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Abstract. Precipitation orographic enhancement is the re-
sult of both synoptic circulation and topography. Since high-
elevation headwaters are often sparsely instrumented, the
magnitude and distribution of this enhancement, as well as
how they affect precipitation lapse rates, remain poorly un-
derstood. Filling this knowledge gap would allow a sig-
nificant step ahead for hydrologic forecasting procedures
and water management in general. Here, we hypothesized
that spatially distributed, manual measurements of snow
depth (courses) could provide new insights into this pro-
cess. We leveraged over 11 000 snow course data upstream
of two reservoirs in the western European Alps (Aosta
Valley, Italy) to estimate precipitation orographic enhance-
ment in the form of lapse rates and, consequently, im-
prove predictions of a snow hydrologic modeling chain
(Flood-PROOFS). We found that snow water equivalent
(SWE) above 3000 m a.s.l. (above sea level) was between
2 and 8.5 times higher than recorded cumulative sea-
sonal precipitation below 1000 m a.s.l., with gradients up
to 1000 mm w.e. km−1. Enhancement factors, estimated by
blending precipitation gauge and snow course data, were
consistent between the two hydropower headwaters (me-
dian values above 3000 m a.s.l. between 4.1 and 4.8). Includ-
ing blended gauge course lapse rates in an iterative precip-
itation spatialization procedure allowed Flood-PROOFS to
remedy underestimations both of SWE above 3000 m a.s.l.
(up to 50 %) and – importantly – of precipitation vs. observed
streamflow. Annual runoff coefficients based on blended

lapse rates were also more consistent from year to year than
those based on precipitation gauges alone (standard devia-
tion of 0.06 and 0.19, respectively). Thus, snow courses bear
a characteristic signature of orographic precipitation, which
opens a window of opportunity for leveraging these data sets
to improve our understanding of the mountain water budget.
This is all the more important due to the essential role of
high-elevation headwaters in supporting water security and
ecosystem services worldwide.

1 Introduction

Orographic precipitation is a critical driver of the Earth’s wa-
ter budget (Jiang, 2003), particularly as it affects amount
and distribution of snowpack at high elevations and, thus,
freshwater supply and water security during the warm sea-
son (Serreze et al., 1999; Bales et al., 2006; Viviroli et al.,
2007b; Blanchet et al., 2009; Mott et al., 2014; Sarmadi et al.,
2019). On shorter timescales, orographic precipitation may
concur in generating floods (Buzzi et al., 1998; Galewsky
and Sobel, 2005; Panziera et al., 2015) and in triggering land-
slides and avalanches (Roe, 2005). A feature of both strati-
form and convective systems (Roe, 2005), orographic pre-
cipitation introduces sharp transitions between wet, wind-
ward, and dry leeward slopes that are ubiquitous across con-
tinents (rain shadows, see Houston and Hartley, 2003; An-
ders et al., 2006; Galewsky, 2009; Viale and Nuñez, 2011).
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Because these mechanisms shape local climates and ecosys-
tem services (see Michalet et al., 2003; Roe, 2005; Poschlod,
2015, and references therein), gaining a better understanding
of how precipitation interacts with elevation has important
implications within and beyond geosciences.

Orographic precipitation has already been subject of ex-
tensive research (Bonacina, 1945; Sarker, 1966; Alpert,
1986; Barros and Kuligowski, 1997; Smith and Barstad,
2004; Roe, 2005; Smith, 2006; Rotunno and Houze, 2007;
Allamano et al., 2009; Avanzi et al., 2015; Napoli et al.,
2019; Ruelland, 2020). The emerging consensus is that the
distribution, intensity, and duration of orographic precipita-
tion depend on the following three main modulating factors
(Rotunno and Houze, 2007): the synoptic circulation pat-
terns, intensity of mesoscale lifting along slopes, and timing
of water condensation through convection and turbulence.
Interactions across these three primary factors are notori-
ously elusive, with cloud microphysics, local terrain hetero-
geneity, and boundary layer thermodynamics challenging the
somewhat naive notion that precipitation increases with ele-
vation (see Roe, 2005, for a review). For example, Napoli
et al. (2019) have shown a saturation-like effect in orographic
enhancement above ∼ 1000 m a.s.l. (above sea level) in the
Alps, associated with a monotonous increase in annual pre-
cipitation variability with elevation. This saturation effect
was also highlighted by Blanchet et al. (2009) for mean and
maximum snowfall across Switzerland. Avanzi et al. (2015)
observed increased variability in extreme precipitation quan-
tiles with elevation and a reverse orographic effect for annual
maximum precipitation of a short duration, which is even en-
hanced for subhourly durations (Marra et al., 2021).

The complex nature of precipitation orographic enhance-
ment means that some of its fundamental aspects are still
poorly understood, especially across headwaters with com-
plex terrain. This includes the magnitude and seasonality of
precipitation gradients, how they vary across the landscape
during specific events, and how they interact with tempera-
ture and relative humidity to determine precipitation phase
(Harpold et al., 2017; Avanzi et al., 2020a). Such knowl-
edge gaps are exacerbated by precipitation measurements in
snow-dominated headwaters being prone to large errors, such
as wind-driven undercatch and snow plugging (Rasmussen
et al., 2012; Avanzi et al., 2014), issues that have progres-
sively discouraged the deployment of measurement stations
in snow-dominated regions unless frequent maintenance and
ground truthing is performed – which is very rare due to its
high costs and logistical constraints. Meanwhile, radar- or
satellite-based measurements in mountain terrain are chal-
lenged by complex topography, radar beam shielding, and
ground echoing (Germann et al., 2006). Despite substantial
efforts in recent years to achieve more reliable precipitation
measurements (such as the WMO SPICE initiative, see Nitu
et al., 2018), the world’s water towers (Viviroli et al., 2007b)
remain largely ungauged.

Better understanding of precipitation distribution across
mountain landscapes is not only an open question for fun-
damental research but also for operational forecasting (Frei
and Isotta, 2019). Precipitation spatialization in mountain
hydrology models is generally performed through assign-
ing a priori precipitation lapse rates (e.g., see Bergström.,
1992; Viviroli et al., 2007a; Markstrom et al., 2015) or in-
terpolating precipitation gauge data with various degrees of
geostatistical complexity (Frei and Schär, 1998; Daly et al.,
2008; Isotta et al., 2014; Foehn et al., 2018; Frei and Isotta,
2019). While cross-validation accuracy of these spatializa-
tion methods is high at measurement sites (e.g., mean abso-
lute errors for monthly precipitation below ∼ 12 mm in Daly
et al., 2008), gauge-based spatialization approaches cannot
fully overcome the lack of signal at high elevations. For in-
stance, the seminal work by Frei and Schär (1998) considered
an advanced distance-weighting scheme to spatialize daily
precipitation across the European Alps, but the vast majority
of measurement sites was located below ∼ 2500 m a.s.l. In
the US, the Parameter-elevation Relationships on Indepen-
dent Slopes Model (PRISM; see Daly et al., 2008) adopts
a weighted climate–elevation relationship based on phys-
iographic similarity, but Zhang et al. (2017) showed that
this approach underestimates both precipitation totals above
∼ 2400 m a.s.l. and the seasonal precipitation lapse rate in
the central Sierra Nevada, California. It follows that pre-
dicting precipitation above this “precipitation gauge line” at
∼ 2500 m a.s.l. will always imply some degrees of extrapola-
tion.

A largely unexplored solution for grasping precipitation
gradients above the precipitation gauge line is provided by
snow courses, a snow survey protocol based on collecting
measurements of snow depth (HS), and, optionally, snow
density (ρS) at regular intervals over transects of various ex-
tent (generally 1+ km) to inform water supply forecasting or
other applications (see, e.g., Hart and Gehrke, 1990; Rice and
Bales, 2010). This approach captures snow depth distribution
in a way that is more representative of snow water resources
across the landscape than stand-alone stations like ultrasonic
depth sensors, which, instead, tend to overestimate both peak
snow water equivalent (SWE) and snow duration (Malek
et al., 2017). Snow course data are collected, for example,
in the western US (Pagano et al., 2004), Norway (Skaugen
et al., 2012), and Finland (Lundberg and Koivusalo, 2003)
and have frequently been used to develop and evaluate snow
hydrologic models (Jost et al., 2009), snow mapping algo-
rithms (Margulis et al., 2016), or satellite retrieval methods
(Metsämäki et al., 2005).

Snow course measurements are the result of a broad
spectrum of processes acting at multiple scales, including
wind drift (Winstral et al., 2013), aspect-driven melt patterns
(Da Ronco et al., 2020), preferential deposition of snowfall
(Gerber et al., 2017, 2019), and snow canopy interactions
(Lundquist et al., 2013). In the present study, we hypoth-
esized that snow courses bear an additional, characteristic
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signature of seasonal orographic enhancement, which can be
leveraged to fill the gap in precipitation measurements above
the precipitation gauge line and improve hydrologic model
predictive skills as a result. In order to verify this hypothesis,
we focused on two high-elevation hydropower catchments
in the western European Alps (Aosta Valley, Italy) where
more than 10 000 snow course data points have been col-
lected for water supply forecasting since 2008. We combined
these data with ground-based precipitation to first investi-
gate the relationship between seasonal precipitation totals be-
low the precipitation gauge line and peak accumulation snow
course water equivalent above 3000 m a.s.l., and, thus, derive
a climatology of lapse rates obtained by merging these two
data sets (blended lapse rates). Second, we leveraged these
blended lapse rates to develop an iterative, two-step spatial-
ization procedure of precipitation that accounts for seasonal
orographic effects in addition to daily precipitation variabil-
ity below the precipitation gauge line. Third, we evaluated
this spatialization procedure using streamflow measurements
and operational snow hydrologic modeling (S3M and Con-
tinuum; see Silvestro et al., 2013; Laiolo et al., 2014).

2 Study area and data

2.1 Study area

Aosta Valley (one of the 20 Italian administrative regions)
is located at the northwestern edge of the Italian peninsula
(Fig. 1a). Embraced by some of the highest peaks in the Alps
(Mont Blanc – 4808 m a.s.l.; Monte Rosa – 4634 m a.s.l.;
and Gran Paradiso – 4061 m a.s.l.), Aosta Valley is a typ-
ical inner-Alpine valley with marked rain shadows (Isotta
et al., 2014). Annual precipitation totals can be as high as
∼ 1600–1800 mm across the southeastern windward slopes
or the Mont Blanc area in the northwestern corner of the re-
gion and lower than 600 mm in the central valley. Such com-
paratively low precipitation totals, coupled with pronounced
temperature gradients, make this region prone to droughts
and the associated vegetation stress (Cremonese et al., 2017).
Precipitation is year round, with somewhat bimodal season-
ality and prevalent peaks in spring and fall (Crespi et al.,
2018). Its topographic imbalance in the precipitation distri-
bution and the associated marked orographic gradients make
Aosta Valley an ideal region for the present study. An area of
about 134 km2 out of 3261 km2 of the Aosta Valley is cov-
ered by glaciers (4 %), meaning that this is the most glacier-
ized region in Italy (Smiraglia et al., 2015; Patro et al., 2018).
While specific measurements to quantify the contribution of
glaciers to total runoff are missing, qualitative inspection
of the observed hydrographs suggest that glacier melt con-
tributes particularly to late summer streamflow when input
from snowmelt declines. This is in line with other catchments
across the Alps.

We focus on two hydropower catchments to test our re-
search hypothesis, namely Valpelline (VP) and Beauregard
in Valgrisenche (VG; see Fig. 1a and c). The total drainage
area of Beauregard is ∼ 110 km2, 14 % of which is covered
by glaciers (11.4 km2); elevation ranges from ∼ 1800 m a.s.l.
at the outlet to ∼ 3500 m a.s.l. Moreover, Valpelline spans
both a larger extent and a higher elevation range than Beau-
regard, and the total drainage area is ∼ 130 km2, while mini-
mum and maximum elevation are 1539 and 3934 m a.s.l., re-
spectively. About 12.4 km2 of the drainage area of Valpelline
is glacierized (9.5 %). Beauregard and Valpelline are located
on two opposite sides of the Aosta Valley and, thus, have
different prevalent aspects (northwards and westwards, re-
spectively). Both systems are composed of a reservoir and
a number of auxiliary intakes, which we lumped together as
a single catchment. Both catchments are ungauged with re-
gard to precipitation or snow depth automatic weather sta-
tions (Fig. 1a and c).

2.2 Data

We employed (1) weather and snow data from the network
of monitoring stations of the regional authority (https://cf.
regione.vda.it/portale_dati.php, last access: 6 June 2020),
(2) reconstructed streamflow data for the two hydropower
catchments of Beauregard and Valpelline, and (3) high-
elevation, manual peak snow depth snow courses. The study
period covered water years 2008 through 2019, based on
data availability, with a specific focus on water years 2017
through 2019 when most of the snow course data were
collected. We define a “water year” as the period between
September 1 and the following 31 August, using the calen-
dar year in which it ends (e.g., water year 2019 went from
1 September 2018 to 31 August 2019). We used September
to August rather than October to September (which is fre-
quent elsewhere) because snow accumulation in this region
may start as early as September.

Weather data comprise hourly air temperature, relative hu-
midity, incoming shortwave solar radiation, wind, and to-
tal precipitation data at up to ∼ 100 (temperature), ∼ 50
(relative humidity), ∼ 30 (incoming shortwave solar radia-
tion), ∼ 60 (wind), and ∼ 80 (total precipitation) measure-
ment points. The actual number of available measurement
points changed from day to day because of potential mal-
functioning or communication issues. Data were collected,
processed, quality checked, and stored by the civil protection
regional authority (data access and geometry of the monitor-
ing network: http://presidi2.regione.vda.it/str_dataview, last
access: 12 June 2020). Quality checks were based on a mix-
ture of automatic filtering and visual screening, including
out-of-range or negative values (where applicable; e.g., snow
depth).

Figure 1a reports the location of precipitation measure-
ment points used in the present study, while Fig. 1c high-
lights that these precipitation gauges cover only low to
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Figure 1. (a) Topography of Aosta Valley (VdA; our focus region), along with hydrography and hydropower catchment delineation of the
two valleys for which we reconstructed blended precipitation lapse rates (VG is Beauregard, and VP is Valpelline). This panel also reports
the location of all precipitation gauges and snow depth sensors available to the present study, as well as catchment delineation of three other
hydropower systems in Aosta Valley where snow courses were collected (see Table 1). (b) Examples of snow course locations for 3 water
years at Beauregard. (c) Report on the elevation distribution of the Aosta Valley, Beauregard, and Valpelline and of the precipitation gauge
and snow depth sensor networks.

medium elevations, with the highest one at ∼ 2700 m a.s.l.
Considered precipitation gauges comprise both heated and
unheated sensors, but the hourly precipitation spatialization
technique used in the following automatically excludes un-
heated sensors when they are above the rain–snow transi-
tion line (Sect. 3.2). Regarding undercatch, previous work by
the author team compared precipitation totals at snow depth
sensor locations with concurrent snow depth increases (see
next the paragraph with regard to snow depth data). Precipi-
tation totals were estimated using various parameterizations
and that of Allerup et al. (1997) was found to yield the low-
est error (unpublished work). Applying this correction cor-
responds to gaining 5 % to 15 % of total precipitation, com-
pared to using non-corrected precipitation data. Given that
the comparison was performed between precipitation and

snow depth increases, this accuracy is more representative
of solid than liquid precipitation.

The data set of the regional authority also comprises
hourly snow depth data at ∼ 50 locations (see Fig. 1a).
The measurement technique is based on ultrasonic rang-
ing, with precision of a few centimeters (Ryan et al., 2008;
Avanzi et al., 2014). While the average elevation of these
snow depth stations is higher than that of the precipitation
gauges, locations above ∼ 2700 m a.s.l. remain largely un-
gauged (Fig. 1c). Snow cover is also routinely monitored by
a cooperative consortium collecting manual samples of snow
depth and density across the whole region, with weekly to
monthly revisit times for the same measurement plot. These
manual, periodical data were not directly employed in the
present study given their discontinuous nature, but we did use
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interpolated SWE maps based on combining these manual,
periodical data and the ∼ 50 automatic snow depth stations
(see details in Sect. 3). These maps were produced by the lo-
cal Environmental Protection Agency (ARPA VdA) and were
used as an assimilation source for our snow hydrologic fore-
casting chain (Sect. 3.2). Figure S1 in the Supplement shows
an example of all input samples used by ARPA VdA for the
period 1–8 March 2020. Note that these manual, periodical
measurements are not classifiable as snow courses because
they consist of stand-alone measurements at open sites.

Reconstructed streamflow data for the closure sections of
Valpelline and Beauregard were provided by Compagnia Val-
dostana delle Acque (CVA), the company managing both hy-
dropower systems. These estimates were based on measure-
ments of inflow to the plants and changes in reservoir storage,
with a proprietary reconstruction method. The uncertainty of
this data set has never been fully quantified, but such a re-
construction approach corresponds to the standard method
used for unimpaired flow estimation in other regions in the
world (Avanzi et al., 2020b). Annual runoff totals for the
closure sections of Valpelline and Beauregard, according to
these reconstructed data (∼ 1000–1500 mm), are consistent
with other gauged sections in the region. Data were daily
and ranged from water year 2008 to 2019, consistent with
weather and snow course data.

Snow course data were available for five areas of interest,
including the two hydropower catchments of Valpelline and
Beauregard and three much smaller hydropower catchments
(i.e., Cignaga, Gabiet, and Goillet; see Fig. 1a). Because of
logistical constraints, only a subset of these five areas of in-
terest was sampled every year, with a markedly larger data
set starting from the water year 2017 (see Table 1 for an
inventory). Data were collected around peak-accumulation
day, which changed from year to year and from catchment
to catchment, as assessed by ARPA VdA based on weather
forecasts and snow accumulation patterns (see Table 1 for
survey dates). Snow depth measurements were taken every
50 to 100 m along transects of several kilometers, which
spanned the whole elevation gradient from the local snow
line to the catchment drainage divide (see Fig. 1b for an ex-
ample of these transects for Beauregard and Figs. S2 to S12
for details of all transects).

Mean elevation of these snow courses was much higher
than the elevation captured by the precipitation gauge and
snow depth sensor networks (often above 3000 m a.s.l.). The
location of the transects across each catchment was cho-
sen to explore the whole elevation gradient from the local
snow line up to the drainage divide and to capture a vari-
ety of physiographic characteristics. The sampling protocol
avoided known deposition or erosion areas, as far as possi-
ble. The number of transects for each catchment year de-
pended on available resources. Snow depth was measured
using manual probes, and the location of each measurement
was recorded using a portable GPS with a precision of the or-
der of meters. Snow course data for each area of interest were

accompanied by a few measurements of bulk snow density at
representative locations, which were averaged to provide a
reference estimate for each survey and, hence, derive SWE.

3 Methods

3.1 Estimating blended gauge course lapse rates

We derived blended precipitation gauge snow course lapse
rates for Beauregard (water years 2017 through 2019) and
Valpelline (water years 2008 through 2013 and 2015 through
2019) by first detecting the onset of the snow season for
each catchment and each water year as the first hour with at
least 20 cm of snow on the ground for a mid-elevation nearby
the snow depth sensor (red squares in Fig. 1; elevation was
∼ 1860 and 1970 m a.s.l. for the snow depth sensors of Beau-
regard and Valpelline, respectively). We then accumulated
hourly precipitation between this onset date and the snow
course date for every precipitation gauge in the same valley
of each hydropower catchment – this was done separately for
each water year. We, finally, derived orographic-precipitation
enhancement factors for each valley and water year by divid-
ing seasonally cumulative precipitation at gauges and aver-
age SWE above 3000 m a.s.l. by seasonally cumulative pre-
cipitation at the lowest-elevation precipitation gauge in the
same valley; these adimensional enhancement factors mea-
sure the magnitude of orographic precipitation elevation gra-
dients, regardless of seasonal precipitation totals.

Blended precipitation gauge snow course lapse rates were
computed as a least square error regression fit between ele-
vation and these enhancement factors. Although snow course
data were also available for the other three study areas (Fig. 1
and Table 1), these were too small, compared to the re-
spective valleys, for deriving robust precipitation lapse rates.
We, therefore, calibrated blended precipitation gauge snow
course lapse rates only using data from Beauregard and
Valpelline (separately; see Sect. 3.3 for details on the use of
the additional courses in this paper).

The general assumption behind blended precipitation
gauge snow course lapse rates is that snow course mea-
surements above 3000 m a.s.l. are representative of total pre-
cipitation fallen at those elevations from the onset of the
snow season through the snow course date. In other words,
such blended lapse rates assume that the snowpack above
3000 m a.s.l. behaves as a natural precipitation gauge, with
no significant mass loss throughout the accumulation season
due to snowpack runoff, evaporation, or sublimation. In this
framework, we accumulated precipitation since the first hour
with at least 20 cm of snow on the ground that aimed to cap-
ture precipitation totals for the bulk of the accumulation sea-
son, while excluding early season snowfall events that might
result in complete or partial depletion of the snowpack. Note
that the occurrence of ephemeral snowpacks (as defined in
Sturm et al., 1995) would challenge this orographic gradient
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Table 1. Inventory of available snow course surveys, including survey date (day/month), number of samples per survey (N ), and mean
survey elevation (ZMEAN). Only a subset of the five areas was surveyed every year, due to budgetary and logistical constraints. The spatial
distribution of these samples is shown in Figs. S2–S12 in the Supplement. Note that 2641 out of 5349 measurements collected at Goillet in
2017 were performed on 10 April. Snow courses for this area and water year were part of a large intercomparison workshop, and hence, this
explains the much larger sample size than other years and areas. Note: m – meters.

Water Valpelline Beauregard Cignana Gabiet Goillet

Year Date N ZMEAN, m Date N ZMEAN, m Date N ZMEAN, m Date N ZMEAN, m Date N ZMEAN, m

2008 24/06 519 3239 – – – – – – – – – – – –
2009 25/05 1130 2932 – – – – – – – – – – – –
2010 02/05 791 2882 – – – – – – – – – – – –
2011 13/05 566 2932 – – – – – – – – – – – –
2012 10/05 659 2826 – – – – – – – – – 10/05 95 2921
2013 16/04 1054 2847 – – – 16/04 257 2637 – – – 24/05 58 2832
2015 12/05 599 2931 – – – – – – – – – – – –
2016 19/04 302 2936 – – – – – – – – – 19/04 226 2977
2017 10/04 738 2858 10/04 634 2544 – – – 10/04 382 2933 06/04 5349 2933
2018 11/05 1124 2784 10/05 572 2433 24/04 593 2683 21/04 338 3004 – – –
2019 17/04 755 2922 30/04 853 2627 18/04 257 2643 11/04 248 3004 18/04 193 3059

estimation method; such instances are very rare at the inves-
tigated elevations above 3000 m a.s.l.

While no continuous time measurement of SWE was avail-
able to validate the 3000 m elevation threshold above which
to compute average snow course SWE, and while prescribing
a constant threshold for all water years necessarily neglects
interannual variability in weather, Hantel et al. (2012) have
found snow line elevations across the Alps of the order of
∼ 800 m a.s.l. in winter and ∼ 3000 m a.s.l. in summer (pe-
riod 1961–2010). Thus, our chosen threshold can be used to
assume absence of significant snowmelt before at least May.

Because we computed blended lapse rates using season-
ally cumulative precipitation and peak-SWE data, these lapse
rates are representative of winter precipitation gradients. Cor-
rectly capturing these seasonal gradients is vital for estimat-
ing peak snow cover distribution and amount and, thus, fore-
casting summer water supply (e.g., see Pagano et al., 2004;
Harrison and Bales, 2016), although precipitation gradients
for specific storms may significantly diverge from the ob-
served seasonal lapse rates. Similarly, these lapse rates may
be not representative of summer storm elevation gradients;
in this region, and across the Alps in general, summer storms
are mostly convection driven (Giorgi et al., 2016), a process
that is rare during winter and, therefore, cannot be fully cap-
tured by peak-season SWE measurements. Note that liquid
precipitation during winter above 3000 m a.s.l. is negligible
in this region, so these blended lapse rates are mostly repre-
sentative of solid precipitation.

3.2 Spatialization of precipitation based on blended
lapse rates

Blended precipitation gauge snow course lapse rates devel-
oped in Sect. 3.1 were used to design an iterative, two-step
precipitation spatialization procedure accounting for oro-
graphic effects above the precipitation gauge line. The ulti-

mate goal of designing such a spatialization procedure was
twofold. On the one hand, we aimed to confirm whether
annual precipitation totals obtained by blended precipita-
tion gauge snow course lapse rates agreed with annual re-
constructed runoff, especially in terms of annual runoff co-
efficients. On the other hand, we aimed to assess whether
blended precipitation lapse rates could improve hydrologic
predictions (Sect. 3.3).

To this end, we employed the operational snow hydro-
logic forecasting chain Flood-PROOFS, as validated in this
region by Laiolo et al. (2014). Flood-PROOFS consists of
automatic spatialization downscaling procedures for weather
input data, a distributed, pixel-based snow model (S3M), a
distributed, pixel-based hydrologic model (Continuum), and
snow depth mapping algorithms used for snow data assimi-
lation (Rebora et al., 2006; Boni et al., 2010; Laiolo et al.,
2014; Silvestro et al., 2013). In this paper, we forced Flood-
PROOFS with historical data, and this corresponds to a stan-
dard hydrologic simulation in reanalysis mode. The imple-
mentation of Flood-PROOFS considered in this paper runs
with a spatial resolution of 120 m; the computational domain
covers the entire Aosta Valley region. More details about
Flood-PROOFS’s parameterizations and spatialization tech-
niques can be found in Sect. S1.

Similar to other snow hydrologic models, precipitation
spatialization in Flood-PROOFS relies on in situ precipita-
tion measurements. In the current spatialization procedure,
these precipitation measurements are interpolated using a
modified kriging approach called GRISO (Random Genera-
tor of Spatial Interpolation from uncertain Observations; see
Pignone et al., 2010; Puca et al., 2014). The most significant
asset of GRISO is that interpolated precipitation for pixels
including a precipitation gauge will maintain the same value
as that measured by that precipitation gauge (in other words,
measurements at precipitation gauge locations are preserved
during interpolation). The covariance structure for each pre-
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cipitation gauge is dynamic, while precipitation field values
far from all precipitation gauges tend either towards the mean
of the precipitation field observed by gauges, or towards zero.
In this paper, we chose the second option, but also set an in-
fluence radius for each precipitation gauge equal to 20 km
following previous validations of GRISO in Aosta Valley. No
pixel of the study area was thus “far enough” from all gauges
for this choice to be relevant.

This one-step precipitation spatialization procedure as-
sumes that measurements taken by the precipitation gauge
network are representative of the overall range of variabil-
ity in precipitation across the study domain. As we out-
lined in the Introduction, and will further show in Sect. 4,
this assumption does not necessarily hold true in the moun-
tainous regions that straddle the precipitation gauge line be-
cause interpolated precipitation fields will likely underesti-
mate precipitation totals due to orographic effects missed by
the ground-based measurement network. We overcame this
issue by developing a modified, two-step GRISO approach
as follows. For each time step of interest (in our case, each
hour), GRISO was first run using precipitation gauges alone
(GRISO1). Second, interpolated precipitation values at se-
lect pixels above 2700 m a.s.l. (the precipitation gauge line in
this region) were enhanced according to their elevation and
the seasonal winter enhancement factor profile calibrated in
Sect. 3.1. Third, GRISO was re-run using the measurements
from the physical precipitation gauges and estimates at these
select pixels (GRISO2) as input. In this two-step procedure,
these orographically enhanced precipitation estimates act as
virtual precipitation gauges at high elevations (see locations
in Fig. S13), with orographic enhancement being informed
by snow course measurements at peak accumulation.

High-elevation pixels were selected by first defining a reg-
ular grid with spacing equal to 5 % of the longitudinal and
latitudinal range of the study area and then taking as candi-
date locations for these virtual gauges the nodes of this grid.
Second, we filtered out any candidate virtual gauge with ele-
vation below 2700 m a.s.l. and those falling outside the study
area. Figure S13 shows that the final location of these vir-
tual precipitation gauges is coherent with the orography of
our study region and complements the spatial coverage of
the physical precipitation gauge network (Fig. 1).

3.3 Evaluating blended precipitation gauge snow
course lapse rates from a water balance perspective

We evaluated precipitation estimates informed by blended
precipitation gauge snow course lapse rates by comparing
predictions of Flood-PROOFS using GRISO1 vs. those us-
ing GRISO2 (see Sect. 3.2). The evaluation period was wa-
ter years 2017 to 2019, since these 3 water years saw a
peak in evaluation data availability (particularly snow course
data). Although water years 2017 to 2019 were also used
to calibrate the blended precipitation gauge snow course
lapse rates, and therefore, this was not a fully independent

evaluation, doing so was necessary given the lack of snow
course data before 2017 for one of the hydropower catch-
ments (Beauregard) and the need for considering as many
years as possible for lapse rate calibration to capture interan-
nual variability.

Input data maps were first used to force the snow model of
Flood-PROOFS (S3M) and generate hourly equivalent pre-
cipitation fields that were then used as an input for the hydro-
logic model Continuum; equivalent precipitation is the pixel-
wise sum of rainfall, snowpack runoff, and glacier runoff, if
any (see Sect. S1 for details on these models). S3M can be
run in two different modes, that is, only relying on weather
inputs (open loop or OL run), or assimilating SWE infor-
mation from independent sources (full assimilation or Full-
Assim run). SWE is assimilated as both weekly maps pro-
duced by ARPA VdA through interpolation of manual mea-
surements according to physiographic features (see Sect. 2.2)
and daily maps produced within Flood-PROOFS by training
a multilinear regression across concurrent ultrasonic snow
depth sensor measurements (predictand) and physiographic
features like elevation, slope, and aspect (predictors). In the
present study, evaluation of peak-SWE predictions by S3M
against snow courses was carried out, with reference to both
OL and Full-Assim simulations, to disentangle the impact
of precipitation spatialization from that of data assimilation.
Simulations of the complete Flood-PROOFS chain (S3M and
Continuum) were only performed in Full-Assim mode be-
cause of computational time constraints.

As we show in Sect. 4, assimilated snow maps – and in par-
ticular those derived from snow depth sensors – suffer from
a similar bias to that of precipitation at elevations above the
snow depth sensor line (see Fig. 1). This bias is likely due to
the snow depth sensor network being skewed toward repre-
senting the mid-elevation snowpack. Assimilating these bi-
ased snow maps would largely nullify the potentially posi-
tive effect of enhancing the orographic effects in GRISO2,
so we developed a correction factor by first recalibrating the
snow depth multilinear regression model with snow course
data in addition to snow depth sensor data. This recalibra-
tion was performed for each week where snow course data
were available between the water years 2017 and 2019 and
considering all five areas of interest. The mean value of the
ratio between recalibrated snow depth maps and the original
ones was then used as a multiplicative factor for the origi-
nal maps to remedy for high-elevation biases. This correc-
tion was only estimated for snow-depth-sensor-based maps
because preliminary assessments showed that they are the
major source of bias compared to weekly SWE maps and
because they are assimilated daily and, as such, play a much
more important role than weekly SWE maps in driving the
accuracy of Flood-PROOFS.

We focused on three evaluation exercises. First, we
compared basin-wide estimated precipitation according to
GRISO1 and GRISO2 with measured reconstructed stream-
flow, hence deriving runoff coefficients; second, we ground-
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Figure 2. Average monthly cumulative precipitation (a), snow
depth (b), and cumulative reconstructed streamflow (c) for Beaure-
gard and Valpelline. Precipitation was calculated across all gauges
in the valleys of Beauregard and Valpelline (variable P̂ ; see gauge
locations in Fig. 1). Snow depth was from two representative, mid-
elevation sensors (elevation was ∼ 1860 and 1970 m a.s.l. for the
snow depth sensor of Beauregard and Valpelline, respectively). Re-
constructed streamflow refers to the hydropower catchments delin-
eated in Fig. 1. The reference period used for these statistics varied
from variable to variable due to data gaps (see Sect. 4.1 for details).
VG and VP are Beauregard and Valpelline, respectively.

truthed the peak-SWE predictions by Flood-PROOFS’s snow
model (S3M) which were forced using GRISO1 vs. GRISO2
against snow course data; third, we compared cumula-
tive daily streamflow predicted by Flood-PROOFS’s hydro-
logic model (Continuum) forced using GRISO1 vs. GRISO2
against reconstructed streamflow. The first and third evalu-
ation exercises had a traditional water balance perspective;
they determined whether estimated precipitation with and
without orographic enhancement can explain annual total
runoff and its seasonal patterns (both important targets for
water supply forecasting). The second exercise assessed the
impact of orographic precipitation enhancement on the sim-
ulation of snow storage, an intermediate prediction target be-
tween precipitation and runoff with significant implications
beyond hydrology (e.g., avalanche forecasting and glacier
mass balance).

4 Results

4.1 Water balance climatology

Average monthly precipitation across gauges in the valleys of
Beauregard and Valpelline (variable P̂ ; in millimeters) was
bimodal, with peaks in November and May (Fig. 2a; the ref-
erence period was water years 2009 through 2019 due to ear-
lier gaps in P̂ for Beauregard, Fig. S14a). Monthly precipita-
tion was similar between the two valleys (mean difference
−2.5± 7.1 mm). Nonetheless, precipitation in Beauregard
was up to 15 mm higher than in Valpelline during fall and
winter (September to March) and up to∼ 6 mm lower during
summer (April to August), which highlighted that Beaure-
gard may be more exposed to winter storms coming from the
Mediterranean Sea, with Valpelline being more affected by
summer storms from the Atlantic Ocean. This tallies with the
bimodal and the summer-dominated precipitation regimes of
the southern and northern sides of the Alps, respectively (Frei
and Schär, 1998; Isotta et al., 2014). However, we stress that
P̂ only accounts for precipitation gauges, meaning precipi-
tation totals above the precipitation gauge line remained un-
accounted for. Annual P̂ in both valleys was consistent from
year to year, i.e.,∼ 700±84 and∼ 730±94 mm in Valpelline
and Beauregard, respectively (Figs. 3a and S14a).

According to the reference snow depth sensors used in
Sect. 3.1 to accumulate winter precipitation, the average
snow season started in October in both Beauregard and
Valpelline (Fig. 2b; reference period is water years 2008
through 2017 due to later gaps in snow depth data for
Valpelline; see Fig. 3b). The end-of-season date generally oc-
curred in May, with both catchments being exposed to late
snowfall events even in June. In contrast to precipitation,
peak snow depth showed a remarkable interannual variability
(standard deviation of maximum annual snow depth was 31
and 77 cm at Beauregard and Valpelline, respectively), with
3 of the 4 water years with shallow snowpacks occurring
between 2014 and 2019 (Figs. 3b and S14b). During some
of these shallow snowpack water years, the snow cover was
ephemeral at these snow depth sensor sites (e.g., water year
2017 at Beauregard; Fig. S15b). Monthly snow depth at the
reference sensor of Valpelline was significantly higher dur-
ing winter compared to that of Beauregard (Fig. 2b), which
we explain because the former is at a higher elevation than
the latter (∼ 100 m).

Reconstructed streamflow in both catchments was highly
seasonal, with minimum flow during winter and maxi-
mum flow in June, when precipitation, snowmelt, and ice
melt overlap (Fig. 2c; reference period is water years 2008
through 2019). Monthly streamflow was similar between
the two catchments (mean difference was −0.11± 18 mm),
with the only exception being that streamflow in Beaure-
gard was higher (up to ∼ 20 mm) between November and
June and lower (up to ∼ 45 mm) between July and October
than in Valpelline. This is likely connected to the average
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Figure 3. Summary of daily precipitation (a), snow depth (b), and reconstructed streamflow (c) for Valpelline. Precipitation was calculated
across all gauges in the valleys of Valpelline (variable P̂ ; see gauge locations in Fig. 1). Snow depth was from a representative, mid-elevation
sensor (elevation was∼ 1970 m a.s.l.). Reconstructed streamflow refers to the hydropower catchment delineated in Fig. 1. Low, medium, and
high snow seasons were estimated based on percentiles of mean seasonal snow depth at Beauregard, which had a complete record between
water years 2008 and 2019 (Fig. S14). Any water year with mean seasonal snow depth below the 33◦ percentile was classified as a low
snow water year, while medium snow water years had a mean seasonal snow depth between the 66◦ and the 33◦ percentiles, and high snow
water years had a mean seasonal snow depth above the 66◦ percentile. This classification is only functional with respect to the scope of
this paper and has no long-term climatological implications. Note that ephemeral snow water years at these mid-elevation snow stations
were not attributed to any of these classes a priori, although it is likely that ephemeral snow water years also have a low mean seasonal
snow depth. (d) The estimated precipitation–runoff relationship for both hydropower catchments, where WY P̂ and WY Q are water year
cumulative precipitation and reconstructed streamflow, respectively (P̂ is systematically smaller than Q because high-elevation headwaters
are ungauged).

monthly precipitation in Beauregard being higher and lower
during winter and summer than in Valpelline, respectively
(see Fig. 2a). A second argument in favor of Beauregard
and Valpelline being hydrologically similar catchments is the
similarity in the precipitation–runoff relationship (Fig. 3d),
that is, the fundamental rule relating annual precipitation to
annual runoff (Saft et al., 2016; Avanzi et al., 2020b). Com-
pared to precipitation climatology, reconstructed streamflow
in both catchments showed comparatively large interannual
variability (Figs. 3c and S14c) owing to both precipitation
and climate variability.

In summary, ground-based precipitation, streamflow, and
snow depth sensor data showed that water supply generation
in both hydropower catchments is fundamentally cryosphere
dominated. They also showed that ground-based sensor data
located across low- and mid-elevations are largely insuffi-
cient for grasping the full water balance of these cryosphere-
dominated headwaters, as also demonstrated by (1) annual
P̂ being systematically smaller than the corresponding an-
nual streamflow totals (Fig. 3d) and (2) peak monthly snow
depth occurring in February in both catchments. While no
continuous time measurement of snow depth and SWE was
available above∼ 2700 m a.s.l. (Fig. 1), general consensus in
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the Alps and in our experience is that SWE peaks around
1 April or later in high-elevation Alpine catchments (Marty
et al., 2017).

4.2 Precipitation vs. SWE orographic gradients

We report, in Fig. 4a, b, examples of precipitation gauge
vs. snow course orographic gradients obtained in 2018 for
Beauregard and Valpelline, respectively. At Beauregard, pre-
cipitation gauges recorded a positive, but mild, precipitation
lapse rate of the order of ∼ 250 mm km−1. At Valpelline,
the lapse rate recorded by precipitation gauges was even
smaller at ∼ 75 mm km−1. The orographic trend recorded by
gauges agreed with GRISO1 (see again Fig. 4a, b), which
was expected given that GRISO1 used precipitation gauges
as a starting point for the distribution of precipitation across
the landscape. Snow course data, however, drew a substan-
tially different picture from precipitation gauges, with SWE
sharply increasing with elevation (Fig. 4a, b), i.e, ∼ 1000
and 567 mm w.e. km−1 in Beauregard and Valpelline, respec-
tively. Thus, peak SWE close to (or above) 3000 m a.s.l. in
2018 was 2–3 times the total winter precipitation measured
by precipitation gauges below the precipitation gauge line.

Examining all water years for which snow course sur-
veys were available confirmed that these surveys yield much
larger orographic gradients than precipitation gauges in both
hydropower catchments (Figs. 5a, b, and S15 through S25,
where missing panels imply that some of the information
needed to perform this comparison was missing for that
water year). In particular, precipitation gradients based on
gauges hardly exceeded 200 mm w.e. km−1, whereas snow
course gradients were often higher than 400 mm w.e. km−1

and reached values as high as 1000 mm w.e. km−1; snow-
course-based gradients were particularly high at Beauregard
compared to Valpelline. This sharp increase in snow accu-
mulation with elevation was consistent across water years
and was generally underestimated by both snow maps assim-
ilated by Flood-PROOFS in proximity of the snow course
surveys (Figs. 5a, b and S15 to S25); note that these inde-
pendent maps do take physiography into account. This is an-
other piece of evidence that ground-based sensor data located
across low- and mid-elevations do not capture the complete
range of variability in snow distribution at high elevations.

Snow-course-based orographic gradients increased with
average snow depth above 3000 m a.s.l. (correlation coef-
ficient ρ = 0.67; see Fig. 5c), whereas the correlation be-
tween these gradients and snow course survey date was much
weaker (ρ = 0.2; see Fig. 5d). Moreover, the correlation of
snow course orographic gradients with average snow depth
above 3000 m a.s.l. was statistically significant, while that
with snow course survey date was not (p values of 0.02 and
0.52, respectively). Thus, the choice of survey date had a lim-
ited impact on the quantification of snow course orographic
gradients, which suggests that these gradients may preserve
themselves through time.

4.3 Orographic enhancement factors

Snow course measurements of peak SWE above 3000 m a.s.l.
were between ∼ 2 and ∼ 8.5 times and between ∼ 4 and
∼ 5.5 times the winter cumulative precipitation at the lowest
precipitation gauge of Valpelline and Beauregard valleys, re-
spectively (Fig. 6). Interannual variability was significant and
partially driven by the snowpack amount, with the four high-
est enhancement factors being associated with water years
with low or medium snowpack (see again Fig. 6). However,
this was not systematic, since the five lowest enhancement
factors were recorded during years with mixed characteris-
tics (two with low snowpack, one with medium snowpack,
and two with high snowpack). This tallies with Fig. 5c, where
only some dependency between snowpack amount and oro-
graphic gradients was found.

Contrary to snow courses, precipitation-gauge-based en-
hancement factors at low- and mid-elevations showed little
to no orographic trends and less interannual variability. Also,
they never exceeded 2, meaning that precipitation at precip-
itation gauge locations was (at best) twice that at the lowest
measurement point in the same valley (Fig. 6). At Valpelline,
a substantial number of these precipitation-gauge-based en-
hancement factors were even lower than 1, meaning that sea-
sonal cumulative precipitation at intermediate elevations was
often lower than that at the lowest elevation gauge in the
valley. This outcome is coherent with the negative elevation
trend occasionally reported in Figs. S15 to S25.

Deriving a single blended lapse rate from Fig. 6 was chal-
lenging owing to the remarkable interannual variability in
enhancement factors, especially above 3000 m a.s.l. Several
options were considered, and a first assumption was made
to exclude a indefinitely exponential growth such as that de-
picted by the dashed lines in Fig. 6. We also assumed that en-
hancement factors larger than 6 were suspicious, and so we
restricted the fitting pool to factors lower than 6. We finally
postulated a maximum value of 3 for the fitted curve, sup-
ported by an evident cluster of snow-course-based enhance-
ment factors from 2 to 3. While no consensus on this matter
has been reached in the literature, these choices were based
on scattered, but consistent, pieces of evidence showing that
precipitation gradients tend to saturate at very high elevation
once the bulk of orographic precipitation has been exhausted
(e.g., see Alpert, 1986; Napoli et al., 2019). The resulting
curve is depicted in red in Fig. 6 and follows this equation:

εf = 0.395e0.628z, (1)

where εf is the predicted enhancement factor, z is elevation in
kilometers, and εf is capped to 3 where Eq. (1) exceeds 3. The
95 % confidence bounds for the two parameters read (0.2857,
0.5041) and (0.5223, 0.7328), respectively, with the coeffi-
cient of determination (r2

= 0.44) and root mean square er-
ror (RMSE is 0.76).
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Figure 4. Winter orographic gradients estimated by precipitation gauges (black dots and line) vs. those estimated by snow courses (blue dots
and line; HS MAN – snow courses manual measurements) in 2018. The grayscale for precipitation gauge data points measures the amount
of gaps in the time series, with black meaning a complete time series and white a time series with nearly 100 % missing data points. The
brown cloud is the winter orographic gradient estimated by GRISO1, which only relied on precipitation gauges. VG and VP are Beauregard
and Valpelline, respectively. Similar plots for other water years are reported in Figs. S15 to S25.

Equation (1) was implemented in GRISO1 and used to cor-
rect predicted precipitation at virtual gauges above the pre-
cipitation gauge line; this spatialization procedure was then
re-run to take into account orographic gradients (GRISO2;
see Sect. 3.2). We stress that Eq. (1) only serves the scopes
of this paper and is no definitive answer to the problem of
capturing orographic gradients. More work should be dedi-
cated to fully comprehend the large scatter in enhancement
factors at high elevations and, thus, derive a more robust pa-
rameterization. Some starting points for future investigations
are discussed in Sect. 5.

Snow depth maps produced by including snow course data
in the calibration pool allocated, on average, more snowpack
than those produced using only snow depth sensors for all
elevations and all water years at Beauregard (Fig. 7a to c).
At Valpelline, the map obtained by including snow courses
predicted, on average, more snow in 2017 and 2019 and less
snow in 2018 than the snow-depth-sensor-based map (Fig. 7e
to g). On average, across all elevations and these three water
years, the ratio between maps including snow courses and
those using only snow depth sensors was ∼ 1.5 at Beaure-
gard and ∼ 2.1 at Valpelline, confirming a general underes-
timation obtained by using snow depth sensors only. Snow-
depth-sensor-based maps were multiplied by these ratios to
remedy for this bias, as explained in Sect. 3.3.

Note that the bias of snow depth maps was not caused by
an underestimation of snow depth lapse rates, as it could be
expected based on results for precipitation (e.g., Fig. 5). In-
stead, maps calibrated by including snow course data pre-
dicted steeper gradients than snow depth sensors only in one
case out of six (water year 2019 at Beauregard). This means
that the relative underestimation of snowpack storage was
often larger at the lowest elevations of the considered hy-
dropower catchments (that is, ∼ 2000 m a.s.l.) and progres-
sively smaller at higher elevations.

4.4 Evaluation of water balance predictive accuracy

Water year cumulative precipitation obtained using only pre-
cipitation gauges (GRISO1; variable Pv1) was consistently
smaller than observed water year cumulative streamflow
(variable Qobs) for all water years and both hydropower
catchments (Fig. 8). In particular, the ratio betweenQobs and
Pv1 (runoff coefficient) was between 1.56 and 1.77 at Beau-
regard and between 1.36 and 1.81 at Valpelline (Table 2). On
the contrary, runoff coefficients, using GRISO2 as informed
by blended precipitation gauge snow course lapse rates, were
between 0.78 and 0.85 at Beauregard and between 0.69 and
0.75 at Valpelline (Table 2). This means that, in contrast to
GRISO1, GRISO2 predicted more annual precipitation (vari-
able Pv2) than streamflow in both catchments, which is gen-
erally expected in mountain catchments where changes in
subsurface storage play a minor role in the annual water bal-
ance (see Sect. 5). Runoff coefficients using GRISO2 were
also more consistent from year to year than those based on
GRISO1 (Beauregard – standard deviation of 0.1 and 0.04 for
GRISO1 and GRISO2, respectively; Valpelline – standard
deviation of 0.25 and 0.03 for GRISO1 and GRISO2, respec-
tively). This is a further piece of evidence that GRISO2 bet-
ter captured precipitation patterns across the mountain land-
scape than GRISO1.

The underestimation of annual precipitation using
GRISO1 was confirmed when looking at Full-Assim an-
nual equivalent precipitation (Fig. 8; variable Rv1 and Rv2
for GRISO1 and GRISO2, respectively); equivalent precip-
itation is the sum of rainfall, snowpack runoff, and glacier
runoff (see Sect. 3.3). Values of Rv1 were closer to Qobs
than Pv1, with ratios of Qobs and Rv1 between 1.03 and 1.24
at Beauregard and between 1.02 and 1.19 at Valpelline (Ta-
ble 2). This confirms that assimilating snow maps in Flood-
PROOFS successfully compensated for S3M’s conceptual
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Figure 5. Annual winter orographic gradients estimated by precipitation gauges, snow courses (HS MAN), and the two snow maps assimi-
lated by Flood-PROOFS at Valpelline (a) and Beauregard (b). The HS map and SWE map are the snow depth sensor map and the SWE map,
respectively. Details on Flood-PROOFS and these assimilated maps are reported in Sect. 3.3. Panels (c) and (d) show estimated orographic
gradients by snow courses as a function of mean course snow depth above 3000 m a.s.l. (average HS MAN) and survey day of the year
(DOY), respectively. ρ is the Pearson correlation coefficient.

uncertainty in snow distribution across the landscape (Boni
et al., 2010), although some underestimation remained. Ra-
tios between Qobs and Rv2 were, instead, consistently lower
than 1 for all water years and both catchments (Table 2).
Assimilating snow maps also reduced interannual variabil-
ity in Qobs/Rv1 compared to Qobs/Pv1 (standard deviation
of 0.11 and 0.09 at Beauregard and Valpelline, respectively),
butQobs/Rv2 was still much more consistent from water year
to water year than Qobs/Rv1 (standard deviation of 0.04 and
0.07 at Beauregard and Valpelline, respectively).

Consistent with this general underestimation of incom-
ing precipitation, simulated annual streamflow, according to
GRISO1 (Qv1), was smaller than Qobs in 4 out of 6 catch-
ment water years (Qv1/Qobs between 1.23 and 1.37 in Beau-
regard and between 0.95 and 1.08 in Valpelline; see Table 2).

Based on visual screening of observed vs. simulated cumula-
tive hydrographs, the unexpected overestimation of Qobs by
Qv1 for 2 water years at Valpelline could be explained by an
overestimation of late summer runoff, likely because of un-
derestimated evapotranspiration or overestimated convective
rainfall (Fig. 8c and g). In all other catchment water years,
underestimation started from the beginning of the water year
and, thus, regarded both winter baseflow and summer peaks
(Fig. 8b, f, j, k). Despite those 2 water years at Valpelline
with more simulated than observed streamflow, biases of
Qv1 were negative for all water years and catchments and
ranged from −150 to −10 mm (Table 2). This, together with
the comparatively high root mean square errors (RMSEs;
from ∼ 20 to ∼ 200 mm in Table 2), confirmed that Flood-
PROOFS simulations forced by GRISO1 generally underes-
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Table 2. Evaluation metrics of Flood-PROOFS simulations driven by GRISO1 vs. those driven by GRISO2. The first distributed precipitation
used only precipitation gauges, whereas the second included an orographic correction developed in the present study based on snow courses.
Q, P , and R are annual streamflow, precipitation, and equivalent precipitation, respectively (with equivalent precipitation being the sum of
rainfall, snowpack runoff, and glacier runoff). The terms obs, v1, and v2 refer to observed data and simulated data, according to GRISO1
and GRISO2, respectively. RMSE is the root mean square error, bias is simulated minus observed, and KGE is the Kling–Gupta efficiency,
according to Kling et al. (2012).

Metric Beauregard Valpelline

2017 2018 2019 2017 2018 2019

Precipitation P

Qobs/Pv1 (–) 1.56 1.69 1.77 1.39 1.36 1.81
Qobs/Pv2 (–) 0.78 0.86 0.85 0.69 0.74 0.75

Equivalent precipitation R

Qobs/Rv1 (–) 1.03 1.24 1.06 1.02 1.04 1.19
Qobs/Rv2 (–) 0.75 0.83 0.8 0.71 0.75 0.85

Reconstructed streamflow Q

Qobs/Qv1 (–) 1.23 1.37 1.28 0.95 0.95 1.08
Qobs/Qv2 (–) 0.93 0.96 0.95 0.91 0.86 1.00
RMSEv1 (mm) 114.99 201.72 145.69 19.52 42.87 74.38
RMSEv2 (mm) 31.93 47.07 53.85 44.03 86.02 62.52
Biasv1 (mm) -83.05 −149.74 −116.96 −10.5 −19.25 −61.47
Biasv2 (mm) 24.41 −30.79 −16.38 5.63 18.78 −42.34
KGEv1 (–) 0.79 0.65 0.71 0.95 0.86 0.82
KGEv2 (–) 0.93 0.88 0.88 0.89 0.87 0.81

timated water supply in these catchments. Yet, Kling–Gupta
efficiencies (KGEs; see Gupta et al., 2009; Kling et al., 2012)
for Qv1 were consistently higher than 0.65 and, thus, well
above the benchmark represented by mean flow (−0.41; see
Knoben et al., 2019), which has been often regarded as an
arguable threshold between “bad” and “good” model per-
formance (Schaefli and Gupta, 2007; Knoben et al., 2019).
Contrary to RMSE and biases, KGE is the composition of
bias, variability, shape, and timing error terms (Santos et al.,
2018), meaning that the issue with GRISO1-based simula-
tions was really with total volume rather than with seasonal
patterns.

Simulations using GRISO2 improved Qv2/Qobs com-
pared to Qv1/Qobs for 4 out of 6 catchment water years (Ta-
ble 2 and Fig. 8). Predictions of Qv2 also yielded smaller bi-
ases and RMSEs (as absolute values) for all water years and
catchments (Table 2). The improvement ofQv2 overQv1 was
particularly evident during the late melt period (that is, from
May onward), when the highest elevations in these catch-
ments start contributing runoff (Fig. 8). Improvements dur-
ing the accumulation period were much more modest, likely
because streamflow generation during that period of the year
is governed by processes that we did not focus on here (e.g.,
groundwater flow and year-round glacier runoff due to basal
melt). KGE coefficients also improved in 5 out of 6 catch-
ment water years, reaching values as high as 0.93.

Focusing on SWE, simulations of S3M using GRISO1
underestimated snow course measurements, regardless of
whether an OL or a Full-Assim mode was used (Fig. 9). This
underestimation was particularly significant for OL simula-
tions, which agreed with results for precipitation vs. equiv-
alent precipitation above (Table 2), whereas it showed no
consistent trend with elevation, which is instead consistent
with results in Sect. 4.3 and Fig. 7 with regard to snowpack
elevation gradients being particularly elusive to capture. Bi-
ases using GRISO2 were smaller than those using GRISO1
in 5 out of 6 catchment water years (Full-Assim mode), but
again, elevation trends were inconsistent (Fig. 9). Using OL
simulations with GRISO2 would actually overestimate at the
highest elevations in two out of six cases (2017 and 2018;
Valpelline; Fig. 9d, h).

We derived two main results from this final focus on SWE.
The first is an expected net improvement in predicting high-
elevation SWE when snow course measurements are used in
model development (especially at Beauregard). The second
is that precipitation orographic gradients are highly seasonal
and spatially variable and remain challenging to fully capture
with a one-fits-all approach like the one we used here (e.g.,
Eq. 1 and Fig. 7d, h).
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Figure 6. Orographic enhancement factors εf for Beauregard (VG)
and Valpelline (VP) across all water years as estimated using pre-
cipitation gauges (blue and black) and snow courses (gray and light
blue). The dashed lines are exponential fits between orographic en-
hancement factors and elevation, while the red line is a capped ex-
ponential fit that was chosen to be implemented in Flood-PROOFS
(Eq. 1). Details on this choice are reported in Sect. 4.3, while details
on Flood-PROOFS are reported in Sect. 3. Enhancement factors
are the ratio between winter cumulative precipitation measured by
gauges or estimated through snow courses above 3000 m a.s.l. and
precipitation measured by the lowest elevation gauge in the same
valley. The orientation of the triangles relates to the classification of
each water year in terms of mean snow depth (see Fig. 3).

5 Discussion

5.1 Main findings

Snow courses have been a frequent option for conducting
snow surveys since the seminal 1910 campaign by Church
(1914, 1933) at Mount Rose, Nevada (USA). Compared to
stand-alone devices like snow pillows (Cox et al., 1978),
courses allow operators to capture spatial variability in snow
cover and derive a more representative estimate of SWE
across the landscape (Malek et al., 2017). This is why courses
are now a cornerstone of water supply forecasting in the
western USA (Pagano et al., 2004; Harrison and Bales, 2016)
and elsewhere (Metsämäki et al., 2005). In addition to their
century-old role as an indicator of snow water resources,
in this paper we hypothesized that snow courses could be
rethought as natural precipitation gauges in the hope that
they could provide new information about precipitation to-
tals and their orographic trends at elevations that are usu-
ally ungauged. This hypothesis follows intuitions by other

authors, such as Lundquist et al. (2015) or Zhang et al.
(2017), who used pillow SWE and snow depth as a surro-
gate of precipitation, respectively. Others, such as Immerzeel
et al. (2015), addressed this problem by inferring precipita-
tion from glacier mass balances and runoff. Our novelty was
to mine new information from snow courses, which provide
spatial snapshots in lieu of point values.

The main findings of this paper, in this regard, are two.
First, peak-season snow course SWE above 3000 m a.s.l. can
be 2 to 8.5 times higher than measured winter cumula-
tive precipitation at elevations below 2000 m a.s.l. (Fig. 6),
with orographic trends that are up to 5 times those cap-
tured by the precipitation gauge network (Fig. 2). While
orographic precipitation has been a target of extensive re-
search so far (see the Introduction), extrapolating precipi-
tation gauge signal above the precipitation gauge line still
lacks solid guidelines (Ruelland, 2020). In this paper, we
contributed highly needed, multiyear estimates of orographic
trends across sharp altitudinal gradients.

Second, leveraging snow courses to refine the precipi-
tation and snow depth spatialization algorithms of an op-
erational flood forecasting chain (Flood-PROOFS) allowed
for improvements in modeling accuracy, not only for SWE
(Fig. 9) but, more importantly, for the whole water balance
(Fig. 8). This result is encouraging given that no model re-
calibration was performed, and as such, we did not mix the
effect of precipitation correction with other confounding fac-
tors that may lead to equifinality issues (Beven and Freer,
2001; Lundquist et al., 2015). Although the bulk of moun-
tain river basins in the European Alps lies below 2000 m a.s.l.
(Elsen et al., 2020), areas above the precipitation gauge line
are a fundamental hydropower resource and represent a sig-
nificant portion of higher-elevation mountain ranges, such as
the Himalayas. This paper outlined opportunities to obtain
more robust hydrologic predictions without necessarily in-
vesting in long recalibration efforts.

Despite these promising findings, the question of whether
our blending approach (Sect. 3.1) reconstructed the true pre-
cipitation lapse rate or whether it captured other drivers of
snowpack distribution at high elevations, such as wind drift
or preferential deposition of snowfall, remains (Gerber et al.,
2017, 2019). While both scenarios would be an argument in
favor of using snow courses for informing hydrologic predic-
tions, only the first would imply that we achieved the right
answer for the right reason (Kirchner, 2006). In essence, this
question points to determining whether snow course data are
primarily a reflection of orographic precipitation, with other
processes like wind drift or solar radiation playing a second-
order role at the mountain ridge scale we investigated here.

Several hints point to our reconstruction method capturing
actual orographic trends in precipitation, rather than other
snow distribution processes. First, previous studies in the
Alps already showed that annual mean precipitation at 1000–
2000 m a.s.l. is generally up to 2 times the precipitation be-
low 1000 m a.s.l. (Frei and Schär, 1998; Napoli et al., 2019),
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Figure 7. Orographic gradients of snow depth maps derived by only using snow depth sensors vs. those derived by including high-elevation
snow courses in the calibration pool (a to c for Beauregard and e to g for Valpelline). Panels (d) and (h) show the orographic trend of the
ratio between maps derived by including snow courses in the calibration pool and those derived by only using snow depth sensors. VG and
VP are Beauregard and Valpelline, respectively.

a mechanism that the precipitation network at Beauregard
and Valpelline did not fully capture but that is consistent
with our estimates of blended orographic enhancement fac-
tors (Fig. 6 and Eq. 1). Second, several previous attempts to
improve estimates of hydrologic models in mountain regions
through snow data assimilation alone reported inconclusive
results (Tang and Lettenmaier, 2010), whereas the clear im-
provements in this study suggest that we did capture at last
some components of orographic precipitation in addition
to snow patterns. Third, we computed orographic enhance-
ment factors by averaging snow course measurements above
3000 m a.s.l., rather than considering each of them individu-
ally, in an effort to reduce the effects of small-scale spatial
variability. Fourth, values of snow course SWE at elevations
close to the local precipitation gauge line (∼ 2000 m a.s.l.)

are comparable to cumulative precipitation estimated by the
nearest gauge (Fig. 4), which suggests that the connection
between precipitation-gauge-based and snow-course-based
lapse rates was smooth and realistic. Thus, we conclude that
snow courses do bear a characteristic signature of precipita-
tion orographic enhancement.

5.2 Implications

The fact that snow courses reflect orographic gradients has
three main implications. First, it shows that the lack of mea-
surements above the precipitation gauge line plays an im-
portant role in the misrepresentation of orographic gradients.
Many previous papers have already reported that precipita-
tion gauge networks tend to underestimate precipitation at
high elevations, including Zhang et al. (2017) in the Sierra
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Figure 8. Water balance evaluation of Flood-PROOFS simulations driven by GRISO1 vs. those driven by GRISO2.(a, e, i) A comparison
at Beauregard (VG) between annual precipitation (P ), equivalent precipitation (R), and streamflow (Q), according to GRISO1 and GRISO2
(v1 and v2, respectively). (d, h, l) A similar comparison at Valpelline (VP). Panels (b–c), (f–g), and (j) and (k) compare observed daily
cumulative reconstructed streamflow with simulated streamflow using GRISO1 or GRISO2. Equivalent precipitation is the sum of rainfall,
snowpack runoff, and glacier runoff. Simulations were carried out in full-Assim mode (see Sect. 3.3).

Nevada of California, USA, or Ruelland (2020) in the French
Alps, among others. However, this misrepresentation has of-
ten been explained in combination with undercatch (Valery
et al., 2009; Zhang et al., 2017; Collados-Lara et al., 2018)
rather than as a peculiar effect of precipitation undersampling
at high elevations (Lundquist et al., 2015; Ruelland, 2020).
In fact, the magnitude of orographic enhancement inferred
through snow courses (Fig. 6) was certainly larger than what
could be estimated based on standard correction approaches
for undercatch (see Rasmussen et al., 2012; Kochendorfer
et al., 2017, and Sect. 2.2). Also, both GRISO1 and snow-
depth-sensor-based maps underestimated these orographic
gradients; we conclude that the main cause of this misrepre-
sentation was the lack of data above the precipitation gauge
line. Even though measuring precipitation across cryosphere-
dominated headwaters is no easy task (Rasmussen et al.,

2012), this paper shows that this is still an urgent priority
for future research.

Second, snow courses emerge as a valuable source of in-
formation, not only to estimate snow water resources but,
more generally, precipitation distribution. This role of snow
courses has been at the foundation of their use as predic-
tors of annual runoff in water supply forecasting (Hart and
Gehrke, 1990; Pagano et al., 2004), but in that context, snow
courses are used in a lumped way, and their orographic sig-
nature is never fully leveraged. More generally, the value of
snow courses has often been overlooked in favor of tempo-
rally more dense, but also much less spatially diverse, au-
tomatic devices like snow pillows or snow depth sensors.
The result is that snow courses, or other labor-intensive sur-
vey methods, are a rare feature of operational snow surveys,
when they have not been discontinued already (see “The
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Figure 9. Evaluation of Flood-PROOFS simulations of snow water equivalent (SWE) driven by GRISO1 vs. those driven by GRISO2 (v1
and v2, respectively). (a, e, i) Orographic trends of model bias with respect to snow-course-measured SWE at Beauregard (VG). (d, h, l) A
similar comparison at Valpelline (VP). Panels (b–c), (f–g), and (j–k) compare simulated SWE using both GRISO1 or GRISO2. Simulations
were carried out both in OL and in Full-Assim mode (see Sect. 3.3).

Historical Snow Survey of Great Britain” in Spencer et al.,
2014). The significant variability in enhancement factors be-
tween Beauregard and Valpelline, along with the fact that
snow-course-based enhancement factors were significantly
larger than those based on precipitation gauges, demonstrates
that collecting spatially distributed snow data is still worth
the effort. Moreover, the longest snow course time series
will soon approach 1 century (Huning and AghaKouchak,
2020), meaning that these courses could be used to explore
orographic enhancement from a climatological standpoint.
Recent advances in survey techniques, such as the Airborne
Snow Observatory (Painter et al., 2016), ground-penetrating
radar (Griessinger et al., 2018), unoccupied aerial vehicles
(De Michele et al., 2016), or the Sentinel-1-based snow depth
retrieval algorithm by Lievens et al. (2019), could also be
considered as less time-consuming alternatives, with only a
minor drop in accuracy – if any.

Third, correctly capturing orographic gradients matters,
despite this component often being simplified in many hy-

drologic models (see Ruelland, 2020, and the Introduction).
More specifically, our results quantified that only relying on
low- to mid-elevation precipitation gauges may lead to un-
derestimating both headwater snowpack (Fig. 9) and annual
runoff (Table 2) by up to 50 % or more. This agrees with
Lundquist et al. (2015), who also found errors of 50 % or
more with respect to high-elevation snow pillows for specific
storms, as represented by gridded precipitation data sets that
only used low-elevation precipitation data. Also, our results
suggest that snow (and consequently runoff) predictions ben-
efit from a multisource framework, where both precipitation
spatialization and snow assimilation protocols are involved
(see again Fig. 9).

5.3 Sources of uncertainty and outlook

We made a number of assumptions that may have represented
sources of potential uncertainty and, thus, opportunities for
future work. First, we primarily focused on elevation gradi-
ents, since these are the most important factors driving the
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mountain water budget (Bales et al., 2006). Doing so was at
the expense of exploring other spatial patterns, such as those
driven by aspect and slope. The variability in enhancement
factors between the predominantly north-facing Beauregard
and the south-to-west-facing Valpelline suggests that these
additional factors are important. Our results also showed sig-
nificant interannual variability in enhancement factors, which
somehow disagrees with the recurring finding that snow pat-
terns are consistent from year to year (Zheng et al., 2018).
Future work could focus on deriving a multivariate alterna-
tive to Eq. 1 that fully embraced physiographic features be-
sides elevation and, in particular, aspect, slope, and canopy
cover (Malek et al., 2017). For example, Vögeli et al. (2016)
showed significant improvements for a spatially distributed
snow model when scaling its predictions with remote sens-
ing data. Winter climatology may also be considered as an
additional predictor of orographic enhancement, e.g., in the
form of predominant synoptic conditions, as done by Gar-
avaglia et al. (2010).

Second, we neglected other drivers of snow distribution
besides orographic precipitation, i.e., wind drift and its in-
teractions with convex–concave topographic features (Win-
stral et al., 2013). From this standpoint, Grünewald et al.
(2014), Kirchner et al. (2014), and Collados-Lara et al.
(2018) showed that the elevation dependence of snow depth
is nonlinear, with a peak at medium-high elevations, followed
by a decline at the highest elevations because of the exhaus-
tion of orographic precipitation effects (Napoli et al., 2019),
enhanced sublimation of blowing snow, and avalanching.
Our choice of spatially averaging snow course data above
3000 m a.s.l., rather than considering each data point, aimed
at minimizing the impact of such local effects on our es-
timates of precipitation gradients. While one may consider
spatially averaging snow course data across smaller eleva-
tion bands to capture such multilinear patterns, estimating
such small-scale gradients based on snow courses may con-
found wind-driven and precipitation-driven effects, thus un-
dermining the overarching idea of our precipitation lapse rate
reconstruction method. Because our predictions of the wa-
ter balance significantly improved, even by using only spa-
tially averaged snow course data above 3000 m a.s.l., we con-
clude that multilinearity in lapse rates for very high eleva-
tions is likely a second-order effect in mountain hydrology
when compared to orographic enhancement, at least across
elevation gradients of various kilometers.

Third, we applied GRISO2 across the whole water year
(September to August), although we estimated our oro-
graphic enhancement factors only with winter data. This
was done both for consistency reasons, and because we ex-
pect orographic enhancement to be at play during summer
too. Nonetheless, mechanisms behind summer precipitation
are significantly different from those behind winter precip-
itation (convective vs. stratiform; see, e.g., Avanzi et al.,
2015). While one may compare simulations with or with-
out summer orographic enhancement to draw some prelim-

inary conclusions on this matter, doing so would raise fur-
ther issues. For example, would the difference between sim-
ulations be due to orographic precipitation or would it be
related to how Flood-PROOFS parameterizes evapotranspi-
ration? Would the parametrization of snowmelt infiltration
and, thus, groundwater recharge also play a role? No specific
data set can replace our snow courses during summer, but at
the same time, the efficiency of precipitation gauges is much
higher for rainfall than snowfall (Peck, 1972). Thus, mea-
suring precipitation at elevations above 3000 m a.s.l. is much
more feasible during summer than winter, which could be
leveraged in the future to explore specific parameterizations
of Eq. (1) for summer. Accordingly, we are considering lim-
iting this orographic enhancement spatialization approach to
winter only in the operational version of this algorithm.

Fourth, we converted snow course snow depth to SWE
using one average density value for each catchment water
year, with density being measured to a significantly smaller
number of locations than snow depth due to logistical con-
straints. We expect this assumption to play a minor role in
our assessment, given that snow density spatial variability is
much smaller than that of snow depth (López Moreno et al.,
2013). Yet, Raleigh and Small (2017) showed that snow den-
sity modeling becomes the major source of uncertainty when
mapping basin-wide SWE with lidar. This means that tar-
geted campaigns measuring snow density variability across
the landscape would still be beneficial for improving this
work.

Fifth, a peak-SWE date was assessed based on expert
knowledge and changed from year to year. This protocol was
different from other snow course surveys, which are gen-
erally performed on recurring dates every year (Hart and
Gehrke, 1990). Based on the results in Fig. 5, we expect this
assumption to have little to no impact on our estimates of
orographic gradients. On the other hand, changing the sur-
vey date based on when peak SWE is supposed to occur fa-
vored our work because it allowed us to assume that snow
course SWE represented total winter precipitation falling at
that location, and doing so with monthly courses performed
on predefined dates would have been challenging.

Sixth, our assessment in Fig. 8 assumed that changes
in subsurface storage were a secondary source of annual
streamflow compared to precipitation, so that Q/P < 1
rather than Q/P > 1 was the desired outcome. We lack the
necessary data to fully resolve the water budget of these
catchments, as done in California by Avanzi et al. (2020b).
Still, the interannual consistency in Q/P , based on GRISO2
together with the quasi-linearity in the precipitation–runoff
relationship (Fig. 3), does suggest a clear correspondence be-
tween annual precipitation and annual runoff and, thus, that
Q/P > 1 by GRISO1 was suspicious.

Seventh, we did not use any additional precipitation data
set in addition to precipitation gauges (e.g., radars). Besides
known issues with radars in mountain regions (see the Intro-
duction), this was also because the present study leveraged
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the precipitation spatialization algorithm that is currently be-
ing maintained by the author team in Aosta Valley (Laiolo
et al., 2014). Future efforts by this team include an oper-
ational deployment of GRISO2 for flood forecasting, po-
tentially in combination with a newly developed, in-house
precipitation product based on conditional merging between
precipitation gauges and radar.

6 Conclusions

We addressed the recurring challenge of estimating precipi-
tation across ungauged, high-elevation headwaters above the
precipitation gauge line. We did so by hypothesizing that
snow courses could be rethought as natural precipitation
gauges and, thus, be leveraged to reconstruct blended pre-
cipitation gauge snow course lapse rates. We found that win-
ter precipitation estimated through peak-SWE snow course
data was 2 to 8.5 times higher than what was recorded by
nearby precipitation gauges, giving evidence that orographic
precipitation in this inner-Alpine valley develops with unex-
pectedly large orographic gradients that would be missed by
using low-to-mid-elevation precipitation gauges. These gra-
dients were also miscaptured by snow depth sensors, both be-
cause their elevation range is only slightly larger than that of
precipitation gauges, and because they are installed in open
and flat areas. Elevation trends of snow course data were
highly seasonal, with only some correlation with mean sea-
sonal snow depth; this revealed a feedback mechanism be-
tween orographic enhancement and winter precipitation cli-
matology that partially challenged the generalization of our
results. Blending precipitation gauge and snow course data
into a unique lapse rate and using this information in an oper-
ational hydrologic modeling chain (Flood-PROOFS) allowed
us to improve predictions, not just for SWE but, more im-
portantly, also for the water budget (specifically, the interan-
nual consistency of runoff coefficients). Snow courses bear a
signature of orographic enhancement, which we successfully
mined to gain insight into the process of orographic precipi-
tation and improve real-world hydrologic models.
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