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Abstract. Plant–soil water isotopic dynamics in northern
forests have been understudied relative to other forest types;
nevertheless, such information can provide insight into how
such forests may respond to hydroclimatic change. This
study examines the co-evolution of xylem water and soil
water stable isotopic compositions in a northern mixed for-
est in Ontario, Canada. Gross precipitation, bulk soil water
and xylem water were sampled from pre-leaf out to post-
senescence in 2016 for eastern white cedar, eastern hemlock,
red oak and eastern white pine. Near-bole soil water contents
and mobile soil water isotopic compositions were measured
for the last three species. Mobile soil water did not deviate
significantly from the local meteoric water line (LMWL).
In contrast, near-surface bulk soil water showed significant
evaporative enrichment relative to the LMWL from pre-leaf
out to peak leaf out under all tree canopies, while xylem
water was significantly depleted in 18O and particularly 2H
relative to bulk soil water throughout the growing season.
Inter-species differences in deviation of xylem water from
the LMWL and their temporal changes emerged during the
growing season, with coniferous species xylem water be-
coming isotopically enriched, while that of red oak became
more depleted in 2H and 18O. These divergences occurred
despite thin soil cover (generally < 0.5 m depth to bedrock)
which would constrain inter-species differences in tree root-
ing depths in this landscape. Isotopic fractionation at the
tree root and fractionation of xylem water via evaporation
through the tree bark are among the most plausible poten-
tial explanations for deviations between xylem and soil wa-

ter isotopic compositions. Differences in the timing and in-
tensity of water use between deciduous and coniferous trees
may account for inter-specific variations in xylem water
isotopic composition and its temporal evolution during the
growing season in this northern forest landscape.

1 Introduction

Northern forest landscapes are highly sensitive to climate
change (Laudon et al., 2017; Sprenger et al., 2018a) and may
experience marked hydrological shifts in the future, such
as changes in the amount, form and timing of precipitation
(Carey et al., 2010; Hartmann et al., 2013) as well as in-
creases in drought frequency and intensity (Brinkmann et al.,
2019). Alterations in snow accumulation and ablation have
important implications for soil water availability to plants at
the start of the growing season (Smith et al., 2011; Carey
et al., 2013), and vegetation in northern landscapes can ex-
hibit rapid responses to such changes (e.g. Myers-Smith et
al., 2019). Understanding how northern forests may respond
to these anticipated hydrological changes would benefit from
greater knowledge of the sources of water taken up by major
tree species in these landscapes (Guswa et al., 2020). Envi-
ronmental isotopes have often been used to study water use
by vegetation (e.g. Evaristo et al., 2015), and efforts to ac-
count for the isotopic composition of plant water in relation
to that of major water pools in forest landscapes has led to the
ecohydrological separation or “two water worlds” hypothesis
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(Brooks et al., 2010; McDonnell, 2014). This hypothesis pro-
poses that a highly mobile pool of soil water similar in iso-
topic composition to precipitation contributes to groundwa-
ter and streamflow, while a less mobile pool of evaporatively
enriched soil water supplies plant transpiration (Goldsmith et
al., 2012; Knighton et al., 2019; Sprenger and Allen, 2020).

The review of the ecohydrological separation hypothesis
by McCutcheon et al. (2017) presented three assumptions
that must be met for the hypothesis to be supported:

1. There is a distinct difference between the isotopic com-
position of water taken up by plant roots and the water
that drains through the soil profile.

2. This difference can be linked to isotopically distinct soil
water sources.

3. These isotopically distinct soil water sources arise from
differences in soil water mobility.

Studies have called one or more of these assumptions into
question, such as the assumption that mobile and tightly
retained subsurface waters are independent water pools
(Sprenger et al., 2018b), and there is mounting evidence that
the two water worlds hypothesis is overly simplistic (Penna
et al., 2018). For example, Bowling et al. (2017) noted that
the assumption that plants extract more strongly held soil wa-
ter in the presence of less strongly retained soil water near
the plant roots violates current physiological understanding
of how plants take up water, which is primarily driven by a
potential gradient between the soil and the plant leaf or nee-
dle.

Nevertheless, the interface between soils and plants rep-
resents the potential source of novel advances in process
understanding in ecohydrology, and systematic assessments
of plant–soil water isotopic dynamics need to be examined
across distinct soil types and vegetation structures (Dubbert
and Werner, 2019). There is a particular need to examine re-
lationships between the isotopic composition of xylem wa-
ter in relation to that of potential source waters in northern
forests (Tetzlaff et al., 2015; Penna et al., 2018), since much
previous research into water use by vegetation using envi-
ronmental isotopes has focused on tropical, seasonally dry or
arid regions (Evaristo et al., 2015; Gaines et al., 2016). Most
ecohydrological separation studies have also been restricted
to the growing season (Liu et al., 2020), and greater consider-
ation should be paid to the full seasonal variability of soil and
plant water isotopic composition (McCutcheon et al., 2017;
Sprenger et al., 2018a; Tetzlaff et al., 2021). This variabil-
ity in northern landscapes is driven in part by a pronounced
annual cycle that ranges from isotopically depleted snowfall
to isotopically enriched summer rainfall (Birks and Gibson,
2009), with important implications for the isotopic compo-
sition of source water available for plant uptake at the start
of the growing season (McCutcheon et al., 2017; Allen et
al., 2019). Plant–soil water isotopic dynamics may also dif-
fer between tree species in northern landscapes. Trees cannot

be treated as “simple transport vessels, or straws” (Evaristo
et al., 2019, p. 18), and inter-specific differences in the inter-
play between rooting depth and architecture and water flow
paths and storage in the soil profile may manifest themselves
in the resulting isotopic composition of plant water uptake
(Geris et al., 2015; Allen et al., 2019).

The purpose of this study is to examine the co-evolution
of the isotopic composition of xylem water and soil water
from pre-leaf out to post-senescence for some common tree
species in Canada’s northern forest landscapes. We address
the following questions:

1. What are the temporal changes in the isotopic composi-
tion of soil water and xylem water throughout the com-
plete growing season in a northern forest landscape, and
do the trajectories of such changes differ between tree
species?

2. What are the potential drivers of any inter-specific dif-
ferences in the deviation of the isotopic composition of
xylem water from that of soil water?

Answering these questions may improve our understanding
of relationships between soil water and water taken up for
transpiration by different tree species in northern forests and
provide insight into how these species may respond to hydro-
climatic change in northern landscapes.

2 Study area and methods

2.1 Study area

The study was conducted in the Plastic-1 (PC-1; 23.3 ha)
sub-catchment of Plastic Lake (Fig. 1) on the southern
edge of the Canadian Shield near Dorset, Ontario, Canada
(45◦11′ N, 78◦50′W). Pleistocene glacial till overlies Pre-
cambrian metamorphic silicate bedrock (Wels et al., 1990),
and thin soil cover is formed from sandy basal tills, with an
average depth of∼ 0.4 m to bedrock (Neary et al., 1987; Wat-
mough et al., 2007). Visual observations of outcrops in PC-1
suggest the bedrock is relatively unfractured. Soils are over-
lain with a ∼ 5 cm thick LFH (litter, fermented, humic) layer
(Neary et al., 1987) and are sandy with minor clay and low
organic matter contents, showing little decline with depth
(Buttle and House, 1997). Forest cover is largely coniferous
and dominated by red oak (Quercus rubra, Or), eastern white
pine (Pinus strobus, Pw), eastern hemlock (Tsuga canaden-
sis, He), white cedar (Thuja occidentalis, Ce) and black
spruce (Picea mariana). The latter is confined to a wetland
occupying the central portion of PC-1. Leaf out of Or is in
mid-May, while senescence occurs by early October. A me-
teorological station ∼ 500 m from the study site (Fig. 1) op-
erated by the Dorset Environmental Science Centre (DESC)
provides temperature and precipitation data. Daily average
temperatures range between −10 and 18 ◦C throughout the
year, based on meteorological station data between 1981
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Figure 1. Digital elevation model of the PC-1 catchment, showing
the location of trees sampled for xylem water and bulk soil water
(Ce – eastern white cedar, He – eastern hemlock, Or – red oak, Pw
– eastern white pine) and the meteorological station.

and 2010. Mean annual precipitation is ∼ 799 mm yr−1 of
rain and ∼ 260 mm yr−1 of snow water equivalent.

2.2 Gross rainfall sampling and potential
evapotranspiration estimation

Gross precipitation (Pg) was measured weekly for amount
and isotopic composition from 27 May to 21 October 2016
using a bulk collector at the meteorological station which
minimised isotopic fractionation via air exchange with the
external environment by reducing the water surface exposed
to the atmosphere (Gröning et al., 2012). Snowmelt sam-
ples were obtained from a snowmelt runoff plot at Paint
Lake, ∼ 12 km northwest of PC-1 (Lane et al., 2020). Daily
potential evapotranspiration (PET) values were taken from
Sprenger et al. (2018a), based on meteorological station data
and the Penman–Monteith equation (Allen et al., 1998).

2.3 Xylem water sampling

Four tree species in PC1 were selected to conduct xylem wa-
ter sampling: Ce, He, Or and Pw. Five mature trees with
similar diameter at breast heights (DBHs) were chosen for
each species (Table 1). Sampled Or and Pw trees were inter-

Table 1. Tree height (m), diameter at breast height (DBH) (cm) and
projected crown area (PCA) (m2) for all eastern white cedar (Ce),
eastern hemlock (He), red oak (Or) and eastern white pine (Pw)
trees sampled for bulk soil water, xylem water, soil water content
and mobile soil water. Soil surrounding trees indicated in italics was
sampled for soil water content and mobile soil water as reported in
Snelgrove et al. (2019).

Sampling Height DBH PCA
tree (m) (cm) (m2)

Ce-01 11.2 22.6 9.1
Ce-02 10.9 25.5 9.1
Ce-03 11.5 25.1 10.5
Ce-04 8.5 21.3 7.8
Ce-05 11.1 26.6 8.6
He-01 17.5 34.1 39.0
He-02 13.5 40.4 87.4
He-03 18.5 41.2 62.2
He-04 17.8 35.2 63.6
He-05 16.9 39.5 70.9
Or-01 22.3 50.6 21.4
Or-02 20.5 59.5 44.8
Or-03 17.8 66.5 107.5
Or-04 13.6 50.8 75.4
Or-05 19.4 57.9 111.2
Pw-01 17.6 60.5 21.0
Pw-02 30.1 62.4 12.7
Pw-03 26.8 53.2 78.5
Pw-04 31.2 51.2 52.2
Pw-05 20.3 47.4 25.1

mixed, while He trees were ∼ 100 m away from the Or/Pw
stand, and Ce trees were ∼ 200 m from the He trees and ∼
130 m from the Or/Pw stand (Fig. 1). Xylem water was sam-
pled six times between October 2015 and November 2016,
including post-senescence 2015 (26 October to 3 Novem-
ber 2015), pre-leaf out 2016 (26 to 29 April 2016), post-
leaf-out 2016 (20 to 22 June 2016), peak-leaf out 2016 (8 to
10 August 2016), pre-senescence 2016 (23 to 24 Septem-
ber 2016) and post-senescence 2016 (2 to 4 November 2016).
Xylem cores were extracted from each tree at breast height
using an increment borer (3-thread, 5.15 mm core). Cores
were extracted a few centimetres above or below the pre-
ceding core. Bark was removed from retrieved cores, which
were immediately stored in 200 mL glass scintillation vials
with zero headspace. These were taped, sealed with Parafilm
and stored in a freezer to prevent exchange with the atmo-
sphere. Elapsed time between core extraction and storage in
the sealed vials was on the order of 1 min.

2.4 Soil water isotopic sampling and soil water content

Bulk soil samples were obtained concurrent with xylem wa-
ter sampling in a randomised direction 1 m from the bole of
each tree sampled for xylem water. Following litter layer re-
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moval, a minimum of 40 g of soil was collected using an
auger at 5 cm depth increments until bedrock was reached.
An average of six samples was obtained at a given tree, rang-
ing from 1 to 16 samples. Samples were double-bagged in
Ziploc bags while minimising any stored air and stored at
4 ◦C prior to analysis. Samples were stored for no more than
2 weeks prior to analysis, and Hendry et al. (2015) indicated
that any water losses and resulting changes in soil water iso-
topic content for these short storage periods would be negli-
gible. This bulk soil water was assumed to represent all water
stored within the soil, including both mobile and more tightly
held soil water.

Mobile soil water was sampled from tension lysimeters
installed at 0.1 and 0.4 m depths at 0.1 and 1 m from the
tree bole in a randomised direction for three He, three Or
and three Pw trees sampled for xylem water (Snelgrove et
al., 2019). Tension lysimeters were manufactured using Soil
TestTM 2 bar ceramic cups and PVC tubing. Tension lysime-
ters were sampled weekly between 2 June and 21 Octo-
ber 2016 and reset to a minimum negative air pressure of
60 kPa using a hand pump. Samples were stored in sealed
glass vials with zero headspace at 4 ◦C prior to isotopic anal-
ysis.

Soil water content (SWC) was measured at two
ATL-1 access tubes (http://www.delta-t.co.uk, last access:
30 May 2019) installed 0.1 and 1 m from the bole of each of
the three trees of a given species sampled for mobile soil wa-
ter. Tubes were installed in a randomised direction from the
bole. Measurements were concurrent with tension lysimeter
sampling. A Delta T PR2/6 Soil Moisture Profile ProbeTM

measured SWC at each access tubes at 0.1, 0.2, 0.3 and 0.4 m
depths. Measurements at each depth were made three times
per access tube and averaged to obtain mean SWC at each
depth. These values were used to estimate the total depth of
water held in the upper 0.5 m of soil as described in Snel-
grove et al. (2019).

2.5 Isotopic analyses

All isotope ratios are expressed relative to Vienna Standard
Mean Ocean Water–Standard Light Antarctic Precipitation
(VSMOW-SLAP; Coplen et al., 2002) using standard per mil
(‰) notation. Tree core samples were analysed at the Boise
State University Stable Isotope Laboratory. Xylem water was
obtained from the cores by cryogenic extraction, followed
by mass spectrometry using a Thermo Delta V isotope ratio
mass spectrometer (IRMS) coupled with a Thermo temper-
ature conversion elemental analyser (TC/EA) configured for
water injection analyses (Koeniger et al., 2011), with a pre-
cision of ±1.0 ‰ for δ2H and ±0.1 ‰ for δ18O. An extreme
maximum limit on external reproducibility can be estimated
from the compositional consistency among analyses of the
same species on a single sampling date (e.g., all Or data
on 26 April 2016, etc.). This limit is a maximum because
different trees are expected to have different compositions.

The mean and median reproducibilities for these data are
∼ 10 ‰ in δ2H and ∼ 1 ‰ in δ18O. Bulk soil water, tension
lysimeter and Pg samples were analysed at the University
of Saskatchewan using Los Gatos Research liquid water off-
axis integrated-cavity output spectroscopy (off-axis ICOS)
with a precision of ≤±1.0 ‰ for δ2H and ±0.2 ‰ for δ18O.
The ICOS instrument at the University of Saskatchewan was
cross-correlated with the IRMS at Boise State University.
Bulk soil samples were analysed using vapour extraction of
water in an equilibrium state from the sealed Ziploc bags. We
are aware that different methods of soil water extraction have
been a major focus of research in the past few years, with
no definitive agreement on a standard method (e.g. Araguás-
Araguás et al., 1995; Orlowski et al., 2016, 2018). Previ-
ous work has shown the direct equilibrium method to give
similar results to those from cryogenic extraction for sandy
soils with low organic matter contents such as those at PC-
1 (Sprenger et al., 2018a, b). The accuracy of the direct
water-vapour equilibration method was±0.3 ‰ for δ18O and
±1.1 ‰ for δ2H. For a detailed description of the procedure,
we refer to Sprenger et al. (2018a). Snowmelt samples were
analysed at the University of Toronto using a Los Gatos Re-
search DLT-100 liquid water isotope analyser with a preci-
sion of ≤±1.0 ‰ for δ2H and ±0.12 ‰ for δ18O.

The local meteoric water line (LMWL) was determined
by regressing δ2H on δ18O for all snowmelt and Pg samples
(Klaus et al., 2015). Isotopic compositions of soil water and
xylem water samples were compared with the LMWL using
the line-conditioned excess (lc-excess), which defines the de-
gree of deviation from the LMWL using

lc-excess= δ2H− a× δ18O− b, (1)

where a and b are the LMWL’s slope and intercept, re-
spectively (Landwehr and Coplen, 2006). Negative lc-excess
indicates evaporative enrichment relative to the LMWL
(Landwehr and Coplen, 2006). McCutcheon et al. (2017)
noted the benefit of lc-excess values in showing “isotopic
distinction” between two water samples. These may differ
markedly in their δD and δ18O values but can be considered
genetically similar if they both plot on the LMWL.

2.6 Statistics

All statistical analyses were performed using the stats pack-
age in R Statistical Software (R Core Team, 2019). Shapiro–
Wilks tests were used to assess normality of xylem water
lc-excess values for each sampling period and species. One-
way analysis of variance (ANOVA) was used to compare
differences in xylem water lc-excess between sampling pe-
riods for each tree species. Levene’s test confirmed homo-
geneity of variances. Tukey’s honest significant difference
(HSD) tests identified significant differences in the data for
each tree species. Inter-specific differences in xylem water
lc-excess for a given sampling period were assessed using
t tests (unequal variances, Bonferroni-corrected). Successive
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sampling of the same trees meant that the isotopic compo-
sition of xylem water on a given sampling date was partly
dependent on that from the previous sampling. Nevertheless,
our approach allowed us to examine the temporal trajectory
of xylem water for each of the sampled trees. We feel this
is preferable to deriving this trajectory by sampling different
trees at different times, which could be influenced by inter-
tree differences in xylem water isotopic composition on a
given sampling date.

3 Results

3.1 Hydrometeorological conditions during the
sampling period

Precipitation data for the PC-1 meteorological station were
not available for the fall 2015 period. Total precipitation at
the station for 1 January to 31 October 2016 (957 mm) ex-
ceeded the 30-year normal precipitation for January to Oc-
tober (854 mm) at the nearby Dorset MOE climate station
(station ID 6112072). This was the result of above-average
precipitation (largely as snow) in February and March and a
wetter than normal August (173 mm per month vs. 76 mm per
month). Conversely, September 2016 was much drier than
normal (47 mm per month vs. 114 mm per month). Daily
PET ranged from 1 to 6.8 mm d−1, peaking in mid-June and
declining in late October. Total PET from 27 May to 21 Octo-
ber 2016 was 597 mm, while total Pg for the same period was
440 mm. The Canadian Drought Monitor (https://www.agr.
gc.ca/atlas/maps_cartes/canadianDroughtMonitor/, last ac-
cess: 18 June 2020) indicated that the April–October 2016
growing season was relatively dry, with conditions ranging
from abnormally dry (April) through to moderate (July to
October) and severe drought (June).

3.2 Soil water contents

Total water depth in the upper 0.5 m of soil at 0.1 and 1 m
from He, Or and Pw tree boles showed similar trends from
early June to late October 2016 (Fig. A1): gradual draining
through June into early August, a marked increase following
123 mm of rain between 9 and 17 August and relatively high
SWCs until the end of monitoring (see Snelgrove et al., 2019,
for greater detail). SWCs were similar at 0.1 and 1 m from
the boles of trees of a given species. Greatest variability in
SWC was seen around Or trees, while the least was around
He trees.

3.3 Isotope results

3.3.1 Precipitation

Figure 2a shows dual isotope plots of snowmelt and rain-
fall separated into periods prior to bulk soil water and xylem
water sampling. Snowmelt samples represented pre-leaf out

values, which were depleted in 2H and 18O relative to rain-
fall for the other periods; however, there was considerable
overlap in rainfall isotopic composition with no clear demar-
cation between sampling periods. The local meteoric water
line (LMWL) using all samples was

δ2H= 7.0395 · δ18O+ 4.6032; R2
= 0.97. (2)

Most throughfall and stemflow samples for He, Or and Pw
trees fell on the LMWL, indicating limited isotopic enrich-
ment of Pg as it passed through the forest canopy (Snelgrove
et al., 2019).

3.3.2 Mobile and bulk soil water

Mobile soil water fell on the LMWL (Fig. 2b), particularly
deeper samples and those taken post-senescence in 2015
and 2016. Snelgrove et al. (2019) also found limited evap-
orative enrichment of mobile soil water and weak correspon-
dence between isotopic composition of mobile soil water and
that of Pg, throughfall or stemflow inputs to the soil.

Most bulk soil water samples also plotted along the
LMWL. However, the best-fit line of δ2H vs. δ18O for bulk
soil water had a slope of 5.3, shallower than for meteoric wa-
ter (7.0; Eq. 2), indicating evaporative enrichment of some
samples. Enrichment was most pronounced at peak leaf out
(Fig. 2c). It is important to note the poor agreement be-
tween bulk soil water and mobile soil water lc-excess sam-
pled within 2 d or less of one another for a given tree species
(Fig. 2d). Bulk soil water tended to be evaporatively enriched
(more negative lc-excess) relative to mobile soil water sam-
pled on or close to the same day.

Bulk soil water lc-excess values showed broadly similar
distributions with depth beneath all tree species (Fig. 3).
Post-senescence 2015 samples showed considerable variabil-
ity at a given depth and no obvious trends with depth, with
a tendency for negative lc-excess values for all tree species.
Lc-excess at all depths became more positive at pre-leaf out
in late April, which may reflect large preceding inputs of
snowmelt water which flushed the soil profile. Lc-excess was
more negative at post-leaf out in late June, indicating evapo-
rative enrichment. This was least pronounced for Pw relative
to the other species. All species showed negative lc-excess
for near-surface bulk soil water and increasing values with
depth at peak leaf out in early August. Lc-excess approached
or equalled 0 at pre-senescence sampling in late Septem-
ber, consistent with decreased evaporation (Snelgrove et
al., 2019). Lc-excess values at post-senescence 2016 were
similar to those at post-senescence 2015 for Ce; however,
2016 values were generally more positive than 2015 values
for He, Or and Pw.

3.3.3 Xylem water

Xylem water isotopic composition changed during the grow-
ing season, with the trajectory of this change differing be-
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Figure 2. Isotopic composition of snowmelt and rainfall for the various sampling periods for xylem water and bulk soil water and the esti-
mated local meteoric water line (LMWL) (a); isotopic composition of bulk soil water and mobile soil water for the sampled tree species (b);
isotopic composition of bulk soil water for each sampling period beneath He trees (c); mean bulk soil water lc-excess at 5–15 and 35–45 cm
depths (±1 SD) vs. mobile soil water lc-excess at 10 and 40 cm depths, respectively, on or close to the same date (d).

tween species (Fig. 4). Coniferous species saw gradual en-
richment of 2H and 18O from pre-leaf out to post-senescence
in 2016. This transition was most pronounced for Ce and
Pw, while He saw greater overlap in isotopic compositions of
post-leaf out, peak leaf and pre-senescence samples. Xylem
water for Or had a different temporal trajectory: both 2H and
18O became depleted from pre-leaf out to peak leaf out, fol-
lowed by slight depletion of 2H from peak leaf out to pre-
senescence and slight depletion of 18O from pre-senescence
to post-senescence 2016.

Inter-specific differences and temporal changes in xylem
water isotopic composition at PC-1 exceeded inter-tree dif-
ferences for a given species. Standard errors for xylem water
for a given species and sampling date ranged from 0.39 ‰ to
5.13 ‰ for δ2H and 0.06 ‰ to 0.79 ‰ for δ18O and were sim-
ilar to previously reported results. Retzlaff et al. (2001) found
insignificant differences in xylem water δ2H between trees of
a given species on a given measurement date, with standard
errors of 5 ‰ or less, while White and Smith (2015) found
maximum standard errors for xylem water δ2H and δ18O of
5.49 ‰ and 0.84 ‰ for Acer negundo L. and 3.83 ‰ and
0.65 ‰ for Betula nigra L.

Shaded areas in Fig. 4 represent the typical range in evap-
oration line slopes (2.5–5; Benettin et al., 2018) originating
from the most depleted snowmelt sample (δ18O=−9.48 ‰,
δ2H=−118.10 ‰) measured in spring 2016. These areas
overlap most xylem water samples for Ce and Pw and many
He and Or samples. Overlap with samples plotting above the
steepest evaporation line slope is obtained by shifting the ori-
gin of the evaporation lines along the LMWL to less depleted
snowmelt samples.

There was little overlap of xylem water and bulk soil wa-
ter in dual isotope space (Fig. A2), with the former having
much more negative δ2H and to a lesser extent δ18O rela-
tive to bulk soil water. There were pronounced inter-species
differences in xylem-water lc-excess values and their rela-
tionship with near-surface soil water (Fig. 5). Bulk soil wa-
ter lc-excess at 0–5 cm depth is shown, since near-surface
soil experienced the greatest evaporative enrichment and thus
the most negative lc-excess. Xylem water lc-excess values
for a given sampling period and tree species were normally
distributed. One-way ANOVA indicated no significant dif-
ference in xylem water lc-excess between sampling periods
for He; conversely, other species showed significant differ-
ences between some sampling periods. There were no signif-
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Figure 3. Bulk soil water lc-excess at different depths for the sampling periods for Ce (first row), He (second row), Or (third row) and
Pw (fourth row). Vertical dashed line indicates a lc-excess of 0 ‰.

icant inter-species differences in xylem water lc-excess post-
senescence 2015; however, distinctions emerged during sub-
sequent sampling periods (Fig. 5, Table 2). Lc-excess for Or
xylem water was less negative compared to other species and
showed considerable overlap between sampling periods, with
the most negative values at pre-senescence. Values also often
overlapped near-surface soil water lc-excess. Lc-excess for
He was similar for all sampling periods, although inter-tree
variability declined progressively from pre-leaf out to pre-
senescence. There was occasional overlap of xylem water
and near-surface bulk soil water lc-excess values. A differ-

ent relationship occurred for Ce and to a lesser extent Pw.
Xylem water lc-excess for the former became more negative
from post-senescence 2015 to peak leaf out and then became
more positive. Lc-excess for Ce was generally more nega-
tive than for other species and was often more negative than
the most evaporatively enriched bulk soil water. Lc-excess
for Pw also declined from post-senescence 2015, becoming
most negative at pre-senescence. Pw lc-excess also tended to
fall outside the near-surface bulk soil water range, although
there was more overlap than for Ce xylem water.
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Figure 4. Xylem water isotopic composition for the different sampling periods for Ce (a), He (b), Or (c) and Pw (d). LMWL – local meteoric
water line. Shaded areas encompass the range (2.5–5) of evaporation line slopes originating from the most isotopically depleted snowmelt
sample measured in 2016.

Table 2. Significant differences in mean xylem water lc-excess for a given sampling period, determined from t tests with p = 0.0015
(equivalent to p = 0.05 following Bonferroni correction).

Post- Pre-leaf Post-leaf Peak leaf Pre- Post-
senescence out out out senescence senescence
2015 2016

– Ce<Or Ce<He Ce<He Pw<He Ce<Or
Ce<Pw Ce<Or Ce<Or Pw<Or
Pw<Or Pw<Or Ce<Pw

He<Or
Pw<Or

Figure 6 presents soil water–xylem water offsets for δ2H
throughout the study period, defined as the difference be-
tween the mean isotopic composition of soil water surround-
ing a sampled tree and xylem water for that tree. Offsets for
δ18O showed similar patterns to those for δ2H and are not
shown. Intra-species differences in δ2H offsets on a given
sampling date could be appreciable; however, inter-tree dif-
ferences for a given species between sampling times did not
appear to be consistent. Temporal trajectories of these off-
sets showed inter-specific differences. Minimum offset val-
ues for Ce occurred at post-senescence in 2015. Values rose
to maxima either at post-leaf out or peak leaf out before de-
clining to post-senescence 2016. Offsets were more tempo-
rally constant for He with maxima at peak leaf out. There

was a marked decline in the Or δ2H offsets from 2015 post-
senescence to pre-leaf out, followed by a gradual increase
to maxima at either pre-senescence or 2016 post-senescence.
Pw had more temporally constant δ2H offsets with minima
at either pre-leaf out or post-leaf out.

4 Discussion

4.1 Temporal changes in the isotopic composition of
soil water and xylem water in northern forests

Bulk soil water isotopic composition exhibited similar trends
between the different tree species’ canopies. Near-surface
bulk soil water showed evaporative enrichment at peak leaf
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Figure 5. Box-and-whisker plots of xylem water (left-hand panels) and near-surface (0–5 cm depth) bulk soil water (right-hand panels) lc-
excess values for Ce (first row), He (second row), Or (third row) and Pw (fourth row) for the different sampling periods. Horizontal line –
median, box – first to third quartiles, whiskers – maximum and minimum values. Xylem water box and whiskers with different letters for a
given tree species are statistically different (p = 0.05) based on Tukey’s HSD tests.

out, when SWCs reached a minimum (Figs. 3 and A1).
Increased enrichment of bulk soil water relative to both
the LMWL and corresponding mobile water with declining
SWCs was also observed by Zhao et al. (2013) in a loamy soil
and by Sprenger et al. (2018b) at PC-1. The bulk soil water
slope in dual isotope space at PC-1 (5.3) agreed with values
of 5.3 to 5.8 reported by Bowling et al. (2017) for riparian

soils in eastern Utah, while lc-excess values for near-surface
soils were within the range given in McCutcheon et al. (2017)
for a semi-arid landscape in southwest Idaho. Bulk soil water
isotopic composition following senescence did not return to
that of the previous year for all tree species (Fig. 3). Brooks
et al. (2010) also noted an inter-annual difference in soil wa-
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Figure 6. Bulk soil water–xylem water δ2H offsets (1δ2H) for the sampled trees for each sampling period. See text for details on derivation
of offsets. Positive values of 1δ2H indicate that xylem water δ2H is more negative than the corresponding mean bulk soil water δ2H.

ter isotopic composition at the same location and depth for
the same time of the year.

In contrast to similar trends in bulk soil water isotopic
composition, xylem water showed intra- and inter-specific
differences in its displacement from both bulk soil water and
the LMWL and the temporal trajectory of that composition
throughout the growing season. Distinctions between xylem
water and bulk soil water isotopic compositions have been
noted elsewhere. Brooks et al. (2010) found some plant wa-
ter plotting beyond (and generally below) the range of soil
water δ2H and δ18O in dual isotope space but did not ad-
dress it, with Goldsmith et al. (2012) later suggesting this
xylem water may have undergone further evaporation. Of
the 17 isotope-based studies of plant water use in temper-
ate forests (similar to the PC-1 forest landscape) cited by
Evaristo et al. (2015), 13 reported both soil water and xylem
water offsets (analogous to lc-excess used here) and 4 indi-
cated xylem water offsets falling below the range (i.e. were
more negative) of the corresponding soil water offsets. More
recent work (e.g. Geris et al., 2015; White and Smith, 2015;
Bowling et al., 2017; Hervé-Fernández et al., 2016; Mc-
Cutcheon et al., 2017; Brinkmann et al., 2019) also saw a
distinction between the isotopic composition of xylem wa-
ter and possible water sources that might support transpira-

tion. Pronounced soil water–plant water δ2H offsets observed
for all species at PC-1 (Fig. 6) may be a general occurrence
in temperate forests (Barbeta et al., 2020). However, these
values exceeded the mean δ2H offset of 10.6± 3.05 ‰ re-
ported by Barbeta et al. (2020) for potted saplings of Euro-
pean beech (Fagus sylvatica L.).

Inter-specific differences in the degree to which the iso-
topic composition of xylem water deviates from soil water
have been observed in previous work. Gaines et al. (2016)
found xylem water from oak (Quercus) and hickory (Carya)
trees tended to be more depleted in heavy isotopes than
that of Acer. Xylem water 2H for deciduous (beech and
oak) species in Switzerland was more depleted compared to
spruce (Allen et al., 2019). Our results contrast with those of
White and Smith (2015), who saw limited inter-specific dif-
ferences in the isotopic composition of plant water for box
elder (Acer negundo L.) or river birch (Betula nigra L.) at a
given phenological stage in the foothills of the southern Ap-
palachian Mountains. Inter-specific variations in xylem wa-
ter isotopic composition and its temporal changes at PC-1 are
likely not due to distinct environmental conditions for the dif-
ferent tree species, given the close proximity of the sampled
trees and similar soil conditions under the tree canopies.
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4.2 Potential drivers of plant–soil water isotopic
differences

Several factors have been suggested which might account for
the observed differences between the isotopic compositions
of xylem water and bulk soil water in PC-1. Some of these
may be common to all studied tree species, while others can-
not account for inter-specific differences in the temporal tra-
jectory of xylem water isotopic composition during the study
period.

4.2.1 Errors in measuring xylem water composition

We do not fully know what kind of vegetation water is mo-
bilised by cryogenic extraction (the approach used here to
obtain xylem water samples), although it is usually assumed
to characterise xylem water (Tetzlaff et al., 2021). Millar et
al. (2018) noted that cryogenic extraction resulted in more
depleted xylem water 2H in spring wheat compared to other
extraction methods. However, such an experimental issue
might be expected to influence measured xylem water iso-
topic compositions relatively consistently across species and
seasons and does not readily account for the inter-specific
differences in xylem water δ2H at PC-1. We have noted our
previous work that found no significant difference between
the isotopic composition of soil water determined by cryo-
genic extraction and the direct equilibration method (Tetzlaff
et al., 2021), and others have found no consistent evidence
that cryogenic extraction alters xylem water’s isotopic val-
ues (Barbeta et al., 2015; Grossiord et al., 2017). Berry et
al. (2017) suggested cavitation (air entry) during extraction
of stem cores from trees and increasing time lags between
extraction and sealing the sample allow evaporation that frac-
tionates the remaining sample water. Given the rapid process-
ing of xylem water samples at PC-1, the inter-specific and
temporal variation in xylem water isotopic composition and
its pronounced divergence from that of all other potential wa-
ter sources, the displacement of xylem water from bulk soil
water is likely not attributable to a methodological issue.

4.2.2 Unsampled water sources

The possibility that bulk soil water does not represent root-
absorbed water implies plants selectively access an isotopi-
cally fractionated portion of soil water (McCutcheon et al.,
2017). However, soils in PC-1 at peak leaf out were very
dry, while Ce xylem water lc-excess was much more negative
than corresponding bulk soil water (Fig. 5). Presence of suffi-
cient soil water with very negative lc-excess values that could
both match the xylem water lc-excess and supply the tree’s
transpiration demand is unlikely under these circumstances.
Trees may have accessed water held in bedrock fractures that
may be isotopically distinct from mobile soil water (Oshun
et al., 2016). However, bedrock in PC-1 appears to be rela-
tively unfractured, making it difficult to envisage sufficient

water held in fractures that could supply transpiration to a
significant extent. This echoes Gaines et al. (2016), who saw
little evidence that roots within or below fractured bedrock
in central Pennsylvania were consistent major contributors
to transpiration.

4.2.3 Soil water content

Evaristo et al. (2019) found differences between the isotopic
compositions of plant water and low mobility soil matrix wa-
ter to be greatest under drought conditions and least at the
transition from drought to rewetting. The greatest differences
between xylem water and bulk soil water isotopic compo-
sitions at PC-1 for Ce and He were generally at peak leaf
out (Fig. 6) following a protracted decline in SWCs (Fig. 2);
however, these differences persisted following soil rewetting.
Barbeta et al. (2020) found soil water–plant water δ2H off-
sets increased with soil water content, whereas the smallest
offsets at PC-1 were either at post-senescence 2015 (Ce) or
pre-leaf out (He, Or, Pw) when SWCs would be relatively
large as shown by previous work in PC-1 (e.g. Devito and
Dillon, 1993). Thus, the influence of soil water content on
differences in xylem water–soil water isotopic composition
is unclear and deserves further study.

4.2.4 Storage effect

Xylem water at a given time may be influenced by the iso-
topic composition of water taken up days or months before-
hand (McCutcheon et al., 2017; Penna et al. 2018; Evaristo et
al., 2019). Sprenger et al. (2018c) estimated median ages of
total soil water storage in PC-1 ranging from 31 (25th per-
centile) to 74 d (75th percentile). This storage effect may
assist in explaining the frequent distinction between xylem
water and bulk soil water lc-excess for a given sampling pe-
riod and is supported by partial (He, Pw) or complete (Or)
overlap of the lc-excess of post-senescence 2015 soil water
and pre-leaf out xylem water in 2016 (Fig. 7). However, Ce
xylem water lc-excess was much more negative than post-
senescence 2015 bulk soil water, suggesting this mechanism
may differ in importance between tree species. Such a mech-
anism also fails to account for Ce and to some extent Pw
lc-excess values that were much more negative than any bulk
soil water (Figs. 3 and 5).

4.2.5 Interactions with carbonates or other
geochemical and organic constituents

These include isotopic effects between soil water and
cations/clay minerals (Oerter et al., 2014), organic matter
(Orlowski et al., 2016) and rock–water interactions (Lin and
Horita, 2016; Oshun et al., 2016) that differ for H and O.
The potential for any or all of these processes to induce dif-
ferences in xylem water isotopic composition relative to soil
water at PC-1 is not known, although the low clay contents
of PC-1 soils make significant isotopic effects with clay min-
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erals unlikely (Sprenger et al., 2018b). Regardless, it would
be reasonable to expect that such processes would be sim-
ilar in the soil water surrounding the different tree species.
Thus, they do not easily explain inter-specific differences in
the degree of isotopic displacement of xylem water from the
LMWL and bulk soil water.

4.2.6 Fractionation during water uptake

There is increasing recognition that differences between
xylem water and soil water isotopic compositions may re-
sult from isotopic fractionation induced by internal plant pro-
cesses during water uptake (Berry et al., 2017). Ellsworth
and Williams (2007) showed that 12 of 16 species of woody
plants demonstrated H isotope fractionation at the soil–root
interface, while Vargas et al. (2017) found plants discrimi-
nated against 18O and 2H during water uptake with differ-
ences between δ18O and δ2H in soil water relative to plant
water increasing with transpiration water loss. This would
lead to more negative δ18O and δ2H in plant water relative to
soil water, as seen at PC-1. It also suggests the greatest differ-
ences between xylem water and soil water lc-excess would be
at peak leaf out when PC-1 soils were at their driest (Fig. A1).
This was the case for Ce, which showed clear separation be-
tween soil and xylem water lc-excess at peak leaf out (Fig. 5).
This also occurred at pre-senescence for Pw; however, there
was overlap between soil water and xylem water lc-excess
for Or and He. Thus, the potential for fractionation during
water uptake may be a major cause of deviations between
soil water and xylem water isotopic compositions and may
differ between tree species in northern mixed forests.

4.2.7 Fractionation following uptake

Changes in the isotopic composition of xylem water relative
to that of soil water have been attributed to such processes
as xylem–phloem exchange during water stress (Cernusak et
al., 2005; Bertrand et al., 2014), isotopic depletion of storage
water in xylem tissue compared to water moving via con-
ductive tissues (Barbeta et al., 2020), H fractionation when
water movement in the tree occurs predominantly via sym-
plastic rather than via apoplastic pathways (Lin and Stern-
berg, 1993; Ellsworth and Williams, 2007) and fractionation
within the tree’s leaves, which then impacts the isotopic com-
position of phloem sap (Farquhar et al., 2007). We are not
able to assess influence of any of these processes on xylem
water composition at PC-1. There is also the potential for
evaporation through the tree’s bark (Dawson and Ehleringer,
1991; Smith et al., 1997). Bowling et al. (2017) thought this
could not explain evaporative enrichment of xylem water in
their study given the large stems sampled and removal of
bark from all stem samples, as was the case at PC-1. Nev-
ertheless, the overlap between many xylem water samples
and the range in evaporation lines originating from the most
isotopically depleted snowmelt sample (Fig. 4) suggest that

uptake of snowmelt water at the start of the growing season
and subsequent evaporative enrichment of xylem water post-
uptake cannot be ruled out.

4.2.8 Plant physiology, rooting behaviour and water
use strategies

White and Smith (2015) noted a divergence in xylem water
δ2H between species from the beginning of the dormant pe-
riod. This was similar to PC-1, where Or xylem water gener-
ally became more depleted moving from pre-leaf out to post-
senescence 2016, while the reverse trend occurred for Ce,
Pw and to a lesser extent He (Fig. 5). White and Smith (2015)
suggested such divergence may be due to differing periods of
inactivity for the two species they studied. This may be rel-
evant to deciduous species such as Or that experiences leaf
out and senescence and whose timing and intensity of water
use may differ from that of coniferous species. Phillips and
Ehleringer (1995) found evaporatively enriched stem water
in big-toothed maple (Acer grandidentatum Nutt.) and Gam-
bel’s oak (Quercus gambelii) before leaf flush and saw stem
water move closer to the LMWL at full leaf out. We found
similar results for Or where lc-excess became less negative at
peak leaf out relative to pre-leaf out, although the difference
was not statistically significant (Fig. 5). Gaines et al. (2016)
noted xylem water tended to be more depleted in heavy iso-
topes from larger trees compared to smaller ones. The re-
verse was the case at PC-1, where the smallest trees (Ce; Ta-
ble 1) showed the most depleted xylem water 2H. Shallow
soils overlying bedrock at PC-1 would likely constrain the
ability of different tree species to develop marked contrasts
in rooting architectures (e.g. deep tap roots for some species
vs. shallow root networks for others). However, inter-specific
differences in the rooting behaviour and water use strategies
of trees studied at PC-1 are unknown. The issue of root activ-
ity is one of the most difficult dilemmas facing plant ecology
and ecohydrology (Beyer et al., 2016). Inter-specific differ-
ences in plant water lc-excess may reflect variations in root-
ing characteristics and shifts in the depth of water uptake in
response to changes in water availability (McCutcheon et al.,
2017; Dubbert and Werner, 2019). This topic should be a fo-
cus of further work in northern forest landscapes.

Despite considering these manifold possible processes, the
cause of isotopic distinction between xylem water and poten-
tial water sources remains unclear. Nevertheless, some mech-
anisms noted above (e.g. fractionation at the plant root, evap-
oration through the bark) are more plausible under conditions
at PC-1 than others (e.g. xylem water accessing an unsam-
pled source of water not reflected in bulk soil water isotope
values, errors in determination of xylem water isotopic com-
position).

Regardless, our results provide novel insight into poten-
tial changes in hydroecological fluxes in northern mixed
forests in response to hydroclimatic change. The landscape
surrounding PC-1 in Ontario is projected to experience in-
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creases in summer temperatures above the 1971–2000 base-
line of between 2 and 8 ◦C (and presumably accompanying
increases in evaporation) and decreases in summer rainfall
of up to 25 mm for the 2071–2100 period (McDermid et al.,
2015). The 2016 growing season was a particularly dry one;
thus, the small SWCs and associated inter-specific differ-
ences in xylem water–bulk soil water isotopic relationships
presented here may become typical of future conditions in
this and similar northern forest landscapes across the North-
ern Hemisphere.

5 Conclusion

We examined the co-evolution of xylem water and bulk soil
water isotopic compositions during the growing season for
four tree species in a northern mixed forest. The major find-
ings are as follows:

1. Bulk soil water isotopic composition showed similar
temporal changes below the canopies of all tree species,
with evaporative enrichment of near-surface soil water
from pre-leaf out to peak leaf out followed by a return
to values along the LMWL at post-senescence.

2. In contrast, xylem water isotopic composition showed
inter-specific differences in both the degree of its dis-
placement from the LMWL and bulk soil water and the
temporal trajectory of its changes from pre-leaf out to
post-senescence.

3. This trajectory differed between deciduous and conifer-
ous species. Red oak xylem water experienced depletion
in both 2H and 18O during the growing season, while
conifer xylem water showed isotopic enrichment. This
may be related to inter-specific variations in the timing
and intensity of growing season water use in northern
mixed forests and requires further study.

4. A review of possible reasons for distinctions between
xylem water and soil water isotopic compositions for
these tree species suggested that some mechanisms
(e.g. fractionation at the tree root, evaporation through
the bark) were more plausible than others (e.g. an un-
sampled source of water taken up during transpira-
tion) when considered in the context of the study site’s
characteristics. Nevertheless, inter-specific differences
in the degree to which these mechanisms may account
for the varying relationships between xylem water and
soil water may be related to the physiology, rooting be-
haviour and water use strategies of deciduous and conif-
erous trees. These should be explored in further research
as we attempt to understand more fully how trees take
up water during transpiration in order to predict their re-
sponse to anticipated hydroclimatic changes in northern
forest landscapes.
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Appendix A

Figure A1. Rainfall depths and range of total soil water depths held in the upper 0.5 m of soil at 0.1 (left-hand panels) and 1 m (right-hand
panels) from the bole of He (second row), Or (third row) and Pw (fourth row) trees during the 2016 growing season. Vertical dashed lines
indicate the timing of post-leaf out, peak leaf out and pre-senescence sampling of xylem water and bulk soil water.
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Figure A2. Isotopic composition of xylem water and bulk soil water (sampled at 5 cm intervals from the soil surface) for the sampled tree
species. Ce – eastern white cedar, He – eastern hemlock, Or – red oak, Pw – eastern white pine, LMWL – local meteoric water line.

https://doi.org/10.5194/hess-25-2169-2021 Hydrol. Earth Syst. Sci., 25, 2169–2186, 2021



2184 J. R. Snelgrove et al.: Co-evolution of xylem water and soil water stable isotopic composition
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