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Other supplementary materials for this manuscript include the following:  

Movie S1  

 

 

Figure S1: Schematic of volumes, areas and relevant length scales. Half of the three-

dimensional basin. (t) = time-dependent variables; (r) = radial-dependent variables. 
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S1. Supplementary Information Text 

S1.1 Calculation of the Rossby number.  

Eq. (4) was used to calculate Ro. The shallow littoral region is time dependent and it was 

calculated as the water columns where D < hcml (see Fig. S1). Urs-max was then calculated 

as the maximum radial velocity within this region. Urs-max was smoothed over 2h to 

remove the high frequency fluctuations in the signal (Fig. S2a). The smoothed Urs-max 

signal was used to calculate the Rossby radius (RoR = Urs-max /f, Fig. S2b) and the Rossby 

number (Eq. (4), Fig. S2c). 

 

 

Figure S2: Rossby number. Time evolution of (a) maximum radial velocity in the 

littoral region, (b) Rossby radius and Lshallow, and (c) Rossby number. 2h-averaged 

signals. 
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S1.2 Geostrophy test.  

Once a geostrophic balance is set, the Coriolis acceleration balances the horizontal 

pressure-gradient acceleration, and azimuthal velocities, assuming steady state, can be 

estimated by Eq. (S1).  

𝑢𝜃 =
1

𝑓𝜌0

𝜕𝑃

𝜕𝑟
 .          (S1) 

Here P is pressure. To test for geostrophy, modeled azimuthal velocities within the CML 

are compared with estimates from Eq. (S1) for runs 1-3 in Table 1. Figure S3a shows that 

the modeled azimuthal velocities in the runs with Ro O(10‒3‒10‒2) closely follow the 1:1 

relationship (black dotted line in Fig. S3a) indicating that geostrophy is achieved. The 

spreading of values around the 1:1 line is however larger for the transitional regime, Ro 

O(10‒2). For the Ro O(10‒1) case, Eq. (S1) failed to predict modeled azimuthal velocities 

(note the deviation of the red dots from the 1:1 relationship in Fig. S3a), confirming that 

the flow is ageostrophic. The two different regimes for Ro O(10‒1) and Ro O(10‒3‒10‒2) 

are further confirmed in Fig. S3b, showing the root mean square differences, RMSD, 

between modeled and estimated (Eq. (S1)) azimuthal velocities. 

For Ro O(10‒1), Eq. (S1) overpredicted the strength of the gyres, that is the magnitude of 

the azimuthal velocities. By adding the centripetal acceleration to the steady-state balance 

(Eq. (S2)), the spreading of values around the 1:1 line decreases indicating that a 

cyclogeostrophic balance is set in this scenario 
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Figure S3: Test for geostrophy. (a) Modeled azimuthal velocities within the CML vs. 

those predicted by Eq. (S1) (geostrophic balance) and (b) Root mean square differences, 

RMSD, between the two for the different simulated days. The black dotted line in (c) 

corresponds to the 1:1 relationship. Colored bars in (b) show the interquartile range. 
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Figure S4: Test for cyclogeostrophy. (a) Modeled azimuthal velocities within the CML 

vs. those predicted by Eq. (S2) (cyclogeostrophic balance) and (b) Root mean square 

differences, RMSD, between the two for the different simulated days. The black dotted 

line in (a) corresponds to the 1:1 relationship. Colored bars in (b) show the interquartile 

range. 

 

S1.3 Geometrical factor GRo.  

Taking the flushing littoral region as the region within a Rossby radius from the lake 

interior when RoR < Lshallow, the surface area of the littoral region in our bathymetry with 

a circular surface area, is defined as Ashallow = 2π(rint+RoR)2-2πrint
2, where rint = R – Lshallow 

(Fig. S1). The total area, Atotal, is now equal to 2π(rint+RoR)2 (Fig. S1). Eq. (1) can be then 

rewritten to obtain Eq. (9) as: 
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𝐺𝑅𝑜 = |(
𝜋(𝑟𝑖𝑛𝑡 + 𝑅𝑜𝑅)2 − 𝜋𝑟𝑖𝑛𝑡

2

𝜋(𝑟𝑖𝑛𝑡 + 𝑅𝑜𝑅)2
) (

ℎ𝑅𝑜
̅̅ ̅̅ ̅

ℎ𝑐𝑚𝑙
− 1)|  = |(1 −
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2
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) (

ℎ𝑅𝑜
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ℎ𝑐𝑚𝑙
− 1)| =  

= |(1 −
(𝑅−𝐿𝑠ℎ𝑎𝑙𝑙𝑜𝑤)2

(𝑅−𝐿𝑠ℎ𝑎𝑙𝑙𝑜𝑤+𝑅𝑜𝑅)2) (
ℎ𝑅𝑜̅̅ ̅̅ ̅̅

ℎ𝑐𝑚𝑙
− 1)|,      (S3) 

where the average depth of the littoral region from Rinterior to Rinterior+RoR is referred to as 

ℎ𝑅𝑜
̅̅ ̅̅ ̅ (Fig. S1). For the calculations of GRo, we used the maximum RoR achieved each daily 

cycle in Fig. S2b, which represents the maximum radial extension of a gravity current in 

a given day. Note that the maximum RoR is less than Lshallow (Fig. S2b) only for Ro O(10-

2-10-3). 

S1.4 Calculations of the latitudinal range of variability of Ro for radiatively-driven 

circulation under ice in lakes on Earth.  

For the calculations in Figs. 5d-e, the publicly available HydroLAKES database 

(Messager et al., 2016;  http://www.hydrosheds.org) was used. This database includes 

information for ~1.4 million lakes around the globe with surface areas ≥ 10 Ha. There is 

no information about the freezing regime (if existing) of lakes in this database, which 

prevented us from limiting the analysis to only those lakes that actually freeze. Instead, 

our analysis provides the range for potential Rossby numbers based on the distribution of 

lakes over the globe in terms of their size and latitude. We discarded the large lakes with 

surface area > 104 km2, that tend to cover several degrees in latitude, from the analysis 

and we also discarded lakes in latitudes lower than 30°, which is the lower limit for lakes 

that freeze in the Himalayas and the Tibet Plateau. Order of magnitude estimates of Ro 

were made as follows: 

1. We calculated the Coriolis frequency based on the latitudinal information of the 

lake pour point (variable “Pour_lat”) as f = 2Ω sin(φ), where Ω (≈ 7.29 ×10‒5 rad 

s‒1) is the angular velocity of the Earth around its axis and φ the latitude. Absolute 

values were used, so no distinction was made between lakes located in the 

northern and southern hemisphere. 

2. For the characteristic length, we took, for each lake, the radius of a circle with the 

same surface area (variable “Lake_area”) of the lake. Given that the circular 

shape is a strong assumption, we further discarded lakes whose shoreline 

http://www.hydrosheds.org/
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development (variable “Shore_dev”) is > 2 (see details in 

http://www.hydrosheds.org). 

3. For the characteristic velocities we used two values per lake, varying by an order 

of magnitude: 0.005 and 0.05 m s‒1, consistent with the reported O (10‒3‒10‒2) m 

s‒1 radial velocities under ice (Forrest et al., 2013; Kirillin et al., 2015; Rizk et al., 

2014).  

A total of 1040034 lakes were finally selected, each yielding two values of Ro. 

S1.5 Model calibration and validation.  

It is challenging to estimate from the field the exact contribution of the different forcing 

mechanisms at play, which complicates the validation of a RANS model for a specific 

process, such as differential heating driven by radiatively-driven convection under the 

ice. The spectral LES of Ulloa et al. (2019) offer, thus, a unique opportunity, allowing for 

a precise evaluation of the rate of heating and cross-shore transport, resulting from this 

process alone. MITgcm was calibrated against those simulations. Since our simulations 

build upon theirs, their boundary conditions and radiative forcing are the same as those 

presented in Methods, except for their bathymetry, which was two dimensional and given 

by Eq. (2) in the x-direction, but expanded only 1-m in the y-direction. MITgcm was used 

to reproduce the 2D LES and we used the evolution of temperature at the CML, Tcml, as 

the variable of calibration (Tables S1-S2). For the model validation, we focused on the 

time evolution of variables that were critical for the dynamics of the CML, that is hcml, 

the root-mean-square velocities in the CML Urms-cml, and the ratio Φra/Φr (Table S2). 

Φra/Φr accounts for the proportion of the radiative heating that is actually converted to 

kinetic energy, and, thus, the proportion that drives the fluid into motion (details in Ulloa 

et al., 2019; Winters et al., 2019). The first 20 radiative cycles were used for calibration 

purposes while the best simulation was extended until 28 cycles as in Ulloa et al. (2019) 

for validation purposes. As calibrating parameters for the model, we used the background 

grid-dependent lateral viscosities, the 3D Smagorinsky coefficient and the horizontal 

Laplacian diffusion of heat Kh. These parameters take the name of AhvisGrid, 

smag3D_coeff and diffKhT in the MITgcm code, respectively, and were allowed to vary 

up to three orders of magnitude (Table S1). Background vertical diffusivities and 

about:blank


 

 

8 

 

viscosities, Kz and υz, were held constant in all simulations and equal to molecular values 

(see Sect. 2).  

 

Table S1: Calibration of MITgcm. Model runs, calibration parameters and root mean 

square errors (RMSE) and linear-fit correlation coefficients for Tcml after 20 radiative 

cycles. 

run AhvisGrid diffKhT*(m2 s-1) smag3D_coeff RMSE (°C) R2 

2D_1 5 ˣ 10-3 1 ˣ 10-4 5 ˣ 10-4 0.0053 0.9999 

2D_2 5 ˣ 10-3 1 ˣ 10-5 5 ˣ 10-4 0.0067 0.9999 

2D_3 2 ˣ 10-3 1 ˣ 10-5 5 ˣ 10-4 0.0039 0.9999 

2D_4 2 ˣ 10-3 1 ˣ 10-4 5 ˣ 10-4 0.0043 0.9999 

2D_5 2 ˣ 10-3 1 ˣ 10-3 5 ˣ 10-4 0.0152 0.9999 

2D_6 2 ˣ 10-3 1 ˣ 10-5 5 ˣ 10-2 0.0111 0.9998 

2D_7 6 ˣ 10-4 1 ˣ 10-5 5 ˣ 10-4 0.0068 0.9998 

2D_8 6 ˣ 10-4 1 ˣ 10-4 5 ˣ 10-4 0.0074 0.9989 

2D_9 2.5 ˣ 10-4 1 ˣ 10-5 5 ˣ 10-4 0.0169 0.9998 

2D_10 2.5 ˣ 10-4 1 ˣ 10-3 5 ˣ 10-4 0.0191 0.9995 

2D_11 2.5 ˣ 10-4 1 ˣ 10-5 5 ˣ 10-3 0.0144 0.9998 

2D_12 2.5 ˣ 10-4 1 ˣ 10-4 5 ˣ 10-3 0.0153 0.9998 

2D_13 2.5 ˣ 10-4 1 ˣ 10-3 5 ˣ 10-3 0.0204 0.9995 

2D_14 2.5 ˣ 10-4 1 ˣ 10-5 5 ˣ 10-2 0.0149 0.9998 

 

 

Table S2: Calibration/validation of MITgcm. Variables used and root mean square 

errors (RMSE) and linear-fit correlation coefficients for run 2D_3 in Table S1 after 28 

radiative cycles. 

Variable Description Units Purpose RMSE R2 

Tcml Temperature of the CML at the 

lake interior 

°C Calibration 0.008°C 0.999 

hcml Depth of the CML at the lake 

interior 

m Validation 0.54 m 0.996 

Urms-cml Root-mean-square velocity in 

the CML 

m s‒1 Validation 7 ˣ 10‒4 m 

s‒1 

0.530 

Φra / Φr Ratio of available to total solar 

energy supply rate 

- Validation 0.012 0.931 

 

All simulations show high correlation coefficients (R2 > 0.998) for Tcml and the best 

simulation—based on the lowest RMSE value— was run 2D_3 with an RMSE error of 

O(10-3)°C (Table S1). This error represents less than 1% of the temperature increase of 
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Tcml during the 20 radiative cycles. The time evolution of Tcml and temperature profiles at 

the lake interior and their comparison with the results from spectral LES for the total 28 

radiative cycles are shown in Fig. S5 (note that, in comparison to Table S1, the RMSE 

values displayed in this figure and in Table S2 now cover the 28 radiative cycles). 

 

 

Figure S5: Temporal evolution of temperature at the lake interior. (a) Evolution in 

time and (b) one-to-one comparisons for Tcml. (c) Time evolution of temperature profiles 

at the lake interior. Black lines in (b) show the 1:1 relationship. RMSE values in (a,c) 

refer to the 28 cycle period. Comparison between MITgcm and spectral LES (Ulloa et al., 

2019). 

 

The best simulation after the calibration for the evolution of Tcml (run 2D_3 in Tables S1-

S2) was also able to satisfactorily reproduce the evolution of the variables used for the 
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model validation, especially for hcml and Φra/Φr, with low RMSE values and high 

correlation coefficients (R2 > 0.99) (Table S2). The average ~0.5m underestimation in the 

hcml values (Fig.S5a) is the result of convective cells in MITgcm not being able to create 

the depression of the isotherms at the base of the CML (Fig. S5). Although Urms-cml is 

reproduced less satisfactorily by MITgcm (Fig. S6b, S6e), this was to be expected given 

the order of magnitude for this variable, O (10-3) m s-1. Still, MITgcm is able to 

reasonably reproduce both the magnitudes and the amplitudes in the Urms-cml signal.  

 

 

Figure S6: Model validation. (a-c) Evolution in time and (d-f) one-to-one comparisons 

of the model-validation variables in Table S2. Black lines in (d-e) show the 1:1 

relationship. Comparison between MITgcm and spectral LES (Ulloa et al., 2019). 

 

To test the influence of the resolution of the grid in model solutions, the basin was 

discretized using grid cells of different size in the horizontal. An increase in horizontal 

grid size of 2 m (lx = 2 m) was used. Grid cells of size Δx = 2 m, 4 m and 6 m were 

tested, together with the Δx = 0.9 m. To analyze convergence, we calculated the error E 

(Eq. (S3)), expressed as the L2 norm of the difference (e.g. Fringer et al., 2006) between 

solutions with the different grids and that with the higher resolution grid (Δx = 0.9 m)  
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𝐸 =  
∑ (𝜒−𝜒𝑟𝑒𝑓)2𝑁

𝑝=1

∑ (𝜒𝑟𝑒𝑓)2𝑁
𝑝=1

          (S4) 

where χ is either Tcml, hcml, Urms-cml or Φra / Φr in each point p of the time series, with a 

total of N points, and the subscript ref refers to the results with the 0.9m-resolution grid. 

As the grid resolution increases, errors tend to converge from O(lx) to accuracy O(lx
2) 

accuracy, except for hcml, which remains O(lx) (Fig. S7). Errors in the 2m resolution grid 

are less than 2% for all four variables (Fig. S7), which suggests grid convergence. 

 

 

Figure S7: Grid convergence. L2 norm error E (Eq. (S4)) after 20 radiative cycles for 

different horizontal-grid resolutions and variables in Table S1. 

 

Movie S1 (separate file).  

Daily evolution of the simulated cross-sectional temperature (0.02°C isotherm spacing), 

radial and azimuthal velocities (0.002 m s‒1 isovel spacing), and of the depth-averaged 
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azimuthal velocities and flow streamlines at depths ≤ hcml. Radial and azimuthal 

velocities are positive towards the lake interior and for cyclonic circulation, respectively.   
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