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Abstract. This work develops a transfer function to describe
the variation in the integrated specific discharge in response
to the temporal variation in the rainfall event in the frequency
domain. It is assumed that the rainfall–discharge process
takes place in a confined aquifer with variable thickness, and
it is treated as nonstationary in time to represent the stochas-
tic nature of the hydrological process. The presented transfer
function can be used to quantify the variability in the inte-
grated discharge field induced by the variation in rainfall field
or to simulate the discharge response of the system to any
varying rainfall input at any time resolution using the convo-
lution model. It is shown that, with the Fourier–Stieltjes rep-
resentation approach, a closed-form expression for the trans-
fer function in the frequency domain can be obtained, which
provides a basis for the analysis of the influence of control-
ling parameters occurring in the rainfall rate and integrated
discharge models on the transfer function.

1 Introduction

Quantifying the variability in the specific discharge response
of an aquifer system to fluctuations in inflow recharge is
essential for efficient groundwater resources management.
However, this requires extensive and continuous hydrolog-
ical time series data, and these data are very often not avail-
able in practice. A possible approach (namely convolution or
transfer function approach) to this problem is to simulate the
discharge response by convoluting the time-varying recharge
input with the corresponding impulse response. In convolu-

tion models, the aquifer is regarded as a filter that converts
recharge signals into fluctuations of the aquifer head or dis-
charge. Lumped conceptual–convolution models have been
shown to be an efficient means for the simulation of the time
series of groundwater levels (e.g., Gelhar, 1974; Molénat et
al., 1999; Olsthoorn, 2007; Long and Mahler, 2013; Pedretti
et al., 2016).

Since the impulse response function in the convolution
model contains all information of the system necessary to re-
late its input to its output, it may be determined from the an-
alytical solution of the linear system equation governing the
input–output process (e.g., Cooper and Rorabaugh, 1963).
Once a suitable impulse response function can be specified,
it allows the simulation of the linear system response to any
varying input at any time resolution.

In this work, a regional-scale flow in a confined aquifer
with variable thickness, which is recharged by rainfall
through an outcrop, is analyzed by deriving transfer func-
tions to characterize the rainfall–discharge process in the fre-
quency domain. The stochastic analysis of groundwater flow
is traditionally based on the assumption of the stationarity
of the recharge and discharge processes. However, the hy-
drologic process in nature is nonstationary stochastic (e.g.,
Christensen and Lettenmaier, 2007; Milly et al., 2008; Sang
et al., 2018). In order to improve the quantification of the nat-
ural recharge–discharge process, the nonstationary rainfall–
discharge process is assumed in this study. The Fourier–
Stieltjes representation approach is used to achieve the goal
of this work. The analysis of the results is focused on the
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Figure 1. Schematic representation of a linear block box system.

influence of controlling parameters in the rainfall–discharge
models on the transfer function.

2 Problem formulation

In certain areas, aquifer recharge can vary greatly over time,
so determining the discharge of the aquifer at the outlet for
regional groundwater problems, which involves transferring
recharge at the aquifer outcrop over a relatively large space
scale, can be quite difficult. However, it is very important
for the planning and management of regional groundwater
resources that require knowledge of discharge at the aquifer
outlet over a long period of time. This study is, therefore,
devoted to quantifying the discharge response of the con-
fined aquifer at the outlet to the temporal variation in aquifer
recharge.

In this study, a confined aquifer with variable thickness is
considered as a linear block box system, with a stochastic
rainfall recharge input and, therefore, a stochastic runoff out-
put. Both inputs and outputs are variable in time. In a linear
system, the output of the system can be represented as a lin-
ear combination of the responses to each of the basic inputs
through the convolution integral on a continuous timescale
as (e.g., Rugh, 1981; Rinaldo and Marani, 1987) as follows:

Q(t)=

t∫
0

ϕ(t,τ )R(τ)dτ, (1)

where Q and R denote the output flow (discharge) rate and
the input flow (recharge) rate of the system, respectively, and
ϕ is the impulse response function of the system. As shown
in Fig. 1, once an appropriate impulse response function can
be specified at the scale of the aquifer, it is possible to evalu-
ate the system response from records of the input without the
need to specify smaller-scale heterogeneity. As will be shown
below, the transfer function of the system can be used to char-
acterize the uncertainty (variability) expected in applying the
convolution integral Eq. (1) to the regional groundwater flow
problems.

When using the nonstationary Fourier–Stieltjes represen-
tations for the perturbed quantities of random recharge and
outflow discharge processes, namely (e.g., Priestley, 1965)

in the following:

r(t)= R(t)−E[R(t)] =

∞∫
−∞

3r(t;ω)dZξ (ω), (2)

q(t)=Q(t)−E[Q(t)] =

∞∫
−∞

3q(t;ω)dZξ (ω), (3)

the power spectrum of the mean removed convolution (1) can
be written in the following form:

Sqq(t;ω)=
∣∣3q(t;ω)∣∣2Sξξ (ω), (4)

where, in the following:

3q(t;ω)=

t∫
0

ϕ(t,τ )3r(τ ;ω)dτ. (5)

In Eqs. (2) and (3), 3r and 3q are the oscillatory functions
(Priestley, 1965) of the recharge and outflow processes, re-
spectively, ω is the frequency, ξ is a zero-mean random sta-
tionary forcing process, which generates the variations in the
recharge and, thus, the output flow processes, with an or-
thogonal increment dZξ . In Eq. (4), Sqq and Sξξ represent
the power spectra of the processes q and ξ , respectively, and
|3q |

2 is termed the transfer function.
In practice, the interest in many cases resides in evaluating

the influence of the variation in the recharge on the variation
in the outflow discharge. Equation (4) provides an efficient
way of quantifying the variability in the outflow induced by
the fluctuations in the inflow process in the frequency do-
main, since it relates the fluctuations in an output time series
to those of an input series.

It is worthwhile mentioning that, for the case of second-
order stationary rainfall processes, the representations of the
forms (2) and (3) are reduced, respectively, to the following:

r(t)=

∞∫
−∞

eiωtdZr(ω), (6)

q(t)=

∞∫
−∞

3q(t;ω)dZr(ω), (7)

and, correspondingly, to the following:

Sqq(t;ω)=
∣∣3q(t : ω)∣∣2Srr(ω), (8)

where, in the following:

3q(t;ω)=

t∫
0

ϕ(t,τ )eiωtdτ. (9)
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Equations (1) and (4) reveal that, once the transfer function
for the linear lumped system is identified, the first two mo-
ments of the temporal random discharge fields can be de-
termined. That is, the transfer function approach provides a
basic framework for the characterization of large-scale flow
processes, which may serve as a basis for an efficient man-
agement of groundwater resources. Furthermore, Eq. (4) pro-
vides another possible way to identify the aquifer parameters,
as it relates the observed fluctuations of an output discharge
process to those of a recharge process in the frequency do-
main.

In the following, the focus is on the development of a
closed-form expression for the transfer function for a linear
lumped confined flow model in which the regional confined
aquifer is directly recharged by rainfall in the area corre-
sponding to the high-elevation outcrop.

3 Theoretical development

The differential equation describing the transient flow of
groundwater in inhomogeneous isotropic confined aquifers
is of the following form (e.g., Bear, 1979; de Marsily, 1986):

Ss
∂

∂t
h(x, t)=

∂

∂xi
[K(x)

∂

∂xi
h(x, t)] i = 1,2,3, (10)

in which Ss represents the specific storage coefficient of the
aquifer, h= h(x, t) is the hydraulic head, K(x) is the hy-
draulic conductivity, and x (= (x1, x2, x3)) is the spatial co-
ordinate vector. Many problems in groundwater flow are re-
gional in nature, with the horizontal extent of the formation
being much larger than the vertical extent. It is more practi-
cal to regard the flow as essentially horizontal. The regional-
scale flow equations can be derived by integrating Eq. (10)
along the thickness of the confined aquifer using the assump-
tion of vertical equipotential surfaces (e.g., Bear, 1979; Bear
and Cheng, 2010).

Integrating Eq. (10) along the x3 axis perpendicular to the
confining beds and using Leibniz’s rule results in the follow-
ing:

S(x1,x2)
∂

∂xi
h̃(x1,x2, t)=

∂

∂xi
[T (x1,x2)

∂

∂xi
h̃(x1,x2, t)]

+ T (x1,x2)
∂

∂xi
lnB(x1,x2)

∂

∂xi
h̃(x1,x2, t), i = 1,2, (11)

where S(x1, x2) is the storage coefficient (or storativity) of
the aquifer (= SsB(x1, x2)), B(x1, x2)= b2(x1, x2)− b1(x1,
x2) (an aquifer’s thickness), b1(x1, x2) and b2(x1, x2) are
the elevations of the fixed bottom and ceiling of the con-
fined aquifer, respectively, T (x1, x2) is the transmissivity
of the aquifer (=K(x1, x2)B(x1, x2)) interpreted as the
depth-integrated hydraulic conductivity, and h̃(x1,x2, t) is
the depth-averaged hydraulic head defined as follows:

h̃(x1,x2)=
1

b2(x1,x2)− b1(x1,x2)

b2(x1,x2)∫
b1(x1,x2)

h(x1,x2,x3, t)dx3. (12)

Equation (11) is derived under the following assumptions:
(1) there is no exchange of leakage fluxes between the con-
fined aquifer and its confining beds in the direction of x3 axis,
(2) h(x1, x2, b2, t) ≈ h̃(x1,x2, t)≈ h(x1, x2, b1, t) (verti-
cal equipotentials; Bear, 1979; Bear and Cheng, 2010), and
(3) all terms involved in the fluxes in the directions of x1 and
x2 at the boundaries are removed due to the no-slip condition
at the boundaries.

The use of the depth-averaged hydraulic head operator for
modeling regional groundwater flow is valid when the vari-
ation in aquifer thickness is much smaller than the average
thickness (Bear, 1979; Bear and Cheng, 2010). The error in-
troduced by the use of this operator is very small in most
cases of practical interest, greatly simplifying the analysis of
flow in confined aquifers.

Similarly, when applying Leibniz’s rule to the Darcy equa-
tion, the vertically integrated specific discharge in the xi di-
rection is given by the following:

Qxi (x1,x2, t)=−K(x1,x2)B(x1,x2)
∂

∂xi
h̃(x1,x2, t)

=−T (x1,x2)
∂

∂xi
h̃(x1,x2, t), i = 1,2. (13)

In this study, the regional confined aquifer is considered
with a nonuniform, unidirectional mean flow in the x1-axis
direction but with small flow variations in the x1-axis and
x2-axis directions and time-varying recharge at the aquifer
outcrop (x1 = 0). Since the regional flow domain considered
in the x1 direction is much larger than that in the x2 direction,
Eqs. (11) and (13) can be approximated as one-dimensional
by the following:

S(x)

T

∂

∂t
h̃(x, t)=

∂2

∂x2 h̃(x, t)+
∂

∂x
lnT (x)

∂

∂x
h̃(x, t)

+
∂

∂x
lnB(x)

∂

∂x
h̃(x, t)+

R(t)

T
, (14)

Qx(x, t)=−T (x)
∂

∂x
h̃(x, t), (15)

where T =KB, K represents the spatial average of the hy-
draulic conductivity, and R is the recharge rate. It is worth
noting that a one-dimensional flow equation with the trans-
missivity parameter has been widely used to predict the re-
gional groundwater flow fields in the downstream region of
the aquifer in field applications (e.g., Gelhar, 1974; Onder,
1998; Molénat et al., 1999; Russian et al., 2013). Equa-
tion (14) can be expressed alternatively as follows:

Ss

K

∂

∂t
h̃(x, t)=

∂2

∂x2 h̃(x, t)+ 2
∂

∂x
lnB(x)

∂

∂x
h̃(x, t)

+
R(t)

KB(x)
, (16)

for the convenient analysis of the effect of the thickness of
the aquifer.
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In the following analysis, the recharge rate is considered a
random function of time. Equation (15) is then regarded as
a stochastic differential equation with a stochastic input in
time and, therefore, a stochastic output in time. Introduction
of the decomposition of the depth-averaged hydraulic head
into a mean and zero-mean perturbation into Eq. (16), after
subtracting the mean of the resulting equation from Eq. (16),
means that the result is the following equation describing the
depth-averaged head perturbation:

Ss

K

∂

∂t
h′(x, t)=

∂2

∂x2 h
′(x, t)+ 2

∂

∂x
lnB(x)

∂

∂x
h′(x, t)

+
r(t)

B(x)K
, (17)

where h′(x, t) is the fluctuations in depth-averaged head.
If it is assumed that the thickness of the confined aquifer

increases exponentially in the x direction, in accordance with
Hantush (1962) and Marino and Luthin (1982), as follows:

B(x)= βeαx, (18)

then Eq. (17) becomes the following:

Ss

K

∂

∂t
h′(x, t)=

∂2

∂x2 h
′(x, t)+ 2α

∂

∂x
h′(x, t)+

e−αx

βK
r(t). (19)

In Eq. (18), β and α are positive geometrical parameters.
Furthermore, the outcrop (x = 0) and outlet (x = L) of the
confined aquifer are considered as constant head boundaries.
Since Eq. (19) only quantifies the response of the depth-
averaged head to changes in the recharge rate, the initial and
boundary conditions for Eq. (19) may be represented as fol-
lows:

h′(x,0;ω)= 0, (20a)
h′(0, t;ω)= 0, (20b)
h′(L, t;ω)= 0. (20c)

The following Fourier–Stieltjes integral representation of
a depth-averaged head process is used to solve Eqs. (19) and
(20) for the fluctuations h′ in terms of r:

h′(x, t)=

∞∫
−∞

3h(x, t;ω)dZξ (ω), (21)

where 3h is the oscillatory function of depth-averaged head
process. The resulting differential equation for the oscillatory
functions is found from using Eqs. (2) and (21) in Eqs. (19)
and (20) as follows:

Ss

K

∂

∂t
3h(x, t;ω)=

∂2

∂x23h(x, t;ω)+ 2α
∂

∂x
3h(x, t;ω)

+
e−αx

βK
3r (t;ω), (22)

with the following conditions:

3h(x,0;ω)= 0, (23a)
3h(0, t;ω)= 0, (23b)
3h(L, t;ω)= 0. (23c)

By solving the above boundary value problem, the oscilla-
tory function of depth-averaged head process is found to be
the following (see Appendix A):

3h(x, t;ω)=
2
Ssβ

n=∞∑
n=1

1− cos(nπ)
nπ

exp
(
−µ

x

L

)

sin
(
nπ

x

L

) t∫
0

exp[−θn(t − τ)]3r(τ ;ω)dτ, (24)

where µ= αL and θn =K(n2π2
+µ2)/(SsL

2). It implies
from Eqs. (3), (15) and (24) that, at the arbitrary location
x = xε, one finds the following:

3q(t;ω)=3qx (xε, t;ω)

=−2
K

SsL

n=∞∑
n=1

1− cos(nπ)
nπ

[nπ cos(nπϒ)

−µsin(nπϒ)]

t∫
0

exp[−θn(t − τ)]3r (τ ;ω)dτ, (25)

whereϒ = xε/L. This means that the impulse response func-
tion of the system ϕ in Eqs. (1) or (5) is taken in the following
form:

ϕ(t,τ )=−2
K

SsL

n=∞∑
n=1

1− cos(nπ)
nπ

[cos(nπϒ)−µsin(nπϒ)]exp[−θn(t − τ)]. (26)

4 Results and discussion

Equation (25) implies that the transfer function |3q |2 de-
pends on the oscillatory function of the temporal random
rainfall process; consequently, to complete the analysis of
the transfer function, the oscillatory function of the tempo-
ral random rainfall process must be specified. It is assumed
that the generated temporal random perturbations of the rain-
fall field are governed by the noise-forced diffusive rainfall
model (North et al., 1993) as follows:

τ0
∂

∂t
ρ(x, t)= λ2

0
∂2

∂x2 ρ(x, t)− ρ(x, t)+ ξ(t), (27)

where ρ is a zero-mean rainfall rate perturbation, τ0 and λ0
are the characteristic timescales and length scales, respec-
tively, which are inherent to the rainfall field, and ξ is a zero-
mean random stationary forcing process which has a spec-
tral representation of the following form (e.g., Lumley and
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Panofsky, 1964):

ξ(t)=

∞∫
−∞

eiωtdZξ (ω). (28)

In Eq. (27), the rainfall rate field is represented as a first-order
continuous autoregressive process in time and an isotropic
second-order autoregressive process in space.

Furthermore, the rest of this study takes into account that
rain falls within a defined period of time over a certain area
of horizontal extension from x =−` to x = `. As such, the
initial and boundary conditions for rainfall rate perturbations
may be represented by the following:

ρ(x,0)= 0, (29a)
ρ(−`, t)= 0, (29b)
ρ(`, t)= 0. (29c)

4.1 Nonstationary random rainfall fields in time

Using the Fourier–Stieltjes integral representation for the
perturbation ρ, as follows:

ρ(x, t)=

∞∫
−∞

3ρ(x, t;ω)dZξ (ω), (30)

and Eq. (28) in Eq. (27), it follows that:

τ0
∂

∂t
3ρ(x, t;ω)= λ

2
0
∂2

∂x23ρ(x, t;ω)−3ρ(x, t;ω)

+ eiωt , (31)

where 3ρ is the oscillatory function of the rainfall rate pro-
cesses. With the application of the initial and boundary con-
ditions, as follows:

3ρ(x,0;ω)= 0, (32a)
3ρ(−`, t;ω)= 0, (32b)
3ρ(`, t;ω)= 0, (32c)

the solution of Eqs. (31) and (32) is given by the following
(see Appendix B):

3ρ(x, t;ω)= 2
m=∞∑
m=1

1− cos(mπ)
mπ

sin
(
mπ

x+ `

2`

)
exp(i�t )− exp(−2mt/τ0)

2m+ i0
, (33)

where 2m = 1+m2π2η2, η = λ0/(2`), �t = ωt , and 0 =
ωτ0.

In the case where the regional confined aquifer is directly
recharged by rainfall at the aquifer outcrop (x = 0), the os-

cillatory function is reduced to the following:

3r(t;ω)=3ρ(0, t;ω)= 2
m=∞∑
m=1

1− cos(mπ)
mπ

sin
(
m
π

2

)
exp(i�t )− exp(−2mt/τ0)

2m+ i0
.

(34)

Correspondingly, the power spectrum of the rainfall rate,
Srr(t , ω), can be expressed by the following:

Srr(t;ω)= |3r(t;ω)|
2Sξξ (ω)

= 4
n=∞∑
n=1

m=∞∑
m=1

1− cos(mπ)
mπ

1− cos(nπ)
nπ

sin(m
π

2
)sin(n

π

2
)

1
22
m+0

2
1

22
n+0

2

{(2m2n+0
2)[1+ T1− T2 cos(�t )]

− T30(2m−2n)sin(�t )}Sξξ (ω), (35)

where T1 = exp[−(2m+2n)t/τ0], T2 = exp(−2mt/τ0)+

exp(−2nt/τ0), and T3 = exp(−2mt/τ0)− exp(−2nt/τ0).
The transfer function of the rainfall processes in Eq. (35)

behaves like a filter, attenuating the high-frequency part of
the rainfall spectrum. The graph of the transfer function,
which is characterized by the characteristic timescale τ0 for
different characteristic length scales, is shown in Fig. 2. It
clearly shows a reduction in the transfer function with in-
creasing τ0, implying a reduction in the variability in the rain-
fall field with the characteristic timescale of the rainfall field.
A larger τ0 decreases the temporal persistence of the rain-
fall fluctuations, resulting in a smaller transfer function. It is
also seen that, for a fixed value of the timescale, the trans-
fer function of the rainfall processes tends to decrease as the
length scale of the rainfall field increases. The influence of
the length scale plays a similar role to the influence of the
timescale in reducing the temporal persistence of the rainfall
fluctuations and, thus, the variability in the rainfall field.

Through the use of Eqs. (25) and (34), the oscillatory func-
tion of the integrated discharge process could be represented
as follows:

3q(t;ω)=−4
K

SsL

n=∞∑
n=1

1− cos(nπ)
nπ

[nπ cos(nπϒ)

−µsin(nπϒ)]

×

m=∞∑
m=1

1− cos(mπ)
mπ

sin(mπ
2 )

2m+ i0

[
exp(i�t )− exp(−θnt)

θn+ iω

−
exp(−2mt/τ0)− exp(−θnt)

θn−2m/τ0

]
. (36)
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Figure 2. Graphical representation of the transfer function of the
rainfall processes in Eq. (35) characterized by the timescale for dif-
ferent length scales, where the series calculation is truncated up to
M =N = 100.

Thus, the transfer function of the integrated discharge flux
takes the following form:

Sqq(t;ω)

Sξξ (ω)
=
∣∣3q(t;ω)∣∣2 = 16L2ϑ2

{[n=∞∑
n=1

m=∞∑
m=1

9192(
2m93+094

θ2
nτ

2
0 +0

2
+

2m95

2m− θnτ0

)]2

+
[n=∞∑
n=1

m=∞∑
m=1

9192
(2m94−093

θ2
nτ

2
0 +0

2

−
095

2m− θnτ0

)]2}
, (37)

where ϑ =Kτ0/(SsL
2), and in the following:

91 =
1

22
m+0

2
1− cos(mπ)

mπ
sin
(
m
π

2

)
, (38a)

92 =
1− cos(nπ)

nπ
[cos(nπϒ)−µsin(nπϒ)], (38b)

93 = 0 sin(�t )+ θnτ0[cos(�t )− exp(−θnt)], (38c)
94 = θnτ0 sin(�t )−0[cos(�t )− exp(−θnt)], (38d)
95 = exp(−2mt/τ0)− exp(−θnt). (38e)

Note that the linearity in modeling the recharge–discharge
response of a catchment in Eq. (1), which was originally de-
veloped for large catchments, increases with catchment area
(e.g., Chow et al., 1988). This implies that the impulse re-
sponses and transfer functions derived here are valid in large,
confined aquifers.

An essential feature of the transfer function of the inte-
grated discharge flux in Eq. (37) is the resulting filtering as-
sociated with the flow process, as shown in Fig. 3. The atten-
uation of the high-frequency part of the flow discharge spec-
trum means that the flow process smooths out much of the
small-scale variations caused by the rainfall field. Physically,

Figure 3. Influence of the thickness of the confined aquifer on the
transfer function of the discharge flux, where the series calculation
is truncated up to M =N = 100.

Figure 4. Influence of the aquifer diffusivity on the transfer function
of the discharge flux, where the series calculation is truncated up to
M =N = 100.

this feature implies that the flow field is much smoother than
the rainfall field. The figure also shows that the transfer func-
tion at fixed values for frequency and time increases with the
increasing thickness of the confined aquifer. An increase in
the thickness of the aquifer leads to an increased temporal
persistence of the flow discharge fluctuations caused by the
variation in the rainfall field and, thus, to an increase in the
variability in integrated discharge field. As shown in Fig. 4,
the ratio of the mean hydraulic conductivity to the storage
coefficient (often referred to as the aquifer diffusivity) plays
a similar role in influencing the variation in the transfer func-
tion to the thickness of the confined aquifer. The introduction
of a larger aquifer diffusivity leads to a larger transfer func-
tion of integrated discharge and, thus, to a larger variability
in the discharge field. Since the variability in the discharge
field is positively correlated with that of rainfall field, the
variability in the integrated discharge field will decrease with
the increasing characteristic timescale or length scale of the
rainfall field (see Fig. 2).

From Eqs. (4) or (8), the transfer function can be defined
as the ratio of the fluctuations of an observation of output
time series to those of input time series in a frequency do-

Hydrol. Earth Syst. Sci., 25, 2387–2397, 2021 https://doi.org/10.5194/hess-25-2387-2021



C.-M. Chang et al.: Discharge response of a confined aquifer 2393

main. Equations (35) and (37) indicate that the transfer func-
tions are related to the properties of the rainfall field and
the aquifer, such as the characteristic scales of the time and
length of the rainfall field and the diffusivity and thickness
parameters of the aquifer. Therefore, the transfer function de-
rived here has the potential to perform a parameter estimation
based on the observations of input and output time series us-
ing the inverse modeling approach.

The traditional approach to regional groundwater flow
problems introduces the transmissivity term, namely the
depth-integrated hydraulic conductivity operator, as follows:

T (x1,x2)=

b2(x1,x2)∫
b1(x1,x2)

K(x1,x2,x3)dx3, (39)

into to the groundwater flow equation (diffusion equation) to
reduce the three-dimensional equation to a two-dimensional
one as follows:

S(x1,x2)
∂

∂t
h(x1,x2, t)=

∂

∂xi
[T (x1,x2)

∂

∂xi
h(x1,x2, t)]

i = 1,2. (40)

This means that the effects of both the variation in K in
x3 direction and the aquifer thickness are implicitly reflected
in the term T (x1, x2). This leads to great difficulties in as-
sessing the influence of aquifer thickness on the flow field
with Eq. (40).

The proposed diffusion equation of this work is the fol-
lowing:

Ss(x1,x2)
∂

∂xi
h̃(x1,x2, t)=

1
B(x1,x2)

∂

∂xi

[K(x1,x2)B(x1,x2)
∂

∂xi
h̃(x1,x2, t)]

+K(x1,x2)
∂

∂xi
lnB(x1,x2)

∂

∂xi
h̃(x1,x2, t) i = 1,2, (41)

which, when derived by the hydraulic approach (Bear, 1979;
Bear and Cheng, 2010), provides an efficient way of ana-
lyzing flow fields in confined aquifers of nonuniform thick-
ness. Note that Eq. (41) is the reformulation of Eq. (11).
In addition, the usual observations of flow in porous me-
dia are measurements of hydraulic head from wells screened
over extended sections of the medium. The measurement at
a given location approximately represents a depth-averaged
actual hydraulic head resulting from flow through a three-
dimensional hydraulic conductivity field across the thickness
of the medium. This means that the depth-averaged head rep-
resentation used in Eq. (41) is consistent with what is ob-
served in the fields.

Climate changes have a direct influence on the rain-
fall event (e.g., Trenberth, 2011; Pendergrass et al., 2014;
Eekhout et al., 2018). The nonstationarity in the statistical
properties of a rainfall field is a representation of climate

change (e.g., Razavi et al., 2015; López and Francés, 2013;
Benoit et al., 2020). The nonstationary effect of climatic
change over time on variability in groundwater-specific dis-
charge has not yet been well characterized. The transfer func-
tion in Eq. (37), which relates the nonstationary spectra of
the rainfall fluctuations to those of integrated discharge vari-
ation, generalizes existing studies that considered stationary
recharge and discharge fields. To our knowledge, it has not
been previously presented in the literature and has the poten-
tial for analyzing the effects of climate change on temporal
groundwater-specific discharge variability.

4.2 Application in the prediction of outflow discharge

The usefulness of the stochastic theory presented here lies in
its essentially predictive nature. The variance can be used as
a quantification of the uncertainty associated with the predic-
tion in field situations using the linear system model. In this
sense, the solution of Eq. (1)±, i.e., two times the square root
of the variance, provides a rational framework for predicting
discharge over a relatively large spatial scale where direct
observations of such a dependent variable are not possible.

For large times, the first term in Eq. (37) dominates the
sum of the other terms, and therefore, the transfer function
can be approximated by the following:

∣∣3q(t;ω)∣∣2 = 256
π2 L

2ϑ2
[π cos(πϒ)−µsin(πϒ)]2

1
22

1+0
2

{42
+

1
∀2+02 [1+ 2∀4TA+ T 2

A − 2(∀4+ TA)

cos(�t )− 240 sin(�t )]}, (42)

where21 = 1+π2η2, ∀ =Kτ0(π
2
+µ2)/(SsL

2),4= (TR−
TA)/(∀−21), TR = exp(−21t/τ0), and TA = exp(−∀t/τ0).
If the variation in the rainfall event is generated by a random
white noise forcing, the variance in the outflow discharge at
large timescales can then be calculated using Eq. (42) as fol-
lows:

σ 2
q (t)=

∞∫
−∞

Sqq(t;ω)dω =

∞∫
−∞

∣∣3q(t;ω)∣∣2Sξξ (ω)dω
=

256
π

G0L
2

τ0
ϑ2
[π cos(πϒ)−µsin(πϒ)]2

{
42

21

+
1+ 2∀4TA+ T 2

A

∀21 (∀+21)

− 2(∀4+ TA)
21TA−∀TR

∀21(2
2
1−∀

2)
− 24

TR − TA

22
1−∀

2

}
, (43)

where G0 represents a constant spectral density of a white
noise process. Note that white noise is a signal that con-
tains all frequencies in equal proportions; that is, a signal for
which the spectrum is flat.

After observing the recharge rateR(t) over time at the out-
crop of the aquifer and identifying input parameters, such as
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the specific storage coefficient, mean hydraulic conductivity
and geometrical parameters of the aquifer and the character-
istic timescales and length scales of the rainfall event for a
given area or region, the discharge can be determined under
uncertainty in the far downstream aquifer area, i.e., Eq. (1)
together with Eq. (26)± being two times the square root of
Eq. (43). It provides an important basis for the rational man-
agement of regional groundwater resources in complex geo-
logic settings under uncertainty.

4.3 A note on stationary random rainfall fields in time

If the temporal random rainfall fields are stationary, there ex-
ists a representation of the rainfall perturbation process in
terms of a Fourier–Stieltjes integral in the form of Eq. (6).
Substituting Eqs. (6) and (21) into Eq. (19) gives the follow-
ing:

Ss

K

∂

∂t
3h(x, t;ω)=

∂2

∂x23h(x, t;ω)+ 2α
∂

∂x
3h(x, t;ω)

+
e−αx

βK
eiωt . (44)

The solution of Eq. (44) with conditions Eq. (23) is as fol-
lows:

3h(x, t;ω)=
2
Ssβ

n=∞∑
n=1

1− cos(nπ)
nπ

exp
(
−µ

x

L

)
sin
(
nπ

x

L

) exp(i�t )− exp(−θnt)
θn+ iω

, (45)

so that, in the following:

3q(t;ω)=−2
K

SsL

n=∞∑
n=1

1− cos(nπ)
nπ

[nπ cos(nπϒ)

−µsin(nπϒ)]
exp(i�t )− exp(−θnt)

θn+ iω
, (46)

and, thus, in the following:∣∣3q(t;ω)∣∣2 = 4L2ϑ2
n=∞∑
n=1

m=∞∑
m=1

8(m)8(n)

(θ2
nτ

2
0 +0

2)(θ2
mτ

2
0 +0

2)

[(θmθnτ
2
0 +0

2)(1+11− cos(�t )12)

−0 sin(�t )(θm− θn)τ013], (47)

where, in the following:

8(y)=
1− cos(yπ)

yπ
[yπ cos(yπϒ)−µsin(yπϒ)], (48)

11 = exp[-(θm+ θn)t], 12 = exp(−θmt)+ exp(−θnt), and
13 = exp(−θmt)-exp(−θnt).

At large timescales, Eq. (35) approaches a finite value as
follows:

Srr(ω)= 4
n=∞∑
n=1

m=∞∑
m=1

1− cos(mπ)
mπ

1− cos(nπ)
nπ

sin
(
m
π

2

)
sin
(
n
π

2

) 2m2n+0
2

(22
m+0

2)(22
n+0

2)
Sξξ (ω), (49)

and the corresponding rainfall process is stationary. Combin-
ing Eqs. (47) with (49) gives the following:

Sqq (ω)

Sξξ (ω)
= 16L2ϑ2{n=∞∑

n=1

m=∞∑
m=1

8(m)8(n)

(θ2
nτ

2
0 +0

2)(θ2
mτ

2
0 +0

2)
[(θmθnτ

2
0 +0

2)

(1+11− cos(�t )12)−0 sin(�t )(θm− θn)τ013]
}

×

[n=∞∑
n=1

m=∞∑
m=1

1− cos(mπ)
mπ

1− cos(nπ)
nπ

sin
(
m
π

2

)
sin
(
n
π

2

) 2m2n+0
2

(22
m+0

2)(22
n+0

2)

]
. (50)

Note that the nonstationarity in the hydraulic head or inte-
grated discharge is introduced by a nonuniform thickness of
the confined aquifer, even if the recharge field is stationary.
Nonuniformity in the mean flow, for example, can also cause
the nonstationarity in the statistics of random flow fields in
heterogeneous aquifers (e.g., Rubin and Bellin, 1994; Ni and
Li, 2006; Ni et al., 2010).

5 Conclusions

An analytical transfer function is developed to describe the
spectral response characteristics of confined aquifers with
variable thickness to the variation in the rainfall field, where
the aquifer is directly recharged by rainfall at the outcrop of
the aquifer. The rainfall–discharge process is treated as non-
stationary in time, as it reflects the stochastic nature of the
hydrological process. Any varying rainfall input at any time
resolution can be convolved with the transfer function (or
impulse response function) to simulate any discharge output
of a linear model. The transfer function derived here, which
relates the nonstationary spectra of the rainfall fluctuations
to those of integrated discharge variation, has the potential
to analyze the influence of climate change on groundwater
recharge variability.

The closed-form results of this work are developed on the
basis of the Fourier–Stieltjes representation approach, which
allows us to analyze the effects of the controlling parameters
in the models on the transfer function of the integrated dis-
charge. It is found that the persistence in rainfall fluctuations
is greater for a smaller value of the characteristic timescale
or length scale of the rainfall field, which, in turn, leads to
greater variability in the integrated discharge field. The at-
tenuating characteristic of the confined aquifer flow system
is observed in the spectral domain. The variability in the in-
tegrated discharge in a confined aquifer with variable thick-
ness is increased with the thickness parameter α. The larger
the aquifer diffusivity, the greater the spectrum (variability)
of the integrated discharge.
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Appendix A: Evaluation of 3h in Eq. (20)

The boundary value problem describing the depth-averaged
head fluctuations induced by the variation in recharge rate in
frequency domain is given by Eqs. (22) and (23). Using the
transformation, as follows:

3h(x, t;ω)= exp[−α

(
x+

αK

Ss
t

)
]U(x, t;ω). (A1)

Equation (22) in 3h(x, t ; ω), together with Eq. (23), can
be converted into a new (easier) one with a new variableU(x,
t ; ω) as follows:

∂

∂t
U(x, t;ω)=

K

Ss

∂2

∂x2U(x, t;ω)

+
1
βSs

exp

(
Kα2

Ss
t

)
3r(t;ω), (A2)

with the following:

U(x,0;ω)= 0, (A3a)
U(0, t;ω)= 0, (A3b)
U(L,t;ω)= 0. (A3c)

The solution of Eqs. (A2) and (A3) can be found through
the technique of the separation of variables (e.g., Farlow,
1993) as follows:

U(x, t;ω)=
2
Ssβ

n=∞∑
n=1

1− cos(nπ)
nπ

sin(nπ
x

L
)

t∫
0

exp[−υn(t − τ)]exp

(
K

Ss
α2τ

)
3r(τ ;ω)dτ, (A4)

where υn =Kn2π2/(SsL
2). With reference to Eq. (A1), the

solution to Eqs. (22) and (23) is then given by Eq. (24).

Appendix B: Evaluation of 3ρ in Eq. (31)

Making use of the following transformation:

3ρ(x, t;ω)= exp
(
−
t

τ0

)
u(x, t;ω), (B1)

leads Eqs. (31) and (32) to the following:

∂

∂t
u(x, t;ω)=

λ2
0
τ0

∂2

∂x2 u(x, t;ω)+
1
τ0

exp[
(

1
τ0
+ iω

)
t], (B2)

with the following:

u(x,0;ω)= 0, (B3a)
u(−`, t;ω)= 0, (B3b)
u(`, t;ω)= 0. (B3c)

In a similar way, based on the technique of the separation
of variables, Eqs. (B2) and (B3) arrive at the solution in the
following form:

u(x, t;ω)= 2
m=∞∑
m=1

1− cos(mπ)
mπ

sin
(
mπ

x+ `

2`

)
exp[(1+ i0)t/τ0] − exp(−ςmt/τ0)

2m+ i0
, (B4)

where ςm =m2π2η2, η = λ0/(2`), 2m = 1+ ςm, and 0 =
ωτ0. The use of Eqs. (B1) and (B4) results in Eq. (33).
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