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Abstract. This study investigates the ability of machine
learning models to retrieve the surface soil moisture of a
grassland area from multispectral remote sensing carried out
using an unoccupied aircraft system (UAS). In addition to
multispectral images, we use terrain attributes derived from a
digital elevation model and hydrological variables of precip-
itation and potential evapotranspiration as covariates to pre-
dict surface soil moisture. We tested four different machine
learning algorithms and interrogated the models to rank the
importance of different variables and to understand their rela-
tionship with surface soil moisture. All the machine learning
algorithms we tested were able to predict soil moisture with
good accuracy. The boosted regression tree algorithm was
marginally the best, with a mean absolute error of 3.8 % vol-
umetric moisture content. Variable importance analysis re-
vealed that the four most important variables were precip-
itation, reflectance in the red wavelengths, potential evap-
otranspiration, and topographic position indices (TPI). Our
results demonstrate that the dynamics of soil water status
across heterogeneous terrain may be adequately described
and predicted by UAS remote sensing and machine learn-
ing. Our modeling approach and the variable importance and
relationships we have assessed in this study should be use-
ful for management and environmental modeling tasks where
spatially explicit soil moisture information is important.

1 Introduction

The relatively small quantity of water stored in the upper lay-
ers of the soil plays a key role in terrestrial biology, biogeo-
chemistry, and atmospheric water and energy fluxes. More
than half of the solar energy absorbed by the land surface is
used to evaporate water (Trenberth et al., 2009), and about
60 % of terrestrial precipitation is returned to the atmosphere
by evapotranspiration (Seneviratne et al., 2010).

In most environments, soil water storage mainly depends
on precipitation and evapotranspiration (Hillel, 1998; Rana
and Katerji, 2000), but the distribution of water in the soil
is also dependent on soil hydraulic properties, topography,
and other environmental and belowground conditions (Kor-
res et al., 2015; Vereecken et al., 2014; Western et al., 1999).
Because of the complex interplay of these variables, it is a
challenge to accurately estimate soil water. It is typically
impractical to acquire data on soil water dynamics by di-
rect measurement on scales larger than a small experimen-
tal plot, and there is no robust approach to predict it. The
scarcity of soil moisture data is often cited as a major imped-
iment for the investigation of soil moisture–climate interac-
tion. Modern techniques for large-scale measurement of soil
moisture include the cosmic-ray soil moisture observing sys-
tem (COSMOS)- and the global positioning system interfer-
ometric reflectometry (GPS-IR)-based methods. The COS-
MOS employs a network of probes across the United States
that estimate soil moisture by measuring cosmic-ray neutron
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radiation intensity above the land surface (Zreda et al., 2012).
GPS-based methods are also able to estimate soil moisture
of a few square meters using a GPS signal reflected from the
soil. These techniques, while very promising, still need to be
refined for routine use (Ochsner et al., 2013).

Remote sensing methods of retrieving soil moisture pro-
vide an alternative to conventional methods of soil moisture
measurement, which are impractical at large scales. Several
remote sensing methods, particularly from spaceborne de-
ployment, have been developed to retrieve soil moisture us-
ing optical, thermal infrared, and microwave sensors. Remote
sensing methods enable spatially distributed and frequent ob-
servations over a large area, which is difficult to achieve
when using conventional field measurements (Barrett and
Petropoulos, 2014; Petropoulos et al., 2015). A critical chal-
lenge to the current remote sensing methods of retrieving soil
moisture is the lack of imagery with optimum spatial reso-
lutions appropriate for field-scale soil moisture studies and
the low revisit frequency of satellites (Barrett and Petropou-
los, 2014; Das and Mohanty, 2006). Alternatives based on
occupied airborne platforms are limited due to their high op-
erational costs. Another persistent challenge to soil moisture
remote sensing is the difficulty of estimating root zone soil
moisture from the surface observations (Nichols et al., 2011;
Ochsner et al., 2013).

Water is one of the most significant chromophores in soils,
and studies have shown that narrow band spectral informa-
tion in the visible (0.4–0.7 µm), near-infrared (0.7–1.1 µm),
and shortwave infrared (1.1–2.5 µm) regions can be used to
estimate surface soil moisture (Ben-Dor et al., 2009; Mal-
ley et al., 2004). Soil reflectance in the visible to short-
wave infrared spectral region generally decreases with an
increase in soil moisture, with some parts of the spectrum
showing a more pronounced decrease than others (Haubrock
et al., 2008; Weidong et al., 2002). The hydroxide bond is
the strongest absorber in the near-infrared region, and free
water in soil pores has strong absorption at around the 1.4
and 1.9 µm wavebands (Malley et al., 2004). Several hyper-
spectral techniques for estimating soil moisture content have
been developed, such as the soil moisture Gaussian model
(SMGM; Whiting et al., 2004) and the normalized soil mois-
ture index (NSMI; Haubrock et al., 2008).

In the presence of vegetation cover, however, the ability
to use soil reflectance to measure soil moisture is limited
(Muller and Décamps, 2000). In addition, the reflectance
of solar radiation from soil surface represents only about
50 µm of the upper soil. This makes it challenging to estimate
the moisture conditions beneath thin surface layers (Malley
et al., 2004). Most soil moisture remote sensing approaches
operating in the optical range rely on developing an empiri-
cal spectral vegetation index (Barrett and Petropoulos, 2014).
Several soil moisture measurement methods based on vege-
tation index proxies have been suggested as vegetation in-
dexes are extremely sensitive to water stress, and they allow
indirect estimates of soil moisture (Zhang and Zhou, 2016).

Many studies have focused on deriving surface soil mois-
ture content from the synergistic use of remote sensing data
acquired simultaneously in the optical and thermal infrared
spectrum. The so-called universal triangular relationship is
a widely used method for estimating soil moisture (Nichols
et al., 2011; Sobrino et al., 2014).

Retrieval of information from remote sensing measure-
ments is based on the principle that changes in the chemical,
physical, and/or structural characteristics of a target deter-
mine the variations in its electromagnetic response (Schanda,
1986). The task of retrieving information from remote sens-
ing is complicated by several factors. Ali et al. (2015) sum-
marize the retrieval challenges as being (i) the often complex
and nonlinear relation between remote sensing measurement
and target variables of interest; (ii) the ill-posed nature of the
retrieval problem in that electromagnetic response of a tar-
get is typically the result of contributions from multiple tar-
get variables, and similar electromagnetic responses may be
associated with different physical variables; (iii) the mixed
contribution of multiple objects represented within elemen-
tary resolution cell; and (iv) the influence of external disturb-
ing factors such as noise, radiation components coming from
surrounding of the investigated area, and the atmosphere.

Soil moisture retrieval from remote sensing has tradition-
ally been done by either empirical approaches or approaches
based on an inversion of physical models. More recently, the
use of machine learning techniques has gained increased at-
tention because of their ability to tackle many of the limi-
tations with the empirical approaches and physical-model-
based approaches.

Physical-model-based approaches depend on an under-
standing of the mechanisms involving the interaction of elec-
tromagnetic radiation and the target variable. A wide variety
of analytic electromagnetic models have been proposed in
the literature. The thermal inertia approach (Price, 1977) is
one such method that is most commonly used for soil mois-
ture retrieval using thermal infrared (wavelengths between
3.5 and 14 µm) observation (Barrett and Petropoulos, 2014;
Zhang and Zhou, 2016). Many new soil thermal inertia esti-
mation methods continue to be developed (Price, 1985; Tian
et al., 2015; Zhang and Zhou, 2016). The advantages of such
physically based models are that they can operate in more
general scenarios that are difficult to represent through the
collection of in situ measurements. However, such models
rely on simplifying the representation of a real phenomenon,
which can reduce reliability. A major drawback of analyti-
cal models is their complexity and requirement for a large
number of input parameters (Zhang and Zhou, 2016).

Empirical modeling approaches, on the other hand, em-
ploy statistical regression techniques to develop a mapping
function based on in situ measurements of the target variable
and corresponding remote sensing measurement. The advan-
tage of empirical relationships is that they are typically fast
to derive and require fewer inputs. However, such models re-
quire a higher-quality ground measurement, which could be
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time consuming and expensive, and the derived relationship
is typically site and sensor dependent, which limits the pos-
sibility of extending their use readily in a different area (Ali
et al., 2015).

Specific drawbacks to soil moisture remote sensing, using
the optical and thermal infrared spectrum, are their shallow
soil penetration ability and the cloud-free atmospheric con-
dition requirement. Many of the optical and thermal infrared
synergistic approaches require a wide range of both vegeta-
tion index and soil moisture conditions within a study region,
which cannot always be satisfied (Barrett and Petropoulos,
2014).

The advantages of machine learning techniques in remote
sensing are their ability to learn and approximate complex
nonlinear mappings and the fact that no assumptions need
to be made about data distribution. They can, thus, integrate
data from different sources with poorly defined or unknown
probability density functions and have often been shown to
outperform other parametric approaches (Ali et al., 2015;
Paloscia et al., 2008). Some of the limitations of machine
learning methods are the need for a large number of training
data, which require extensive ground truth data sets, and that
machine learning methods are black boxes, and only limited
inference can be made about the relationships of different in-
puts.

Remote sensing from unoccupied aircraft systems (UAS)
has the potential to address several limitations of traditional
remote sensing. The most attractive feature is their high spa-
tial resolution, frequent or on-demand image acquisition, and
low operating costs (Anderson and Gaston, 2013; Berni et al.,
2009; Colomina and Molina, 2014; Elarab, 2016; Manfreda
et al., 2018; Tmušić et al., 2020). UAS is an umbrella term
that refers to the unoccupied aircraft and the complementary
ground control and communication systems necessary for air
surveys (Singh and Frazier, 2018).

1.1 Objectives

The purpose of this research was to advance soil moisture
change measurement, process understanding, and prediction
using remote sensing products from UAS and machine learn-
ing methods. In this study, the spatial and temporal scale lim-
itations were addressed by deploying multispectral remote
sensing with small UAS and surface soil moisture changes
were retrieved using machine learning.

The specific goals of this study were as follows: (1) to
develop an adaptable method for retrieving information on
surface soil moisture from small UAS remote sensing prod-
ucts and machine learning methods, (2) to identify important
reflectance and surface characteristics for the prediction of
soil moisture changes, (3) to identify appropriate spatial res-
olutions of reflectance images and terrain variables for esti-
mating soil moisture, and (4) to explore the relation of soil
moisture with surface properties.

2 Methods

Multispectral images of the study area were collected on 6
different days throughout the 2018 water year using a UAS
equipped with a multispectral camera. A high-resolution,
centimeter-scale digital elevation model (DEM) was gen-
erated from the stereo images using photogrammetric soft-
ware, and multiple sets of terrain variables were calculated.
Concurrently with the image acquisition flights, the moisture
content of the top 3.8 cm of soil was measured at predefined
sampling locations. The ground soil moisture measurements,
multispectral reflectance, terrain variables, and rainfall and
potential evapotranspiration (PET) data were then aggregated
into a data table and used to train a machine learning model
to predict the soil moisture. Figure 1 shows the model build-
ing process.

2.1 Study site

The study was conducted in a small grassland catchment
at the Merced Vernal Pools and Grassland Reserve located
about 5 km northeast of the city of Merced, California. The
grassland is used for livestock grazing; it has a Mediterranean
climate with hot, dry summers and cool, wet winters, with an
average annual precipitation of 330 mm (Wong, 2014).

Our study site is a 0.6 km2 area of land located within a
subcatchment that contributes to the Avocet Pond, a large
stock pond located in the northeastern corner of the reserve
(Fig. 2). The catchment was selected because of an extensive
hydrologic modeling study that was being conducted on the
site at the time (Fryjoff-Hung, 2018).

The study area soils are dominated by Redding grav-
elly loam (fine, mixed, active, thermic Abruptic Durixeralfs)
soils. The elevation of the study area ranges from 118 to
162 m above sea level, and the slope ranges from 0 to 31◦.
The distributions of elevation and slope are shown in Fig. S1
in the Supplement.

The vernal pool’s ecology is predominantly controlled by
large seasonal shifts and high spatial variability in hydrology;
this makes the study site attractive for our study. UAS remote
sensing has the potential to provide information at appropri-
ate spatial and temporal scales for vernal pool studies (Stark
et al., 2015). The annual seasonal cycle of the study site is
shown in Fig. 3.

2.2 Data collection and preparation

The imagery was acquired on 6 d during the 2018 water year
green-up and brown-down, using a fixed-wing UAS with a
multispectral camera onboard (see Table 3). Figure 4 shows
a typical scene of the study site during the wet and dry sea-
sons. Point soil moisture measurements (top 4 cm) were col-
lected with a time domain reflectometry (TDR) probe across
precise sampling transects identified with a real-time kine-
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Figure 1. Process flowchart of model development.

Figure 2. Map of the Avocet Pond catchment showing the footprint of the study area, ground sampling points, and elevation contours in
meters. Inset shows the location of the study site in California.

matic (RTK) positioning survey. Daily rainfall and PET val-
ues were acquired from nearby weather stations.

2.2.1 Image acquisition and processing

Multispectral images were acquired using a Parrot Sequoia
sensor (Parrot SA, Paris, France) equipped with a sunshine
sensor that measured irradiance at the sensor spectral wave-
bands for radiometric normalization. The camera is deployed
on a fixed-wing unoccupied aircraft (Finwing Sabre; Finwing
Technology) with an average flight height of 120 m above

ground level. Images of a calibrated reflectance panel (Mi-
caSense, Inc., Seattle, WA) were taken before each flight and
used in the radiometric calibration of the images. The UAS
remote sensing flights were conducted between late morn-
ings and early afternoons during clear weather conditions.
A single remote sensing–soil moisture collection campaign
takes between 3 and 4 h. Images were acquired between
10:00 and 14:00 local time (LT).

The Parrot Sequoia sensor captures four separable bands in
the green, red, red edge, and near-infrared bands, with a fo-
cal length of 3.98 mm and resolution of 1280× 960 pixels. A
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Figure 3. Vernal pool annual moisture cycle.

Figure 4. Typical scene of the study area in April (a) and June (b)
2018.

fifth channel captures a high-resolution image in the visible
spectrum, with a focal length of 4.88 mm and a resolution of
4608× 3456. Images for the study area were captured with a
minimum of 85 % overlap and a ground pixel resolution of 10
to 15 cm. Images were scaled to a uniform 15 cm pixel res-
olution during post-processing. Image processing was done
using Pix4D photogrammetry software (Pix4D, Lausanne,
Switzerland). A DEM was photogrammetrically generated
from the overlapping stereo images, and images were or-
thorectified and radiometrically calibrated.

Geometric and radiometric corrections

Between seven and nine ground control point (GCP) targets,
with precise locations identified by RTK survey, were used
for photo alignment. The mean georeferencing root mean
square errors (RMSEs) of the GCPs ranged from 0.6 to 2 cm,
and the mean reprojection errors ranged from 0.1 to 0.2 px,
based on the bundle block adjustment error assessment re-
port. DEM was generated using the structure-from-motion
technique; noise filtering and mild surface smoothing (sharp
smoothing) were applied to correct for the noisy and erro-
neous points of the point cloud. The inverse distance weight-
ing algorithm was used to interpolate between points to cre-
ate the raster DEM.

Radiometric calibration by the Pix4D software considers
the positional data, solar irradiance measurements, and gain
and exposure data from the camera to convert raw digital
numbers into sensor reflectance values. Sensor reflectance
represents the ratio of the reflected light to the incoming solar
radiation and provides a standardized measure that is directly
comparable between images. Finally, surface reflectance is
calculated in post-processing, taking into account the cam-

era’s orientation, the angle of the Sun, and the known re-
flectance values of the calibration panel.

2.2.2 In situ soil moisture measurement

The moisture content of the top 4 cm of soil was measured si-
multaneously with UAS remote sensing flights using a Field-
Scout TDR 300 soil moisture meter equipped with a 3.8 cm
probe (Spectrum Technologies Inc., IL, USA). The Field-
Scout TDR 300 measures volumetric water content, using
time domain reflectometry, with a resolution of 0.1 % and
an accuracy of ± 3 %.

Accurate geolocation of the in situ soil moisture measure-
ment points is critical for an overlay analysis of the ground
measurements with remote sensing products. To ensure ac-
curate geolocations of the ground measurements, we identi-
fied six 90 m long sampling transects and recorded the survey
grade geolocation of the transect ends using the RTK posi-
tioning survey. The transect ends were marked with a metal
peg hammered into the ground. During each soil moisture
measurement campaign, a 90 m tape measure was temporar-
ily affixed between the two ends of the transect, and soil
moisture measurements were taken about every 10 m, not-
ing the exact distance of the sampling point from the transect
ends.

The sampling transects were laid out in a way that ensured
that they run over a variety of topographic variables in terms
of flow accumulation, topographic wetness index, and stream
networks. Furthermore, each sampling transect fell in a sep-
arate subbasin within the Avocet basin.

2.2.3 Hydrological variables

Daily precipitation data were retrieved from the University
of California, Merced, weather station located approximately
6 km southwest of the study site (California Department of
Water Resources, 2018). Daily reference evapotranspiration
data were retrieved from the California Irrigation Manage-
ment Information System’s (CIMIS) Merced station located
approximately 10 km south of the study site (California Ir-
rigation Management Information System, 2018). The refer-
ence evapotranspiration is evapotranspiration from standard-
ized grass calculated using the modified Penman (CIMIS
Penman) and Penman–Monteith equations (California Irri-
gation Management Information System, n.d.). In this study,
we will refer to the reference evapotranspiration as the po-
tential evapotranspiration (PET).
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2.3 Data processing

To prepare the data for machine learning, we compiled all
the information into a table with the measured soil moisture
from each sampling point and date organized into one col-
umn. Each row contained the accompanying information for
that sampling point and time.

2.3.1 Feature engineering

We calculated several variables based on the multispectral
reflectance, terrain, and hydrological data to be used to train
a machine learning model as predictor variables. A list of all
the measured and calculated variables used in modeling soil
moisture are given in Table 1.

Topographic variables derived from DEM are scale depen-
dent; to account for this, we calculated all topographic vari-
ables on six DEMs with different resolutions. Prior to calcu-
lating topographic variables, we upscaled the DEM to 15, 30,
60, 100, 300, and 500 cm cell resolutions and then calculated
topographic variables for all the resolutions. The calculation
of the topographic position index (TPI) is a special case since
it does not only depend on DEM resolution but also on the
definition of the inner and out radii of the annulus (see Eq. 1).

TPI= Elevation − focal mean (annulus (Inner Radius,
Outer Radius)). (1)

We calculated the TPI for different neighborhood sizes us-
ing the ArcGIS 10.5 Land Facet Corridor tool (Jenness et al.,
2013). We calculated the TPI on three DEM resolutions (100,
300, and 500 cm), with two inner radii (1 and 3 cells) and
three outer radii (3, 5, and 7 cells). A map of selected topo-
graphic variables is provided in Fig. S2.

Precipitation and PET are two important drivers of surface
soil moisture. To account for antecedent conditions, we used
the cumulative water year precipitation and PET and rolling
sums of both variables with different time windows before
the measurement dates. We calculated cumulative precipita-
tion and PET for 1, 2, 3, 7, 15, and 30 d before the sampling
dates and used those rolling sums as input.

2.3.2 Variable selection

The total number of soil moisture measurements was 406,
that is, the total number of rows. For each soil moisture
point, we added columns with the corresponding date, re-
flectance, topographic, and hydrological variables. The re-
flectance and topographic variables were extracted from the
raster images using the raster-to-point data extraction tool
in ArcGIS software, taking the average value of a 1 m di-
ameter buffer around the points. The hydrological variables
were taken to be the same for the entire study area and only
changed based on the measurement days.

The data preparation resulted in 138 variables. We em-
ployed variable selection (or feature selections) methods to

identify a subset of relevant variables (features) from the
larger set of potential predictors. The benefits of variable se-
lection include improvement of model performance, reduc-
ing training and utilization times, and facilitating data under-
standing (Guyon and Elisseeff, 2003; Weston et al., 2003).
We employed the following three methods of variable se-
lection: tests of linear correlation and linear dependencies
among variables and recursive feature elimination. Recur-
sive feature elimination involves removing the least impor-
tant features whose omission has the least effect on training
errors (Chen and Jeong, 2007; Guyon et al., 2002). We imple-
mented a recursive feature elimination procedure during the
coarse tuning of the boosted regression tree (BRT), random
forest (RF), artificial neural networks (ANNs), and support
vector regression (SVR) algorithm models.

Following the variable selection procedure, of the 138
variables, 76 variables were removed based on linear correla-
tion and linear dependencies among variables. An additional
16 were removed following the recursive feature elimination
procedure. The final data used for building the models had
46 variables (Table 2), of which five are hydrological, nine
are reflectance, and 32 are topographic variables. Variable
categories that had no importance included the topographic
wetness index (TWI), the reflectance in the red-edge band,
and normalized difference vegetation index (NDVI).

2.4 Data description

The 6 data collection days in the 2018 water year and sum-
mary site statistics are given in Table 3. Cumulative and 30 d
rolling sums of precipitation and PET for the 2018 water year
are shown in Figs. S3 and S4.

Figure 5 shows the distribution of soil moisture and
Thiam’s transformed vegetation index (TTVI) during the 6
measurement days. The soil moisture measurement followed
the general precipitation patterns but was also influenced by
immediate rainfall events; the highest soil moisture occurred
on the only measurement day on which it had rained the day
before (23 January 2018). The vegetation greenness, as mea-
sured with TTVI, followed the 15 d cumulative rainfall well,
with maximum greenness occurring on 4 April 2018 (day
of water year 186) and sharply decreasing in the following
2 months (Fig. 5).

Figure S5 shows the distribution of some terrain vari-
ables associated with the soil moisture sampling points and
correlations between variables. The terrain variables for the
ground sampling points show a reasonable distribution of
values, while the distribution of elevation shows a bimodal
distribution with ranges from 120 to 130 m; most of the other
variables show a close to normal distribution. The only vari-
ables with Person’s correlation above 0.5 are between TPI
and curvature (Pearson’s correlation is equal to 0.67). The
distribution of some variables in the data is shown in Fig. S6.
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Table 1. Measured and calculated data used for machine learning. All topographic variables are computed from the digital elevation model.
Descriptions and significance of topographic variables are adapted from Wilson and Gallant (2000).

Variable (unit) Description Significance or relation to soil mois-
ture

M
ea

su
re

d Soil moisture content (%) Volumetric soil moisture content Variable of interest

Daily rainfall (mm) Daily rainfall from a precipitation
gauge (OTT Pluvio) with a wind-
shield

Source of soil moisture

Green (–) Surface reflectance in the green
wavelength band (530–570 nm)

Soil and vegetation reflectance
change

Red (–) Surface reflectance in the red wave-
length band (640–680 nm)

Soil and vegetation reflectance
change

Red edge (–) Surface reflectance in the red-edge
wavelength band (730–740 nm)

Soil and vegetation reflectance
change

Near-infrared (NIR) (–) Surface reflectance in the NIR wave-
length band (770–810 nm)

Soil and vegetation reflectance
change

Altitude (m) Elevation (m) Vegetation; potential energy

C
al

cu
la

te
d Daily potential evapotranspiration

(mm)
Reference evapotranspiration from
standardized grass calculated using
CIMIS Penman equation.

Major soil moisture loss pathway

Thiam’s transformed vegetation in-
dex (TTVI) (–) ∗

TTVI=
√∣∣∣(NIR−R

NIR+R

)
+ 0.5

∣∣∣ Vegetation moisture stress

Slope (degrees) Slope gradient (degrees) Surface and subsurface flow velocity,
runoff rate, vegetation, geomorphol-
ogy

Aspect (cos(degree)) Cosine transformed direction of max-
imum downward gradient (north-
ness)

North- and south-facing slopes dif-
fer in solar insolation, PET, flora and
fauna distribution, and abundance

Profile curvature (–) Downslope curvature Flow acceleration, erosion or
deposition rate, and geomorphology

Plan curvature (–) Alongside curvature Converging or diverging flow; soil
characteristics

Tangential curvature (–) Curvature in an inclined plane Represents areas of convergent (con-
cave) and divergent (convex) flow

Flow accumulation (multiple flow
direction, A) (cm2)

Catchment area draining to pixel Runoff volume; geomorphology

Length–slope (LS) factor (–) Length–slope factor from the Re-
vised Universal Soil Loss Equation
(RUSLE). For slope lengths < 100 m
and slopes < 14◦:

LS= 1.4
(

A
22.12

)0.4(
sin S

0.0896

)1.3

Calculates a spatially distributed sed-
iment transport capacity

Topographic position index (–) TPI= Z0−
1
nR

∑
i∈RZi

Topographic wetness index (–) TWI= ln
(
A

tanS

)
Commonly used index to quantify to-
pographic control on the hydrologi-
cal process

∗ The TTVI is a transformation of the commonly used normalized difference vegetation index (NDVI). The reason for choosing the TTVI transformation is that it
eliminates negative values and often transforms NDVI histograms into a more normal distribution. Normalizing machine learning inputs is considered good
practice and aids models in converging faster.
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Table 2. Predictor variables used for machine learning models.

Domain Variable Scale ∗

Hydrological Potential evapotranspiration 1, 30
Precipitation 1, 15, 30

Reflectance Green 0.6, 1, 3
Red 0.6, 1, 3
Near-infrared 0.6, 1, 3

Topographic Northness 0.6, 1, 3, 5
Slope 0.6, 1, 3, 5
Flow direction 0.6, 1, 3, 5
Flow accumulation 0.6, 1, 3, 5
Curvature (profile) 1, 3, 5, 50
Curvature (planform) 0.6, 1, 3, 5, 50
Topographic position index (1,3), (3,7), (3,9), (5,15), (9,21), (15,35), (15,100)

∗ Scale for raster products is pixel resolution in meters and cumulative days for the hydrological variables. Topographic position index
scale is a combination of the inner and outer diameters in meters (see Eq. 1).

Table 3. Data collection days and site summary statistics.

Date Day of the
water year

Cumulative
water year
precipitation
(mm)

Cumulative
water year
PET (mm)

Mean soil moisture
(and standard
deviation) (%)

Sample

count

1 30 Oct 2017 30 5.8 96.58 2.47 (1.09) 60
2 4 Dec 2017 65 34.3 149.16 12.26 (5.23) 60
3 23 Jan 2018 115 85.6 199.15 24.85 (7.79) 64
4 4 Apr 2018 186 133.3 371.81 20.27 (10.72) 92
5 1 May 2018 213 177.9 489.18 8.98 (3.93) 74
6 24 May 2018 236 177.9 619.26 4.42 (1.68) 56

2.5 Machine learning procedure

The overall machine learning procedure is illustrated in
Fig. 1. The computationally demanding steps of model train-
ing and testing were run at the Multi-Environment Research
Computer for Exploration and Discovery (MERCED) high-
performance computing cluster at the University of Califor-
nia, Merced. The caret R package (v6.0-78; Kuhn, 2008)
was used to handle training and tuning procedures. The SVR
and relevance vector regression (RVR) algorithms were im-
plemented using the kernlab package (v0.9-26; Karatzoglou
et al., 2004), RF algorithm was implemented using the ran-
domForest package (v4.6-12; Liaw and Wiener, 2002), and
the BRT algorithm was implemented using the xgboost pack-
age (v0.6.4.1; Chen and Guestrin, 2016).

Prior to model training, all the predictor variables were
standardized by centering to mean zero and scaling by the
variable’s standard deviation (Eq. 2) as follows:

x′ =
x− x

σx
, (2)

where x′ is the centered and scaled value of variable x, and x
and σx are the arithmetic mean and standard deviation of the
variable. Standardizing variables prior to model training is
a good practice that minimizes issues of scale among input
variables and often leads to better and faster training (Brown-
lee, 2020).

2.5.1 Machine learning algorithms used

Several machine learning algorithms exist for multivariate
regression modeling. Artificial neural networks (ANNs) are
among the most commonly used algorithms for the retrieval
of soil moisture from remote sensing (e.g., Hassan-Esfahani
et al., 2015; Paloscia et al., 2008). In recent years, the support
vector machine (SVM) and the similar support vector regres-
sion (SVR) algorithms have become popular in the retrieval
of soil moisture (e.g., Ahmad et al., 2010; Zaman and Mc-
kee, 2014; Zaman et al., 2012). Other popular machine learn-
ing algorithms include tree-based models such as the random
forest (RF) and boosted regression trees (BRTs).
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Figure 5. Measured soil moisture and vegetation index of the
ground sampling locations from 1 m resolution raster.

Artificial neural network (ANN)

ANN models have been widely used in the development of
pedotransfer models (Matei et al., 2017; Pachepsky et al.,
1996; Schaap et al., 2001; Zhang et al., 2018; Zhang and
Schaap, 2017). ANNs are universal approximators that can
approximate any nonlinear mapping. The feed-forward neu-
ral network is a popular variant of ANN. In this study, we
implemented the feed-forward neural network with a single
hidden layer, which is considered sufficient for the majority
of problems (Reed and Marks II, 1999).

Support vector regression (SVR)

SVR is an adaptation of the support vector machine (SVM)
for regression problems (Cortes and Vapnik, 1995; Drucker
et al., 1997). The SVM learning is a generalization of a max-
imal margin classifier. The algorithm first maps the input
variables into a high-dimensional space using a fixed map-
ping function, i.e., a kernel function. The algorithm then con-
structs hyperplanes, which can be used for classification or,
in the case of SVR, for regression. In this study, we use the
radial basis function kernel, which is one of the most-used
kernels in SVR. Some advantages of SVR include the fact
that they do not suffer from the problem of local minima,
and that they have few parameters to tune when training the
model.

Relevance vector regression (RVR)

Like SVM, the RVR was originally introduced as a classi-
fication machine (Tipping, 2000). RVR is a Bayesian treat-
ment of the SVM prediction function which avoids some of
the limitations of SVM algorithms, such as reducing the use
of basis functions and the need for optimizing the cost and
the insensitivity parameters (Ben-Shimon and Shmilovici,
2006). Torres-Rua et al. (2016) successfully used the RVR
algorithm to estimate surface soil moisture from satellite im-
ages and energy balance products.

Random forest (RF)

RFs are popular models that are relatively simple to train and
tune (Hastie et al., 2009). They apply ensemble techniques by
averaging a large number of individual decision-tree-based
models. Tree models are grown by searching for a predictor
that ensures the best split that results in the smallest model
error. The individual trees in the RF ensemble are built on
a bootstrapped training sample, and only a small group of
predictor variables are considered at each split; this ensures
that trees are decorrelated with each other (Breiman, 2001;
James et al., 2013).

Boosted regression trees (BRTs)

BRT is another form of the decision tree model ensemble
enhanced by the gradient boosting approach. The gradient
boosting algorithm constructs additive regression models by
sequentially fitting simple base learner functions (i.e., de-
cision trees) to current pseudo-residuals at each iteration
(Friedman, 2002). These pseudo-residuals are the gradient
of the loss function being minimized. BRT models have
shown considerable success and often outperform other ma-
chine learning algorithms in many situations (Elith et al.,
2008; Natekin and Knoll, 2013). BRT models are also par-
ticularly suitable for less-than-clean data (Friedman, 2001),
which makes them particularly attractive in our work where
the training data are compiled from various sources and dif-
ferent measurement methods, making them prone to some
inconsistencies.

Tree-based models, both the RF and BRT, have the advan-
tage of being able to rank the predictor variable’s relative im-
portance. In these models, the approximate relative influence
of a single predictor variable is calculated as the empirical
improvement of predictions by splitting on that predictor at
each node and then averaging the relative influence of the
variable across all trees of the model (Ridgeway, 2012).

2.5.2 Training–testing set splits

The data was split into training and testing sets of approxi-
mately 75 %–25 %, respectively (i.e., approximately 300 and
100 records). The testing set was a hold-out set used only to
evaluate final trained models.
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The training–testing set splitting was done based on a ran-
dom selection of the transect. For the testing set, two tran-
sects are randomly selected on four randomly selected sam-
pling dates, and one transect is randomly selected on the
remaining two sampling dates. To minimize the bias that
may result from the training–testing set split, we generated
30 unique training–testing set splits and trained 30 separate
models based on each separate training set. The performance
of each model was assessed on its respective testing set. Sim-
ilar performance of the individual models would indicate that
bias due to the training–testing set split is minimal. The justi-
fication for this subsetting procedure is as follows: (1) the se-
lection of entire transects as testing sets avoids possible data
leakage between the training and testing sets due to spatial
autocorrelation since samples in a transect are located close
to each other – a simple random splitting would not avoid
this potential problem; (2) all six sampling dates are repre-
sented in the training set – models are trained on the entire
range of time and soil moisture changes; and (3) the testing
set is between 25 % and 30 % of the data (between 100 and
125 samples).

The distribution of samples across the sampling dates and
transects for the training and testing sets is shown in Figs. S7
and S8, respectively. On average, the training–testing split
was 294 samples in the training sets and 113 samples in the
testing sets. All the training sets have samples from all the
six sampling dates and transects. While all sampling dates
are represented in each testing set, on average, there are five
transects in each testing set.

2.5.3 Cross-validation procedure

The selection of optimal model parameters in the model
training process was done by the cross-validation method.
Cross validation is done to estimate the test error rate by
holding out a subset of the training data (i.e., a validation set)
from the fitting process and then applying the fitted model to
predict the validation subset. A 30-fold cross-validation set
was generated by randomly splitting the training data into
80 %–20 % training–validation split by randomly selecting a
single transect every day. Optimum model parameters were
selected using a comprehensive grid search method.

2.5.4 Model assessment

Performance

The final performance of models was assessed on the sep-
arate hold-out test data set that was not used in the model
training. The performance of models is measured in terms of
mean absolute error (MAE), mean bias error (MBE), and the
coefficient of determination (R2) determined as follows:

MAE=
1
N

N∑
i=1
|yi − ŷi | (3)

MBE=
1
N

N∑
i=1
(ŷi − yi) (4)

R2
= 1−

∑N
i=1
(
yi − ŷi

)2∑N
i=1(yi − y)

2
, (5)

where N is the number of observations, y is the measured
value, ŷ is the predicted value, and y is the mean of measured
values.

The MAE indicates the average deviation of predictions
from the measured value, with smaller values indicating bet-
ter performance. The MBE measures the average system-
atic bias, and positive or negative values indicate the aver-
age tendency of the predicted values to be larger or smaller
than the measured values, respectively. The R2 measures the
correspondence between predicted and measured data, with
higher values indicating stronger correspondence. The MAE
was chosen over RMSE as it is a more appropriate measure
when averaging (Willmott and Matsuura, 2005).

Variable importance

The predictor variable importance is the statistical signifi-
cance of each predictor variable with respect to its effect on
the generated model. For the tree-based models, RF and BRT,
variable importance is calculated internally within the model
algorithm. For the rest of the machine learning models, we
calculated the predictor variable importance by the recursive
feature elimination method, which is done by recursively re-
moving predictors before training a model and evaluating the
change in model performance. In this method, to account
for possible bias in variable subset selection (Ambroise and
McLachlan, 2002; Hastie et al., 2009), we included a sepa-
rate layer of 10-fold cross validation in the entire sequence
modeling steps.

Effect of predictor variables

The relationship between the predictor variables and out-
puts for a black box model can be analyzed using model-
independent methods such as partial dependence plots or ac-
cumulated local effects (ALEs) plots (Apley and Zhu, 2020;
Greenwell, 2017). These plots help to explain the relation-
ship between the outcome of the black-box-supervised ma-
chine learning models and the predictors of interest. We use
the ALE plots to analyze the effect of selected predictor vari-
ables. Although similar, the ALE plots are preferred over
partial dependence plots for their speed and their ability to
produce unbiased plots when variables are correlated (Apley
and Zhu, 2020). The value of the ALE is centered so that the
mean effect is zero; it can be interpreted as being the effect
of the variable on the outcome at a certain value compared
to the average prediction of the data. For example, if an ALE
estimate of −2 occurs when a variable of interest has a value
of 3, then the prediction is lower by 2 compared to the aver-
age prediction (Molnar, 2019).
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Figure 6. Distribution of residuals and MAE on the testing set by
the type of machine learning algorithm. Filled circles and values to
the right indicate the average MAE.

3 Results and discussion

3.1 Model performance

All the tested machine learning algorithms were able to pre-
dict soil moisture with good accuracy. Both BRT and RF al-
gorithms, however, had a slightly better performance with a
MAE of less than 4 % soil moisture content. Figure 6 shows
the performances of the five machine learning algorithms in
the testing set. The relatively better performance of BRT and
RF models is consistent with other studies that find that en-
semble decision-tree-based regression models perform bet-
ter than many other machine learning algorithms (Caruana
and Niculescu-Mizil, 2006), particularly in terrain and soil
spatial predictions (Hengl et al., 2017, 2018; Keskin et al.,
2019; Nussbaum et al., 2018; Szabó et al., 2019). Of the
two best algorithms, BRT performs marginally better, and
we present variable importance and predictor effect analy-
sis done with the BRT model. Despite being marginally in-
ferior to BRT, the RF model has several advantages over
BRT and the other algorithms. RF is much easier and faster
to train compared to the other machine learning algorithms
used. Since the ensemble trees are independent in the RF
model, the forest can be grown simultaneously, which dra-
matically increases the processing efficiency in parallel com-
puting. In addition, the RF model has few hyperparameters
to tune. In contrast, the ensemble trees in the BRT algorithm
must be grown sequentially since each new tree is dependent
on the previous ensemble (which makes parallel processing
challenging). Training a BRT model requires tuning multiple
hyperparameters – seven in our implementation of the BRT
model compared to two for the RF model. The performance
of individual models across the 30 different training–testing
splits was comparable and seems consistent with minimum
bias resulting from testing set selection. The performances
of the individual 30 tuned BRT models on their respective
testing sets are shown in Fig. S9.

Measured vs. model-predicted soil moisture contents for
the testing data sets are plotted in Fig. 7. The one-to-one
comparison in Fig. 7 shows the individual predictions by
all 30 models. The plot shows a general increase in error at

higher soil moisture levels. In addition, the model prediction
appears capped at around 40 % soil moisture content; this is
likely the result of a lack of training data points with values
above that soil moisture (see Fig. 5). The marginal box plot
on the y axis of Fig. 7 illustrates this point as values above a
40 % soil moisture content are over 1.5 times the interquartile
range above the upper quartile and are plotted as outliers.

3.2 Predictor variable importance

Precipitation and PET were among the top variables in terms
of predictive importance. This is to be expected, given that
these two variables represent the major source and loss path-
way for surface soil moisture. Reflectance in the red band
was by far the most important of all the reflectance bands.
Following these three variables, topographic variables – TPI
and curvature in particular – were most important in most
models. Topography has a strong control on soil moisture
distribution at landscape scales (Sørensen et al., 2006), while
the TPI was the most important topographic variable in de-
termining soil moisture. A surprising finding was that TWI
was found not to be an important predictor despite numerous
studies finding it important in explaining surface soil mois-
ture (e.g. Moore et al., 1988; Western et al., 1999) Despite
calculating TWI in multiple ways and at multiple scales, it
consistently failed the variable selection procedure for all al-
gorithms we tested. The reasons for this could be that TWI
is of little significance when explaining soil moisture distri-
bution at a small scale. Upon observing a similar lack of cor-
relation between TWI and soil moisture, Famigliettiet et al.
(1998) suggest that TWI is more appropriate for predicting
the soil moisture of an entire unsaturated zone profile and
not just the surface layer. Yet another reason could be that
since slope and flow accumulation, i.e., the constituent parts
of TWI, are already included in the models, it was deemed
redundant (not providing unique information) to the models.
This would be consistent with the models not finding NDVI
important when the constituent bands (red and NIR bands)
were found to be important.

When considering the importance of variables, it is worth
noting that different variables may have different degrees of
importance depend on how wet or dry the soil condition is.
Western et al. (1999), for example, found that flow accumula-
tion was the best predictor for soil moisture distribution dur-
ing wet conditions, while the potential solar radiation index
was a better predictor during dry conditions.

The relative importance of predictors for the BRT model
is shown in Fig. 8. The predictors have been grouped by vari-
able type (lumping the same variables regardless of variable
specifications, such as summation window for precipitation
or pixel resolution for the raster). The only temporally dy-
namic variables in our model are the hydrological and re-
flectance variables; the topographic variables are not time
dependent, and their variables need only be generated once
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Figure 7. Scatterplot of the measured vs. predicted soil moisture content for the testing sets. Marginal box plots show the distributions of
measured and predicted values. MAE, MBE, and R2 are averaged across the 30 models.

Figure 8. Relative variable importance distribution of the 30 BRT
models aggregated by variable type.

for a study area. A more detailed variable importance plot is
provided in Fig. S10.

3.3 Effect of predictor variables

We used the ALE plots to investigate the nature of the re-
lationship between the predictor variables and soil moisture.
Figure 9 shows the partial effect of red reflectance and three
of the most important topographic variables, i.e., TPI, pro-
file curvature, and flow accumulation. Given the high impor-
tance of these topographic variables, it is useful to understand
how these variables relate to soil moisture and identify possi-
ble thresholds of significant changes. Predicted soil moisture
generally increased with flow accumulation across all scales.

The relationship of curvature to soil moisture is a little
more complex; soil moisture tends to decrease as surfaces be-
came less convex. However, the trend reverses, and soil mois-
ture increases as surface curvature transitions from convex to
concave (approximately between profile curvature values−5
and +5) before the effect reverses again at higher concavity
surfaces. A possible explanation for this behavior might be
that more flat surfaces (with a near-zero curvature value) are
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Figure 9. ALE plots for four selected high-importance predictor
variables. The black curves represent the individual effects of the
30 models, and red curves are smoothed trend lines over all individ-
ual models. Marks along the x axis show the distribution of the data
in the model training set.

associated with higher slope areas, such as those immediately
following a ridgetop which is of higher convexity. The de-
creasing trend of soil moisture at increasing concavity (pro-
file curvature value above+5) is harder to explain. However,
at lower scales (3 and 5 m resolution DEM), soil moisture did
peak at the convex to concave transition (near zero) but there
was almost no noticeable decreasing pattern at higher curva-
ture (concavity) values (not presented in this paper). At the
lowest resolution (50 m DEM), soil moisture continuously
increases with an increase in concavity of surface.

Of all the topographic variables we calculated, perhaps
TPI is the most scale-dependent variable. Surprisingly, TPI
across all scales had a similar relation with soil moisture.
Negative TPI values indicate a surface that trends towards
valleys, and zero values indicate flat areas, if the slope of the
surface is shallow, or mid-slope areas. For areas with signif-
icant slopes, positive TPI values indicate surfaces that trend
towards ridgetops (Jenness et al., 2013). Across all scales,
there was a U-shaped relation between TPI and soil moisture,
with soil moisture decreasing as negative TPI values moved
towards zero and soil moisture increasing as TPI moved from
zero to positive values. This pattern is consistent with valleys
and ridgetops being wetter than mid-slope areas. We com-
puted TPI at several scales, and across all machine learning
algorithms, TPI with 15 and 35 m inner and outer diameters,
i.e., TPI(15,35), had the highest variable importance among
all topographic variables.

Although the machine learning models are considered
non-spatial models, as they do not consider sampling lo-
cation information and spatial autocorrelations (Georganos
et al., 2019; Hengl et al., 2018), the inclusion of spatially
dependent variables (specifically curvature, flow accumula-
tion, and TPI) as predictors means that the models do account
for a significant amount of spatial information. The inclusion
of such variables should make the predictions more spatially
relevant.

The red band was the most predictive of the three bands,
and the red-edge band was found not to be an important pre-
dictor. The two spectral vegetation indices we tested, i.e.,
NDVI and TTVI, were found not to be important, but their
constituent bands, the red and NIR, were important. The
lower importance of NIR compared to the red band in the
prediction of surface soil moisture was particularly surpris-
ing, given the higher sensitivity of the NIR band to plant
moisture stress and the fact that our study area was almost
entirely covered with vegetation.

3.4 Spatial prediction of soil moisture

The final utility of training a machine learning model was
to be able to produce a spatially resolved soil moisture map.
In Fig. 10, we have predicted surface soil moisture for the 6
sampling days for which we had multispectral images. Ide-
ally, in the future, the only new inputs required to produce a
soil moisture prediction map for our study site is UAV-based
multispectral images and hydrologic variables of precipita-
tion and PET which are available from nearby weather sta-
tions. As can be seen in Fig. 10, while the mean moisture
content was largely driven by the day (which, in turn, is con-
trolled by antecedent precipitation and PET), the distribution
appears to closely follow topographic attributes. This is par-
ticularly visible in a magnified map (Fig. 11). Ridges appear
drier, while valleys appear wetter; furthermore, northern-
facing ridges appear slightly drier than south-facing slopes,
which is probably due to slightly higher vegetation cover.
Density plots showing the distribution of soil moisture pre-
dictions over the test area for each of the 6 d is provided in
Fig. S11.

A magnified map of the soil moisture prediction for
23 January 2018 is shown in Fig. 11 and shows that soil mois-
ture varies considerably with topography. Tracks made by the
repeated passage of vehicles are, for example, clearly identi-
fiable as areas of low soil moisture in the magnified map.

4 Conclusions

Our study addressed the following questions: how effectively
can machine learning methods be employed to retrieve soil
moisture from a combination of topographic and UAV re-
mote sensing data? What are the most important predictors of
surface soil moisture in our study area? And what is the na-
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Figure 10. Predicted soil moisture content (percent) over the study area for the 6 d sampled. Days of the water year 30, 65, 115, 186, 213,
and 236 are 30 October 2017, 4 December 2017, 23 January 2018, 4 April 2018, 1 May 2018, and 24 May 2018, respectively).

Figure 11. Magnified map of predicted soil moisture content (per-
cent) map for water year day 115 (23 January 2018).

ture of the relationship between predictor variables and soil
moisture? Our approach can be summarized as follows: we
took multispectral images of grassland in the visible near-
infrared range using a UAS. Using a photogrammetric anal-
ysis of the images, we produced a high-resolution digital el-
evation model of the study site, which we used to calculate
several topographic variables at different scales. Simultane-
ously with the UAS imaging flights, we took about 400 in
situ surface soil moisture measurements. Using those ground
truth measurements, we trained machine learning models to
predict soil moisture from the multispectral images, topo-
graphic variables, and precipitation and evapotranspiration
data. We finally interrogated the machine learning models to
understand the importance of the different variables and elu-
cidate the nature of the relationship between variables and
soil moisture.

What makes our study stand out is that we used UAS-
based remote sensing to investigate soil water outside of the
relatively homogenous farm plots. Our study site had un-
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even topography and an ecology dominated by large seasonal
shifts in moisture. The fact that it is neither bare nor a mono-
culture makes the interpretation of multispectral images chal-
lenging and necessitates the use of machine learning methods
that are able to generalize complex relationships. This re-
search serves as a proof of concept that surface soil moisture
can be interpreted with reasonable accuracy from multispec-
tral UAS remote sensing using machine learning methods.

Based on our findings, we conclude that all the popular
machine learning algorithms we tested (ANN, SVR, RVR,
RF, and BRT) are acceptable for modeling surface soil mois-
ture with the conditions of our study. We particularly found
that decision-tree-based methods, especially RF, make for a
versatile algorithm. Even though its prediction accuracy is
only marginally better than the other machine learning algo-
rithms we tested, RF has the advantage of being particularly
simple to train and requiring the least amount of computa-
tional resources.

Analysis of the models revealed that hydrologic variables
of precipitation and evapotranspiration are the most impor-
tant predictor variables for surface soil moisture. However,
spatial distribution of soil moisture is highly dependent on
topographic variables. Topographic variables, such as flow
accumulation and TPI, are particularly important in amelio-
rating the non-spatial nature of such machine learning mod-
els by including spatial variables. Based on our study, a DEM
of about 1 m horizontal resolution is sufficient. Although we
had resolution as high as 15 cm, we found that excluding
such high-resolution topographic variables did not substan-
tially reduce the model performances.

A partial dependence analysis of how the input variables
relate to soil moisture is important for an understanding of
the mechanisms that control soil moisture over the landscape.
Using a type of partial dependency plot, we were able to in-
vestigate the nature of the relationships. Surface curvature
showed a complex relationship with soil moisture. Curvature
showed a negative relationship with soil moisture as convex
surfaces became less convex. This relationship reverses as
the convex surfaces transition to concave, with increases in
concavity being positively related with soil moisture. This
relation reverses again at higher concavities, indicating that
the partial effect of the curvature variable is such that the
mildly concave surfaces tend to be wetter than more concave
surfaces. However, the magnitude of soil moisture changes
associated with curvature are small. TPI was the most im-
portant of the topographic variables. The partial dependency
plots in the form of ALE (Fig. 9) show that it affects soil
moisture at a relatively higher magnitude. The general na-
ture of the TPI–soil moisture relation indicates that valleys
and ridgetops tend to be wetter surfaces compared to the ar-
eas in between. Furthermore, valleys tend to be wetter than
ridgetops.

5 Outlook

As a data mining technique, machine learning model perfor-
mance and reliability are closely tied to the quantity of data.
Although the number and spatial coverage of ground sam-
pling points were reasonable for the purposes of our research,
future studies would benefit from significantly increasing the
number of ground measurements and flight frequency. Multi-
year studies are eventually needed to ensure that the model
can be used reliably for future predictions. As data-based
methods, machine learning methods are highly unreliable if
used to forecast situations that they have not been trained on.

Another important consideration for future studies is to
move beyond surface soil moisture to deeper layers. Al-
though more challenging to implement, studies of root zone
soil moisture are generally more ecologically relevant. Ex-
panding the reflectance information beyond multispectral
bands could lead to important improvements in soil mois-
ture prediction. Although lightweight thermal or hyperspec-
tral sensors are currently very expensive and may not be fi-
nancially feasible for routine applications, the market trend
is optimistic that those technologies will become more af-
fordable in the future. Another interesting avenue worth in-
vestigating is the possibility of using the high-resolution to-
pographic variables from UAS along with cheaper and more
widely available satellite images.

Although the machine learning models used in this study
have many advantages, one drawback is that they are non-
spatial models and, as such, do not consider sampling lo-
cation information and spatial autocorrelations. This poten-
tially weakens these models’ ability to appropriately address
spatial heterogeneities (Georganos et al., 2019; Hengl et al.,
2018). Hengl et al. (2018) introduce a novel method for in-
corporating spatial information into a non-spatial machine
learning model by including distances between sampling
points as predictor variables, and they show that this method
(although still in its formative stage) has comparable accu-
racy to kriging methods. The potential to improve soil mois-
ture predictions by using such spatially integrated methods
should be considered in future research.
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Appendix A: List of abbreviations

ALEs Accumulated local effects
ANN Artificial neural network
BRTs Boosted regression trees
DEM Digital elevation model
MAE Mean absolute error
MBE Mean bias error
NDVI Normalized difference vegetation index
NIR Near-infrared
PET Potential evapotranspiration
RF Random forest
RMSE Root mean square error
RVR Relevance vector regression
SVR Support vector regression
TDR Time domain reflectometry
TPI Topographic position index
TTVI Thiam’s transformed vegetation index
UAS Unoccupied aircraft systems
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