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Abstract. Streamflow timing errors (in the units of time) are
rarely explicitly evaluated but are useful for model evalua-
tion and development. Wavelet-based approaches have been
shown to reliably quantify timing errors in streamflow simu-
lations but have not been applied in a systematic way that is
suitable for model evaluation. This paper provides a step-by-
step methodology that objectively identifies events, and then
estimates timing errors for those events, in a way that can be
applied to large-sample, high-resolution predictions. Step 1
applies the wavelet transform to the observations and uses
statistical significance to identify observed events. Step 2
utilizes the cross-wavelet transform to calculate the timing
errors for the events identified in step 1; this includes the
diagnostic of model event hits, and timing errors are only
assessed for hits. The methodology is illustrated using real
and simulated stream discharge data from several locations to
highlight key method features. The method groups event tim-
ing errors by dominant timescales, which can be used to iden-
tify the potential processes contributing to the timing errors
and the associated model development needs. For instance,
timing errors that are associated with the diurnal melt cycle
are identified. The method is also useful for documenting and
evaluating model performance in terms of defined standards.
This is illustrated by showing the version-over-version per-
formance of the National Water Model (NWM) in terms of
timing errors.

1 Introduction

Common verification metrics used to evaluate streamflow
simulations are typically aggregated measures of model per-
formance, e.g., the Nash–Sutcliffe Efficiency (NSE) and the

related root mean square error (RMSE). Although typically
used to assess errors in amplitude, these statistical metrics in-
clude contributions from errors in both amplitude and timing
(Ehret and Zehe, 2011), making them difficult to use for di-
agnostic model evaluation (Gupta et al., 2008). Furthermore,
common verification metrics are calculated using the entire
time series, whereas timing errors require a comparison of
localized features or events in the data. This paper focuses
explicitly on event timing error estimation, which is not rou-
tinely evaluated despite its potential benefit for model diag-
nostics (Gupta et al., 2008) and practical forecast guidance
(Liu et al., 2011).

The fundamental challenge with evaluating timing errors
is identifying what constitutes an event in the two time series
being compared. Identifying events is typically subjective,
time consuming, and not practical for large-sample hydrolog-
ical applications (Gupta et al., 2014). A variety of baseflow
separation methods, ranging from physically based to empir-
ical, have been developed to identify hydrologic events (see
Mei and Anagnostou, 2015, for a summary), though many
of these approaches require some manual inspection of the
hydrographs. Merz et al. (2006) put forth an automated ap-
proach, but it requires a calibrated hydrologic model, which
is a limitation in data-poor regions. Koskelo et al. (2012) de-
veloped a simple, empirical approach that only requires rain-
fall and runoff time series, but it is limited to small water-
sheds and daily data. Mei and Anagnostou (2015) introduced
an automated, physically based approach which is demon-
strated for hourly data, though one caveat is that basin events
need to have a clearly detectable recession period. Additional
methods have focused on identifying flooding events using
peak-over-threshold methods. The thresholds used for such
analyses are often either based on historical percentiles (e.g.,
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the 95th percentile) or on local impact levels (river stage),
such as the National Weather Service (NWS) flood categories
(NOAA National Weather Service, 2012). Timing error met-
rics are often calculated from the peaks of these identified
events. For example, the peak time error, or its derivative
of the mean absolute peak time error, requires matching ob-
served and simulated event peaks and calculating their offset
(Ehret and Zehe, 2011). While this may be straightforward
visually, it can be difficult to automate; some of the reasons
for this are discussed below.

Difficulties arise when using thresholds for event identifi-
cation. For example, exceedances can cluster if a hydrograph
vacillates above and below a threshold, leading to the fol-
lowing questions: is it one or multiple events? Which peak
should be used for the assessment? In the statistics of ex-
tremes, declustering approaches can be applied to extract
independent peaks (e.g., Coles, 2001), but this reductionist
approach may miss relevant features. For instance, if back-
ground flows are elevated for a longer period of time before
and after the occurrence of these events, the threshold-based
analysis identifies features of the flow separately from the
primary hydrologic process responsible for the event. If one
focuses just on peak timing differences in this example, then
that timing error may only apply to some small fraction of
the total flow of the larger event which happens mainly be-
low the threshold. Furthermore, for overall model diagnosis
that focuses on model performance for all events, not just
flood events, variable thresholds would be needed to account
for different kinds of events (e.g., a daily melt event versus a
convective precipitation event).

Using a threshold approach to identify events and timing
error assessment, Ehret and Zehe (2011) develop an intu-
itive assessment of hydrograph similarity, i.e., the series dis-
tance. This algorithm is later improved upon by Seibert et
al. (2016). The procedure matches observed and simulated
segments (rise or recession) of an event and then calculates
the amplitude and timing errors and the frequency of the
event agreement. The series distance requires smoothing the
time series, identifying an event threshold, and selecting a
time range in which to consider the matching of two seg-
ments.

Liu et al. (2011) developed a wavelet-based method for es-
timating model timing errors. Although wavelets have been
applied in many hydrologic applications, such as model anal-
ysis (e.g., Lane, 2007; Weedon et al., 2015; Schaefli and
Zehe, 2009; Rathinasamy et al., 2014) and post-processing
(Bogner and Kalas, 2008; Bogner and Pappenberger, 2011),
Liu et al. (2011) were the first to use it for timing error es-
timation. Liu et al. (2011) apply a cross-wavelet transform
technique to streamflow time series for 11 headwater basins
in Texas. Timing errors are estimated for medium- to high-
flow events that are determined a priori by threshold ex-
ceedance. They use synthetic and real streamflow simula-
tions to test the utility of the approach. They show that the
technique can reliably estimate timing errors, though they

conclude that it is less reliable for multi-peak or consec-
utive events (defined qualitatively). ElSaadani and Krajew-
ski (2017) followed the cross-wavelet approach used by Liu
et al. (2011) to provide similar analysis and further investi-
gate the effect of the choice of mother wavelet on the timing
error analysis. Ultimately, they recommended that, in the sit-
uation of multiple adjoining flow peaks, the improved time
localization of the Paul wavelet might justify its poorer fre-
quency localization compared the Morlet wavelet.

Liu et al. (2011) provide a starting point for the work in
this paper in which we develop the following two new bases
for their method: (1) objective event identification for tim-
ing error evaluation and (2) the use of observed events as the
basis for the model timing error calculations. The latter is
important for model benchmarking, i.e., the practice of eval-
uating models in terms of defined standards (e.g., Luo et al.,
2012; Newman et al., 2017). Here, the use of observed events
provides a baseline by which to evaluate changes and to com-
pare multiple versions or experimental designs.

This paper provides a methodology for using wavelet anal-
ysis to quantify timing errors in hydrologic simulations. Our
contribution is a systematic approach that integrates (1) sta-
tistical significance to identify events with (2) a basis for
timing error calculations independent of model simulations
(i.e., benchmarking). We apply our method to a timing er-
ror evaluation of high-resolution streamflow prediction. The
paper is organized as follows: Sect. 2 describes the obser-
vational and simulated data used. Section 3 provides the de-
tailed methodology of using wavelets to identify events and
estimate timing errors in a synthetic example. In Sect. 4,
we demonstrate the method using real and simulated stream-
flow data for several use cases and then illustrate the appli-
cation of the method for version-over-version comparisons.
Section 5 is the discussion and conclusions, including how
specific methodological choices may vary by application.

2 Data

The application of the methodology is illustrated using
real and simulated stream discharge (streamflow in cu-
bic meters per second) data at three US Geological Sur-
vey (USGS) stream gauge locations in different geographic
regions, i.e., Onion Creek at US Highway 183, Austin,
Texas, for the South Central region (Onion Creek, TX; USGS
site no. 08159000), Taylor River at Taylor Park, Colorado,
for the Intermountain West (Taylor River, CO; USGS site
no. 09107000), and Pemigewasset River at Woodstock, New
Hampshire, for New England (Pemigewasset River, NH;
USGS site no. 01075000). We use the USGS instantaneous
observations averaged on an hourly basis.

NOAA’s National Water Model (NWM; https://www.nco.
ncep.noaa.gov/pmb/products/nwm/, last access: 8 May 2021)
is an operational model that produces hydrologic analyses
and forecasts over the continental United States (CONUS)
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Figure 1. Flow chart of steps in the methodology. Although steps 1a–b and 2a–b can happen in parallel, step 2c needs to be preceded by
step 1c.

and Hawaii (as of version 2.0). The model is forced by
downscaled atmospheric states and fluxes from NOAA’s
operational weather models. Next, the Noah-MP (Noah-
multiparameterization; Niu et al., 2011) land surface model
calculates energy and water states and fluxes. Water fluxes
propagate down the model chain through overland and
subsurface (soil and aquifer representations) water routing
schemes to reach a stream channel model. The NWM ap-
plies the three-parameter Muskingum–Cunge river routing
scheme to a modified version of the National Hydrography
Dataset Plus (NHDPlus) version 2 (McKay et al., 2012) river
network representation (Gochis et al., 2020).

In this study, NWM simulations are taken from
each version’s retrospective runs (https://docs.opendata.aws/
nwm-archive/readme.html, last access: 8 May 2021). These
are continuous simulations (not cycles) run for the period
from October 2010 to November 2016 and forced by the
National Land Data Assimilation System (NLDAS)-2 prod-
uct as atmospheric conditions. The nudging data assimilation
was not applied in these runs. We use NWM discharge simu-
lations from versions V1.0, V1.1, and V1.2 (not all versions
may be publicly available).

The methodology developed in this paper is implemented
in the R language and is made publicly available, as detailed
in the code availability section at the end of the paper.

3 Methodology

This section provides the description of the methodology us-
ing wavelets to identify events and estimate timing errors.
The steps can be seen in the accompanying flowchart (Fig. 1)
and nomenclature (Table 1), which define the key terms of
the approach. To facilitate understanding, the steps are illus-
trated by an application of the methodology to an observed
time series of an isolated peak in Onion Creek, TX, (Fig. 2a)
and the synthetic modeled time series, which is identical to

the observation time series but shifted 5 h in to the future
(Fig. 3a; note the log scale).

3.1 Step 1 – identify observed events

The first step is to identify a set of observed events for which
the timing error should be calculated. We break this step into
the following three substeps: 1a – apply the wavelet trans-
form to observations; 1b – determine all observed events us-
ing significance testing; and 1c – sample observed events to
an event set relevant to analysis.

3.1.1 Step 1a – apply wavelet transform to observations

First, we apply the continuous wavelet transform (WT) to
the observed time series. The main steps and equations for
the WT are provided here, though the reader is referred to
Torrence and Compo (1998) and Liu et al. (2011) for more
details.

Before applying the WT, a mother wavelet needs to be se-
lected. In Torrence and Compo (1998), they discuss the key
factors that should be considered when choosing the mother
wavelet. There are four main considerations, including (i) or-
thogonal or nonorthogonal, (ii) complex or real, (iii) width,
and (iv) shape. In this study, we follow Liu et al. (2011) in
selecting the nonorthogonal and complex Morlet wavelet as
follows:

ψ(n)= π−1/4eiw0ne−n
2/2, (1)

where w0 is the nondimensional frequency with a value of 6
(Torrence and Compo, 1998).

Once the mother wavelet is selected, the WT is applied to a
time series, xn, in which n goes from n= 0 to n=N−1 with
a time step of δt . The WT is the convolution of the time series
with the mother wavelet that has been scaled and normalized
as follows:
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Figure 2. An isolated peak from Onion Creek, TX, showing the (a) observed time series, (b) observed wavelet power spectrum (left), and
average power by timescale for all points (right). Panel (c) shows the statistically significant wavelet power spectrum of events (left) and
average power by timescale for all events, with maxima shown by gray dots (right). Panel (d) shows the characteristic scale event cluster
(horizontal green line) and cluster maximum (asterisk).

Wn(s)=

N−1∑
n′=0

xn′ψ
∗

[
(n′− nt)δt

s

]
, (2)

where n′ is the localized time in [0, N − 1], s is the scale
parameter, and the asterisk indicates the complex conju-
gate of the wavelet function. The wavelet power is defined
as |W 2

n |, which represents the squared amplitude of an imag-
inary number when a complex wavelet is used as in this
study. We use the bias-corrected wavelet power (Liu et al.,
2007; Veleda et al., 2012), which ensures that the power is
comparable across timescales. We also identify a maximum
timescale a priori that corresponds to our application. We se-
lect 256 h (∼ 10 d), but this number could be higher or lower

for other applications, and there are no real penalties for us-
ing too high a maximum (lower than the annual cycle).

The wavelet transform (WT) expands the dimensionality
of the original time series by introducing the timescale (or
period) dimension. Wavelet power is also a function of both
time and timescale (e.g., Torrence and Compo, 1998). This
is illustrated in Fig. 2. The streamflow time series (Fig. 2a)
is expanded into a 2-dimensional (2-D) wavelet power spec-
trum (Fig. 2b). Wavelet analysis can detect localized signals
in the time series (Daubechies, 1990), including hydrologic
time series, which are often irregular or aperiodic (i.e., events
may be isolated and do not regularly repeat) or nonstation-
ary. We note that, in many wavelet applications, timescale is
referred to as “period”, and this axis is indeed the Fourier
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Figure 3. An isolated peak from Onion Creek, TX, and a synthetic+ 5 h offset, showing the (a) observed and synthetic time series (note the
logged y axis), (b) cross-wavelet (XWT) power spectrum, phase angles (arrows), and XWT significance (gray line). Panel (c) shows the
sampled timing errors for observed events (inside dashed contour indicates the intersection of XWT events with observed events), and the
gray asterisk shows the cluster maximum from Fig. 2d.

period in our plots. However, to emphasize that our study is
more focused on irregular events and less on periodic behav-
ior of time series, we use the term timescale to denote the
Fourier period (and not wavelet scale).

Because we are applying the WT to a finite time series,
there are timescale-dependent errors at the beginning and
end times of the power spectrum, where the entirety of the
wavelet at each scale is not fully contained within the time
series. This region of the WT is referred to as the cone of in-
fluence or COI (Torrence and Compo, 1998). Figure 2b illus-
trates the COI as the regions in which the colors are muted;
we ignore all results within the COI in this study.

We make several additional notes on the wavelet power
and its representation in the figures. The units of the wavelet
power are those of the time series variance (m6 s−2 – meters

to the sixth power per square second for streamflow), and it is
natural to want to cast the power in a physical light or relate it
to the time series variance. Indeed, the power is often normal-
ized by the time series variance when presented graphically.
However, it must be noted that the wavelet convolved with
the time series frames the resulting power in terms of itself
at a given scale. Wavelet power is a (normalized) measure of
how well the wavelet and the time series match at a given
time and scale. The power can only be compared to other
values of power resulting from a similarly constructed WT.
There are various transforms that can be applied to aid the
graphical interpretation of the power (log and variance scal-
ing), but the utility of these often depends on the nature of
the individual time series analyzed. For simplicity, we plot
the raw bias-rectified wavelet power in this paper.
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Table 1. Nomenclature of terms used in the paper.

Term and acronym Synonyms Units Comments

Time series Input data m3 s−1 for We analyze streamflow observations and simulations, which
streamflow are ordered by the time dimension (Fig. 2a).

Time h Dimension of the input time series (x axis in all Fig. 2 panels).

Timescale Period h Dimension introduced at each time by the wavelet transform
(y axis in Fig. 2b–d).

Wavelet Wavelet power m6 s−2 In this paper, we employ the continuous WT (Fig. 2b) with
transform (WT) spectrum (result of scale-normalized energy (Liu et al., 2007).

the transform)

Cone of COI This is where the wavelet analysis is affected by the wavelet
influence (COI) extending beyond the time domain of the input (muted colors in Fig. 2b).

Event We define events in terms of both time and timescales that
are significant in the WT and outside the COI (Fig. 2c).

Characteristic Dominant h We define characteristic timescales by local maxima in time-
timescale timescale averaged, significant wavelet power (e.g., over events; Fig. 2d).

Event cluster For a single (e.g., characteristic) timescale and contiguous
events in time (Fig. 2d).

Cross-wavelet Cross-wavelet Power – m6 s−2; The complex, cross-wavelet transform has properties of
transform power spectrum phase – radians power and phase. The significance of the XWT can also be
(XWT) (result of the computed (e.g., Torrence and Compo, 1998) as shown in

transform) Fig. 3b. XWT events are outlined by a dashed line in Fig. 3c.

Timing error h Timing errors are calculated from the phase offset of the
XWT (e.g., Liu et al., 2011) and have dimensions of both time
and timescale. Several statistics of timing errors (over time)
for characteristic timescales can be computed (Fig. 2c).

3.1.2 Step 1b – determine all observed events using
significant testing

In their seminal wavelet study, Torrence and Compo (1998)
outline a method for objectively identifying statistical signif-
icance in the wavelet power by comparing the wavelet power
spectra with a power spectra from a red noise process. Specif-
ically, the observed time series is fitted with an order 1 au-
toregressive (AR1 or red noise) model, and the WT is ap-
plied to the AR1 time series. The power spectrum of the AR1
model provides the basis for the statistical significance test-
ing. Significance is determined if the power spectra are sta-
tistically different using a chi-squared test.

Figure 2b shows significant (>=95 % confidence level) re-
gions of wavelet power inside black contours. Statistical sig-
nificance indicates wavelet power that falls outside the time
series background statistical power based on an AR1 model
of the time series. Statistical significance of the wavelet
power can be thought of as events in the wavelet domain.
We define events as regions of significant wavelet power out-
side the COI. Figure 2c displays the wavelet power for the
events in this time series. We emphasize that events defined

in this way are a function of both time and timescale and
that, at a given time, events of different timescales can occur
simultaneously.

3.1.3 Step 1c – sample observed events to an event set
relevant to analysis

Step 1b results in the identification of all events at all
timescales and times. In this substep, the event space is
sampled to suit the particular evaluation. Torrence and
Compo (1998) offer the following two methods for smooth-
ing the wavelet plot that can increase significance and confi-
dence: (i) averaging in time (over timescale) or (ii) averaging
in timescale (over time). Because the goal of this paper is
to evaluate model timing errors over long simulation peri-
ods, we choose to sample the event space based on averag-
ing in timescale. Although for some locations there may be
physical reasons to expect certain timescales to be important
(e.g., the seasonal cycle of snowmelt), the most important
timescales at which hydrologic signals occur at a particular
location are not necessarily known a priori. Averaging events
in timescale can provide a useful diagnostic by identifying
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the dominant, or characteristic, timescales for a given time
series. Averaging many events in a timescale can filter noise
and help reveal the expected timescales of dominant variabil-
ity corresponding to different processes or sets of processes.

In our analysis, we seek to uncover the dominant event
timescales and to evaluate modeled timing errors on them.
The following points articulate our methodological choices
for summarizing the observed events:

– Calculate the average event power in each timescale.
Considering only the statistically significant areas of the
observed wavelet spectrum, calculate the average power
in each timescale (Fig. 2c, right panel). We point out that
calculating the average power over events is different to
what is found by averaging across all time points, which
does not take statistical significance into consideration
(Fig. 2b, right panel).

– Identify timescales of absolute and local maxima in
time-averaged power. After obtaining the average event
power as a function timescale (Fig. 2c, right panel), the
local and absolute maximums for average event power
can be determined. In the Onion Creek case, there is
a single maximum at 22 h (gray dot in Fig. 2c, right
panel). The timescales corresponding to the absolute
and local maxima of the average power of the observed
time series are called the characteristic timescales used
for evaluation. This is the first subset of the events, i.e.,
all events that fall within the characteristic timescales.
For a single characteristic timescale, contiguous events
in time are called event clusters (horizontal line in
Fig. 2d).

– Identify events with maximum power in each event clus-
ter. For all timescales, we identify the event with max-
imum power in each event cluster. This is the second
event subset, i.e., all events with maximum power in
each cluster that fall within a characteristic timescale
(asterisk in Fig. 2d); these are called cluster maxima.

3.2 Step 2 – calculate timing errors

Step 1 identifies observed events by applying a wavelet trans-
form to the observed time series. To calculate the timing er-
ror of a modeled time series, we perform its cross-wavelet
transform with the observed time series. Figure 3a shows the
observed and modeled time series used in our illustration of
the methodology, i.e., the observed is the same isolated peak
from Onion Creek, TX, as in Fig. 2a, and the synthetic mod-
eled time series adds a prescribed timing error of +5 h to
the observed. (Note that while the observed time series is
identical in both, Figs. 2a and 3a have linear and log10 axes,
respectively.)

3.2.1 Step 2a – apply cross-wavelet transform (XWT)
to observations and simulations

The cross-wavelet transform (XWT) is performed between
the observed and synthetic time series. Given the WTs of
an observed time series WX

n (s) and a modeled time se-
ries WY

n (s), the cross-wavelet spectrum can be defined as
follows:

WXY
n (s)=WX

n (s)W
Y ∗

n (s), (3)

where the asterisk denotes the complex conjugate. The cross-
wavelet power is defined as |WXY

n (s)| and signifies the joint
power of the two time series. The XWT between the Onion
Creek observations and the synthetic 5 h offset time series is
shown in Fig. 3b, with power represented by the color scale.

Similar to step 1b of the WT, we can also calculate areas of
significance for the XWT power as shown by the black con-
tour in Fig. 3b. For the XWT, significance is calculated with
respect to the theoretical background wavelet spectra of each
time series (Torrence and Compo, 1998). We define XWT
events as points of significant XWT power outside the COI.
XWT events indicate significant joint variability between the
observed and modeled time series. Below, in step 2d, we em-
ploy XWT events as a basis for identifying hits and misses
on observed events for which the timing errors are calcu-
lated. Figure 3c shows the observed events (colors) and the
intersection between the observed and XWT events (dashed
contour). As described later, this intersection (inside dashed
contour) is a region of hits where timing errors are consid-
ered valid. Note that the early part of the observed events at
shorter timescales is not in the XWT events. This is because
the timing offset in the modeled time series misses the early
part of the observed event for some timescales.

3.2.2 Step 2b: calculate the cross-wavelet timing errors

For complex wavelets, such as the Morlet used in this pa-
per, the individual WTs include an imaginary component of
the convolution. Together, the real and imaginary parts of the
convolution describe the phase of each time series with re-
spect to the wavelet. The cross-wavelet transform combines
the WTs in conjugate, allowing the calculation of a phase
difference or angle (radians), which can be computed as fol-
lows:

φXYn (s)= tan−1

[
I
(
I〈s−1WXY

n (s)〉
)

R
(
I〈s−1WXY

n (s)〉
)] , (4)

where I is the imaginary and R is the real component
of WXY

n (s). The arrows in Fig. 3b indicate the phase dif-
ference for our example case, which is used to calculate the
timing errors. Note that these are calculated at all points in
the wavelet domain.

The distance around the phase circle at each timescale is
the Fourier period (hours). We convert the phase angle into
the timing errors (hours) as in Liu et al. (2011) as follows:
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1tXYn (s)= φXYn (s) · T/2π, (5)

where T is the equivalent Fourier period of the wavelet.
Note that the maximum timing error which can be repre-
sented at each timescale is half the Fourier period because the
phase angle is in the interval (−π , π ). In other words, only
timescales greater than 2E can accurately represent a timing
error E. Because the range of the arctan function is limited
by ±π , true phase angles outside this range alias to angles
inside this range. (For example, the phase angles 1.05 ·π and
−0.95 ·π are both assigned to −0.95 ·π ). Also note that,
when the wavelet transforms are approximately antiphase,
the computed phase differences and timing errors produce
corresponding bimodal distributions given the noise in the
data. Figure 3c shows phase aliasing in the negative timing
errors at timescales less than 10 h, which is double the 5 h
synthetic timing error we introduced. The bimodality of the
phase and timing are also seen at the 10 h timescale when the
timing errors abruptly change sign (or phase by 2π ). We note
the convention used is that the XWT produces timing errors
that are interpreted as modeled minus observed, i.e., positive
values mean the model occurs after the observed. Positive 5 h
timing errors in Fig. 3c describe that the model is late com-
pared to the observations as seen in the hydrographs in the
top panel (Fig. 3a).

3.2.3 Step 2c – subset cross-wavelet timing errors to
sampled observed events

Step 2b results in an estimate of timing errors for all times
and timescales in the cross-wavelet transform space. In our
application, we are interested in the timing errors that corre-
spond to the identified sample of observed events, especially
for the maximum power events in each cluster for each char-
acteristic timescale. In the synthetic Onion Creek example,
the point of interest in the wavelet transform of the observed
time series, used to sample the timing errors produced by the
XWT, is shown by the gray asterisk in Fig. 3c.

The results for the synthetic Onion Creek example are
summarized in Table 2. For the identified characteristic
timescale of 22 h in the observed wavelet power (which had
an average WT power of 555 700 m6 s−2; see Fig. 2c on the
right), there was one event cluster, and the timing error at the
cluster maximum was 5 h, and it occurred at hour 37 of the
time series.

3.2.4 Step 2d – filter misses

The premise of computing a timing error between the ob-
served and modeled time series is that they share common
events which can be meaningfully compared. In a two-way
contingency analysis of events, a hit refers to when the mod-
eled time series reproduces an observed event. When the
modeled time series fails to reproduce an observed event, it is
termed a miss. In the case of a miss, it does not make sense to

Table 2. Summary of timing error results for cluster maxima for the
isolated peak and prescribed 5 h offset from Onion Creek, TX.

Characteristic Average WT Number of Cluster maxima

timescale (h) power clusters Timing Time Hit?
error (h) (h)

22 555 700 1 5 37 True

include the timing error in the overall assessment. Once the
characteristic timescales of the observed event spectrum are
identified and event cluster maxima are located, timing er-
rors are obtained at these locations in the XWT. In this step,
the significance of the XWT on these event cluster maxima
is used to decide if the model produced a hit or a miss for
each point and to determine if the timing error is valid. As
previewed above, Fig. 3c shows the observed events (colors),
and the dashed contour shows the intersection between the
observed and XWT events. Regions of intersection between
observed events and XWT events are considered model hits,
and observed events falling outside the XWT events are con-
sidered misses. Because we constrain our analysis to ob-
served events in the wavelet power spectrum, we do not con-
sider either of the remaining categories in a two-way analysis
(false alarms and correct negatives). We note that a complete
two-way event analysis could, alternatively, be constructed
in the wavelet domain based on the Venn diagram of the
observed and modeled events without necessarily using the
XWT. We choose to use the XWT events because the XWT
is the basis of the timing errors.

In the synthetic example of Onion Creek, a single char-
acteristic timescale and event cluster yields a single cluster
maximum, as shown by the asterisk in Fig. 3c. Because this
asterisk falls both within the observed and XWT events, it
is a hit, and the timing error at that point is valid (Table 2).
For a longer time series, as seen in subsequent examples, a
useful diagnostic and complement to the timing error statis-
tics at each characteristic timescale is the percent hits. When
summarizing timing error statistics for a timescale, we drop
misses from the calculation and the percent hits indicates
what portion of the time series was dropped (percent misses
is equal to 100 − percent hits). In our tables, we provided
timing error statistics for hits only.

4 Results

In the previous section, we illustrate the method using an
isolated peak and a prescribed timing error. In this section,
we demonstrate the method using NWM model simulations
which introduce greater complexity and longer time series.
Finally, we show version-over-version comparisons for 5-
year simulations to illustrate the utility for evaluation.
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Figure 4. For the 3-month time series from the Pemigewasset River, NH, panel (a) shows the observed time series, and (b) shows the
observed wavelet power spectrum (left) and average power by timescale for all points (right). Panel (c) shows the statistically significant
wavelet power spectrum of events (left) and average power by timescale for all events, with maxima shown by gray dots (right). Panel
(d) shows the characteristic scale event clusters (horizontal lines) and cluster maxima (gray asterisks).

4.1 Demonstration using NWM data

4.1.1 Pemigewasset River, NH

This example uses a 3-month time series from the Pemige-
wasset River, NH, to examine multiple peaks in the hydro-
graph (Fig. 4a). It is fairly straightforward to pick out three
main peaks with the naked eye. From step 1 of our method,
the wavelet transform is applied to the observations (Fig. 4b,
left panel; Fig. 4c, left panel), revealing up to three event
clusters, depending on the characteristic timescale examined
(Fig. 4d). When we plot the average event power by timescale
(Fig. 4c, right panel), we see that there are nine relative max-
ima (small gray dots); hence, there are nine characteristic

scales for this example. The cluster maxima (gray asterisks)
for each observed event cluster are shown in Fig. 4d.

Next, we compare the observed time series with the sim-
ulation from the NWM V1.2 (Fig. 5a) and follow step 2 of
our method: (a) apply the cross-wavelet transform (Fig. 5b
colors), (b) calculate the timing error for all observed events
from the phase difference (Fig. 5b arrows), (c) subset the tim-
ing errors to the observed cluster maxima (Fig. 5c asterisks),
and (d) retain only modeled hits (Fig. 5c asterisks within
the dashed contours). Table 3 is ordered, by characteristic
timescales, from highest to lowest average power; we only
show the top five characteristic scales. The absolute max-
imum of the time average event spectrum has a timescale
equal to 24.8 h; for cluster one, the model is nearly 11 h late,
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Figure 5. For 3-month time series from Pemigewasset River, NH, panel (a) shows the observed and simulated NWM time series (note the
logged y axis), (b) shows the cross-wavelet (XWT) power spectrum (colors), phase angles (arrows), and statistically significant XWT events
(solid contours), and (c) shows the sampled timing errors for observed events (inside dashed contour indicates intersection of XWT events
with observed events) and cluster maxima (gray asterisks).

and cluster two is early (−3.5 h). Both are hits, and the aver-
age timing error is 3.5 h late. However, for the next timescale
(= 27.8 h), the third cluster maximum is a miss, so its timing
error is reported as n/a (not applicable) and is not included
in the average. This miss can be seen in Fig. 5c where the
cluster 3 asterisk falls just outside the XWT events for the
27.8 h, timescale. Moreover, this miss can also be interpreted
from the comparison of the hydrographs in Fig. 5a where
the modeled third peak does not reasonably approximate the
magnitude of the observed peak. Interestingly, while it is a
narrow miss at the shorter timescale of 27.8 h, the associated
(third) cluster maxima at the next most powerful characteris-
tic timescale (33.1 h) is a hit. This reflects that the hydrograph
is insufficiently peaked for this event but does have some of
the observed, lower-frequency variability. Overall, the char-

acteristic timescale of 33.1 h has timing results similar to the
27.8 h timescale, with the exception of the third cluster max-
imum. This raises the question of whether these are distinct
characteristic timescales. In Sect. 5, we discuss smoothing
the time average event power by timescale to address this is-
sue.

The characteristic timescale with the fourth-highest time-
averaged power occurs at 111 h, which is a different order of
magnitude, suggesting that this may have a different physical
process driving it. At this timescale, the model is late in both
event clusters (10 and 16 h). Results are similar for the next
timescale of 148 h. We do not show results for the remain-
ing four characteristic timescales with lower average power,
since they have similar characteristic timescale values and
associated timing errors to what has already been shown.
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Figure 6. For a 1-year time series from Taylor River, CO, panel (a) shows the observed time series, and (b) shows observed wavelet power
spectrum (left) and average power by timescale for all points (right). Panel (c) shows the statistically significant wavelet power spectrum of
events (left) and average power by timescale for all events, with maxima shown by gray dots (right). Panel (d) shows the characteristic scale
event clusters (horizontal lines).

4.1.2 Taylor River, CO

In this example, we examine a 1-year time series from
Taylor River, CO, that illustrates hydrograph peaks driven
by different processes. The Taylor River is in a moun-
tainous area where the spring hydrology is dominated by
snowmelt runoff. Figure 6a shows the time series from Taylor
River, CO, where we can see the snowmelt runoff in spring
and also several peaks in summer, likely driven by summer
rains. Figure 6b shows the WT and illustrates how missing
data is handled. This results in additional COIs (muted col-
ors) to account for the edge effects, and areas of the COI are
ignored in our analyses.

From the statistically significant events in the WT, we see
the peak in the characteristic timescales at 23.4 h (Fig. 6c,
right), and there is another maxima at the 99 and 118 h
timescales. The process-based shift in dominant timescales
is evident in the wavelet power (Fig. 6b and c). The 23.4 h
timescale is dominant before 1 July, during snowmelt runoff,
and then shifts to the 99 and 118 h timescales, relating to
flows from summer rains. In step 2, we compare the ob-
served time series with the simulation from the NWM V1.2
(Fig. 7a); here, it is useful to magnify the spring melt sea-
son time series (Fig. 8), where we see that the amplitude of
the diurnal signal is too high, but it is hard to visually tell
much about the timing error. Next, the cross-wavelet trans-
form (Fig. 7b) and timing errors are calculated (Fig. 7c). The
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Figure 7. For a 1-year time series from Taylor River, CO, panel (a) shows the observed and simulated NWM time series (note the logged
y axis), (b) shows the cross-wavelet (XWT) power spectrum (colors), phase angles (arrows), and statistically significant XWT events (solid
contours). Panel (c) shows the sampled timing errors for observed events (inside dashed contour indicates intersection of XWT events with
observed events).

results are summarized in Table 4. Starting with the domi-
nant 23.4 h timescale, we see that there are 11 clusters, that
73 % (= 8/11 cluster maxima) are hits, and that the model
is generally early (the mean is 6 h early). For the 118 and
99 h timescales, there are no hits. This suggests that we are
confident in the timing errors of the model for the diurnal
snowmelt cycle, and these timing errors can be used as guid-
ance for model performance and model improvements. How-
ever, the model does not successfully reproduce key variabil-
ity during the summer, and timing errors are not valid at this
timescale. This underscores the key point that timing errors
are timescale dependent and can help diagnose which pro-
cesses to target for improvements.

4.2 Evaluating model performance

Finally, we show how the methodology can be used for eval-
uating performance changes across NWM versions. We point
out that none of the NWM version upgrades were target-
ing timing errors, so these results just provide a demonstra-
tion. We use 5-year observed and modeled time series at
the three locations, namely Onion Creek, TX, Pemigewasset
River, NH, and Taylor River, CO.

For Onion Creek, Table 5 summarizes the results for the
three most important timescales, and Fig. 9 provides a graph-
ical representation of these timing errors (hits only). For the
dominant 29.5 h timescale and for all model versions, there
were 19 cluster maxima, 89.5 % of which were hits, with a
median timing error of 1.4 h early. However, the model shows
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Table 3. For a 3-month time series from Pemigewasset River, NH, by characteristic timescale, this is a summary of the timing error results
for cluster maxima that were hits when using NWM v1.2.

Characteristic Avg WT Cluster Timing Hit? Total Percent of Avg
timescale (h) power error (h) number of hits timing

clusters error (h)

24.8 82 800
1 10.7 True

2 100 3.5
2 −3.64 True

27.8 74 400
1 9.54 True

3 67 2.82 −3.99 True
3 n/a False

33.1 73 100
1 8.41 True

3 100 1.22 −2.12 True
3 −2.71 True

111 72 000
1 10.0 True

2 100 13
2 16.5 True

148 58 200
1 12.0 True

2 100 14
2 15.0 True

The term n/a stands for not applicable.

Table 4. For a 1-year time series from Taylor River, CO, by characteristic timescale, this is a summary of the timing error results for the
cluster maxima that were hits when using NWM v1.2.

Characteristic Avg WT Number of Percent Timing error (h)

timescale (h) power clusters of hits Min Mean Max

23.4 316 11 73 −8.2 −6.0 −3.6
118 93.1 2 0 n/a n/a n/a
99.1 90.5 2 0 n/a n/a n/a

The term n/a stands for not applicable.

Table 5. Summary of timing errors from cluster maxima that were
hits for 5-year time series from Onion Creek, TX.

NWM Characteristic Avg WT Number of Percent Median
version power timescale (h) clusters of hits timing

error (h)

v1.0 29.5 2 843 000 19 89 −1.4
v1.1 29.5 2 843 000 19 89 −2.8
v1.2 29.5 2 843 000 19 89 −3.2

v1.0 17.5 2 672 000 26 92 −1.1
v1.1 17.5 2 672 000 26 88 −1.9
v1.2 17.5 2 672 000 26 92 −2.4

v1.0 58.9 1 578 000 14 79 −1.4
v1.1 58.9 1 578 000 14 79 −3.0
v1.2 58.9 1 578 000 14 79 −3.0

progressively earlier timing errors with increasing version
(Fig. 9). The results are similar for the other two characteris-
tic timescales.

For Pemigewasset River, Table 6 summarizes the results
for the three most important timescales, and Fig. 10 pro-

vides a graphical representation of the timing errors (hits
only). At this location, the median timing error improved
with NWM V1.2, moving closer to zero. While the distribu-
tion of the timing errors became less biased than the previous
versions, it also became wider (Fig. 10). Over the time series,
there were between 59 and 76 event clusters. Interestingly,
the hit rate for all timescales was best for NWM V1.1, though
its timing errors are broadly the worst. From NWM V1.0 to
NWM V1.2, improvements to both hit rate and median tim-
ing errors were obtained at all timescales.

For Taylor River, Table 7 summarizes the results for
the two most important timescales. For the characteristic
timescale of 235 h (∼ 10 d), there are only four event clus-
ters, and each model version has only one hit. The timing of
this hit improves by roughly half its error from NWM V1.0
to NWM V1.2 in going from 16 to 9 h. The 23.4 h timescale
has 41 event clusters, with a hit rate varying considerably
by version. The median timing error is fairly consistent with
version, however, ranging from 6 to 7 h early.
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Figure 8. Magnified view of the spring runoff of a 1-year time series
for Taylor Park, CO, showing the observed and simulated NWM
time series.

Figure 9. A 5-year time series from Onion Creek, TX, which com-
pares cluster maxima timing error distributions for the top three
characteristic timescales (see panel title) across NWM versions.

5 Discussion and conclusions

In this paper, we develop a systematic, data-driven method-
ology to objectively identify time series (hydrograph) events
and estimate timing errors in large-sample, high-resolution

Figure 10. A 5-year time series from Pemigewasset River, NH,
which compares cluster maxima timing error distributions for the
top three characteristic timescales (see panel title) across NWM ver-
sions.

Table 6. Summary of timing errors from cluster maxima that were
hits for 5-year time series from Pemigewasset River, NH.

NWM Characteristic Avg WT Number of Percent Median
version timescale (h) power clusters of hits timing

error (h)

v1.0 17.5 172 900 67 84 −2.7
v1.1 17.5 172 900 67 91 −2.8
v1.2 17.5 172 900 67 85 −0.2

v1.0 27.8 169 600 61 82 −3.9
v1.1 27.8 169 600 61 97 −4.2
v1.2 27.8 169 600 61 90 1.1

v1.0 31.2 169 500 59 86 −4.2
v1.1 31.2 169 500 59 95 −4.6
v1.2 31.2 169 500 59 93 1.6

hydrologic models. The method was developed towards sev-
eral intended uses. First, it was primarily developed for
model evaluation, so that model performance can be docu-
mented in terms of defined standards. We illustrate this with
the version-over-version NWM comparisons. Second, it can
be used for model development, whereby potential timing
error sources can be diagnosed (by timescale) and targeted
for improvement. Related to this point, and given the advan-
tages of calibrating using multiple criteria (e.g., Gupta et al.,
1998), timing errors could be used as part of a larger cali-
bration strategy. However, minimizing timing errors at one
timescale may not translate to improvements in timing errors
(or other metrics) at other timescales. Wavelet analysis has
also been used directly as an objective function for calibra-

Hydrol. Earth Syst. Sci., 25, 2599–2615, 2021 https://doi.org/10.5194/hess-25-2599-2021



E. Towler and J. L. McCreight: A wavelet-based approach to streamflow event identification 2613

Table 7. Summary of timing errors from cluster maxima that were
hits for 5-year time series of Taylor River, CO.

NWM Characteristic Avg WT Number of Percent Median
version timescale (h) power clusters of hits timing

error (h)

v1.0 236 263 4 25 −16
v1.1 236 263 4 25 −10
v1.2 236 263 4 25 −9.0

v1.0 23.4 250 41 68 −6.1
v1.1 23.4 250 41 44 −6.9
v1.2 23.4 250 41 56 −6.5

tion, although a difficulty arises in determining which simi-
larity measure to use (e.g., Schaefli and Zehe, 2009; Rathi-
nasamy et al., 2014). Future research will investigate the ap-
plication of the timing errors presented here for calibration
purposes. Finally, the approach can be used for model inter-
pretation and forecast guidance, as estimating timing errors
provides characterization of the timing uncertainty (i.e., for a
given timescale, the model is generally late or early) or con-
fidence.

Given the fact that several subjective choices were made
specific to our application and goals, it is important to high-
light that we have made the analysis framework openly avail-
able (detailed in the code availability section below), so the
method can be adapted, extended, or refined by the commu-
nity right away. We look at timing errors from an observed
event set relevant to our analysis, but there are other ways to
subset the events that might be more suitable to other appli-
cations. For example, we focus on the event cluster maxima,
but one could also examine the event cluster means or the
local maxima along time. Another alternative to finding the
event cluster maxima (i.e., for a given timescale) would be
to identify the event with maximum power in islands of sig-
nificance across timescales, i.e., contiguous regions of con-
tiguous significance across both time and timescale. This ap-
proach would ignore that multiple frequencies can be impor-
tant at once. Moreover, defining such islands is not straight-
forward. A different approach could be desirable if one sus-
pected nonstationarity in the characteristic timescales over
the time series. Then perhaps a moving average in timescale
could be employed to identify characteristic timescales. In
our approach, we define the event set broadly. However, it
could be subset using streamflow thresholds (e.g., for flood-
ing events) to compare events in the wavelet domain with
traditional peak-over-threshold events. For example, Fig. 11
shows the maximum streamflows for the event set from the
5 year time series at Taylor River. This figure shows that all
events identified by the algorithm are not necessarily high-
flow events (i.e., the maximum streamflow peaks are lower
for the 23.4 h timescale compared to the 235.6 h timescale).
To compare with traditional peak-over-threshold approaches,
this event set could be filtered to include only events above

Figure 11. A 5-year time series from Taylor River, CO, showing
the top two characteristic timescales and maximum streamflow peak
distributions for each event (using cluster maxima) in cubic meters
per second (m3 s−1).

a given threshold (i.e., events in both the wavelet and time
domains).

Another point that arises is how many characteristic
timescales should be examined and the similarity of adja-
cent characteristic timescales. In our method, we average the
power in timescales and identify characteristic scales at ev-
ery absolute and relative maxima. As seen in the illustrative
examples, this can result in multiple characteristic scales,
some of which can be quite similar, suggesting that events
at those scales are from similar or related processes. A so-
lution could be to smooth the average power by timescale,
which would reduce the number of local maxima, or to look
at timing errors within a band of timescales. It is also impor-
tant to note that the characteristic scales are data driven, so
they will change with different lengths of observed time se-
ries. Longer runs capture more events and should converge
on the more dominant timescales and events for a location.
However, for performance evaluation, overlapping time peri-
ods for observed and modeled time series are needed.

In our application of the WT, we follow Liu et al. (2011)
and select the Morlet as the mother wavelet. However, results
are sensitive to the mother wavelet selected. Further discus-
sion of mother wavelet choices can be found in Torrence and
Compo (1998) and in ElSaadani and Krajewski (2017).

In summary, this paper provides a systematic, flexible,
and computationally efficient methodology for calculating
model timing errors that is appropriate for model evaluation
and comparison and is useful for model development and
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guidance. Based on the wavelet transform, the method intro-
duces timescale as a property of timing errors. The approach
also identifies streamflow events in the observed and mod-
eled time series and only evaluates timing errors for modeled
events which are hits in a two-way contingency analysis. Fu-
ture work will apply the approach to identify characteristic
timescales across the United States and to assess the associ-
ated timing errors in the NWM.

Code and data availability. The code for reproducing the figures
and tables in this paper is provided in the GitHub repository
at https://doi.org/10.5281/zenodo.4746587 (McCreight 2021), with
instructions for installing dependencies. The core code used in
the above repository is provided in the “rwrfhydro” R package
(https://doi.org/10.5281/zenodo.4746607; McCreight et al., 2021).
The code is written in the open-source R language (R Core Team,
2019) and builds on multiple, existing R packages. Most notably,
the wavelet and cross-wavelet analyses are performed using the “bi-
wavelet” package (Gouhier et al., 2018).

We emphasize that the analysis framework is meant to be flexible
and adapted to similar applications where different statistics may be
desired. The figures created are specific to the applications in this
paper but provide a starting point for other work.
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