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Abstract. A better understanding of the reasons why hydro-
logical model performance is unsatisfying represents a cru-
cial part of meaningful model evaluation. However, current
evaluation efforts are mostly based on aggregated efficiency
measures such as Kling–Gupta efficiency (KGE) or Nash–
Sutcliffe efficiency (NSE). These aggregated measures pro-
vide a relative gradation of model performance. Especially
in the case of a weak model performance it is important
to identify the different errors which may have caused such
unsatisfactory predictions. These errors may originate from
the model parameters, the model structure, and/or the input
data. In order to provide more insight, we define three types
of errors which may be related to their source: constant er-
ror (e.g. caused by consistent input data error such as pre-
cipitation), dynamic error (e.g. structural model errors such
as a deficient storage routine) and timing error (e.g. caused
by input data errors or deficient model routines/parameters).
Based on these types of errors, we propose the novel diagnos-
tic efficiency (DE) measure, which accounts for these three
error types. The disaggregation of DE into its three metric
terms can be visualized in a plain radial space using diag-
nostic polar plots. A major advantage of this visualization
technique is that error contributions can be clearly differen-
tiated. In order to provide a proof of concept, we first gen-
erated time series artificially with the three different error
types (i.e. simulations are surrogated by manipulating obser-
vations). By computing DE and the related diagnostic polar
plots for the reproduced errors, we could then supply evi-
dence for the concept. Finally, we tested the applicability of
our approach for a modelling example. For a particular catch-
ment, we compared streamflow simulations realized with dif-
ferent parameter sets to the observed streamflow. For this
modelling example, the diagnostic polar plot suggests that

dynamic errors explain the overall error to a large extent.
The proposed evaluation approach provides a diagnostic tool
for model developers and model users and the diagnostic po-
lar plot facilitates interpretation of the proposed performance
measure as well as a relative gradation of model performance
similar to the well-established efficiency measures in hydrol-
ogy.

1 Introduction

Performance metrics quantify hydrological model perfor-
mance. They are employed for calibration and evaluation
purposes. For these purposes, the Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe, 1970) and the Kling–Gupta ef-
ficiency (KGE; Gupta et al., 2009) are two commonly used
performance metrics in hydrology (e.g. Newman et al., 2017;
Towner et al., 2019). NSE and KGE measure the overall
model performance with only a single numerical value within
the range of minus infinity and one. A value close to one
indicates a better model accuracy, whereas with increasing
distance to one the model accuracy deteriorates. From this
point of view, the model performance can only be assessed
in terms of a relative gradation. However, cases of a weaker
model performance immediately lead to the following ques-
tions: why is my model performance not satisfactory? What
could improve the model performance?

In order to answer such questions, Gupta et al. (2008) pro-
posed an evaluation approach that includes diagnostic infor-
mation. Such a diagnostic approach requires appropriate in-
formation. Considering only the overall metric values of NSE
and KGE may not provide any further insights. Additionally,
an in-depth analysis of KGE metric terms may provide more
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information on the causes of the model error (e.g. Towner et
al., 2019). Although including the KGE metric terms may
enrich model evaluation, due to their statistical nature the
link to the hydrological process is less clear. Current diag-
nostic approaches are either based on entropy-based mea-
sures (Pechlivanidis et al., 2010) or on process-based signa-
tures (Yilmaz et al., 2008; Shafii et al., 2017). The latter one
improves measurement of the realism of hydrological pro-
cesses by capturing them in hydrological signatures. These
signatures represent a main element of a powerful diagnostic
approach (Gupta et al., 2008).

Although the numerical value of the overall model perfor-
mance is diagnostically not meaningful, the overall model
performance determines whether diagnostic information will
be valuable to the modeller or not. Diagnostic information
may only be useful if the overall model performance does
not fulfil the modeller’s requirements. It will then be cumber-
some to select the appropriate signatures or measures which
may answer the modeller’s questions about the causes. Vi-
sualizing evaluation results in a comprehensive way poses
another challenge for diagnostically meaningful interpreta-
tion. Therefore, we see a high potential in compressing the
complex error terms into one diagram simplifying the inter-
pretation and the comparison of multiple simulations. In this
study, we propose a specific model evaluation approach with
a strong focus on the error identification which contributes
to existing diagnostic evaluation approaches and builds on
existing approaches.

2 Methodology

2.1 Diagnostic efficiency

In general, the quality of evaluation data (e.g. streamflow ob-
servations) should be verified before simulations and obser-
vations are compared against each other. Model evaluation
data with insufficient accuracy should not be considered for
model evaluation (e.g. Coxon et al., 2015). Likewise, accu-
racy of initial and boundary conditions should be inspected
beforehand (e.g. Staudinger et al., 2019). Remaining errors
in hydrological simulations may then be caused by the fol-
lowing sources:

– model parameters (e.g. Wagener and Gupta, 2005);

– model structure (e.g. Clark et al., 2008, 2011);

– uncertainties in input data (e.g. Yatheendradas et al.,
2008).

Thus, within our approach we focus on errors caused by
model parameters, model structure, and input data. In or-
der to diagnose the source of the errors, we define three er-
ror types which might be linked to potential error sources
(e.g. model parameters, model structure, and input data):
(i) constant error describes the average deviation between

simulations and observations; (ii) dynamic error defines the
deviation at different simulated and observed magnitudes;
and (iii) timing error comprises the temporal agreement be-
tween simulations and observations. Model errors may have
different sources. Assigning the error type to its source re-
quires expert knowledge (e.g. shortcomings of the input
data) or statistical analysis (e.g. linking the error types with
the model parameters). We provide here some examples of
how expert knowledge might be used to link the input data
with the error type. A constant error might be linked to the
precipitation input; for example, Beck et al. (2017) found
negative constant errors in snow-dominated catchments. In
case the precipitation input error varies between rainfall
events, the input data might be the source of dynamic errors
(e.g. Yatheendradas et al., 2008). On the other hand, errors
in the spatio-temporal rainfall pattern might be the source of
timing errors (e.g. Grundmann et al., 2019).

In order to quantify the overall error, we introduce the di-
agnostic efficiency (DE; Eq. 1):

DE=
√
Brel

2
+ |Barea|

2
+ (r − 1)2, (1)

where Brel is a measure for the constant error, |Barea| for the
dynamic error, and r for the timing error. DE ranges from 0
to∞ and DE= 0 indicates that there are no errors (i.e. per-
fect agreement between simulations and observations). In
contrast to KGE and NSE, DE represents an error score. This
means that model performance is decreasing for increasing
values of DE.

First, we introduce the three terms which define the DE.
The first two terms Brel and |Barea| are based on the flow du-
ration curve (FDC). Since FDC-based signatures do not in-
clude information on temporal performance, we have added
correlation (r) between the simulated time series and the ob-
served time series as a third term. Brel reflects the constant
error and is represented by the arithmetic mean of the rela-
tive bias (Eq. 2):

Brel =
1
N

i=1∑
i=0

Brel(i). (2)

i represents the exceedance probability, N the total number
of data points, and Brel the relative bias of the simulated and
observed flow duration curve; Brel = 0 indicates no constant
error; Brel < 0 indicates a negative bias; Brel > 0 indicates
a positive bias. The relative bias between the simulated and
observed flow duration curve (Brel) is calculated as follows
(Eq. 3):

Brel(i)=
Qsim(i)−Qobs(i)

Qobs(i)
. (3)

Qsim is the simulated streamflow at exceedance probability i
and Qobs the observed streamflow at exceedance probabil-
ity i. Due to Eq. (3) the presented approach is only applicable
to regions with perennial streamflow.
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The dynamic error is described by the absolute area of the
residual bias (|Barea|; Eq. 4):

|Barea| =

1∫
0

|Bres(i)|di, (4)

where the residual bias Bres is integrated over the entire do-
main of the flow duration curve. Combining Eqs. (2) and (3)
results in

Bres(i)= Brel(i)−Brel. (5)

By subtractingBrel, we remove the constant error, and the dy-
namic error remains. |Barea| = 0 indicates no dynamic error;
|Barea|> 0 indicates a dynamic error.

To consider timing errors, Pearson’s correlation coeffi-
cient (r) is calculated (Eq. 6):

r =

n∑
t=1
(Qobs(t)−µobs)(Qsim(t)−µsim)√(

n∑
t=1
(Qobs(t)−µobs)

2
)(

n∑
t=1
(Qsim(t)−µsim)

2
) , (6)

where Qsim is the simulated streamflow at time t , Qobs the
observed streamflow at time t , µobs the simulated mean
streamflow, and µobs the observed mean streamflow. Other
non-parametric correlation measures could be used as well.

2.2 Diagnostic polar plot

DE can be used as another aggregated efficiency by simply
calculating the overall error. However, the aggregated value
only allows for a limited diagnosis since information of the
metric terms is not interpreted. Thus, we project DE and its
metric terms in a radial plane to construct a diagnostic po-
lar plot. An annotated version for a diagnostic polar plot is
given in Fig. 3. For the diagnostic polar plot, we calculate
the direction of the dynamic error (Bdir; Eqs. 7–9):

Bres-hf =

0.5∫
0

Bres(i)di, (7)

Bres-lf =

1∫
0.5

Bres(i)di, (8)

Bdir =
−1, (Bres-hf > 0 and Bres-lf < 0) or (Bres-hf = 0 and

Bres-lf < 0) or (Bres-hf > 0 and Bres-lf = 0)
1, (Bres-hf < 0 and Bres-lf > 0) or (Bres-hf = 0 and

Bres-lf > 0) or (Bres-hf < 0 and Bres-lf = 0)
0, (Bres-hf > 0 and Bres-lf > 0) or (Bres-hf < 0 and

Bres-lf < 0) or (Bres-hf = 0 and Bres-lf = 0)

, (9)

where Bhf is the integral of Brel including values from
0th percentile to 50th percentile and Blf is the integral of Brel
including values from 50th percentile to 100th percentile.
Since we removed the constant error (see Eq. 5), the integrals
can be positive, negative, or zero.

In order to differentiate the dynamic error type, we com-
puted the slope of the residual bias (Bslope; Eq. 10):

Bslope = |Barea| ·Bdir. (10)

Bslope = 0 expresses no dynamic error; Bslope < 0 indicates
that there is a tendency of simulations to overestimate high
flows and/or underestimate low flows, while Bslope > 0 indi-
cates a tendency of simulations to underestimate high flows
and/or overestimate low flows.

To distinguish whether the constant error and the dy-
namic error are more related to high flows (i.e. 0th percentile
to 50th percentile) or to low flows (i.e. 50th percentile to
100th percentile), we quantify their contribution. For this we
calculate the error contribution of high flows (εhf; Eq. 11)
and low flows (εlf; Eq. 12):

εhf =
Bhf

Btot
, (11)

εlf =
Blf

Btot
, (12)

Bhf =

0.5∫
0

Brel(i)di, (13)

Blf =

1∫
0.5

Brel(i)di, (14)

Btot =

1∫
0

|Brel(i)|di, (15)

where Bhf is the area of the relative bias for high flows, Blf is
the area of the relative bias for low flows, and Btot is the
absolute area of the relative bias.

We used the inverse tangent to derive the ratio between
constant error and dynamic error in radians (φ; Eq. 16):

ϕ = arctan2
(
Brel,Bslope

)
. (16)

Instead of using a benchmark to decide whether model diag-
nostics is valuable or not, we introduce a certain threshold for
deviation from perfect. We set a threshold value (l) for which
metric terms deviate from perfect and insert it into Eq. (1):

DEl =
√
l2+ l2+ ((1− l)− 1)2. (17)

For this study l is set by default to 0.05. Here, we assume that
for a deficient simulation each metric term deviates at least
5% from its best value; l can be either relaxed or expanded
depending on the requirements of model accuracy. Corre-
spondingly, DEl represents a threshold to discern whether an
error diagnosis (DE>DEl) is valuable.
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Finally, the following conditions describe whether a diag-
nosis can be drawn (Eq. 18):

Diagnosis=
yes,

∣∣Brel
∣∣≤ l and Bslope > l and DE> DEl

yes,
∣∣Brel

∣∣> l and Bslope ≤ l and DE> DEl
yes,

∣∣Brel
∣∣> l and Bslope > l and DE> DEl

. (18)

There exists a special case for which timing error only can
be diagnosed (Eq. 19):

Diagnosis=timing error only,
∣∣Brel

∣∣≤ l
and Bslope ≤ l and DE> DEl . (19)

If DE and its metric terms are within the boundaries of ac-
ceptance, no diagnosis is required, which is expressed by the
following conditions (Eq. 20):

Diagnosis= no,
∣∣Brel

∣∣≤ l and Bslope ≤ l and DE≤ DEl . (20)

In this case, the model performance is sufficiently accurate,
and errors are too small.

2.3 Comparison to KGE and NSE

In order to allow a comparison to commonly used KGE and
NSE, we calculated the overall metric values and, for KGE,
its three individual metric terms. We used the original KGE
proposed by Gupta et al. (2009):

KGE= 1−
√
(β − 1)2+ (α− 1)2+ (r − 1)2, (21)

where β is the bias error, α represents the flow variability
error, and r shows the linear correlation between simulations
and observations (Eq. 22):

KGE= 1−

√(
µsim

µobs
− 1

)2

+

(
σsim

σobs
− 1

)2

+ (r − 1)2, (22)

where σobs is the standard deviation in observations and
σsim the standard deviation in simulations. Moreover, we ap-
plied the polar plot concept (see Sect. 2.2) to KGE and the
accompanying three metric terms. In contrast to DE (see
Sect. 2.1), KGE ranges from 1 to −∞ and the metric formu-
lation of KGE is entirely based on statistical signatures. By
replacing the first two terms of KGE with FDC-based signa-
tures, we aim to improve the hydrological focus and provide
a stronger link to hydrological processes (e.g. Ghotbi et al.,
2020).

NSE (Nash and Sutcliffe, 1970) is calculated as follows
(Eq. 23):

NSE= 1−

t=T∑
t=1

(Qobs(t)−Qsim(t))
2

t=T∑
t=1

(Qobs(t)−µobs)
2
, (23)

Figure 1. Observed streamflow time series from the CAMELS
dataset (Addor et al., 2017; gauge id: 13331500; gauge name: Mi-
nam River near Minam, OR, US).

where T is the total number of time steps, Qsim the simu-
lated streamflow at time t , and Qobs the observed stream-
flow at time t and µobs. NSE= 1 displays perfect fit between
simulations and observations; NSE= 0 indicates that simu-
lations perform equally well as the mean of the observations;
NSE< 0 indicates that simulations perform worse than the
mean of the observations.

3 Proof of concept

To provide a proof of concept, any perennial streamflow time
series coming from a near-natural catchment and having a
sufficiently long temporal record (i.e. > 30 years) may be
used. We selected an observed streamflow time series from
the CAMELS dataset (Fig. 1; Addor et al., 2017). In order
to generate specific model errors, we systematically manip-
ulated the observed time series. Thus, we produced different
time series which serve as a surrogate for simulated time se-
ries with a certain error type which we call manipulated time
series. These manipulated time series are characterized by a
single error type or multiple error types, respectively. We cal-
culated DE for each manipulated time series and visualized
the results in a diagnostic polar plot.

3.1 Generation of artificial errors

In the following section, we portray how we manipulated ob-
served time series to generate artificial modelling errors. Ta-
ble 1 provides a brief summary of the error types and how we
combined them. The resultant FDCs are illustrated in Fig. 2.
For the corresponding time series, we refer to the Supplement
(Fig. S1). We first describe the genesis of the time series for
individual errors.

a. Positive constant error: we generated a positive offset by
multiplying the observed time series by a constant 1.25
(see Figs. 2a and S1a). Constant required to be > 1.
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Figure 2. Flow duration curves (FDCs) of observed (blue) and manipulated (dashed red) streamflow time series. Manipulated FDCs are
depicted for (a, b) constant errors only, (c, d) dynamic errors only, (e) timing error only, and (f–i) combination of dynamic and constant
errors. The combination of constant errors, dynamic errors, and timing error is not shown, since their FDCs are identical to (f)–(i). Y axis is
shown in log space.

Table 1. Summary of error types and their combinations as described in Sect. 3.1 (a–m). + (−) reflects a positive (negative) error type. For
timing error, only one error type exists (x).

a b c d e f g h i j k l m

Constant error (+/−) + − − + − + − + − +

Dynamic error (+/−) + − − − + + − − + +

Timing error (x) x x x x x

b. Negative constant error: we generated a negative off-
set by multiplying the observed time series by a con-
stant 0.75 (see Figs. 2b and S1b). Constant required to
be < 1.

c. Positive dynamic error: we built a linearly interpo-
lated vector (1+p, . . . , 1, . . . ,p) with p set to 0.5. We
then generated the error by multiplying the observed
FDC by the linearly interpolated vector. With that we
increased high flows and decreased low flows. As a
consequence, hydrological extremes are amplified (see
Figs. 2c and S1c). Note that the original temporal order
of the time series is maintained.

d. Negative dynamic error: we built a linearly interpo-
lated vector (p, . . . , 1, . . . , 1+p) with p set to 0.5. We
then generated the error by multiplying the observed
FDC by the linearly interpolated vector. With that we
decreased high flows and increased low flows. As a
consequence, hydrological extremes are moderated (see
Figs. 2d and S1d). Note that the original temporal order
of the time series is maintained.

e. We reproduced a timing error by randomizing the order
of the observed time series (see Figs. 2e and S1e).

We then assembled the individual techniques (a–d) for the
genesis of time series which are characterized by a combi-
nation of constant error and dynamic error. The two errors
contribute with an equal share,

f. negative constant error and negative dynamic error (see
Figs. 2f and S1f),

g. positive constant error and negative dynamic error (see
Figs. 2g and S1g),

h. negative constant error and positive dynamic error (see
Figs. 2h and S1h),

i. positive constant error and positive dynamic error (see
Figs. 2i and S1i),

and time series which contain constant error, dynamic error
(again both errors are contributing with an equal share), and
timing error (a–e):

j. negative constant error, negative dynamic error and tim-
ing error (see Fig. S1j);

k. positive constant error, negative dynamic error and tim-
ing error (see Fig. S1k);
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Figure 3. (a) Diagnostic polar plot for manipulated time series generated characterized by constant errors, dynamic errors, and timing
errors (a–m) visualizing the overall model performance (DE; contour lines) and contribution of constant error, dynamic error, and timing
error – purple (yellow) indicates temporal match (mismatch). The error contribution of high flows and low flows is displayed by pies.
(e∗) Timing error only: type of dynamic error cannot be distinguished. (b) Annotated diagnostic polar plot illustrating the interpretation
(similar to Zipper et al., 2018). Hypothetic FDC plots and hydrograph plots give examples of the error types.

Table 2. Comparison of DE, KGE and NSE calculated for manipulated time series characterized by constant errors, dynamic errors and
timing errors (a–m). Lowest model performance for each error case is in bold.

a b c d e f g h i j k l m

DE 0.25 0.25 0.25 0.25 1 0.35 0.35 0.35 0.35 1.06 1.06 1.06 1.06
KGE 0.65 0.65 0.43 0.43 0 0.08 0.75 0.75 0.08 –0.36 −0.04 −0.04 −0.36
NSE 0.9 0.9 0.7 0.7 –1 0.27 0.94 0.94 0.27 −0.25 –0.59 –1.58 –3.26

l. negative constant error, positive dynamic error and tim-
ing error (see Fig. S1l);

m. positive constant error, positive dynamic error and tim-
ing error (see Fig. S1m).

Note that for j–m FDCs are identical to f–i and are therefore
not shown in Fig. 2.

The diagnostic polar plot for synthetic error cases is shown
in Fig. 3. Since each synthetic error case is different, related
points are located in different error regions. For individual
errors (a–d), related points are placed in the four cardinal
directions of each region (Fig. 3). Within these regions the
dominant error type can be easily identified. The more cen-
tral the direction of the point, the more dominant the error
type. In case there is only a timing error present (e), an arrow
with two ends instead of a point is used (Fig. 3). This is be-
cause the dynamic error source becomes arbitrary (i.e. high

flows and low flows are being both underestimated and over-
estimated; see Fig. S1e). For combinations of constant and
dynamic errors (f–i), related points are located on bound-
aries of constant error and dynamic error, meaning that both
errors are equally dominant (Fig. 3). The same applies for
combinations of constant error, dynamic error, and timing
error except that points shifted towards the outer scope of
the plot due to added timing error. Numeric values of DE are
listed in Table 2. DE values are lower for individual errors
(except for the timing error) than for combined errors. In-
creasing the number of errors added to a time series leads to
greater DE values. For the numeric values of the individual
metric terms, we refer to Table S1 in the Supplement.

A comparison of DE, KGE, and NSE calculated for the
manipulated time series is shown in Table 2. Moreover, val-
ues for DE exhibit a regular pattern (i.e. generating single
error types or multiple error types, respectively, leads to an
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Figure 4. Simulated and observed streamflow time series of modelling examples for the year 2000 (a, c, e) and the related flow duration
curves for the entire time series (b, d, f). Time series are derived from the CAMELS dataset (Addor et al., 2017). Observations and simulations
belong to the same catchment as in Fig. 1. Simulations were produced by model runs with different parameter sets (set_id) but same input
data (see Newman et al., 2015).

equidistant decrease in performance). By contrast, values
for KGE and NSE are characterized by an irregular pattern
(i.e. generating single error types or multiple error types,
respectively, leads to a non-equidistant decrease in perfor-
mance). This non-equidistant decrease in KGE and NSE
scores suggests that KGE and NSE are differently sensitive
to the generated errors. KGE is more sensitive to constant er-
rors and dynamic errors (Table 2, a–d), whereas NSE is more
sensitive to timing errors (Table 2, e). Particularly, the spu-
rious timing of the peak flows leads to an strong decrease
in NSE (Table 2, m). When combining positive constant er-
ror and negative dynamic error, and vice versa (see Table 1,
g and h), KGE and NSE display better performance (Table 2,
g and h) than for single constant and dynamic error types
(Table 2, a–d).

3.2 Modelling example

In order to demonstrate the applicability, we also use simu-
lated streamflow time series which have been derived from
Addor et al. (2017). Streamflow time series have been sim-
ulated by the coupled Snow-17 and SAC-SMA system for

the same catchment as in Fig. 1. We briefly summarize here
their modelling approach consisting of Snow-17, which “is
a conceptual air-temperature-index snow accumulation and
ablation model” (Newman et al., 2015), and the SAC-SMA
model, which is “a conceptual hydrologic model that in-
cludes representation of physical processes such as evapo-
transpiration, percolation, surface flow, and subsurface lat-
eral flow” (Newman et al., 2015). Snow-17 runs first to par-
tition precipitation into rain and snow and delivers the in-
put for the SAC-SMA model. For further details about the
modelling procedure, we refer to Sect. 3.1 in Newman et
al. (2015). In particular, we evaluated three model runs with
different parameter sets but the same input data. Simulated
time series and simulated FDCs are shown in Fig. 4. The
diagnostic polar plot for the three simulated time series is
provided in Fig. 5. Simulations realized by a parameter set
with set_id 94 outperform the other two parameter sets. All
simulations have in common that positive dynamic error type
(i.e. high flows are underestimated and low flows are overes-
timated) dominates, accompanied by a slight positive con-
stant error. In particular, low flows have a greater share of
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Figure 5. Diagnostic polar plot for the modelling example. Simula-
tions were realized with three different parameter sets (05, 48, 94;
see Fig. 4). All simulations perform well. However, the remaining
error is dominated by a negative dynamic error type, while timing
is excellent.

the dynamic error and constant error than high flows. Tim-
ing contributes least to the overall error. The modelling ex-
ample highlights one advantage of the proposed evaluation
approach that multiple simulations can be easily compared to
each other. For the case of the modelling example, model per-
formance of slightly different parameter sets can be clearly
distinguished, although the parameter sets are characterized
by a similar error type. After identifying the error type and its
contributions, these results can be used in combination with
expert knowledge (e.g. model developer) or statistical analy-
sis to infer hints on improving the simulations.

4 Discussion

Aggregated performance metrics (e.g. KGE and NSE) are
being criticized for not being hydrologically informative
(Gupta et al., 2008). Although we systematically generated
errors, we found a disjointed pattern for KGE and NSE (Ta-
ble 2) which makes the interpretation of KGE and NSE more
difficult. Particularly, in-depth analysis of the KGE metric
terms revealed that the β term and α term are not orthogonal
to each other (see Figs. S2 and S3c). We also lump model per-
formance into a single value, but DE has the following advan-
tages: (i) metric formulation is based rather on a hydrological
understanding than a purely statistical understanding; (ii) the
combined visualization of the efficiency metric and the dif-
ferent metric terms enables the identification of the dominant
error type; (iii) diagnostic polar plots facilitate comparison of
multiple simulations. Using DE as an error score improves

the interpretation of the numerical value. DE equals zero can
be cleanly interpreted as zero errors. Additionally, numeri-
cal values of the first and second metric terms of DE equal
to zero can also be interpreted as zero errors. Compared to
KGE, the included FDC-based measures may be more easily
linked to different hydrologic processes than purely statisti-
cal measures. For example, slow-flow processes (e.g. base-
flow) control the low-flow segment of the FDC, while fast-
flow processes (e.g. surface runoff) control the high-flow seg-
ment of the FDC (Ghotbi et al., 2020). When using KGE and
NSE for evaluation purposes, we recommend a comparison
to hydrologically meaningful benchmarks which may add di-
agnostic value to KGE (e.g. Knoben et al., 2019) and NSE
(e.g. Schaefli and Gupta, 2007). Based on such a benchmark,
skill scores have been recently proposed to evaluate simula-
tions (Knoben et al., 2019; Towner et al., 2019; Hirpa et al.,
2018) to communicate model performance and to improve
hydrologic interpretation. So far a way to define hydrolog-
ically meaningful benchmarks has not been extensively ad-
dressed by the hydrologic modelling community (Knoben et
al., 2019).

Our approach focuses on model errors. Since the DE can
be interpreted as an error score, we do not propose a skill
score measure for DE. Skill scores are known to introduce
a scaling issue on communicating model errors (Knoben
et al., 2019). DE does not rely on any benchmark to de-
cide whether model diagnostics are required or not. With-
out considering any benchmark, DE may be interpreted as a
deviation from perfect, measured by its constant error, dy-
namic, and temporal error terms. In Sect. 2.2 (see Eq. 17)
we introduced a certain threshold for deviation from perfect
(e.g. DE= 0.09) if all error terms deviate by a certain de-
gree (e.g. 5 %; Brel = 0.05, |Barea| = 0.05, r = 0.95). Only
for simulations in which deviation from perfect is sufficiently
large will model diagnostics be valuable.

By including FDC-based information in DE, we aimed
for capturing rainfall-runoff response behaviour (Vogel and
Fennessey, 1994) where different aspects of the FDC are in-
herently related to different processes (Ghotbi et al., 2020).
However, the way the dynamic error term is calculated
(see Eqs. 4, 5, and 7) limits the applicability to catchments
with perennial streamflow. Moreover, the second metric term
of DE (see Eq. 1) is limited to measuring only the overall dy-
namic error. The question whether high-flow errors or low-
flow errors are more prominent cannot be answered. Mea-
suring the timing error by linear correlation may also have
limitations. Linear correlation can be criticized for neglect-
ing specific hydrological behaviour (Knoben et al., 2019),
for example, flow recession or peak flow timing. However,
DE could also be calculated for different time periods, and
hence specific periods (e.g. wet periods versus dry periods)
could be diagnosed separately.

Combining DE and diagnostic polar plots is, however, lim-
ited to three metric terms, because higher-dimensional infor-
mation cannot be effectively visualized by polar plots. We
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emphasize that the proposed metric terms of DE might not
be perfectly suitable for every evaluation purpose. For more
specific evaluation, we suggest tailoring the proposed formu-
lation of DE (see Eq. 1) by exchanging the metric terms with,
for example, low-flow-specific terms (e.g. see Fowler et al.,
2018) or high-flow-specific terms (e.g. see Mizukami et al.,
2019), respectively. Moreover, we suggest that different for-
mulations of DE can be combined with a multi-criteria diag-
nostic evaluation (see Appendix A).

5 Conclusions

The proposed approach is used as a tool for diagnostic model
evaluation. Incorporating the information of the overall error
and the metric terms into the evaluation process represents
a major advantage. Although different error types may have
different contributions, these may be explored visually by di-
agnostic polar plots. A proof of concept and the application
to a modelling example confirmed the applicability of our
approach. Particularly, diagnostic polar plots facilitate inter-
pretation of model evaluation results and the comparison of
multiple simulations. These plots may advance model devel-
opment and application. The comparison to Kling–Gupta ef-
ficiency and Nash–Sutcliffe efficiency revealed that they rely
on a comparison to hydrologically meaningful benchmarks
to become diagnostically interpretable. We tried to base the
formulation of the newly introduced diagnostic efficiency on
a general hydrological understanding, which can thus be in-
terpreted as deviation from perfect. More generally, our ap-
proach may serve as a blueprint for developing other diag-
nostic efficiency measures in the future.
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Appendix A

We briefly describe how DE could be extended to a tailored
single-criterion metric (Eq. A1):

DEext =

√
term2

1+ term2
2+ term2

3. (A1)

Multiple single-criterion metrics can be combined to a multi-
criteria metric (Eq. A2):

DEmulti-ext =
1
N

N∑
i=1

DEext,i . (A2)

For a multi-criteria approach, diagnostic polar plots can
be displayed for each single-criterion metric included in
Eq. (A2).
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Code availability. We provide a Python package diag-eff which
can be used to calculate DE and the corresponding metric
terms, produce diagnostic polar plots or generate artificial er-
rors. The stable version can be installed via the Python Pack-
age Index (PyPI). The version used for this manuscript is avail-
able at https://doi.org/10.5281/zenodo.4590174 (Schwemmle et al.,
2021). Additionally, the current development version is available at
https://github.com/schwemro/diag-eff (last access: 22 April 2021)
(Schwemmle, 2021).

Data availability. The observed and simulated streamflow
time series are part of the open-source CAMELS dataset
(Addor et al., 2017). The data can be downloaded at
https://doi.org/10.5065/D6MW2F4D (Newman et al., 2014).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-2187-2021-supplement.
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