ban environments (i.e., pre-1980 urban), which are the largest
nonpoint source of TN per unit area, (3) mitigating TN load-
ing from agricultural lands, especially during wet conditions,
and (4) limiting, reducing, or offsetting the removal of unde-
veloped land, which have the lowest export.

The effectiveness of these nutrient control strategies will
vary across different hydrologic conditions. For example,
point sources are responsible for 44 % of TN loadings to JL
and 14 % to FL from 1994 to 2017. However, these percent-
ages rise to 55 % and 24 %, respectively, during dry years
(Table S4). On the other hand, agricultural TN export ac-
counts for 18 % of JL loadings and 30 % of FL loadings
during normal flow years, but those numbers increase to
27 % and 37 % during high-flow years (Table S4). Therefore,
strategies aimed at mitigating point source loadings will af-
fect lake loadings more in low-flow years, while agricultural
strategies will have a larger effect in high-flow years.

Undeveloped lands have the lowest nutrient export of
all land-use sources (Table 3), which is consistent with
findings from targeted water quality monitoring recently
done in JL (NC Policy Collaboratory, 2019). However,
undeveloped areas are decreasing in this region (1.5, 3,
and 2 km2 yr−1 in HR, NH, and FL basins, respectively,
from 1995 to 2015). Even though more recent development
(post-1980) has significantly lower TN export when com-
pared to pre-1980 development, it still exports approximately
6 times more TN than undeveloped lands (3.9 kg ha−1 yr−1

vs. 0.7 kg ha−1 yr−1; Table 3). At the same time, post-1980
urban export rates are similar to agricultural rates, implying
that new urban construction in agricultural areas may have
limited impact on total nutrient loading.

4.4 Summary and future directions

To efficiently manage watersheds, it is critical to identify
the major sources and locations of pollutant loading un-
der varying hydroclimatological conditions. We enhanced
and applied a hybrid watershed modeling approach within a
Bayesian framework to characterize TN loading rates from
point and nonpoint sources and tested different classifica-
tions of urban land. By modeling interannual variability,
we assessed how land use change and hydroclimatological
variations have affected nutrient loading over time. Process-
based and hybrid modeling approaches (e.g., SPARROW;
Gurley et al., 2019) have been widely used to determine
nitrogen loading rates, but these applications are often lim-

ited by an inability to capture interannual variations in load-
ing and/or provide holistic parameter calibration with uncer-
tainty quantification. Compared to previous Bayesian hybrid
watershed modeling studies (Qian et al., 2005; Wellen et al.,
2012; Strickling and Obenour, 2018), this study advances our
ability to account for interannual variability in both export
and retention. The study also discriminates how export rates
vary across a relatively large number of sources (four land
uses, three livestock types, and point sources). Our ability
to resolve 18 process-based parameters within the Bayesian
framework is facilitated, in part, by a relatively dense stream
monitoring network and modern tools for Bayesian inference
(Monnahan et al., 2017). The efficacy of the proposed ap-
proach for characterizing nutrient export in larger but less
densely monitored watersheds could be explored in future
research.

In this study, we identify areas of elevated TN export. In
particular, we find that pre-1980 urban areas are hot spots
for nonpoint TN loading. In addition, watershed-level ran-
dom effects help identify outlier watersheds that export sig-
nificantly more or less TN than the source distribution data
would otherwise imply. Great costs have been incurred to
protect waterways in the last 30–40 years without a clear un-
derstanding of how effective current policies have been in
reducing nutrient loading (Parr et al., 2016; Utz et al., 2016).
Our results suggest that post-1980 construction and land de-
velopment BMPs have helped to reduce TN loadings from
the built environment. We hope these findings will stimulate
further research into the specific mechanisms that result in
lower TN export from newer development. Enhancing the
hybrid model with BMP and wastewater infrastructure data,
in addition to more detailed land use and hydrography data,
could be one approach for refining our understanding of how
specific development practices influence watershed-scale nu-
trient loading. Given that even newer (post-1980) develop-
ment is found to increase TN export by a factor of 5 or more,
relative to undeveloped lands, further efforts are required to
understand and mitigate the adverse impacts of urban devel-
opment on nutrient loading.

Code and data availability. Hydrometeorological and water qual-
ity data can be obtained from the public sources described in the
methods (e.g., USGS, Water Quality Portal). RStan code is included
in the Supplement (Text S1). A complete input dataset for the code
is available here: https://doi.org/10.5281/zenodo.4776993 (Miller et
al., 2021).
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