Hydrol. Earth Syst. Sci., 25, 2685-2703, 2021
https://doi.org/10.5194/hess-25-2685-2021

© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

A note on leveraging synergy in multiple meteorological data sets
with deep learning for rainfall-runoff modeling

Frederik Kratzert', Daniel Klotz', Sepp Hochreiter', and Grey S. Nearing>>

I1IT AI Lab & Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria

2Google Research, Mountain View, CA, United States

3Land, Air and Water Resources Department, University of California Davis, Davis, CA, USA

Correspondence: Frederik Kratzert (kratzert@ml.jku.at) and Grey S. Nearing (gsnearing @ google.com)

Received: 13 May 2020 — Discussion started: 14 May 2020

Revised: 16 March 2021 — Accepted: 5 April 2021 — Published: 20 May 2021

Abstract. A deep learning rainfall-runoff model can take
multiple meteorological forcing products as input and learn
to combine them in spatially and temporally dynamic ways.
This is demonstrated with Long Short-Term Memory net-
works (LSTMs) trained over basins in the continental US,
using the Catchment Attributes and Meteorological data set
for Large Sample Studies (CAMELS). Using meteorologi-
cal input from different data products (North American Land
Data Assimilation System, NLDAS, Maurer, and Daymet) in
a single LSTM significantly improved simulation accuracy
relative to using only individual meteorological products. A
sensitivity analysis showed that the LSTM combines precipi-
tation products in different ways, depending on location, and
also in different ways for the simulation of different parts of
the hydrograph.

1 Introduction

All meteorological forcing data available for hydrological
modeling are subject to errors and uncertainty. While tem-
perature estimates between different data products are fre-
quently similar, precipitation estimates are often subject to
large disagreements (e.g., Behnke et al., 2016; Timmermans
et al., 2019). The most accurate precipitation data generally
come from in situ gauges, which provide point-based mea-
surements of rainfall events, which are complex spatial pro-
cesses (although, in certain cases, especially related to snow,
modeled products might be better; e.g., Lundquist et al.,
2019). However, large-scale hydrological models require
spatial data (usually gridded), which are necessarily model-

based products resulting from a combination of spatial inter-
polation and/or satellite retrieval algorithms, and, sometimes,
process-based modeling. Every precipitation data product is
based on different sets of assumptions that each potentially
introduce different types of error and information loss. It
is difficult to predict a priori how methodological choices
in precipitation modeling or interpolation algorithms might
lead to different types of disagreements in the resulting data
products (e.g., Beck et al., 2017; Newman et al., 2019). As an
example of the consequences of this difficulty, Behnke et al.
(2016) showed that no existing gridded meteorological prod-
uct is uniformly better than all others over the continental
United States (CONUS).

The primary strategy for dealing with forcing uncertainty
in hydrological modeling is to use ensembles of forcing prod-
ucts (e.g., Clark et al., 2016). These can be ensembles of
opportunity, or they can be drawn from probability distribu-
tions, and they can be combined either before (e.g., as pre-
cipitation) or after (e.g., as streamflow) being used in one or
more hydrological models. In any case, it is generally not
straightforward to predict how differences between different
forcing products will translate into differences between hy-
drological model simulations (e.g., Yilmaz et al., 2005; Henn
et al., 2018; Parkes et al., 2019), and given that data quality
among different products varies over space and time, it is
difficult to design ensembling strategies that maximize the
information or value of the forcing ensembles.

However, unlike conceptual or process-based hydrological
models, machine learning (ML) or deep learning (DL) can
use multiple precipitation (and other meteorological) data
products simultaneously. This means that it is not necessary
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to design a priori strategies to combine input forcing data or
to combine the outputs of hydrological models forced with
different data products. In principle, such models could learn
to exploit potential nonlinear synergies in different (imper-
fect) precipitation data sets or any other type of model input.
In particular, deep learning models that are able to learn spa-
tiotemporally heterogeneous behaviors, such as those used
by Kratzert et al. (2019a, b), should be able to learn spa-
tiotemporally dynamic effective mixing strategies in the way
that they can leverage multiple input products in different lo-
cations and under different hydrological conditions. If suc-
cessful, this could provide a simple and computationally ef-
ficient alternative to the ensembling strategies currently used
for hydrological modeling.

2 Methods
2.1 Data

This study uses the Catchment Attributes and Meteorolog-
ical data set for Large Sample Studies (CAMELS; New-
man et al., 2014; Addor et al., 2017b). CAMELS contains
basin-averaged daily meteorological forcing input derived
from three different gridded data products for 671 basins
across CONUS. The three forcing products are (i) Daymet
(Thornton et al., 1997), (i) Maurer (Maurer et al., 2002),
and the (iii) North American Land Data Assimilation Sys-
tem (NLDAS; Xia et al., 2012). The former product has a
1 km x 1 km spatial resolution, and the latter two have a one-
eighth of a degree (approximately 12.5 km x 12.5 km) spatial
resolution. Although CAMELS includes 671 basins, to facil-
itate a direct comparison of results with previous studies, we
used only the subset of 531 basins that were originally cho-
sen for model benchmarking by Newman et al. (2017), who
removed all basins with an area greater than 2000 km? and
also all basins in which there was a discrepancy of more than
10 % between different methods of calculating the basin area.

Behnke et al. (2016) conducted a detailed analysis
of eight different precipitation and surface temperature
(daily max/min) data products, including the three used by
CAMELS. Those authors compared gridded precipitation
and temperature values to station data, using roughly 4000
weather stations across CONUS. Their findings were that
“no data set was ‘best’ everywhere and for all variables we
analyzed” and “two products stood out in their overall ten-
dency to be closest to (Maurer) and farthest from (NLDAS?2)
observed measurements.” Furthermore, they did not find a
“clear relationship between the resolution of gridded prod-
ucts and their agreement with observations, either for aver-
age conditions ... or extremes” and noted that the “high-
resolution Daymet ... data sets had the largest nationwide
mean biases in precipitation.”

Figure 1 gives an example of disagreement between pre-
cipitation products in CAMELS that we hope to capitalize on
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by training a model with multiple forcing input. This figure
shows the noisy relationship between the three precipitation
products in a randomly selected basin (U.S. Geological Sur-
vey (USGS) ID 07359610). The idea is that DL should be
able to mitigate the type of noise shown in the scatterplot in
Fig. 1b.

Figure 1a shows a time shift between Daymet and Mau-
rer precipitation in the same basin. This type of shift is
common. Behnke et al. (2016), for example, reported that
“[because] gridded products differ in how they define a cal-
endar day (e.g., local time relative to Coordinated Univer-
sal Time), appropriate lag correlations were applied through
cross-correlation analysis to account for the several-hour off-
set in daily station data.” We performed a lag-correlation
analysis on the precipitation products in CAMELS and found
a higher correlation between Daymet and Mauer when Mauer
was lagged by 1d in 325 (of 531) basins. Figure 2 shows
the percent difference between lagged vs. non-lagged corre-
lations between Daymet and Maurer.

Each of the forcing products in CAMELS includes daily
precipitation (millimeters per day) and maximum and min-
imum daily temperature (degrees Celsius), vapor pressure
(Pascal), and surface radiation (watts per square meter). The
original CAMELS data set hosted by the US National Cen-
ter for Atmospheric Research (Newman et al., 2014) only
contains daily mean temperatures for Maurer and NLDAS.
CAMELS-relevant Maurer and NLDAS products, with daily
minimum and maximum temperatures, are available from
our HydroShare DOI (see the data availability section). We
used all five meteorological variables from all three data
products as input into the models. In addition to the three
daily forcing data sets from CAMELS, we used the same 27
catchment attributes as Kratzert et al. (2019a, b), which con-
sist of topography, climate, vegetation, and soil descriptors
(Addor et al., 2017a). Prior to training any models, all input
variables were normalized independently by subtracting the
CONUS-wide mean and dividing by the CONUS-wide stan-
dard deviation.

2.2 Models

Long Short-Term Memory networks (LSTMs) are a type of
recurrent neural network (Hochreiter, 1991; Hochreiter and
Schmidhuber, 1997b; Gers et al., 2000). LSTMs have a state
space that evolve through a set of input—state—output rela-
tionships. Gates, which are activated linear functions, control
information flows from input and previous states to current
state values (called an input gate), from current states to out-
puts (called an output gate), and also control the timescale of
each element of the state vector (called a forget gate). States
(called cell states) accumulate and store information over
time, much like the states of a dynamical systems model.
Technical details of the LSTM architecture have been de-
scribed in several previous publications in hydrology jour-
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Figure 1. Illustration of the relationship between three CAMELS precipitation products at a randomly selected basin (USGS ID 07359610).
Panel (a) shows the first 100d of precipitation data from all three products during the test period, and panel (b) shows scatter between the
three products over the full test period. The scatter shown in (b) is the data uncertainty that we would like to mitigate. In this particular basin,
there appears to be a 1d shift between Daymet and Maurer, which is common in the CAMELS data set (this shift is apparent in 325 of the

531 basins; see Fig. 2).
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Figure 2. Spatial distributions of lagged vs. non-lagged correlations
between Daymet and Maurer test period precipitation. Positive val-
ues indicate that the 1d lagged correlation is higher.

nals, and we refer the reader to Kratzert et al. (2018) for a
detailed explanation geared towards hydrologists.

2.3 Benchmarks

Because all relevant benchmark models from previous stud-
ies (see, e.g., Kratzert et al., 2019b) were calibrated using
only Maurer forcings, we produced a benchmark using the
Sacramento Soil Moisture Accounting (SAC-SMA) model
with multiple meteorological forcings. Following Newman
etal. (2017), we calibrated SAC-SMA using the dynamically
dimensioned search (DDS) algorithm (Tolson and Shoe-
maker, 2007), implemented in the SPOTPY optimization li-
brary (Houska et al., 2019), using data from the training
period in each basin. SAC-SMA was calibrated separately,
n =10 times with n = 10 different random seeds, in each
basin for each of the three meteorological data products. This
resulted in a total of 30 calibrated SAC-SMA models for each
basin.

To check our SAC-SMA calibrations, we compared the
performance of our Maurer calibrations against a SAC-SMA
model from the benchmark data set calibrated by Newman
et al. (2017). We used the (paired) Wilcoxon test to test for
significance in any difference between the average, per basin,
performance scores from our n = 10 different SAC-SMA
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calibrations with Maurer forcings vs. the SAC-SMA calibra-
tions with Maurer forcings from Newman et al. (2017). The
p value of this test was p ~ 0.9, meaning no significant dif-
ference.

Results reported in Sect. 3 used a simple average of these
30 SAC-SMA ensembles in each basin, which is what we
found to be the most accurate overall. We also tested (not
reported) a Bayesian model averaging strategy, with basin-
specific likelihood weights chosen according to relative train-
ing performance of the SAC-SMA ensemble members, us-
ing Gaussian likelihoods with a wide range of variance pa-
rameters. We were not able to achieve an overall higher
performance in the test period using an ensembling method
more sophisticated than equal-weighted averaging. There are
possibilities to potentially improve on this benchmark (e.g.,
Duan et al., 2007; Madadgar and Moradkhani, 2014); how-
ever, as will be shown in Sect. 3, the difference between en-
semble averaging and the multi-input LSTMs is large, and
we would be surprised if any ensembling strategy could ac-
count for this difference.

2.4 Experimental design

We trained n = 10 LSTMs using (1) all of the three forcing
products together, (2) for each pairwise combination of forc-
ing products (Daymet and Maurer, Daymet and NLDAS, and
Maurer and NLDAS), and (3) separately for all three forcing
products individually.

For each of these seven input configurations, we trained
an ensemble of n = 10 different LSTMs with different ran-
domly initialized weights. We report the statistics from av-
eraging the simulated hydrographs from each of these 10-
member ensembles (single model results are provided in Ap-
pendix A). Ensembles are used to account for the random-
ness inherent in the training procedure. The importance of us-
ing ensembles for this purpose was demonstrated by Kratzert
et al. (2019b). Notice that ensembles are used here to miti-
gate a different type of uncertainty than when using ensem-
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Table 1. Description of the performance metrics (top part) and signatures (bottom part) considered in this study. For each signature, we
derived a metric by computing the Pearson correlation between the signature of the observed flow and the signature of the simulated flow
over all basins. Description of the signatures taken from Addor et al. (2018)

Metric or signature

Description

Reference

NSE
KGE
Pearson r

a-NSE
B-NSE
FHV
FLV
FMS

Peak timing

Nash—Sutcliffe efficiency

Kling—Gupta efficiency

Pearson correlation between observed and simulated
flow

Ratio of standard deviations of observed and simulated
flow

Ratio of the means of observed and simulated flow

Top 2 % peak flow bias

Bottom 30 % low flow bias

Bias of the slope of the flow duration curve between the
20th and 80th percentile

Mean peak time lag (in days) between observed and
simulated peaks

Eq. (3) in Nash and Sutcliffe (1970)
Eq. (9) in Gupta et al. (2009)

From Eq. (4) in Gupta et al. (2009)
From Eq. (10) in Gupta et al. (2009)
Eq. (A3) in Yilmaz et al. (2008)

Eq. (A4) in Yilmaz et al. (2008)

Eq. (A2) Yilmaz et al. (2008)

See Appendix B

Baseflow index

Half-flow date (HFD) mean
High flow duration

High flow frequency

Low flow duration

Low flow frequency

05

Q95

O mean
Runoff ratio

Slope

(FDC)
Stream elasticity

Zero flow frequency

flow duration curve

Ratio of mean daily baseflow to mean daily discharge
Mean half-flow date (date on which the cumulative dis-
charge, since October, first reaches half of the annual
discharge)

Average duration of high-flow events (number of con-
secutive days > 9 times the median daily flow)
Frequency of high-flow days (> 9 times the median
daily flow)

Average duration of low-flow events (number of con-
secutive days with < 0.2 times the mean daily flow)
Frequency of low-flow days (< 0.2 times the mean daily
flow)

5 % flow quantile (low flow)

95 % flow quantile (high flow)

Mean daily discharge

Runoff ratio (ratio of mean daily discharge to mean
daily precipitation, using Daymet precipitation)

Slope of the FDC (between the log-transformed 33rd
and 66th streamflow percentiles)

Streamflow precipitation elasticity (sensitivity of
streamflow to changes in precipitation at the annual
timescale, using Daymet precipitation)

Frequency of days with zero discharge

Ladson et al. (2013)
Court (1962)

Clausen and Biggs (2000); Table 2 in
Westerberg and McMillan (2015)
Clausen and Biggs (2000); Table 2 in
Westerberg and McMillan (2015)
Olden and Poff (2003); Table 2 in West-
erberg and McMillan (2015)

Olden and Poff (2003); Table 2 in West-
erberg and McMillan (2015)

Eq. (2) in Sawicz et al. (2011)
Eq. (3) in Sawicz et al. (2011)

Eq. (7) in Sankarasubramanian et al.
(2001)

bles for combining forcing products. In this case, the model
learns how to (dynamically) combine forcing products, and
ensembles are used for the same reason as proposed by New-
man et al. (2017), i.e., to account for randomness in the cali-
bration and/or training.

The training period was from 1 October 1999 to
30 September 2008 (9 years of training data for each catch-
ment), and the test period was 1 October 1989 to 30 Septem-
ber 1999 (10 years of test data for each catchment). A single
LSTM was trained on the combined training period of all 531
basins. Similar to previous studies (Kratzert et al., 2019a, b),
we used LSTMs with 256 memory cells and a dropout rate
of 0.4 (40 %) in the fully connected layer that derives net-
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work predictions (streamflow) from LSTM output. All mod-
els were trained with a mini-batch size of 256 for 30 epochs,
using the Adam optimizer (Kingma and Ba, 2014) with an
initial learning rate of 1 x 10’3, reduced to Se — 4 after 20
epochs, and further reduced to 1e —4 after 25 epochs. All in-
put were standardized to have zero mean and unit variance
over all 531 catchments collectively. During model evalua-
tion, negative predictions in the original value space were
clipped to zero, i.e., no negative discharges. The loss func-
tion was the basin-averaged Nash—Sutcliffe efficiency (NSE;
see Kratzert et al., 2019b).

https://doi.org/10.5194/hess-25-2685-2021
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Figure 3. Test period comparison between single-forcing and
multiple-forcing LSTM ensembles (n = 10) over 531 CAMELS
basins. All differences were statistically significant (o = 0.001),
with the exception of Daymet vs. Maurer (p = 0.08) and NLDAS
and Maurer vs. Maurer and Daymet (p =~ 0.4)

2.5 Analysis

We examined the experiments described above with two
types of analyses. The goal is to provide illustrations of how
the LSTM leverages multiple forcing products in spatiotem-
porally dynamic ways.

— Analysis 1 — feature ablation. An ablation study re-
moves parts of the network to gain a better understand-
ing of the model. We adopted this procedure by re-
moving the different meteorological forcing products
in a step-wise fashion and subsequently comparing re-
sults using several performance metrics and hydrologic
signatures (see Table 1). To provide context, we also
benchmarked the LSTMs against ensembles of SAC-
SMA models (see Sect. 2.3).

— Analysis 2 — sensitivity and contribution. We performed
an input attribution analysis of the trained LSTM mod-
els to quantify how the trained LSTMs leverage differ-
ent forcing products in different places and under differ-
ent hydrologic conditions. We concentrated the sensi-
tivity analysis on the precipitation input because (i) pre-
cipitation is consistently found to be the most important
variable in rainfall-runoff modeling, which is also true
for LSTMs (see Frame et al., 2020), and (ii) according
to Behnke et al. (2016), there is little difference in other
meteorological variables between these data products.

In addition, we performed an analysis that correlates es-
timated uncertainty in different precipitation products with
LSTM performance to help understand in what sense the
LSTM is using different precipitation data to mitigate
data uncertainty directly. This analysis is presented in Ap-
pendix C.

https://doi.org/10.5194/hess-25-2685-2021

2.5.1 Analysis 1 - feature ablation

All LSTM ensembles were trained using a squared-error loss
function (the average of the basin-specific NSE values); how-
ever, we are interested in knowing how the models simu-
late different aspects of the hydrograph. As such, we re-
port a collection of hydrologically relevant performance met-
rics outlined in Table 1. These statistics include the standard
time-averaged performance metrics (e.g., NSE and KGE)
and comparisons between observed and simulated hydro-
logic signatures. The hydrologic signatures we report are the
same ones used by Addor et al. (2018). For each hydrologic
signature, we computed the Pearson correlation between the
signatures derived from observed discharge vs. those from
simulated discharge in each basin. Correlation metrics were
calculated on simulated vs. observed signatures in all basins.

2.5.2 Analysis 2 - sensitivity and contribution

All neural networks (like LSTMs) are differentiable, almost
everywhere, by design. Therefore, a gradient-based input
contribution analysis seems natural. However, as discussed
by Sundararajan et al. (2017), the naive solution of using
local gradients does not provide reliable measures of sen-
sitivity, since gradients might be flat even if the model re-
sponse is heavily influenced by a particular input data source
(which is not necessarily a bad property; see, e.g., Hochre-
iter and Schmidhuber, 1997a). This is especially true in neu-
ral networks, where activation functions often include step
changes over portions of the input space — for example, the
sigmoid and hyperbolic tangent activation functions used by
LSTMs have close-to-zero gradients at both extremes (see
also Shrikumar et al., 2016; Sundararajan et al., 2017).

Sundararajan et al. (2017) proposed a method of input at-
tribution for neural networks which accounts for this lack of
local sensitivity. This method is called integrated gradients.
Integrated gradients are a path integral of the gradients from
some baseline input value, x’, to the actual value of the input,
x, as follows:

IntegratedGradsjIpprOX x):

X,'—X/,' i BF(i)

- m Z 35(,‘

k=1

(D

S—w/ 1 k ’
x=x'+,- (x—X')

We used a value of zero precipitation everywhere as the
baseline for calculating integrated gradients with respect to
the three different precipitation forcings (Daymet, Maurer,
and NLDAS). We calculated the integrated gradients of each
daily streamflow estimate in each CAMELS basin during the
10-year test period with respect to precipitation input from
the past 365 d (the look-back period of the LSTM). That is,
on day t =T, we calculated 1095 =3 - 365 integrated gra-
dient values related to the three precipitation products. The
relative integrated gradient values quantify how the LSTM
combines precipitation products over time, over space, and
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Figure 4. Empirical cumulative density function of the NSE performance over the 531 basins of different SAC-SMA ensembles (a, ¢) and
different LSTM ensembles (b, d). Panels (a, b) show the entire range of the cumulative density function, while panels (¢, d) show the
lower range in more detail. The red indicator lines mark the median NSE difference between the worst single-forcing ensemble and the

multi-forcing ensemble of the LSTM and SAC-SMA, respectively.
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Figure 5. Spatial distribution of the NSE differences between the three-forcing LSTM, relative to the best single-forcing model in each basin
(a) and relative to each single-forcing model (b—d). Positive (purple) values represent basins where the three-forcing LSTM improved over
the single-forcing LSTM. Negative (brown) values reflect basins where the single-forcing LSTM had a higher NSE than the three-forcing
LSTM. In total, the three-forcing LSTM was better than the best single-forcing model in 351 of 531 basins (66 %) and was better than each
single-forcing model in 443 (83 %; Daymet), 456 (86 %; Maurer), and 472 (89 %; NLDAS) basins, respectively.

also as a function of lag or lead time into the current stream-
flow prediction. In theory, one has to take the “explaining
away” effect into account when analyzing the decision pro-
cess in models (Pearl, 1988; Wellman and Henrion, 1993).
However, we assume that, if evaluated over hundreds of
basins and thousands of time steps, this effect is largely av-
eraged out, and therefore, the analysis provides an indication
of the actual information used by the model.

Hydrol. Earth Syst. Sci., 25, 2685-2703, 2021

3 Results and discussion
3.1 Analysis 1 - feature ablation

The feature ablation analysis compared NSE values over 10-
year test periods from the CAMELS basins for the seven
distinct input combinations. As shown in Fig. 3, the three-
forcing LSTM ensemble had a median NSE value of 0.82

https://doi.org/10.5194/hess-25-2685-2021
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Table 2. Values of the benchmarking metrics from Table 1. Bold
values indicates the best model (¢ < 0.05). Multiple bold values
per row indicate no significant difference.

LSTM all forcing SAC-SMA all forcing

ensemble (n = 10) ensemble (n = 30)

NSE? (median) 0.821 0.705
NSE? (mean) 0.783 0.673
KGEP 0.801 0.650
Pearson r¢ 0.915 0.861
a-NSE4 0.861 0.742
B-NSE® —0.028 0.024
FHV! —13.818 —23.863
FLVé 41.277 49.641
FMSh —8.087 —29.418
Peak timing! 0.370 0.552

4 Nash-Sutcliffe efficiency; (—oo, 1]; values closer to 1 are desirable. b Kling—-Gupta
efficiency; (—oo, 1]; values closer to 1 are desirable. ¢ Pearson correlation; [—1, 1];
values closer to 1 are desirable. ¢ «—~NSE decomposition; (0, 0o); values close to 1
are desirable. © B—NSE decomposition; (—oo, 00); values close to 0 are desirable.

f Top 2 % peak flow bias; (—oo, 00); values close to 0 are desirable. & 30 % low flow
bias; (—o0, 00); values close to 0 are desirable. h Bias of FDC mid-segment slope;
(—00, 00); values close to 0 are desirable. i Lag of peak timing; (—o0, 00); values
close to 0 are desirable.

Table 3. Values of the correlation coefficients (over 531 basins) of
the simulated vs. observed hydrological signatures from Table 1.
Bold values indicate the best model (¢ < 0.05). Multiple bold val-
ues per row indicate no significant difference.

LSTM all forcing SAC-SMA all forcing

ensemble (n = 10) ensemble (n = 30)

Baseflow index 0.93 0.80
HFD mean 0.98 0.96
High flow duration 0.84 0.72
High flow frequency 0.81 0.68
Low flow duration 0.50 0.41
Low flow frequency 0.79 0.63
05 0.96 0.90
095 0.99 0.99
Q mean 1.00 0.99
Runoff ratio 0.99 0.97
Slope FDC 0.65 0.62
Stream elasticity 0.72 0.67
Zero flow frequency 0.03 NaN

for the 531 basins. The three-forcing model outperformed all
two-forcing models. Similarly, all two-forcing models out-
performed all single-forcing models (all improvements were
statistically significant at « = 0.05 when using the Wilcoxon
test). The best single-forcing LSTM had a median NSE of
0.77. This indicates that the LSTM was able to leverage
unique information in the precipitation signals (this is not an
unusual finding in the context of machine learning; see, e.g.,
Sutton, 2019). We also note that the single-forcing LSTM
with Maurer input outperformed the single-forcing NLDAS
model, which agrees with the results of Behnke et al. (2016),
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Figure 6. Time- and basin-averaged integrated gradients of one of
the n = 10 multi-forcing LSTMs as a function of lag time (days be-
fore current streamflow prediction) of the three precipitation prod-
ucts. Because of the time shift shown in Fig. 2, the model learned
to ignore the Maurer input at the current time step.

who showed that Maurer precipitation was generally more
accurate than NLDAS precipitation.

To put these results into context, Fig. 4 compares all
LSTMs against benchmark hydrology models, which are all
ensembles of SAC-SMA models that were calibrated for
each of the three different forcings. All LSTM models were
better than all corresponding benchmark models through the
entire cumulative distribution function (CDF) curve. The fol-
lowing points can be seen in Fig. 4. First, the SAC-SMA
sees a large improvement from using two-forcing products
ensembles; this improvement was larger than the correspond-
ing improvement in the LSTMs. However, adding calibrated
SAC-SMA models from a third data product did not increase
the performance by much (see, e.g., Fig. 4a, where the NL-
DAS and Daymet ensemble CDF overlaps, most of the time,
with the three-forcing ensemble). In contrast, CDFs of the
LSTM results show a constant improvement from one- to
two-forcing models and from two- to three-forcing models.

Second, the difference between the worst single-forcing
ensemble and the three-forcing ensemble is larger for
the LSTM (ANSE=0.074) than for the SAC-SMA
(ANSE =0.068). This difference could arise from the fact
that the LSTM is better able to handle the data shift of
the Maurer forcings that occurs in some of the basins (see
Sect. 3.2), while this is impossible for the SAC-SMA ensem-
ble.

Third, the worst-performing single-forcing LSTM ensem-
ble (i.e., with NLDAS forcings) was significantly better
(p <1 x10713) than the whole n =30 SAC-SMA ensem-
ble, which uses all three forcing products (i.e., the best SAC-
SMA result that we found). In fact, even the average single
LSTM (not the full n = 10 ensemble) trained with NLDAS
forcings is as good as the n = 30 SAC-SMA ensemble (see
Appendix A for non-ensemble LSTM performances), and the
average single LSTM (not the ensemble) trained with Maurer
or Daymet forcings was significantly better (p < 1 x 10™%)
than the n = 30 SAC-SMA ensemble.
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Figure 7. Expansion of Fig. 6 by individual basins and truncated at
alag of s = 3. The relative importance of Daymet is shown in blue,
Maurer in orange, and NLDAS in blue. The multi-forcing LSTM
combined the precipitation products in different ways in different
basins. Daymet is generally more important in high-number basins
located in the Pacific Northwest.

Fourth, the ranking of the forcing products is not as clear
for the SAC-SMA ensembles as it was the LSTM ensembles
(there is more separation in the LSTM single-forcing CDFs
than the SAC-SMA single-forcing CDFs). However, quali-
tatively, the same ranking is visible, i.e., that Daymet mod-
els are better than NLDAS or Maurer and that NLDAS and
Daymet produce the best two-forcing results.

Tables 2 and 3 give benchmarking results from all metrics
and signatures in Table 1. The three-forcing LSTM signifi-
cantly out-performed the three-forcing SAC-SMA ensemble
in all metrics except S—NSE decomposition, where the SAC-
SMA ensemble was better, and FLV, where the difference
was not significant (see Table 2). The three-forcing LSTM
also significantly out-performed the three forcing SAC-SMA
ensemble in all signatures (see Table 3) except the HFD mean
and the Q95, where the difference was not significant. Note
that the LSTM — while generally providing the best model
overall — has approximation difficulties towards the extreme
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lower end of the runoff distribution (low flow duration, low
flow frequency, and zero flow frequency).

Figure 5 shows the spatial distribution of the performance
differences between the best single-forcing model and the
three-forcing model in all basins. The three-forcing LSTM
outperformed the single forcing LSTMs almost everywhere.
Individual exceptions, where less is more do, however, ex-
ist (e.g., southern California). Concretely, if we compare the
three-forcing model to the best performing single-forcing
LSTM per basin, the three-forcing LSTM had a higher NSE
in 66 % of the basins (351 of 531). When compared to each
single-forcing LSTM separately, the three-forcing LSTM
had a higher NSE in 443 (83 %; Daymet), 456 (86 %; Mau-
rer), and 472 (89 %; NLDAS) basins, respectively.

3.2 Analysis 2 — sensitivity and contribution

Figure 6 shows the time- and basin-averaged integrated gra-
dient of one of the n = 10 multi-forcing LSTMs as a func-
tion of lead time. To reiterate the information above, the inte-
grated gradient is a measure of input attribution or sensitivity,
such that input with higher integrated gradients have a larger
influence on model outputs. Integrated gradients shown in
Fig. 6 were averaged over all time steps in the test period
and also over all basins. This figure shows the sensitivity of
streamflow at time r = T to each of the three precipitation in-
put at times t = T — s, where s is the lag value on the x axis.
The main takeaways from this high-level illustration of in-
put sensitivities are (1) that the sensitivity of current stream-
flow to precipitation decays with lead time (i.e., time before
present) and (2) that the multi-forcing model has learned to
ignore the Maurer input at the present time step. The reason
for the latter is the time shift in the Maurer product (illus-
trated in Fig. 2).

Figure 6 shows results from only one of n = 10 model rep-
etitions; however, we performed an integrated gradient anal-
ysis on all n = 10 multi-input LSTMs (not shown), and the
results were qualitatively similar. It is difficult to show all
the results on the same figure because the values are relative;
so, integrated gradients between two different models often
have different absolute scales, and the results presented for a
single model (in Fig. 6) are representative.

The multi-forcing LSTMs learned to combine the differ-
ent precipitation products in spatiotemporally variable ways.
Figure 6 demonstrates the overall behavior of the multi-
forcing LSTM. It is, however a highly condensed aggregate
of a highly nonlinear system. As such, a lot of specific infor-
mation is lost in that figure.

Figure 7 shows integrated gradients by basin and up to a
lead time of s = 3 d prior to the present. The model largely
ignores Maurer precipitation at the current time step in most
basins (as was apparent in Fig. 6), but the ratio of the con-
tributions of each product (averaged over the whole test pe-
riod hydrograph) varies between basins. Figure 7 shows the
relative contributions of each precipitation product, but it is
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Figure 8. The forcing product, with the highest overall contribution (sensitivity) in each basin (a), averaged over the prediction time step
and lag. The alpha value (opacity) of each dot on this map is a relative measure of the fraction of the total integrated gradients of all three
precipitation products (summed over time, lag, and product) due to the highest-contributing product. Panel (b) shows that the total integrated
gradient summed over all three precipitation products is highly correlated with total precipitation in the basin.
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Figure 9. Spatial distribution of the highest-ranked precipitation products at specific lags (different rows) over the whole hydrograph (left-
hand column), and the rising and falling limbs of the hydrograph (center and right-hand columns, respectively), where blue circles denote
Daymet, orange circles denote Maurer and green circles denote NLDAS. The takeaway from this figure is that the multi-forcing LSTM
learns to combine the different products in different ways for different memory timescales in different basins and under different hydrological
conditions. The alpha value (opacity) of each dot is a relative measure of the fraction of the total integrated gradients of all three precipitation
products due to the highest-contributing product.
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important to note that the overall importance of precipitation
also varies between basin.

Figure 8 shows the spatial distribution of the most sensitive
precipitation contribution (averaged over the whole hydro-
graph in each basin) in Fig. 8a and the overall sensitivity to
all three precipitation products combined in Fig. 8b. The lat-
ter (total sensitivity to precipitation relative to all other input)
is highly correlated with the total (or average) precipitation
in the basin.

It is possible to break the spatial relationship down even
further. The spatial distribution of the highest-ranked prod-
uct as a function of the lag time for rising and falling limits is
shown in Fig. 9. This figure shows some of the nuance in how
the multi-forcing LSTM learned to combine the different pre-
cipitation products by distinguishing between different mem-
ory timescales in different basins for different hydrological
conditions (i.e., rising and falling limbs of the hydrograph).

4 Conclusions

The purpose of this paper is to show that LSTMs can leverage
different precipitation products in spatiotemporally dynamic
ways to improve streamflow simulations. These experiments
show that there exist systematic and location- and time-
specific differences between different precipitation products
that can be learned and leveraged by deep learning. As might
be expected, the LSTMs tested here tended to improve hy-
drological simulations more when there were larger disagree-
ments between different precipitation estimates in a given
basin (see Appendix C).

It is worth comparing these findings with classical concep-
tual and process-based hydrological models that treat precip-
itation estimate as a unique input. Current best practice for
using multiple precipitation products is to run an ensemble
of hydrological models, such that each forcing data set is
treated independently. Deep learning models have the abil-
ity to use a larger number and variety of input than classical
hydrology models, and in fact, DL models do not need in-
put that represent any given hydrological variable or process
and, therefore, have the potential to use less highly processed
input data like remote sensing brightness temperatures, etc.
Future work might focus on building runoff models that take
as input the raw measurements that were used to create stan-
dard precipitation data products.

Hydrol. Earth Syst. Sci., 25, 2685-2703, 2021

Deep learning provides possibilities not only for improv-
ing the quality of regional (Kratzert et al., 2019b) and even
ungauged (Kratzert et al., 2019a) simulations but also, poten-
tially, for replacing large portions of ensemble-based strate-
gies for uncertainty quantification (e.g., Clark et al., 2016)
with multi-input models. There are many ways to deal with
the uncertainty in traditional hydrological modeling work-
flows, but almost certainly, the most common approach is to
use ensembles. Ensembles can be opportunistic —i.e., from a
set of pre-existing models or data products — or constructed
—i.e., sampled from a probability distribution — but in either
case, the idea is to use variability to represent lack of perfect
information. Clark et al. (2016) advocated using ensembles
as hydrologic storylines, which would avoid the problem of
the sparsity of sampling any explicit or implied probability
distributions. No matter how ensembles are used, however,
with conceptual and process-based hydrology models, each
model takes one precipitation estimate (time series) as input.
Multi-input DL models have the potential to provide a fun-
damentally different alternative for modeling under this kind
of uncertainty, since DL models can learn how to combine
different input in ways that leverage — in nonlinear ways — all
data available to the full simulation task. Future work could
focus on producing predictive probabilities with multi-input
deep learning models.
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Appendix A: Average LSTM single-model performance

Table A1l. Average single LSTM performance over a variety of metrics. The average single-model performances is computed as the mean of
the metric of the n = 10 model repetitions.

NLDAS Maurer Daymet Maurer+ NLDAS + NLDAS + All

Daymet Maurer Daymet combined

NSE? (median) 0.72 0.73 0.74 0.77 0.77 0.79 0.80
+0.003 +0.003  +0.002 +0.003 +0.004 +0.002 +0.001

NSE? (mean) 0.68 0.70 0.70 0.73 0.74 0.75 0.76
£0.003  +0.006  +0.002 +0.003 £0.002 +0.002 +0.002

KGEP (median) 0.74 0.76 0.76 0.79 0.78 0.79 0.80
+0.006 +0.005  +0.003 +0.005 £0.008 +0.005 +0.004

Pearson r¢ (median) 0.86 0.87 0.88 0.89 0.89 0.90 0.90
£0.002  +0.002  +0.002 +0.001 =+ 0.001 +0.001 +0.001

a-NSEY (median) 0.83 0.86 0.86 0.88 0.85 0.87 0.88
+0.010 +0.011  +0.008 +0.007 +0.007 +0.005 +0.008

B-NSE® (median) —0.03 —0.03 —0.03 —0.03 —0.03 —0.03 —0.02
+0.005 +0.004  +0.004 + 0.004 =+ 0.004 +0.002 +0.004

FHV' (median) —-17.28 —13.89 —15.00 —12.52 —14.20 —13.15 —11.91
+0.904 +1.217 +0.504 +0.791 + 0.881 +0.450 +0.549

FLVE (median) —0.88 2.83 0.05 —4.02 0.86 —1.54 2.57
+7.637 5403  +6.056 + 6.825 +5.499 +6.955 +4.072

EMS" (median) -9.44 —7.31 —5.96 —5.60 —7.55 —6.93 —6.69
+£1.293 1500 £1.234 +1.241 +1.358 +0911 + 1.678

Peak timing! (median) 0.46 0.49 0.46 0.44 0.42 0.41 0.41

+0.010 +0.009  +0.008 +0.007 £0.007 £0.009 +0.015

@ Nash—Sutcliffe efficiency; (—oo, 1]; values closer to 1 are desirable. b Kling—Gupta efficiency; (—oo, 1]; values closer to 1 are desirable.

€ Pearson correlation; [—1, 1]; values closer to 1 are desirable. d 4 NSE decomposition; (0, 00); values close to 1 are desirable. © B~-NSE
decomposition; (—oo, 00); values close to 0 are desirable. f Top 2 % peak flow bias; (—oo, 00); values close to 0 are desirable. & 30 % low flow
bias; (—00, 00); values close to 0 are desirable. h Bias of FDC mid-segment slope; (—oo, 00); values close to 0 are desirable. i Lag of peak timing;
(—00, 00); values close to 0 are desirable.
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Table A2. Average single LSTM performance across a range of different hydrological signatures. The derived metric for each signature is
the Pearson correlation between the signature derived from the observed discharge vs. the signature derived from the simulated discharge.
The average single-model performances are then reported as the mean value of the n = 10 model repetitions.

NLDAS Maurer Daymet Maurer + NLDAS + NLDAS + All

Daymet Maurer Daymet combined

Baseflow index 0.93 0.92 0.93 0.94 0.93 0.93 0.92
+0.014 +0.018 +0.011 +0.005 +0.013 £0.009 +0.018

HFD mean 0.95 0.97 0.97 0.97 0.97 0.97 0.97
+0.004 +0.003  £0.002 £0.002 +0.003 £0.003 £0.004

High flow duration 0.82 0.85 0.83 0.86 0.85 0.85 0.85
+0.027 +0.014  +0.010 +0.014 +0.014 £0.008 +0.014

High flow frequency 0.82 0.82 0.82 0.82 0.81 0.81 0.79
+0.013 +0.014 £0.016 +0.016 +0.040 +0.032 +0.037

Low flow duration 0.44 0.42 0.46 0.47 0.43 0.46 0.45
£0.033  +0.027 £0.025 +0.035 +0.018 +0.015 £0.039

Low flow frequency 0.83 0.82 0.84 0.86 0.82 0.84 0.83
+0.020 +0.044 +0.028 +0.022 +0.027 +0.021 +0.043

05 0.95 0.95 0.96 0.96 0.95 0.96 0.96
£0.005 +0.006 £0.003 £0.003 =+ 0.005 £0.005 £0.003

095 0.99 0.99 0.98 0.99 0.99 0.99 0.99
£0.001 +0.001  +0.001 +0.001 +0.000 +0.001 £0.000

Q mean 0.99 1.00 0.99 0.99 1.00 0.99 1.00
+0.001 +0.000 £0.001 +0.000 +0.000 +0.000 +0.000

Runoff ratio 0.98 0.98 0.98 0.98 0.98 0.98 0.99
£0.002 £+0.001  £0.001 £0.001 +0.001 £0.001 =+ 0.001

Slope FDC 0.62 0.63 0.59 0.56 0.59 0.59 0.57
£0.095 +0.053  +0.093 +0.053 +0.061 +0.091 +0.096

Stream elasticity 0.61 0.69 0.70 0.70 0.68 0.69 0.71

+£0.015 +0.024 +0.017 +0.018 +0.025 £0.032 +0.021

Zero flow frequency 0.30 0.42 0.27 0.33 0.33 0.31 0.28
+0.101 +0.097 +0.088 +0.080 +0.067 +0.086 +0.085
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Appendix B: Peak flow timing

To evaluate the model performance on the peak timing, we
used the following procedure: first, we determined peaks in
the observed runoff time series by locality search; that is, po-
tential peaks are defined as local maxima. To reduce the num-
ber of peaks and filter out noise, the next step was an iterative
process where, by pairwise comparison, only the maximum
peak is kept until all peaks have at least a distance of 100 time
steps to each other. The procedure is implemented in SciPy’s
find_peak function (Virtanen et al., 2020) and is used in the
current work.

Second, we iterated over all peaks and searched for the
corresponding peak in the simulated discharge time series.
The simulated peak is defined as the highest discharge value
inside a window of £3 d around the observed peak, and the
peak timing error is the offset between the observed peak and
the simulated peak. The resulting metric is the average offset
over all peaks.

Appendix C: Analysis of precipitation uncertainty

The goal of this supplementary analysis was to understand
the relationship between precipitation uncertainty and im-
provements to streamflow simulations due to using multi-
ple forcing data sets. Because we do not have access to true
precipitation values in each catchment, we used triple col-
location to estimate precipitation uncertainty. Triple colloca-
tion is a statistical technique for estimating error variances of
three or more noisy measurement sources without knowing
the true values of the measured quantities (Stoffelen, 1998;
Scipal et al., 2010). Its major assumption is that the error
models are linear and independent between sources and, in
particular, that all (three or more) measurement sources are
each a combination of a scaled value of the true variable plus
additive random noise, as follows:

M;; =o;T; +¢iy, (ChH

where M, are measurement values (i.e., here the mod-
eled precipitation values), subscript i represents the source
(Daymet, Maurer, and NLDAS), and subscript ¢ represents
the time step in the test period (1 October 1989 to 30 Septem-
ber 1999). T, is the unobserved true value of total precipita-
tion in a given catchment on a given day, and &, are indepen-
dent and identically distributed measurement errors from any
distribution.

The linearity assumption is not appropriate for precipita-
tion data, which are typically assumed to have multiplicative
errors. Following Alemohammad et al. (2015), we assumed a
multiplicative error model for all three precipitation sources
and converted these to linear error models by working with
the log-transformed precipitation data, as follows:

Mi,t =0 Ttﬁi + efit (CZ)
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In(Mi ;) = ai + BiT; +€is- (C3)

Standard triple collocation is then applied so that estimates
of the error variances for each source are as follows:
Ci,jiCik

Cijk
for all i, j, k, where C; ; is the covariance between the time
series of source i and source j, and o; is the variance of the
distribution that each independent and identically distributed
measurement &; ; is drawn from.

Additionally, extended triple collocation (McColl et al.,
2014) allows us to derive the correlation coefficients between
measurement sources and truth as follows:
G iCig

CiiCjx

0 =Cii— , (C4)

pi (C5)

This triple collocation analysis was applied separately
in each of the 531 CAMELS catchments to obtain basin-
specific estimates of the error variances, o;, and truth cor-
relations, p;, for each of the three precipitation products. Al-
beit the assumption that the forcing products have indepen-
dent error structures (i.e., &;; A &; /) is not met in our case,
we expect the results to be robust enough for the purpose at
hand.

Daymet typically produced lower NSE values in basins
where triple collocation reported that the Daymet precipita-
tion error variances were high. This is what we would expect,
i.e., low model skill in basins with high precipitation error.
However, we did not see similar patterns with the other two
precipitation products (see Fig. C1), where the triple colloca-
tion error variances and truth correlation are plotted against
the NSE scores of the single-source models. In fact, the NL-
DAS LSTM tended to perform worse in basins with lower
precipitation error (as estimated by triple collocation).

A reason for this is shown in Fig. C2, which is an adapted
version of Fig. C1 that highlights a few high-skill, high triple-
collocation-variance NLDAS basins in blue. These basins
correspond to a cluster of basins in the Rocky Mountains
(Fig. C3) where NLDAS has a low correlation with the other
two products but still yields high-skill LSTM simulations.
What is happening here is that triple collocation measures
(dis)agreement between measurement sources rather than er-
ror variances directly. Thus, the results in Fig. C1 that appear
to show NLDAS forcing models tending to perform well in
basins with high precipitation error is driven, in part, by the
fact that there are a few basins in the Rockies where NL-
DAS disagrees with, but is generally better than, the other
two products. What Fig. C1 is really showing is the disagree-
ment between precipitation estimates, and it is not necessar-
ily the case that if one precipitation product disagrees with
the others then this product contains more error. The LSTM
is able to learn and account for this type of situation; it is not
simply learning to trust one product over the others, and it is
not simply learning to do something resembling a majority
vote in each basin.
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Figure C1. Triple collocation error variances (6 — Eq. C4) and truth correlations (o — Eq. C5) plotted against NSE scores of the single-
forcing LSTM models. p describes how much correlation there is between the given data product and the estimated truth, and o describes
the estimated disagreement between a given data product and the other two data products. Daymet typically produces lower NSE values in
basins where triple collocation reports that the precipitation error variances are high, whereas NLDAS produces lower NSE values in basins
where triple collocation reports that the error variances are low. There is no apparent pattern in the Maurer data.
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Figure C2. As in Fig. C1, the triple collocation error variances (¢ — Eq. C4) and truth correlations (p — Eq. C5) are plotted against NSE
scores of the single-forcing LSTM models. The coloring shows the anomalous NLDAS basins in blue and all others in red. For these basins,
NLDAS has low correlation with the other two products but still yields high-skill simulations.
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Figure C3. Spatial distribution of anomalous NLDAS basins shown in Fig. C2 (a) compared with elevation of the CAMELS basins (b).
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disagreement between the three data sets. The three-forcing model learned to leverage synergy in these three precipitation products.

Figure C4 plots model performance against the individual
variances of the precipitation products in each basin. This
figure shows that the single-forcing Daymet LSTM tended to
perform better in catchments with higher total precipitation
variance (not triple collocation error variance). This is, again,
not true for the other two models, where higher total variance
was associated with a higher variance in model skill, indicat-
ing that a higher proportion of the total variance is likely due
to measurement error.
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To analyze the synergy due to using all forcings in a sin-
gle LSTM, we transposed the NSE improvements in each
basin (due to using all three forcing products in the same
LSTM) with the log determinant of the covariance matrix of
all three (standardized, log-transformed) precipitation prod-
ucts (Fig. C5). The log determinant is a proxy for the joint
entropy of the three (standardized, log-transformed) products
and increases when there is larger disagreement between the
three data sets. Unlike in Fig. C4, the variances in Fig. C5
were calculated after removing the mean and overall vari-
ance of each log-transformed precipitation product so that
the log determinant of the covariance is not affected by the
overall magnitude of precipitation in each catchment (i.e.,
does not increase in wetter catchments). With the excep-
tion of the anomalous NLDAS basins, Fig. C5 shows that
the three-forcing model offered improvements with respect
to the single-forcing models when there was larger disagree-
ment between the three data sets. This indicates that there is
value in diversity among precipitation data sets and that the
LSTM can exploit this diversity.
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Code availability. The code required to reproduce all LSTM results
and figures is available at https://doi.org/10.5281/zenodo.4738770.
The code for running and optimizing SAC-SMA is available
from the “multi-inputs” branch at the following repository: https:
//github.com/Upstream-Tech/SACSMA-SNOW17.git ( Upstream-
Tech, 2020).

Data availability. The validation periods of all bench-
mark models used in this study are available at
https://doi.org/10.4211/hs.474ecc37e7db45baad425cdbafclbblel
(Kratzert et al., 2019¢). The extended Maurer forcings, including
daily minimum and maximum temperature, are available at
https://doi.org/10.4211/hs.17¢896843cf940339¢3¢3496d0c1c077
(Kratzert, 2019b). The extended NLDAS forcings, including
daily minimum and maximum temperature, are available at
https://doi.org/10.4211/hs.0a68bfd7ddf642a8be9041d60f40868c
(Kratzert, 2019a). Finally, the weights of the pre-trained models
are available at https://doi.org/10.5281/zenodo.4670268 (Kratzert
etal., 2021).
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