Supplement of

Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data

Ewan Pinnington et al.

Correspondence to: Ewan Pinnington (e.pinnington@reading.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.
S1 Supplementary material

For the supplementary material we include additional plots comparing JULES soil moisture values when the model is run with a 5 cm and 10 cm top soil layer thickness in Figure S1. The output of the data assimilation experiment when JULES is run with a 5 cm top layer in Figure S2 and a 10 cm top layer in Figure S3 and a visualisation of the effect the model spin-up period has on the initial soil moisture state for three unique pedotransfer function parameter sets at the Cardington COSMOS site in Figure S4.

![Figure S1](image)

Figure S1. Comparison of top layer soil moisture values for JULES when the model is run with either a 10 cm top layer (blue solid line) or a 5 cm top layer (orange dashed line).
Figure S2. Optimized parameter distributions for DA experiment when using a JULES model with a 5 cm top soil layer. Light grey: prior parameter distributions, dark grey: posterior parameter distributions.

Figure S3. Optimized parameter distributions for DA experiment when using a JULES model with a 10 cm top soil layer. Light grey: prior parameter distributions, dark grey: posterior parameter distributions.
Figure S4. Effect of model spin-up on soil moisture state at Cardington COSMOS site. Different colour lines correspond to unique soil moisture trajectories defined by different sets of soil parameters (these are constant in time). The spin-up is performed using 2015 driving data.