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Abstract. Spatiotemporally continuous estimates of the hy-
drologic cycle are often generated through hydrologic mod-
eling, reanalysis, or remote sensing (RS) methods and are
commonly applied as a supplement to, or a substitute for,
in situ measurements when observational data are sparse or
unavailable. This study compares estimates of precipitation
(P ), actual evapotranspiration (ET), runoff (R), snow water
equivalent (SWE), and soil moisture (SM) from 87 unique
data sets generated by 47 hydrologic models, reanalysis data
sets, and remote sensing products across the conterminous
United States (CONUS). Uncertainty between hydrologic
component estimates was shown to be high in the western
CONUS, with median uncertainty (measured as the coeffi-
cient of variation) ranging from 11 % to 21 % for P , 14 %
to 26 % for ET, 28 % to 82 % for R, 76 % to 84 % for SWE,
and 36 % to 96 % for SM. Uncertainty between estimates was
lower in the eastern CONUS, with medians ranging from 5 %
to 14 % for P, 13 % to 22 % for ET, 28 % to 82 % for R, 53 %
to 63 % for SWE, and 42 % to 83 % for SM. Interannual
trends in estimates from 1982 to 2010 show common dis-
agreement in R, SWE, and SM. Correlating fluxes and stores
against remote-sensing-derived products show poor overall
correlation in the western CONUS for ET and SM estimates.
Study results show that disagreement between estimates can
be substantial, sometimes exceeding the magnitude of the
measurements themselves. The authors conclude that mul-
timodel ensembles are not only useful but are in fact a ne-
cessity for accurately representing uncertainty in research
results. Spatial biases of model disagreement values in the
western United States show that targeted research efforts in
arid and semiarid water-limited regions are warranted, with

the greatest emphasis on storage and runoff components, to
better describe complexities of the terrestrial hydrologic sys-
tem and reconcile model disagreement.

1 Introduction

A long-term goal of the atmospheric and hydrologic scien-
tific communities has been to produce accurate estimates of
the hydrologic cycle across continental and global domains
(Archfield et al., 2015; Beven, 2006; Freeze and Harlan,
1969). Various methodologies have been applied to meet this
goal, typically in the form of physically based, reanalysis,
or remote-sensing-based models. Many of the resulting esti-
mates are made publicly available by an assortment of sci-
entific entities at both continental and global extents across
a wide range of spatiotemporal resolutions. These data sets
accelerate progress in the atmospheric and hydrologic sci-
ences by filling knowledge gaps in data-sparse regions, re-
ducing the need for time-consuming and computationally ex-
pensive modeling, and by providing numerous estimates to
apply within ensemble analyses.

Publicly available modeled estimates have been applied
to work on water budget analyses (Gao et al., 2010; Pan
et al., 2012; Rodell et al., 2015; Smith and Kummerow,
2013; Velpuri et al., 2019; Zhang et al., 2018), the effects
of climate change (La Fontaine et al., 2015; G. J. McCabe
et al., 2017), and water availability and use (Landerer and
Swenson, 2012; Thomas and Famiglietti, 2019; Voss et al.,
2013; Zaussinger et al., 2019). Rapid increases in compu-
tational power and data accessibility following the advent of
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early global- and continental-extent hydrologic models in the
1980s and 1990s (Koster and Suarez, 1992; Manabe, 1969;
Sellers et al., 1986; Yang and Dickinson, 1996), and increas-
ingly higher-resolution passive and active satellite measure-
ments of both the surface and subsurface of the Earth (Als-
dorf et al., 2007; M. F. McCabe et al., 2017), have led to an
explosion in the production of multidecadal, continental- to
global-extent models estimating all major components of the
hydrologic cycle (Peters-Lidard et al., 2018). Accordingly,
this has given rise to a multitude of model comparison and
evaluation projects throughout the scientific literature.

Earlier model intercomparison projects, such as the Cou-
pled Model Intercomparison Project (CMIP; Covey et al.,
2003), the Integrated Hydrologic Model Intercomparison
Project (IH-MIP; Kollet et al., 2017; Maxwell et al., 2014),
the Agricultural Model Intercomparison and Improvement
Project (AgMIP; Rosenzweig et al., 2013), and the Water
Model Intercomparison Project (WaterMIP; Haddeland et al.,
2011), provide robust analyses aimed at attributing differ-
ences in model process representation to differences in model
design, parameter selection, and meteorological forcings.

Detailed comparisons between smaller selections of mod-
els are often included in studies presenting novel products
(Daly et al., 2008; Senay et al., 2011; Velpuri et al., 2013;
Xia et al., 2012a, b). Furthermore, a range of studies have
focused solely on the validation of third-party models, ei-
ther examining multiple water budget components simulta-
neously (Gao et al., 2010; Sheffield et al., 2009) or focus-
ing on specific components such as precipitation (P ; Derin
and Yilmaz, 2014; Donat et al., 2014; Guirguis and Avissar,
2008; Prat and Nelson, 2015; Sun et al., 2018), evapotranspi-
ration (ET; Carter et al., 2018; McCabe et al., 2016), snow
water equivalent (SWE; Broxton et al., 2016; Chen et al.,
2014; Dawson et al., 2016, 2018; Essery et al., 2009; Mudryk
et al., 2015; Rutter et al., 2009; Vuyovich et al., 2014), or soil
moisture (SM; Brocca et al., 2011; Koster et al., 2009; Xia et
al., 2014).

Most of these comparison studies have revolved around er-
ror metrics derived through validation against in situ and ex
situ measurements. However, validation often yields unsat-
isfactory representations of model skill. Observational data
sets are often spatiotemporally discontinuous, and model es-
timates in grid structure may not sufficiently represent the
sub-grid heterogeneity that is present in point data, espe-
cially in topographically and ecologically complex regions.
Furthermore, observational measurements can have signifi-
cant associated uncertainty (Di Baldassarre and Montanari,
2009). Validation literature is heavily focused on the compar-
ison of error statistics and spatial summaries of model skill
and rarely discusses the effect of model disagreement on re-
search results.

This research seeks to supplement past comparison and
validation literature by evaluating how uncertainty between
publicly available water budget component estimates used
within a study can control outcomes and conclusions across

a range of ecological regimes. We differentiate this work
from previous model intercomparison and validation stud-
ies by placing results in the context of multiple water budget
analyses. We seek to quantify how estimates of component
magnitudes and long-term trends differ in the conterminous
United States (CONUS) and within ecologically distinct re-
gions. The primary goal of this work is to quantify model
disagreement in terms of magnitude, interannual trend, and
correlation against remote sensing (RS) products. The effects
of model disagreement are shown in regional water budget
analyses. We undertake a robust comparison of P , ET, R,
SWE, and SM estimates generated through hydrologic mod-
els, reanalysis data sets, and remote sensing products. We it-
eratively calculate water budget imbalances in eight regions
by applying a range of flux estimates to quantify how model
selection may impact residuals.

2 Methods and data

2.1 Data categories

Hydrologic estimates are divided into water budget flux com-
ponents of P , ET, and R, and storage components of SWE
and SM, representing the primary fluxes and stores of a sur-
face water budget. Data sets were selected by prioritizing
public availability, ease of access, and relative use within
the research community. These data sets are subdivided into
loosely defined categories of hydrologic models, reanalysis
data sets, and remote-sensing-derived products. References
and spatiotemporal information for each data set are provided
in Table 1, and more detailed long-form descriptions are pro-
vided in Appendix A.

2.1.1 Hydrologic models

The hydrologic model category (Table 1; Appendix A) in-
cludes any estimates generated using equations or concepts
attempting to represent real-world hydrology. Model output
differences are strongly controlled by forcing data sets (El-
sner et al., 2014; Mizukami et al., 2014), calibration meth-
ods (Mendoza et al., 2015), applied equations (Clark et al.,
2015a), model structure (Clark et al., 2015a, b), and geophys-
ical parameter availability (Beven, 2002; Bierkens, 2015;
Mizukami et al., 2017). The most common hydrologic mod-
els this study evaluates are conceptual and physically based.
Conceptual models derive terrestrial hydrology estimates
through empirical relationships between fluxes and stores,
typically through a water balance model (WBM) in the style
of Thornthwaite (1948; NHM-MWBM and TerraClimate).
Physically based models utilize meteorological forcing data
and solve equations describing physical conservation laws
of mass, energy, and momentum. These can be further sub-
divided by targeted hydrologic variables as follows: land sur-
face models (LSMs) target land–atmosphere interactions, es-
pecially ET, while catchment models (CMs) target stream-
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Table 1. Summary of data sets used in this research, including assigned data category, abbreviated name, primary organization, literature
reference, spatiotemporal resolution, and sourced hydrologic components. The reader is referred to Appendix A for definitions of abbrevi-
ated model names, descriptions, and further references. Components are precipitation (P ), evapotranspiration (ET), runoff (R), snow water
equivalent (SWE), and soil moisture in equivalent water depth and volumetric water content (SM(e) and SM(v), respectively). Hydrologic
models NMH-MWBM and NMH-PRMS are based on a delineated (i.e., non-gridded), topographically derived spatial framework composed
on hydrologic response units (HRUs). The reanalysis product WaterWatch is generated at hydrologic units (HUs) 2–8. The finest-resolution
product, HU8, is used in this study.

Data set Group Reference Spatiotemporal Components

Hydrologic model

CPC CPC Fan and van den Dool (2004) 1/2◦ 1948–present SM(e)
CSIRO-PMLc CSIRO Zhang et al. (2016) 1/2◦ 1981–2012 ET
ERA5/H-TESSELc ECMWF Muñoz Sabater (2019) 1/4◦ 1979–present R, SWE, SM(v)
ERA5-Land/H-TESSEL ECMFW Muñoz Sabater (2019) 1/10◦ 2001–present ET, R, SWE, SM(v)
GLDAS-CLMc NASA Rodell et al. (2007) 1◦ 1979–present ET, R, SWE
GLEAMa, c U. of BE Martens et al. (2017) 1/4◦ 1980–present ET, SM(v)
JRA-25/SiB JMA Onogi et al. (2007) 110 km 1979–present R, SWE, SM(e)/(v)
JRA-55/SiBc JMA Kobayashi et al. (2015) 55 km 1957–present R, SWE, SM(v)
Livneh-VIC CIRES Livneh et al. (2013) 1/16◦ 1915–2011 SWE
MERRA-Land/CLSMc NASA Reichle et al. (2011) 1/2◦ 1980–2016 ET, R, SWE
MERRA-2/CLSMc NASA Reichle et al. (2017) 1/2◦ 1980–present ET, R, SWE, SM(v)
NCEP–DOE/Eta-Noahc NOAA Kanamitsu et al. (2002) 210 km 1979–present R, SWE
NCEP-NARR/Eta-Noah NOAA Mesinger et al. (2006) 32 km 1979–present SWE
NHM-MWBMc USGS McCabe and Markstrom (2007) HRU 1949–2010 ET, R, SWE, SM(e)
NHM-PRMSc USGS Regan et al. (2018) HRU 1980–2016 ET, R, SWE, SM(e)
NLDAS2-Mosaicc NASA Xia et al. (2012a) 1/8◦ 1979–present ET, R, SWE, SM(e)
NLDAS2-Noahc NASA Xia et al. (2012b) 1/8◦ 1979–present ET, R, SWE, SM(e)
NLDAS2-VICc NASA Xia (2012c) 1/8◦ 1979–present ET, R, SWE, SM(e)
SNODAS NWS Barrett (2003) 1 km 2003–present SWE
TerraClimatec U. of ID Abatzoglou et al. (2018) 1/24◦ 1958–present ET, R, SWE, SM(e)
VegETc USGS Senay (2008) 1 km 2000–2014 ET, SM(e)

Reanalysis

CanSISE U. Toronto Mudryk and Derksen (2017) 1◦ 1981–2010 SWE
CMAPb, c CPC Xie and Arkin (1997) 2 1/2◦ 1979–present P

Daymetc ORNL Thornton et al. (2018) 1 km 1980–present P , SWE
ERA5c ECMWF Muñoz Sabater (2019) 1/4◦ 1979–present P

ERA5-Land ECMWF Muñoz Sabater (2019) 1/10◦ 2001–present P

GPCCc GPCC Becker et al. (2013) 1/2◦ 1901-2013 P

gridMETc U. of ID Abatzoglou (2013) 1/24◦ 1979–present P

Livneh et al. (2013)c NOAA Livneh et al. (2013) 1/16◦ 1915–2011 P

Maurer et al. (2002) U. WA Maurer et al. (2002) 1/8◦ 1950–1999 P

MERRA-Landc NASA Rienecker et al. (2011) 1/2◦ 1980–2016 P

MERRA-2c NASA Gelaro et al. (2017) 1/2◦ 1980–present P

NCEP–DOEc NCEP–DOE Kanamitsu et al. (2002) 210 km 1979–present P

NLDAS2c NASA Xia et al. (2009) 1/8◦ 1979–present P

PRISMc OSU PRISM Climate Group (2004) 4 km 1895–present P

Reitz et al. (2017)c USGS Reitz et al. (2017) 800 m 2000–2013 ET
UoD-v5c U. of DE Willmott and Matsuura (2001) 1/2◦ 1950–1999 P

WaterWatchc USGS Jian et al. (2008) HU8 1901–present R
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Table 1. Continued.

Data set Group Reference Spatiotemporal Components

Remote sensing

AMSR-E/Aqua NSIDC Tedesco et al. (2004) 25 km 2002–2011 SWE
ESA-CCI ESA Dorigo et al. (2017) 1/4◦ 1978–present SM(v)
GPCP-v3c NASA Huffman et al. (2019) 1/2◦ 1983–2016 P

MOD16-A2c U. of MT Running et al. (2017) 1 km 2000–2010 ET
SMOS-L4 FNCSR Al Bitar et al. (2013) 25 km 2010–2017 SM(v)
SSEBopc USGS Senay et al. (2013) 1 km 2000–2014 ET
TMPA-3B43c NASA Huffman et al. (2010) 1/4◦ 1998–present P

a Versions 3.3a and 3.3b. b Standard and enhanced versions. c Data sets used in the water budget case study with complete data
for water years 2001–2010.

flow (Archfield et al., 2015). Additionally, LSMs are often
1D models that operate at discrete spatial intervals, typically
grid cells, lacking horizontal transfer of surface or subsur-
face water between regions. CMs, on the other hand, uti-
lize 2D model structures by routing overland and subsur-
face flows between spatial domains to better realize sur-
face and groundwater estimates using prescribed stream net-
works. The CLSM, described in the literature as a land sur-
face model (Koster et al., 2000), is discussed in conjunction
with the NHM-PRMS because of the sub-grid catchment net-
work used to model horizontal runoff and streamflow fluxes.
LSMs are the most common hydrologic model here (e.g.,
CLM, H-TESSEL, Mosaic, Noah, SiB, and VIC) because
they are often coupled with global-extent atmospheric re-
search and, thus, more commonly operated at the spatial ex-
tent of this study, while CMs are more typically operated at
the catchment or basin scale. Additional products included
in the hydrologic model category are those using simpli-
fied WBMs falling outside the conceptual model paradigm
(CPC, CSIRO-PML, GLEAM, and VegET) and those using
component-specific physically based models (SNODAS).

2.1.2 Reanalysis

Reanalysis data sets (Table 1; Appendix A) assimilate multi-
source in situ and ex situ observational data into spatiotempo-
rally continuous 4D estimates of continental- or global-scale
atmospheric and meteorological fluxes using numerical al-
gorithms. This category includes reanalysis data sets derived
solely from in situ and ex situ data (e.g., CMAP, Daymet,
Maurer et al., 2002, and UoD-v5) and those assimilating or
blending multiple reanalysis products with or without obser-
vational measurements (e.g., CanSISE, gridMET, Livneh et
al., 2013, and NLDAS2). In past studies, reanalysis models
were often grouped and defined separately from gridded data
sets derived through statistical interpolation of in situ obser-
vations (e.g., WaterWatch, Reitz et al., 2017, and GPCC).
We combine the two categories, defining the single reanaly-
sis category as containing products not generated solely from
remote sensing observations or through terrestrial hydrologic

models. The reasons for this are two-fold, i.e., (1) to sim-
plify reporting of results and discussion across water bud-
get components, and (2) although interpolation-based prod-
ucts are often used as reference data sets in model valida-
tion studies, especially for precipitation, accuracy decreases
in regions with sparse observations and complex topography
(Hofstra et al., 2008) and, thus, should be considered mod-
eled products.

2.1.3 Remote sensing derived

The RS-derived data sets (Table 1; Appendix A) are compo-
nents of the hydrologic system derived from passive and/or
active ex situ observations. We note the use of the term RS-
derived rather than RS because none of the data sets used
here can be truly described as direct observations as they are
always relying on a range of modeling techniques to create
hydrologic estimates. For example, the AMSR-E/Aqua SWE
product uses a sequence of steps including a snow-detection
routine, followed by a physical retrieval algorithm, which is
then validated against observational SWE data (Chang and
Rango, 2000), and the SSEBop product uses a radiation-
driven energy balance model to estimate ET (Senay et al.,
2013). Remote sensing data sets include estimates modeled
from single-sensor ex situ observations (MOD16-A2 and
SSEBop), though most utilize an assembly of information
from both passive and active sensors at various spatiotempo-
ral resolutions (e.g., ESA-CCI and GPCP-v3).

2.2 Data processing

Data sets included in this research cover a broad spectrum
of spatial resolutions, extents, coordinate reference systems,
and timescales and, therefore, require a uniform spatiotem-
poral system to better facilitate comparison. To that end,
gridded (e.g., NLDAS2-Mosaic) and polygonal (e.g., NHM-
PRMS) data sets were aggregated by area-weighted mean
to 10 Environmental Protection Agency Ecoregions, Level I
(Omernik and Griffith, 2014), that encompass the Water-
shed Boundary Dataset hydrologic units (U.S. Geological
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Table 2. Sizes of study ecoregions in square kilometers (km2) and
percent (%) of study domain.

Ecoregion Area Percent of
(km2) CONUS (%)

Marine West Coast Forest 91 035 1.11
Mediterranean California 168 757 2.06
Northwestern Forested Mountains∗ 859 801 10.52
North American Deserts∗ 1 533 536 18.76
Southern Semiarid Highlands 66 699 0.82
Temperate Sierras 110 038 1.35
Great Plains∗ 2 328 673 28.48
Eastern Temperate Forests∗ 2 561 292 31.33
Northern Forests 433 032 5.30
Tropical Wet Forests 22 469 0.27

Total domain area 8 175 332 100 %

∗ Primary ecoregions highlighted during water budget analysis.

Survey, 2016; Fig. 1; Table 2) over the CONUS. Data sets
were processed in their native coordinate system to avoid in-
terpolation of raw values, and the reference system of the
ecoregions’ spatial data set was transformed to match that
of each target data set. Flux and storage terms were aggre-
gated to monthly time steps. Flux values (P , ET, andR) were
summed from hourly or daily when necessary, and storage
values (SWE and SM) were averaged.

Units of P , ET, R, and SWE are uniformly presented
as equivalent water depth in millimeters (mm). SM is pro-
vided by data sets as either equivalent water depth (mm)
or volumetric soil moisture content (m3 per cubic meter)
and denoted as SM(e) or SM(v), respectively. The SM(e)
and SM(v) categories are merged during results and discus-
sion when magnitude is irrelevant, such as with long-term
trend and correlation against RS products. All data generated
through these methods are available in an associated data re-
lease hosted on the USGS ScienceBase (Saxe et al., 2020).

2.3 Statistics

2.3.1 Annual uncertainty

Uncertainties in hydrologic component values are measured
as the variability between modeled estimates using the coef-
ficient of variation (CV) calculated as follows:

CV=
σ

x
× 100%, (1)

where σ is the standard deviation across all products of a
given component in a given water year, and x is the asso-
ciated mean. The σ and CV statistics were calculated for
each water year (WY; a water year is the 12 month period
of 1 October through 30 September and is designated by the
calendar year in which it ends) between available estimates
for all components. Annual values of flux terms (P , ET, and

R) were derived by summing monthly values to WYs, and
storage terms were derived by averaging monthly values by
WY. Incomplete WYs (n months<12) were discarded. Be-
cause of incompatibility between data set temporal ranges, σ
and CV values were divided into two 15 WY periods, namely
the early period consisting of WYs 1985–1999 and the late
period consisting of WYs 2000–2014.

Uncertainty metrics are impacted by the number of models
available for each calculation. That is, increasing the num-
ber of models typically increases the intermodel variability.
Depending on the water year, there can be 14–16P mod-
els, 11–17 ET models, 12–15R models, 14–20 SWE mod-
els, 7–9 SM(e) models, and 5–7 SM(v) models available. To
reduce the effects of model count disparity in variability mea-
sures, CV and σ are calculated through a bootstrap approach
that calculates the CV and σ for all possible combinations of
five models (from the minimum SM(v) availability) by water
year, and returns final CV and σ as the mean of the boot-
strapped combinations.

2.3.2 SWE timing

Variability in seasonal timing of SWE estimates was com-
pared for trends of both accumulation and ablation in terms
of relative timing, defined here as the difference between the
antecedent month of snow accumulation or ablation for each
data set from the mean antecedent month of the remaining
data sets, calculated for each Julian year from 1985 to 2014.
The antecedent accumulation (ablation) month is defined as
the first month of the June–December (January–May) period,
where change in SWE is greater than (less than) 1 mm per
month (−1 mm per month). Some data sets contained anoma-
lies in January and February, showing a large negative change
in SWE followed by positive rates of SWE accumulation for
1–2 more months, which introduced a negative bias into rela-
tive timing values. To eliminate these biases, ablation timing
was only considered for months subsequent to the final date
of the positive SWE rate of change. Resulting annual relative
timing values are presented for each SWE product grouped
by (a) early and late periods, (b) accumulation and abla-
tion, and (c) the Northern Forests and Northwestern Forested
Mountains ecoregions. To simplify the comparison of SWE
timing between trends and ecoregions, annual directions of
relative timing were summarized by percent direction, de-
fined here as the percentage of years with a positive relative
timing value, as follows:

p+ =
|R+|
|R|
× 100%, (2)

where p+ is percent direction, |R+| is the cardinality (num-
ber of elements in a set) of positive, real relative timing val-
ues, and |R| is the cardinality of all real values. Within the
figure presenting summary values (Fig. B4), percent direc-
tion values less than 50 % (i.e., those dominantly negative)
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Figure 1. Distribution of the 10 ecoregions covering the CONUS study domain.

are converted to a scale of 50 % to 100 % with the following:

pD =
{
p+

100% − p+
p+ > 50
p+ < 50 , (3)

where pD is the directionalized percent direction colored ac-
cording to the dominant direction value. Positive pD uses a
green gradient, and negative pD uses a purple gradient.

2.3.3 Interannual trend

Both the Mann–Kendall trend test (τ ; Kendall, 1938) and
Sen’s slope estimator (Sen, 1968) are used to identify and
measure monotonic trends in annual values over WYs 1982–
2010. Trend significance is evaluated using p values (p) in a
binary significance test, assuming an alpha (α) of 0.05 and a
null hypothesis of no monotonic trend. Under the condition
of p<α, the null hypothesis is rejected and the alternative
hypothesis, i.e., that of the presence of a monotonic trend,
is assumed; if p>α, the null hypothesis is not rejected. Dis-
agreement in the presence of a significant trend and trend di-
rection is quantified using the unalikeability coefficient (u),
which measures how often categorical variables differ on
a 0≤ u≤ 1 scale, with 0 and 1 being complete agreement
and disagreement, respectively (Kader and Perry, 2007). This
study compares trends between 11 to 16 different products
(11≤ n≤ 16), depending on water budget component, and
uses categorical values (c) of (a) significant negative trend,
(b) significant positive trend, and (c) no significant trend, de-
rived from the direction (sign) and significance (α = 0.05) of
τ . When n>c, maximum possible u decreases from one ex-
ponentially to an asymptote of two-thirds as the ratio of n : c

increases. With a n : c ranging from 11 : 3 to 16 : 3, maxi-
mum possible u in this trend analysis is approximately 0.71.

Spearman’s rho (Spearman, 1904) is applied to quantify
the correlation between RS components P , ET, SWE, and
SM and the analogous components of hydrologic models
and remote sensing data sets. Spearman’s rho (ρ), a non-
parametric rank correlation metric, is used to estimate corre-
lation, producing values on a−1 to 1 scale, where 1 is perfect
positive correlation and−1 is perfect negative correlation, as
follows:

ρ = 1 −
6
∑
d2
i

n(n2 − 1)
, (4)

where d is the difference between ranks, and n is the sam-
ple size. A binary significance test is used to test correlation
statistics, assuming α = 0.05, and a null hypothesis that there
is no relationship between data sets. If p<α, the null hypoth-
esis is rejected and a significant correlation between the data
sets is assumed; if p>α, the null hypothesis is not rejected.
Correlation is computed and assessed along the monthly time
step, requiring a minimum of 48 months of temporal overlap
between the modeled estimates and remote sensing data set.

2.3.4 Water budget imbalances

Water budgets are calculated assuming a steady-state system
and are solved for imbalances by the following:

P = AET+R+ ε, (5)
ε = P −AET−R, (6)

where ε is imbalances. Imbalances, ε, cannot be accurately
defined as residuals. In reality, ε is the sum of excluded fluxes
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in addition to model uncertainty (residuals). Excluded fluxes
include both natural (e.g., groundwater recharge and changes
to long-term storage) and anthropogenic (e.g., groundwater
extraction) hydrologic processes. Relative imbalances (Rε)
are calculated to better compare water budget results between
regions of varying hydrologic flux by weighting water budget
ε against the total input P as follows:

Rε = (ε/P )× 100 %. (7)

Water budget relative imbalances were calculated from
summed P , ET, R, and ε over the 10 water year period of
2001–2010 for 15P , 15 ET, and 13R estimates (noted in Ta-
ble 1) with temporally continuous monthly data for 10 ecore-
gions. Each ecoregion yielded 2925 water budgets by iter-
ating through all possible combinations of models, totaling
29 250 water budgets in primary regions of the CONUS. In
addition, a single water budget was calculated for each of
the eight ecoregions using the ensemble means of the model
estimates over the same period.

3 Results

3.1 CONUS domain average

3.1.1 Magnitude variability

Uncertainties between annual estimates of states and fluxes
of the hydrologic cycle are substantial when averaged over
the CONUS for each studied component (Fig. 2). The ac-
tual magnitude of model estimate differences averaged by
water budget component, measured as σ , is similar for P ,
ET, and R (Fig. 2a) and low (6.6 mm per year) for SWE.
However, comparing uncertainty relative to mean magni-
tude (Fig. 2b), measured as CV, shows that the vertical,
atmospheric-controlled fluxes of P and ET demonstrate
lower intermodel uncertainty than the horizontal flux of R or
storage components SWE and SM. The CV statistic shows
how, due to the low overall magnitude of SWE, small dif-
ferences in estimates have a substantial effect on magnitude.
SM, which is often a large overall storage term in the wa-
ter budget, also shows high CV, indicating that uncertainty in
estimates of this component may have the largest impact on
hydrologic analyses.

Unfortunately, high-magnitude differences in SM (Fig. 3e,
f) are likely strongly controlled by model-defined soil layer
depth and, thus, limit the utility of disagreement statistics.
For example, the TerraClimate and NLDAS2-Noah mod-
els apply spatially invariant root zone soil depth across the
model domains (Abatzoglou et al., 2018; Xia et al., 2012a),
whereas the NHM-PRMS assumes a variable depth accord-
ing to vegetative and geophysical parameters (Regan et al.,
2018). SM(e) estimates are directly controlled by soil depth,
returning values of equivalent water depth. SM(v) differ-
ences are likely to be less influenced by soil depth due to in-
herent measurements of fractional volume rather than depth.

Figure 2. Mean annual (a) standard deviation (σ ) and (b) coefficient
of variation (CV) calculated between CONUS-extent modeled esti-
mates of hydrologic components precipitation (P ), evapotranspira-
tion (ET), runoff (R), snow water equivalent (SWE), soil moisture
in equivalent water depth (SM(e)), and soil moisture in volumetric
water content (SM(v)). Whiskers on each bar represent the standard
deviation of annual values.

However, soil water profiles can change significantly with
depth, so attributing model differences strictly by root zone
depth definition is more difficult.

Box plots of modeled estimates by water budget com-
ponent (Fig. 3) demonstrate the annual ranges of magni-
tude generated by various products. Precipitation models
(Fig. 3a) exhibit low overall variability, with median magni-
tudes falling within a distinct 100 mm per year (700–800 mm
per year) range. The exceptions to this are the CMAP reanal-
ysis data sets, which have a median 647 mm per year.

Variability among ET estimates (Fig. 3b) is higher, falling
within a 200 mm per year (435–650 mm per year) range,
though attributing differences to model type (e.g., LSMs
vs. CMs) is difficult. Generally, CMs (MERRA-2/CLSM,
MERRA-Land/CLSM, and NHM-PRMS) and conceptual
WBMs (NHM-MWBM, GLEAM, and TerraClimate) pro-
duce greater annual rates of ET compared to LSMs
(NLDAS2-VIC, GLDAS-CLM, and NLDAS2-Noah). Ex-
ceptions to this are the LSMs NLDAS2-MOSAIC and H-
TESSEL that are more similar in annual ET flux to CMs and
WBMs. The RS data sets agree more at the CONUS extent
with lower-magnitude estimates.

Estimates of R show three distinct clusters of CONUS
magnitudes (Fig. 3c) of 130–190, 220–242, and 310–345 mm
per year. The NLDAS2-Noah and NLDAS2-VIC LSMs,
which produced some of the lowest ET rates, fall within
the higher-magnitude R clusters, as do the JRA-driven SiB
models and NHM-PRMS model. The lowest magnitude
estimates are the NLDAS2-Mosaic and ERA5-driven H-
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Figure 3. Box plots of annual water year magnitudes of all study model estimates averaged over the CONUS extent for hydrologic com-
ponents (a) precipitation (P ), (b) evapotranspiration (ET), (c) runoff (R), (d) snow water equivalent (SWE), (e)soil moisture in units of
equivalent water depth (SM(e)), and (f) soil moisture in units of volumetric water content (SM(v)). Data set magnitudes are subdivided into
two periods, i.e., 1985–1999 (top) and 2000–2014 (bottom), for each model. Flux component estimates (P , ET, and R) are summed from
monthly values to calculate annual water year rates. Storage component estimates (SWE, SM(e), and SM(v)) are averaged from monthly
values to calculate annual water year average storage values. Box lower limits, midlines, and upper limits represent the 25th, 50th (median),
and 75th percentiles, respectively, of the associated data. Whiskers represent 1.5 times the interquartile range. Box color denotes data set
categories of hydrologic model, reanalysis, or remote sensing derived. Asterisks are used to identify the following hydrologic models types:
land surface models (∗∗∗∗), catchment models (∗∗∗), water balance models (∗∗), and miscellaneous (∗).

TESSEL LSMs, which are grouped with the CM MERRA-
Land/CLSM and WBM TerraClimate. LSMs are more likely
to estimate greater R than WBMs or CMs.

Box plots of annually averaged SWE monthly values
(Fig. 3d) show that WBMs, notably the NHM-MWBM, gen-
erate much higher SWE than most other data sets. Alterna-
tively, there are few discernible patterns between the remain-
ing products, with LSMs and CMs interspersed through-
out the gamut of median values. To generalize, the LSMs
Noah, GLDAS-CLM, and NLDAS2-Mosaic produce lower-
magnitude estimates of monthly SWE. A total of three dif-
ferent Noah estimates, driven with different meteorologi-
cal forcings and run both independently (NLDAS2-Noah)

or as part of a larger model (e.g., NCEP-NARR/Eta-Noah),
all estimate lower SWE relative to other data sets. The two
VIC LSMs show contrasting median monthly SWE magni-
tude over the CONUS, with the Livneh-VIC median exceed-
ing the NLDAS2-VIC median by more than 200 %. The RS
AMSR-E/Aqua product agrees more with lower-magnitude
estimates at the CONUS extent.

Across all water budget components, most data sets
demonstrate lower-magnitude values in the late period (WYs
2000–2014) compared to the early period (WYs 1985–1999).
Within the P flux, almost all data sets agree on a decrease
in the magnitude of hydrologic fluxes from the early to late
periods. This is similarly reflected in the flux estimates of
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ET and R, and, to a less uniform extent, the storage compo-
nents of SWE and SM. Several data sets, however, exhibit in-
creased estimates from the early to late periods. For example,
the NCEP–DOE reanalysis precipitation, and corresponding
runoff derived by forcing the Noah LSM within the Eta at-
mospheric model, show increased median annual flux rates
from the early to late periods.

3.1.2 Trends

Only 19 out of 87 component estimates exhibit statistically
significant CONUS average domain trends, evaluated with
Sen’s slope, from 1982 to 2010 (Fig. 4). Within most com-
ponents, one or more data sets produced a significant slope
that is contradicted by one or more data sets. For example,
the R estimates from LSMs GLDAS-CLM, JRA-55/SiB, and
ERA5/H-TESSEL each show a significant negative trend in
annual values across the CONUS over the 1982–2010 period.
Conversely, the NCEP–DOE/Eta-Noah LSM shows a signif-
icant positive trend over the same period, and the remaining
data sets, a mix of hydrologic and reanalysis models, show
no significant trend. While the NCEP–DOE reanalysis pre-
cipitation trend matches that of the NCEP–DOE forced Eta-
Noah, model estimates of SWE indicate a significant nega-
tive trend.

3.2 Ecoregions

3.2.1 Magnitude variability

Uncertainty in modeled hydrologic component estimates in
each ecoregion is presented in terms of CV (Fig. 5) and σ
(Appendix A). Ecoregions are organized from west to east
within each figure. Results and discussion of uncertainty are
focused primarily on CV due to the disparity in annual wa-
ter flux between regions. By component, P and ET estimates
demonstrate lower uncertainty compared to other hydrologic
components (Fig. 5a, b). P estimates typically range in me-
dian uncertainty from 5 % to 14 % in the eastern CONUS
and 11 % to 21 % in the western CONUS. P uncertainty is
highest in mountainous regions with more variable topogra-
phy (e.g., Northwestern Forested Mountains and Temperate
Sierras) and lowest in more humid, topographically homoge-
neous regions (e.g., Eastern Temperate Forests).

The median uncertainties of ET estimates typically range
from 13 % to 22 % in the eastern CONUS ecoregions and
14 % to 26 % in the western CONUS. Uncertainty is great-
est along the Pacific coast and northerly ecoregions and arid
and semiarid ecoregions that are heavily influenced by an-
thropogenic water use. Of the four largest ecoregions (Ta-
ble 2), Northwestern Forested Mountains and North Amer-
ican Deserts demonstrate mean uncertainties of 21 % and
19 %, respectively, and the Great Plains and Eastern Tem-
perate Forests demonstrate mean uncertainties of 14 % each.

Estimates of R (Fig. 5c) generally exceed 29 % variability
throughout the study ecoregions, with median values reach-
ing or exceeding 72 % in arid, snow-sparse western ecore-
gions of North American Deserts, Southern Semiarid High-
lands, and Temperate Sierras, as well as in Tropical Wet
Forests influence by tropical storm systems. In the large
Northwestern Forested Mountains and Great Plains ecore-
gions, median data set variability is 28 % to 55 % and 47 %
to 81 %, respectively.

SWE estimate uncertainty is highlighted for the snow-
dominated Northwestern Forested Mountains and Northern
Forests ecoregions (Fig. 5d), where annual peak SWE val-
ues exceed estimated snowpack in the remaining ecoregions
by up to 700 % (Fig. B2). Of primary interest is the North-
western Forested Mountains ecoregion that contains the
snowmelt-dominated regimes of the Rocky, Sierra Nevada,
and Cascade mountain ranges that are strong contributors
to water supply for population centers such as Denver, Los
Angeles, San Francisco, Portland, and Seattle. In this ecore-
gion, modeled estimates of monthly mean SWE storage vary
by 76 % to 84 %, equating to median equivalent water depth
standard deviations as high as 48 mm per month.

SM(e) estimate uncertainty (Fig. 5e) is greatest, 66 %–
96 %, in arid western ecoregions, though other regions fall
within a 64 %–83 % uncertainty range. SM(v) shows lower
overall uncertainty (Fig. 5f), with less dramatic differences
between regions, ranging from 36 % to 57 %, with the great-
est uncertainty (44 %–57 %) in central and eastern CONUS
ecoregions. As mentioned previously, uncertainty in SM es-
timates, most importantly SM(e), is strongly influenced by
model-defined root zone soil thickness. Spatial differences
in SM(e) uncertainty measured as CV, therefore, are pro-
nounced in regions with lower water content because CV, a
measure of relative variability, is more strongly affected by
magnitude differences. Because the range of values is con-
strained from 0 to 1 in m3 per cubic meter, uncertainty in
SM(v) is less influenced by spatial variability in soil water
magnitudes and is therefore a better measure for understand-
ing regional soil water estimate disagreement. Following this
logic, SM(v) uncertainty is greater in Tropical Wet Forests,
Northern Forests, and Great Plains ecoregions, with an av-
erage CV of 53 % compared to an average of 42 % for the
remaining ecoregions.

3.2.2 SWE accumulation and ablation

Timing of SWE estimates is presented in terms of relative
timing (Figs. B3 and B4). Figures are divided by Northern
Forests and Northwestern Forested Mountains ecoregions,
trends of accumulation and ablation, and early and late pe-
riods. Negative (positive) values in purple (green), identify
models for which accumulation or ablation begins more than
1 month earlier (later) than the mean of other data sets. Dis-
tributions of relative timing by year are presented in Fig. B3
and summarized as the percentage of years that are positive
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Figure 4. Forest plot of interannual (water year) component estimate Sen’s slope from 1982 to 2010 for components of precipitation (P ),
evapotranspiration (ET), snow water equivalent (SWE), soil moisture in units of equivalent water depth (SM(e)), and soil moisture in units of
volumetric water content (SM(v)). Insignificant trends (p>0.05) are gray. Significant trends are colored based on direction, where negative
trends are gold and positive trends are green. Data sets without complete data during the study period are represented with hollow points,
and the temporal extent is noted under “Years in Period” column.
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Figure 5. Box plots of uncertainty, measured as annual coefficient of variation (CV), between component estimates at 10 ecoregions. CV
distributions are subdivided into late and early periods, i.e., 1985–1999 and 2000–2014. Box lower limits, midlines, and upper limits represent
the 25th, 50th (median), and 75th percentiles, respectively, of the associated data. Whiskers represent 1.5 times the interquartile range. Box
colors denote the ecoregion and correspond to the map colors in Fig. 1. Components displayed are precipitation (P ), evapotranspiration (ET),
runoff (R), snow water equivalent (SWE), soil moisture in units of equivalent water depth (SM(e)), and soil moisture in units of volumetric
water content (SM(v)). Results for SWE uncertainty are omitted for ecoregions with limited annual snowpack.

or negative in Fig. B4. In both ecoregions, uncertainty among
data sets is greater in ablation timing than accumulation tim-
ing, and overall uncertainty is greater in the Northwestern
Forested Mountains ecoregion than in the Northern Forests.

Relative timing between models can be similar between
ecoregions (Figs. B3a and B4), especially regarding accu-
mulation. For instance, the AMSR-E/Aqua RS and NHM-
MWBM CM consistently show later accumulation start dates
than other data sets in both ecoregions, while the ERA5-
Land/H-TESSEL, JRA-55/SiB, and SNODAS models esti-
mate earlier accumulation dates. Conversely, the JRA-25/SiB
and TerraClimate models show different trends in accumula-
tion timing between regions with earlier SWE accumulation
in Northern Forests but later accumulation in Northwestern
Forested Mountains.

Regarding ablation, outliers are much more common when
comparing models (Figs. B3b and B4). For example, the
Daymet model consistently estimates a much later start
of spring ablation while the Eta-Noah models driven with
NCEP–DOE and NCEP-NARR reanalyses typically estimate

much earlier ablation times, often 1–2 months after the mean
antecedent month (Fig. B3). Uncertainty in ablation timing is
typically much higher in the Northwestern Forested Moun-
tains ecoregion than in the Northern Forests. The Daymet,
ERA5-Land/H-TESSEL, Livneh-VIC, NLDAS2-VIC, and
SNODAS models commonly estimate a later start to ablation
than the remaining models.

Models that predict earlier (later) accumulation timing
and later (earlier) ablation timing represent longer (shorter)
periods of growing or available snowpack (Fig. B4). The
ERA5-Land/H-TESSEL, Livneh-VIC, and SNODAS mod-
els estimate longer snowpack periods than other models in
both ecoregions. The AMSR-E/Aqua, JRA-55/SiB, NHM-
PRMS, and TerraClimate models estimate longer snow-
pack periods in only one ecoregion. The NCEP-NARR/Eta-
Noah, NLDAS2-Mosaic, and NLDAS2-Noah models esti-
mate shorter snowpack periods in the Northern Forests ecore-
gion while the GLDAS-CLM and JRA-25/SiB models esti-
mate shorter snowpack periods in the Northwestern Forested
Mountains ecoregion.
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Attributing the relative timing of SWE to model type is
difficult at the monthly scale. LSMs estimate both earlier
and later accumulation and ablation antecedences, and the
two WBMs in this study show opposing timing trends. Simi-
larly, grouping by organization does not yield significant sim-
ilarities. For example, the timing of NLDAS2-driven LSMs
from the National Aeronautics and Space Administration
(NASA) is dissimilar from that of the MERRA-2-driven and
MERRA-Land-driven CLSM, which are also from NASA.
Forcing data also do not yield useful information for identi-
fying controlling variables. Only the NLDAS2-driven mod-
els from NASA tend to all show later (earlier) accumula-
tion (ablation) timing. Even the Eta-Noah LSMs, driven by
the NCEP–DOE reanalysis and the corresponding higher-
resolution version for North America NCEP-NARR show
different relative timing values in both ecoregions.

3.2.3 Trend

Interannual trend analyses performed with the Mann–
Kendall trend test (τ ) over water years 1982–2010 show
varying degrees of agreement and disagreement between
ecoregions. Figures showing explicit distributions of trends
with model names are supplied in the appendix (Fig. B5).
Model disagreement in trend direction is quantified using the
unalikeability coefficient (u; Fig. 6), with 0 and 1 being com-
plete agreement and disagreement, respectively.

Precipitation estimates demonstrate the lowest u, showing
no (u= 0) to low (u= 0.13) disagreement in eight ecore-
gions where data sets show no significant τ (Fig. B5a). Dis-
agreement is higher in North American Deserts and Temper-
ate Sierras ecoregions (u= 0.41–0.49) where most data sets
show a negative τ , and all data sets show a negative τ in the
Southern Semiarid Highlands. Coefficient u is higher among
ET data sets than P data sets, averaging 0.21 across ecore-
gions, notably in the North American Deserts and Marine
West Coast Forest ecoregions (u= 0.46 and 0.53), where
negative and insignificant τ values are present (Fig. B5b).
All data sets identify negative ET τ in the Southern Semi-
arid Highlands and Temperate Sierras. Data sets show pos-
itive, negative, and insignificant τ in the Eastern Temperate
Forests (u= 0.31) and Northern Forests (u= 0.53). Runoff
data sets show the most consistent spatial distribution of u>0
across the study ecoregions. Disagreement in the western
ecoregions is caused by conflicting negative and insignif-
icant Rτ (Fig. B5c), with the greatest u in the Southern
Semiarid Highlands (u= 0.50) and Temperate Sierras (u=
0.49). Eastern ecoregion τ is generally caused by conflicting
positive, negative, and insignificant τ values (u= 0.26–44).
Ecoregions with good agreement (u= 0–0.35) are generally
due to most data sets showing no significant trend.

SWE data sets, limited in this study to the Northwestern
Forested Mountains and Northern Forests, show disagree-
ment, i.e., u= 0.42 and 0.40, respectively, mostly caused
by conflicting negative and insignificant τ , though most data

sets show no significant trend (Fig. B5d). Trend agreement is
better among SM data sets (mean u= 0.25), though higher
u is noted in the Northwestern Forested Mountains, North
American Deserts, and Northern Forests and is caused by
conflicting negative and insignificant τ values. Ecoregions
with low u typically show no significant τ values in SM data
sets, except for the Southern Semiarid Highlands where most
data sets show a significant negative τ .

Generally, τ disagreement is highest in the North Amer-
ican Deserts and Northern Forests ecoregions and lowest
in the Mediterranean California, Eastern Temperate Forests,
Marine West Coast Forest, and Tropical Wet Forests ecore-
gions. Trend disagreement is almost always caused by con-
flicting negative and insignificant trends, indicating that dis-
agreement is due to the occurrence, and not the direction,
of the trend. That is to say, higher u values are caused by
disagreement over whether there is or is not a significant
trend present in the data, as opposed to higher u values be-
ing caused by disagreement between significant negative and
significant positive trends.

3.2.4 Correlation with remote sensing

Spearman’s rho (ρ) correlation was calculated for all hydro-
logic models and reanalysis data sets against remote sens-
ing products with 48 or more months of intersecting tempo-
ral extents (Fig. 7; Table 3). Precipitation data sets (Fig. 7a,
b), correlated against the GPCP-v3 and TMPA-3B43 prod-
ucts, show high correlation compared against 13 data sets
(ρ = 0.93–0.99) with no statistically insignificant values.
Variability in P estimate correlations are low (± 0.01–0.09).
ET data sets correlated against the MOD16-A2 and SSE-
Bop products (Fig. 7c, d) show poorer correlation in west-
ern ecoregions, with mean ρ ranging from 0.59 to 0.91. Ex-
treme cases are found when correlating against MOD16-
A2 in North American Deserts (ρ = −0.28) and SSEBop
in Mediterranean California (ρ = 0.25), where four data sets
show insignificant ρ. The exception in the western CONUS
is in Northwestern Forested Mountains, where models cor-
relate against both RS data sets well (MOD16-A2 ρ = 0.91
and SSEBop ρ = 0.89). Correlation against both products is
high in eastern ecoregions, ranging from ρ = 0.88 to 0.96,
with standard deviation decreasing as ρ increases.

SWE data sets correlated against the AMSR-E/Aqua prod-
uct are highlighted for the Northwestern Forested Mountains
and Northern Forests ecoregions (Fig. 7e). Modeled esti-
mates correlate better in the Northwestern Forested Moun-
tains (ρ = 0.91) than Northern Forests (ρ = 0.80). SM data
sets show worse and more variable ρ against remote sens-
ing products ESA-CCI and SMOS-L4 (Fig. 7f, g) than
other components. At the CONUS scale, estimates corre-
late very poorly against the ESA-CCI product (ρ = 0.17) and
only moderately well against SMOS-L4 (ρ = 0.68). Gen-
erally, correlation is best in the Mediterranean California
and Eastern Temperate Forests ecoregions (ρ = 0.74–0.92).
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Figure 6. Bar plots summarizing the disagreement in Mann–Kendall trend (τ ) direction using the unalikeability coefficient (u) after cate-
gorizing τ as significant negative trend, significant positive trend, or no significant trend for 10 ecoregions from 1982 to 2010. Trends were
assumed to be significant if p<0.05. u can range from complete agreement (u= 0) to complete disagreement (u= 1) when sample size (n)
is less than the number of categorical values (c). Because here n>c, maximum possible u is approximately 0.71 (dotted red line). Text to the
right of each bar shows, in order, the u value and the number of data sets showing the negative, insignificant, or positive trend. Bars are color
matched to ecoregion colors from Fig. 1 and are ordered from west (top) to east (bottom). Results are provided for water balance components
of precipitation (P ), evapotranspiration (ET), runoff (R), snow water equivalent (SWE), and soil moisture (SM) in units of either equivalent
water depth or volumetric water content.

Correlation is worst in Northwestern Forested Mountains,
North American Deserts, and Northern Forests (ESA-CCI
ρ = 0.44–0.61; SMOS-L4 ρ = 0.12–0.28). Explicit distribu-
tions of correlation for each data set by ecoregion are pro-
vided in Fig. B6.

3.2.5 Case study – impact of model selection on water
budget imbalances

A case study calculating 2925 10 year water budgets (WY
2001–2010) using 15 P , 15 ET, and 13 R estimates for each
of the 10 ecoregions was performed to demonstrate quantita-
tively how model selection can affect research results. Each
water budget was solved for a relative imbalance (Rε) with
Eq. (7), which estimated the model error as a fraction of total
water flux in P .

Histograms of the results, overlain with box plots (Fig. 8),
demonstrate the range and distribution of potential water
budget Rε values. In most ecoregions, Rε values exhibit an
approximately normal distribution. The following four ecore-
gions dominating the area of the CONUS (Fig. 8a–d), con-
stituting 90 % of the CONUS area (Table 2), are the focus
of these results: the western ecoregions of the Northwest-
ern Forested Mountains and North American deserts and the

eastern ecoregions of the Great Plains and Eastern Temper-
ate Forests (11 %, 19 %, 29 %, and 31 % of the CONUS area,
respectively).

Of these larger domains, water budget Rε values in the
eastern ecoregions show much lower variability (Table 4),
with the Great Plains and Eastern Temperate Forests yield-
ing σ values of 18.2 percentage points and 14.3 percent-
age points, respectively, and medians of 3.9 % and −0.4 %,
respectively. Similarly, the 10th and 90th percentiles (P10
and P90) are −23.2 % and 23.6 % for the Great Plains and
−19.9 % and 17.2 % for the Eastern Temperate Forests. In
contrast, the major western ecoregions exhibit much higher
variability, with Northwestern Forested Mountains and North
American Desert σ values of 45.6 % and 27.0 %, respec-
tively, and medians of −6.7 % and 4.7 %, respectively. P10
and P90 are higher than eastern regions as well, yielding
−83.3 % and 23.8 % for the Northwestern Forested Moun-
tains and −33.2 % and 36.6 % for the North American
Deserts. Smaller ecoregions (Fig. 8e–j) yield similar spatial
trends in variability, with the eastern Northern Forests ecore-
gion showing lower σ and P10 and P90 than the western Ma-
rine West Coast Forest and Mediterranean California ecore-
gions.
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Figure 7. Spearman’s rho (ρ) correlation values of hydrologic model and reanalysis data set component estimates against remote-sensing-
derived products for components of precipitation (P ), evapotranspiration (ET), soil moisture in units of both equivalent water depth (SM(e))
and volumetric water content (SM(v)), and snow water equivalent (SWE). The title of each sub-plot (e.g., Fig. 7a) provides the hydrologic
component (e.g., P ) and the remote sensing product against which the data set was correlated (e.g., GPCP-v3). Statistically significant ρ
values (p<0.05) are shown as colored circles. Insignificant ρ values (p>0.05) are shown as black squares. Horizontal bars within each
ecoregion denote mean ρ. Point and bar colors correspond to ecoregions, as shown in Fig. 1. Each point or square corresponds to a single
modeled data set, with points sorted by descending ρ value. More detailed information can be found in Fig. B6.

The Northwestern Forested Mountains region, accounting
for 11 % of the CONUS area, is unique among ecoregions
in this study. It exhibits the greatest magnitude of variability
in iterative water budget Rε, P10–P90 Rε ranges, skewness
(−1.6), and kurtosis (3.7). Furthermore, the difference be-
tween the ensemble water budget Rε and median iterative
water budget Rε is greater than any other ecoregion (−6.3
points).

4 Discussion

Results of model comparisons demonstrate the effect
that model disagreement can have on both regional- and
continental-scale research. Comparisons of P estimates
agree with previous findings (Derin and Yilmaz, 2014; Guir-
guis and Avissar, 2008; Sun et al., 2018), noting increased
uncertainty between products in regions of complex topog-
raphy. ET comparisons showed that LSMs are more likely to
produce lower annual ET than CMs and WBMs, similar to re-
sults found by Mueller et al. (2011), and that model disagree-
ment is higher in Pacific regions, similar to the comparison
and validation of MOD16-A2, NLDAS2-Noah, and ALEXI
by Carter et al. (2018). However, this paper finds some differ-
ences from the work of Carter et al. (2018) and notes a higher

uncertainty of ET estimates in arid, semiarid, and mountain-
ous regions, as well as lower uncertainty in eastern regions.
Haddeland et al. (2011) found that LSMs underestimate R
partitioning relative to global hydrologic models (not used in
this paper). Here, we find that LSMs are more likely to esti-
mate greater R than either WBMs or CMs. Xia et al. (2012a,
b) noted greater model disagreement in R estimates between
several LSMs in the northeastern and western mountainous
regions of the CONUS. This paper, using CV as a measure of
relative uncertainty, alternatively shows that modeled runoff
uncertainty is higher in the arid and semiarid regions of the
western CONUS where annual R rates are lower.

Previous analyses of modeled SWE estimates focused
largely on the validation of winter snowpack magnitudes
against the SNODAS model or on the timing of accumulation
and ablation periods. Broxton et al. (2016) found that LSMs
estimated earlier ablation timing than observational measure-
ments, in contrast with the results of Essery et al. (2009) and
Rutter et al. (2009), who noted later timing in LSMs. Our re-
sults indicate the alternative argument that neither snow ac-
cumulation nor ablation timing can be accurately attributed
solely to model design and note differences in relative timing
of as much as 2 months between LSMs. In contrast to the ar-
guments by Murdryk et al. (2015) and Broxton et al. (2016),

https://doi.org/10.5194/hess-25-1529-2021 Hydrol. Earth Syst. Sci., 25, 1529–1568, 2021



1544 S. Saxe et al.: A comparison of publicly available, CONUS-extent hydrologic component estimates

Table 4. Summary statistics of ecoregion water budget calculations summed for complete water years 2001–2010. Median (P50) and standard
deviation (σ ) summarize the iterative water budgets’ (n= 2925) relative imbalances (Rε) in units of percent. The 10th, 25th, 75th, and 90th
percentiles (Pi ) quantify the distribution ranges, along with skew (γ ) and kurtosis (K). The ensemble column µ provides water budget Rε
produced from the ensemble mean of all data sets available for water years 2001–2010.

Ecoregion σ P10 P25 P50 P75 P90 µ γ K

Marine West Coast Forest ±29.5 −46.0 −21.3 −2.3 12.2 26.8 −3.8 −0.9 1.1
Mediterranean California ±27.0 −45.4 −18.6 −3.6 9.8 23.0 −4.7 −1.0 1.3
Northwestern Forested Mountains∗ ±45.6 −83.3 −35.0 −6.7 10.5 23.8 −13.0 −1.7 4.3
North American Deserts∗ ±27.0 −33.2 −13.7 4.7 21.1 36.6 3.8 −0.5 0.3
Southern Semiarid Highlands ±30.0 −40.5 −7.2 4.9 19.0 45.2 5.8 −0.7 1.5
Temperate Sierras ±37.2 −64.6 −15.5 3.0 14.9 31.4 0.4 −1.4 2.2
Great Plains∗ ±18.2 −23.2 −9.1 3.9 14.8 23.6 2.5 −0.6 0.5
Eastern Temperate Forests∗ ±14.3 −19.9 −10.4 −0.4 8.8 17.2 −0.5 −0.2 −0.1
Northern Forests ±18.9 −24.3 −13.0 −0.2 12.6 23.9 0.4 −0.1 0.0
Tropical Wet Forest ±24.6 −35.5 −16.7 0.5 15.2 27.4 −0.7 −0.6 0.4

∗ Primary focus ecoregions.

who concluded that uncertainty in estimates may be con-
trolled by differences in model structure, the results here
show that attributing model differences to structure is likely
impossible without controlling for forcing data, model pa-
rameters, and calibration methods. Properly identifying con-
trols on model differences requires robust MIPs wherein hy-
drologic models are operated within the confines of strict in-
put data and calibration schemes, such as those performed by
Haddeland et al. (2011), Kollet et al. (2017), or Rosenzweig
et al. (2013).

Perhaps the most important variable controlling uncertain-
ties in SM(e) is the discrepancies in model-defined root zone
depth. Typically, the largest surface storage component in
the hydrologic cycle, i.e., differences in SM(e) estimates,
will more greatly affect water availability calculations than
any other component. Koster et al. (2009) argued that mod-
eled soil moisture, related in units of equivalent water depth
(i.e., SM(e)), should not be considered direct measures of ac-
tual soil water content but should instead be used as relative
values to identify seasonal to annual trends and responses
to changing climatology. However, LSM estimates of soil
moisture depth are commonly applied in research applica-
tions as direct measures of soil water content. For example,
groundwater storage trends are calculated from Gravity Re-
covery and Climate Experiment (GRACE) solutions of ter-
restrial water storage anomalies (Rodell et al., 2007; Scan-
lon et al., 2012; Thomas and Famiglietti, 2019; Voss et al.,
2013). Groundwater storage is calculated as the remainder
after removing surface storage components, such as mod-
eled surface water storage, SWE, and SM(e) storage values,
from GRACE terrestrial water storage. Because estimates of
SM(e) can vary by 64 % to 96 %, groundwater storage val-
ues derived from GRACE solutions will be significantly af-
fected. Groundwater storage values are most commonly ex-
tracted using the NLDAS2- or GLDAS-driven LSMs of Mo-
saic, Noah, VIC, or CLM that agree more in monthly SM(e)

magnitude than with other estimates from WBMs or CMs.
However, even those products show differences in SM(e) es-
timates of up to 250 mm per year. Therefore, quantifying dif-
ferences in SM(e) is useful in understanding the uncertainty
propagation in research results.

In terms of evaluating surface water availability, snowmelt
from the Northwestern Forested Mountains ecoregion is
a primary supply of water for many western population
centers. However, disagreement between models of annual
snowpack in this study, measured as SWE, averages 97 %,
and relative variability and timing on accumulation or abla-
tion can vary by up to 2 months. These levels of disagreement
strongly affect the accuracy of predictive and retrospective
snow water analyses of both present snowpack and long-term
trends.

LSMs, typically targeted to estimate the vertical ET flux,
generally overestimate R compared to CMs. Conversely,
CMs, targeted to estimate the horizontal R flux, often over-
estimate ET compared to LSMs. This is likely an example of
equifinality (Beven, 2006), wherein target variable accuracy
may be reached without accurately representing the complete
hydrologic system. In comparing model output by organiza-
tion, estimates of P , ET, and SWE produced by NASA are
often lower in magnitude than those produced by the USGS
and European Centre for Medium-Range Weather Forecasts
(ECMWF), indicating organizational differences in model
operation methods, such as forcing data selection or calibra-
tion methodology.

Results of the water budget case studies demonstrate that
water budget Rε values are more variable in the western
CONUS, with σ of ± 27.0 % to 45.6 % by ecoregion, al-
though even eastern CONUS Rε values range in variability
from± 14.3 % to 18.9 % by ecoregion. In all regions, various
combinations of products can result in both positive and neg-
ative imbalances (ε), yielding alarmingly different research
implications. Positive ε (P>ET+R) means that more water
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Figure 8. Histograms of 10 ecoregion water budget relative imbal-
ances calculated from combinations of all annual precipitation (15),
evapotranspiration (15), and runoff (13) data sets with complete
data from water years 2001–2010 (Table 1). Each region yielded
2925 water budgets. Relative imbalances are calculated as a per-
centage of annual P . The 10th and 90th percentiles of each ecore-
gion distribution are provided as vertical dotted lines. Dashed ver-
tical lines represent the relative imbalances of 10 year (2001–2010)
water budgets from the ensemble mean of all modeled products.

is entering a system than leaving. Assuming a limited influ-
ence of model uncertainty, this would imply that excluded
natural or anthropogenic fluxes are removing water from the
P = ET+R system. This could be interpreted as the presence
of long-term natural contributions to storage components,
such as soil moisture or groundwater, or as the presence of
anthropogenic extractions. The same region, depending on
the models selected, could yield negative ε (P<ET+R), im-
plying the presence of additive fluxes such as releases from
surface storage or increased irrigation from imported water.

Results in this paper supplement the work of Haddeland
et al. (2011), who argued that climate change effect model-
ing on large-scale hydrologic processes should utilize a range
of model estimates rather than rely on a single model real-
ization. Indeed, we show that model variability in storage
components often exceeds the magnitude of the measure-
ments themselves, calling into question the functional appli-
cation of terrestrial storage estimates. Our work shows that

ensembles of model estimates are not only useful but are
in fact a necessity for better understanding and quantifying
current knowledge of terrestrial hydrology. Improved ensem-
bling methods, as was done by Zaherpour et al. (2019), will
likely be invaluable resources in the fields of terrestrial hy-
drology, climatology, and meteorology modeling. Work by
Newman et al. (2015) and Addor et al. (2017) organized nu-
merous modeled data sets across hundreds of watersheds in
the USA through the Catchment Attributes and MEteorol-
ogy for Large-sample Studies (CAMELs) data set, compiling
meteorological, geophysical, and hydrologic response vari-
ables. Data hosted within the CAMELs data set, and the data
sets prepared for this study (Saxe et al., 2020), reduce the
workload for users for a better understanding of the inherent
uncertainty in modeled products. This comprehensive and
systematic comparison helps elucidate where we, as a sci-
entific community, could better target research efforts to rec-
oncile large-extent estimates of the hydrologic cycle. Most
importantly, differences in modeled SM(e), both in terms of
magnitude depth and correlation against RS products, would
need to be addressed at the continental scale to better un-
derstand the largest surface store. Furthermore, estimates in
SWE, ET, and R need to be reconciled in much of the west-
ern CONUS to provide a more accurate retrospective and
operational overview of the hydrologic cycle. Finally, differ-
ences in hydrologic estimates warrant incorporation into fu-
ture analysis that use these products to provide the scientific
community with a more robust understanding of results con-
fidence and areas of uncertainty. All data sets explored in this
paper are easily obtained from publicly available sources,
and modern data-processing workflows are applied to mul-
tiple data sets without difficulty.

5 Conclusions

Model selection can significantly alter results and findings
when used as a substitute for observational data. Publicly
available modeled estimates are commonly used within the
scientific community, though the literature that effectively
evaluates differences in magnitude and trend in the context
of application is rare. MIPs abound within the scientific lit-
erature, often focusing on the causes of model disagreement
(e.g., forcing data, model structure, and calibration) and vali-
dating against in situ observational data despite limited avail-
ability. In contrast, this study investigated how publicly avail-
able modeled estimates of hydrologic flux and storage com-
ponents can affect scientific analyses by quantifying the dis-
agreement between numerous hydrologic models, reanalysis
data sets, and remote sensing products.

Results show that flux and storage magnitudes disagree
most greatly in the western CONUS, with uncertainty (mea-
sured as a coefficient of variation) ranging from 11 % to 21 %
for precipitation (P ), 14 % to 26 % for evapotranspiration
(ET), 28 % to 82 % for runoff (R), 76 % to 84 % for snow
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water equivalent (SWE), and 36 % to 96 % for soil moisture
(SM). In the eastern CONUS, uncertainty is somewhat lower,
ranging from 5 % to 14 % for P , 13 % to 22 % for ET, 28 % to
82 % forR, 53 % to 63 % for SWE, and 42 % to 83 % for SM.
Interannual trends in estimates from 1982 to 2010 show more
comprehensive agreement for P and ET fluxes, but common
disagreement for R, SWE, and SM. Disagreement in trends
(i.e., positive versus negative versus insignificant) between
models is typically a result of conflicting negative and in-
significant trends rather than between negative and positive
trends, indicating that the disagreement is due to the occur-
rence and not the direction of trend. Correlating fluxes and
stores against remote-sensing-derived products show poor
overall correlation in the western CONUS for ET and SM.
P correlates well in all regions, and SWE correlates well in
the primary regions of Northwestern Forested Mountains and
Northern Forests.

A water budget analysis, performed by iterating through
all combinations of publicly available modeled products
highlighted in this research, shows that in large eastern ecore-
gions the model selection can result in relative imbalances
ranging from −50 % to 50 %. In larger western ecoregions,
relative imbalances can range from −150 % to 60 %.

Publicly available modeled estimates of the hydrologic
system accelerate the development of scientific research by
reducing the necessary workload, processing time, and tech-
nical expertise for researchers. In addition, estimates fill
knowledge gaps in fluxes and stores where observational data
are incomplete. Metrics of disagreement in component esti-
mates presented here help to describe the uncertainty of the
scientific community’s current state of knowledge. The un-
certainty inherent in modern data sets can affect the results
of studies as diverse as satellite-derived groundwater esti-
mates and predictive snowmelt analyses. Our results high-
light problem areas within CONUS-extent hydrologic esti-
mation efforts that warrant better understanding and address-
ing in future endeavors. Most importantly, our results show
that the most important issues to reconcile are disagreement,
in terms of both magnitude and long-term trend, and of (a)
SM storage across the CONUS, (b) SWE storage in west-
ern mountains, and (c) hydrologic fluxes in western arid and
semiarid regions. Additionally, our results support the find-
ings of previous studies and agree that future work applying
modeled data would prove to be more accurate, more infor-
mative, and more robust by incorporating model ensembles
to provide confidence intervals, better quantify result uncer-
tainty, and improve overall accuracy.
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Appendix A

Acronym Product description

Hydrologic models

CPC Climate Prediction Center
Root zone soil moisture (equivalent water depth) estimated through a one-layer water balance model
forced by CPC reanalysis precipitation and temperature. Resolutions are monthly at 1/2◦, from 1948
to the present for the globe (Fan and van den Dool, 2004). (Author’s acknowledgement – CPC soil
moisture data are provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from https://www.
esrl.noaa.gov/psd/, last access: 1 September 2019.)

CSIRO-PML Commonwealth Scientific and Industrial Research Organisation
Estimates of evapotranspiration generated by a spatially explicit Penman–Monteith–Leuning (PML)
model constrained annually by the Fu hydroclimatic model. The model is driven by precipitation, tem-
perature, vapor pressure, wind speed, and radiation estimates. Data sets used include reanalysis clima-
tology and meteorology products and ex situ surface and vegetation data. Resolutions are monthly at
1/2◦ spatial resolution, from 1981 to 2012, for the globe (Zhang et al., 2016).

ERA5/
H-TESSEL

Hydrology revised-Tiled ECMWF Scheme for Surface Exchanges over Land forced with the ERA5
reanalysis
From the European Centre for Medium-Range Weather Forecasts (ECMWF), a land surface model,
improved from the original TESSEL model, estimates land surface and subsurface fluxes and stores.
The model is structured with four soil layers (0–7, 7–28, 28–100, and 100–289 cm), a single snow
layer, two sub-grid vegetation types, and a spatially variant soil type. This paper uses model output
forced with ERA5 reanalysis data (see below), provided by Copernicus Climate Change Service (C3S),
in conjunction with the reanalysis product. Resolutions are hourly at 0.25◦, from 1979 to the present,
for the globe (Balsamo et al., 2009; Muñoz Sabater, 2019). (Author’s acknowledgement – contains
modified Copernicus Climate Change Service Information, 2019.)

ERA5-Land/
H-TESSEL

Hydrology revised-Tiled ECMWF Scheme for Surface Exchanges over Land forced with the ERA5-
Land reanalysis
From the ECMWF, a land surface model, improved from the original TESSEL model, estimates land
surface and subsurface fluxes and stores. See above for a description of the model structure. This paper
uses model output forced with ERA5-Land reanalysis data (see below), provided by C3S, in conjunc-
tion with the reanalysis product. Resolutions are hourly at 0.1◦ from 2001 to the present for the globe
(Balsamo et al., 2009; C3S, 2019). (Author’s acknowledgement – contains modified Copernicus Cli-
mate Change Service Information, 2019.)

GLDAS-CLM Community Land Model, V2, driven by the NASA GLDAS
From the National Aeronautics and Space Administration (NASA) Global Land Data Assimilation
System (GLDAS), a single-column land surface model that estimates surface and subsurface fluxes
and stores within independent spatial domains. The model is structured with variable layer spacing
for soil temperature and moisture, multilayer snow process parameterization, TOPMODEL-concept
runoff parameterization, a canopy photosynthesis–conductance model, and tiling treatments for sub-
grid energy and water balances. Model input requirements are land surface types, soil and vegetation
parameters, model initialization states, and climatological forcing data. This study uses the operational
version driven by the NASA GLDAS. Resolutions are sub-daily at 1◦ from 1979 to the present for the
globe (Dai et al., 2003; Rodell et al., 2004, 2007).
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Acronym Product description

Hydrologic models

GLEAM Global Land Evaporation Amsterdam Model
Estimates land evaporation, surface soil moisture, root zone soil moisture, potential evaporation, and
evaporative stress conditions. Potential evapotranspiration is calculated using the Priestly–Taylor
equation on reanalysis, in situ, and ex situ meteorological measurements. Actual evapotranspiration
is calculated using an evaporative stress factor based on root zone soil moisture estimates and mi-
crowave ex situ observations. Root zone soil moisture is estimated through a water balance model.
Model generation 3.3 replaces reanalysis measurements from ERA-Interim with ERA-5 (see below).
Model version 3.3b differs from 3.3a by utilizing primarily ex situ data and excluding reanalysis
products. Resolutions are daily at 1/4◦ from 1980 to the present for the globe (Martens et al., 2017;
Miralles et al., 2011).

JRA-25/SiB Simple Biosphere model forced with Japanese 25-year Reanalysis
Land surface flux and store estimates generated as output from the Japan Meteorological Agency
(JMA)-operated Simple Biosphere model (SiB) forced with Japanese 25-year Reanalysis (JRA-25)
reanalysis. The predecessor to modern land surface models such as Mosaic, the model is biophysi-
cally based and structured with two vegetation layers (canopy and ground cover) and three soil lay-
ers. Resolutions are sub-daily to daily at T106 (∼ 110 km) from 1979 to 2004 for the globe (NCAR
Research Staff, 2016; Onogi et al., 2007; Sellers et al., 1986).

JRA-55/SiB Simple Biosphere model forced with Japanese 55-year Reanalysis
Land surface flux and store estimates generated as output from the JMA-operated SiB model forced
with Japanese 55-year Reanalysis (JRA-55). See above for the model description. Resolutions are
sub-daily to daily at T319 (∼ 55 km) from 1957 to the present for the globe (Kobayashi et al., 2015;
Kobayashi and NCAR Research Staff, 2019; Sellers et al., 1986).

Livneh-VIC Variable Infiltration Capacity (VIC) model forced and calibrated by Livneh et al. (2013)
Modeled estimates of soil moisture, snow water equivalent, discharge, and surface heat fluxes gen-
erated by forcing the VIC model with the Livneh et al. 2013 reanalysis meteorological data set (see
below). See below (NLDAS2-VIC) for a description of the model structure. Resolutions are sub-
daily to daily at 1/16◦ from 1915 to 2011 for the conterminous United States (Liang et al., 1994;
Livneh et al., 2013).

MERRA- Catchment land surface model (CLSM) forced with MERRA-Land reanalysis
Land/CLSM A land surface model developed to improve the treatment of the horizontal hydrologic process in

response to previous land surface model over-attention to vertical processes. The model is structured
around tiled hydrologic catchments defined by topography, two soil layers, and three snow layers.
This paper uses surface estimates generated from the MERRA-Land forced version from GEOS-5,
released in conjunction with the MERRA-Land reanalysis product (see below). Resolutions are sub-
daily at 1/2◦ from 1980 to 2016 for the globe (Koster et al., 2000; Reichle et al., 2011; Rienecker et
al., 2011).

MERRA-2/ Catchment land surface model forced with MERRA-2 reanalysis
CLSM A land surface model estimating surface and subsurface hydrologic fluxes and stores. See above for

the model description. This paper uses estimates generated from the MERRA-2-forced version from
GEOS-5, released in conjunction with the MERRA-2 reanalysis product (see below). Resolutions
are sub-daily at 1/2◦ from 1980 to the present (Gelaro et al., 2017; Reichle et al., 2017).
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Acronym Product description

Hydrologic models

NCEP–DOE/
Eta-Noah

Noah land surface model forced with National Centers for Environmental Prediction–Department of
Energy, R-2 reanalysis
Noah land surface model estimates surface and subsurface hydrologic fluxes. See below (NLDAS2-
Noah) for the model description. Model estimates here are generated through the Noah land surface
model component of the National Centers for Environmental Prediction (NCEP) Eta atmospheric
model forced with NCEP–Department of Energy (DOE) reanalysis (see below), released in con-
junction with the NCEP–DOE product. Resolutions are sub-daily at T62 (∼ 210 km) gridding from
1979 to the present for the globe (Kalnay et al., 1996; Kanamitsu et al., 2002). (Author acknowledg-
ment – NCEP_Reanalysis 2 data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from https://www.esrl.noaa.gov/psd/, last access: 1 October 2019.)

NCEP-NARR/
Eta-Noah

Noah land surface model forced with National Centers for Environmental Prediction North American
Regional Reanalysis
Noah land surface model estimates produced as a component of the larger Eta atmospheric model.
See below (NLDAS2-Noah) for the model description. Model estimates here are generated through
the Noah surface model component of the NCEP Eta atmospheric model forced with NCEP North
American Regional Reanalysis (NCEP-NARR), released in conjunction with the NCEP-NARR
product. Resolutions are sub-daily at 32 km from 1979 to the present for North America (Mesinger
et al., 2006). (Author’s acknowledgement– NCEP Reanalysis data provided by NOAA/OAR/ESRL
PSD, Boulder, Colorado, USA, from https://www.esrl.noaa.gov/psd/, last access: 1 October 2019.)

NHM-MWBM National Hydrologic Model framework Monthly Water Balance Model
A water balance model applied within the U.S. Geological Survey’s National Hydrologic Model
framework that utilizes a monthly accounting procedure to estimate evapotranspiration, runoff, soil
moisture, and snow water equivalent based on methodology from Thornthwaite (1948). Resolutions
are monthly at Hydrologic Response Units from 1949 to 2010 for the conterminous United States
(McCabe and Markstrom, 2007).

NHM-PRMS National Hydrologic Model framework Precipitation Runoff Modeling System
A process-based, deterministic hydrologic model applied within the framework of the U.S. Geolog-
ical Survey’s National Hydrologic Model that estimates various surface and subsurface fluxes and
stores using a conceptualized watershed composed of a series of reservoirs, stream segments, and
lakes maintained with a balanced water budget. The model utilizes reanalysis and ex situ physical
characteristic data of topography, soils, vegetation, geology, and land use to derive required param-
eters and is driven by precipitation and temperature reanalysis products. Resolutions are daily at
Hydrologic Response Units from 1980 to 2016 for the conterminous United States (Markstrom et
al., 2015; Regan et al., 2018).

NLDAS2-Mosaic Mosaic model driven by the NASA NLDAS, Phase 2
A land surface model, directly descended from the SiB land surface model, that estimates surface and
subsurface fluxes and stores, originally targeted to be coupled with climate and weather models. The
model is structured to allow vegetation control over surface energy and water balances, a canopy
interception reservoir, three soil reservoirs (thin surface, middle root zone, and lower recharge),
and a complete snow budget. The model name is derived from the mosaic approach of tiling sub-
grid cells into homogeneous vegetation types with independent energy balances. This study uses
the operational version driven by the NASA NLDAS Phase 2 (see below), wherein the model was
configured to support up to 10 tiles per grid cell, each with specified predominant soil types and
three spatially invariant soil layers. Resolutions are hourly at 1/8◦ from 1979 to the present for
North America (Koster and Suarez, 1996; Xia et al., 2012a, b).
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Acronym Product description

Hydrologic models

NLDAS2-Noah Noah model driven by the NASA NLDAS, Phase 2
A grid-based land surface model, simpler than the Noah-MP version, originally developed as a com-
ponent of the NOAA-NCEP Eta model and updated for use in the NASA NLDAS, Phase 2 (see
below) and is used within the Weather Research and Forecasting (WRF) atmospheric model, the
National Oceanic and Atmospheric Administration-NCEP Climate Forecast System (NOAA-NCEP
CFS), and the NOAA Global Forecast System. The model is structured with four spatially invariant
thickness soil layers (three layers forming the root zone system in non-forested regions and four in
forested regions) and can simulate soil freeze–thaw processes. This study uses the operational ver-
sion (Noah-2.8) driven by the NASA NLDAS, Phase 2 (see below). Resolutions are hourly at 1/8◦

from 1979 to the present for North America (Ek et al., 2003; Xia et al., 2012b).

NLDAS2-VIC Variable Infiltration Capacity (VIC) model driven by NLDAS, Phase 2
A semi-distributed, grid-based hydrologic model estimating surface and subsurface fluxes and stores.
Model structure is composed of three soil layers (top spatially invariant 10 cm thickness; others spa-
tially variant) with root zone depth controlled by vegetation. The model utilizes sub-grid vegetation
tiling similar to the Mosaic land surface model (see above) and a two-layer energy balance snow
model. This study uses the operational version driven by the NASA NLDAS, Phase 2 (see below).
Resolutions are hourly at 1/8◦ from 1979 to the present for North America (Liang et al., 1994; Xia
et al., 2012b, c).

SNODAS SNOw Data Assimilation System
Estimates snow cover and snow water equivalent by integrating modeled snow estimates with ob-
servational and reanalysis data from in situ and ex situ sources. The primary estimation method is a
physically based, spatially distributed energy and mass balance snow model forced by downscaled
output from the National Weather Service Rapid Refresh weather forecast model. In situ and ex
situ data sources are applied, depending on difference fields between modeled and observed values,
and used to perform immediate model calibrations. Resolutions are daily at 1 km from 2003 to the
present for North America (Barrett, 2003; National Operational Hydrologic Remote Sensing Center,
2004).

TerraClimate TerraClimate
A data set utilizing both reanalysis and water budget modeling to generate estimates of climate, mete-
orological, and hydrologic variables. Climate and meteorological estimates are calculated by apply-
ing interpolated time-varying anomalies from both Climate Research Unit (CRU) Ts4.0 and JRA-55
to the higher-resolution WorldClim climatology. Hydrologic estimates of evapotranspiration, precip-
itation, temperature, and soil water capacity are generated through a modified Thornthwaite–Mather
climatic water balance model. Water-balance-derived resolutions are monthly at 1/2◦ from 1958 to
the present for the globe (Abatzoglou et al., 2018).

VegET Vegetation ET
Estimates root zone soil moisture and evapotranspiration through a precipitation-driven 1D root
zone water balance model. Because the model is parameterized to operate on a control volume us-
ing water-holding capacity, it captures only evapotranspiration from vegetation sources (i.e., natural
conditions) and does not consider anthropogenic (i.e., non-natural) water use. Data were provided
via personal correspondence with the authors. Resolutions are daily at 1 km from 2000 to 2014 for
the conterminous United States (Senay, 2008; Velpuri and Senay, 2017).
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Acronym Product description

Reanalysis

CanSISE Canadian Sea Ice and Snow Evolution Network, V2
Estimates snow water equivalent (SWE) by merging five observation-based estimates through an
adapted ensemble mean methodology. Merged products are (1) GlobSnow-combined SWE (merges
ex situ passive microwave and in situ weather station observations), (2) ERA-Interim reanalysis,
(3) MERRA reanalysis, (4) SWE from the Interactions Soil–Biosphere–Atmosphere (ISBA) land
surface model forced with ERA-Interim reanalysis (see below), and (5) NASA Global Land Data
Assimilation System reanalysis. Resolutions are daily at 1◦ from 1981 to 2010 for the Northern
Hemisphere (Mudryk et al., 2015; Mudryk and Derksen, 2017).

CMAP Climate Prediction Center (CPC) Merged Analysis of Precipitation
From the CPC, this model estimates precipitation by blending various in situ, ex situ, and re-
analysis data sets. The standard product estimates precipitation by blending ex situ Global Pre-
cipitation Index (GPI), Outgoing Longwave Radiation (OLR) Precipitation Index (OPI), Special
Sensor Microwave/Imager (SSM/I) emission, and Microwave Sounding Unit (MSU) data with in
situ precipitation gauge measurement data. The enhanced product additionally includes blended
NCEP-NCAR reanalysis (see below) precipitation estimates. Resolutions are monthly at 2 1/2◦

from 1979 to the present for the globe (Xie and Arkin, 1997). (Author’s acknowledgement –
CMAP precipitation data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from
https://www.esrl.noaa.gov/psd/, last access: 1 October 2019.)

Daymet Daily Surface Weather Data on a 1 km Grid for North America, V3
Version 3 of the Daymet model generates estimates of temperature, precipitation, radiation, vapor
pressure, snow water equivalent, and day length from in situ observations of temperature and pre-
cipitation and digital elevation data. Interpolation is performed using the spatial convolution of a
truncated Gaussian weighting filter with an iterative station density algorithm applied to heteroge-
neous observation distribution in complex terrain. Snow water equivalent is estimated using a simple
temperature-based snowmelt model from Running and Coughlan (1988). This paper assigns Daymet
snow water equivalent estimates to the reanalysis category because of the snow model’s simplicity
and lack of a physical or conceptual hydrologic framework. The best descriptions of the current
model framework are found on the ORNL DAAC website (https://daac.ornl.gov/DAYMET/guides/
Daymet_V3_CFMosaics.html, last access: 1 October 2019). Resolutions are daily at 1 km from 1980
to the present for North America (Thornton et al., 1997, 2000, 2017).

ERA5 ECMWF reanalysis, fifth product
Generates numerous estimates of climate and meteorological variables by assimilating observational
data from 55 ex situ and 19 in situ sources using the 4D-Var variational method. Previous generations
of the ERA product were FGGE, ERA-15, ERA-40, and ERA-Interim, which are all now out of ser-
vice. Resolutions are hourly at 0.25◦ from 1979 to the present for the globe (Muñoz Sabater, 2019).
(Author’s acknowledgement – contains modified Copernicus Climate Change Service Information,
2019.)

ERA5-Land ECMWF reanalysis, fifth product
Estimates of climate, meteorological, and surface hydrology fluxes by replaying the ERA5 reanalysis
(see above) land component at a higher spatial resolution. Resolutions are hourly at 0.1◦ from 2001 to
the present for the globe (Balsamo et al., 2009; Muñoz Sabater, 2019). (Author’s acknowledgement
– contains modified Copernicus Climate Change Service Information, 2019.)
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Acronym Product description

Reanalysis

GPCC Global Precipitation Climatology Centre
Monthly accumulated precipitation estimates based on 67 200 in situ observational stations with
decadal or longer temporal spans. The data set used in this paper is V7, one of two GPCC full
data products, which the product’s authors suggest has the highest accuracy of their data sets. Res-
olutions are monthly at 1/2◦ from 1901 to 2013 for the globe (Becker et al., 2013; Schneider et
al., 2011). (Author’s acknowledgement – GPCC precipitation data provided by NOAA/OAR/ESRL
PSD, Boulder, Colorado, USA, from https://www.esrl.noaa.gov/psd/, last access: 1 October 2019.)

gridMET gridMET (or METDATA)
Estimates temperature, precipitation, downward shortwave radiation, wind velocity, humidity, rela-
tive humidity, and specific humidity by blending PRISM reanalysis (see below) climate data with
NLDAS2 reanalysis (see below) data. Resolutions are daily at 1/24◦ from 1979 to the present for
the conterminous United States (Abatzoglou, 2013).

Livneh et al. Livneh daily CONUS near-surface gridded observed meteorological data
(2013) Near-surface meteorological estimates generated from approximately 20 000 NOAA Cooperative

Observer station daily data sets. Precipitation and temperature in situ observations are converted to
grids using the synergraphic mapping system, which is wind data linearly interpolated from the lower
resolution NCEP-NCAR reanalysis data set. Other variables were derived using methods from the
mountain microclimate simulator. Daily temperature data is converted to 3 h using spline interpola-
tion. Resolutions are daily at 1/16◦ from 1915 to 2011 for the conterminous United States (Livneh et
al., 2013). (Author’s acknowledgement – Livneh data provided by NOAA/OAR/ESRL PSD, Boul-
der, Colorado, USA, from https://www.esrl.noaa.gov/psd/, last access: 1 October 2019.)

Maurer et al. Maurer et al. (2002)
(2002) Meteorological and surface hydrologic estimates generated through both reanalysis and hydrologic

modeling. Precipitation gridded from in situ daily measurement stations using the synergraphic map-
ping system algorithm scaled to match PRISM (see below) long-term averages. Surface estimates
derived through the VIC (see above) hydrologic model. Resolutions are daily at 1/8◦ from 1950 to
1999 for North America (Maurer et al., 2002).

MERRA-Land Modern-Era Retrospective analysis for Research and Applications with improved land surface vari-
ables
The predecessor to MERRA-2 (see below) estimates meteorological and surface hydrologic com-
ponents. Meteorological estimates are derived through the GEOS-5 atmospheric general circulation
model by assimilating in situ (3DVAR analysis algorithm) and ex situ (Community Radiative Trans-
fer Model) observational data. This paper uses the land surface diagnostics precipitation. Resolutions
are sub-daily at 1/2◦ from 1980 to 2016 for the globe (Rienecker et al., 2011).

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, V2
The most recent version of the MERRA product differs from MERRA-Land by including updates to
models, algorithms, observing systems, and ex situ processing methods, as well as 14 additional ex
situ data sources. Precipitation is derived from global precipitation products disaggregated to hourly
time steps using MERRA-Land precipitation. Precipitation estimates used in this paper are from the
land surface diagnostics category. Resolutions are sub-daily at 1/2◦ from 1980 to the present (Gelaro
et al., 2017).
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Acronym Product description

Reanalysis

NCEP–DOE National Centers for Environmental Prediction–Department of Energy, R-2
The updated (R-2) version of the NCEP-NCAR reanalysis estimates climate, meteorological,
and surface hydrologic components. Reanalysis estimates of atmospheric variables are performed
through the assimilation and modeling of in situ and ex situ observational data. Resolutions are sub-
daily at T62 (∼ 210 km) gridding from 1979 to the present for the globe (Kalnay et al., 1996; Kana-
mitsu et al., 2002). (Author’s acknowledgment – NCEP–DOE data provided by NOAA/OAR/ESRL
PSD, Boulder, Colorado, USA, from https://www.esrl.noaa.gov/psd/, last access: 1 October 2019.)

NLDAS2 North American Land Data Assimilation System, Phase 2
Compiled data used to drive land surface models (see above), including (1) land surface parameters
of vegetation, soil, topography, and temperature and (2) surface-forcing fields of precipitation, radi-
ation, temperature, humidity, wind, and pressure derived by blending various in situ and ex situ data
sets. Precipitation, specifically, is derived by blending temporally disaggregated reanalysis (CPC
and NARR; see above) and ex situ (Doppler Stage II and CPC morphing technique, CMORPH) esti-
mates. Resolutions are hourly at 1/8◦ from 1979 to the present for North America (Xia et al., 2009,
2012b).

PRISM Parameter-elevation Regressions on Independent Slopes Model
Reanalysis estimates of precipitation and temperature calculated using a climate-elevation regres-
sion model, utilizing information of the location, elevation, coastal proximity, and other geophysical
parameters. Resolutions are daily at 800 m (paid) and 4 km (free) from 1895 to the present for the
United States (PRISM Climate Group, OSU, 2004).

Reitz et al. (2017) Reitz et al. (2017)
Reanalysis estimates of groundwater recharge, quick-flow runoff, and evapotranspiration. Runoff
and evapotranspiration are calculated using regression equations derived from observational water
balance data using land cover, temperature, and precipitation information. Groundwater recharge is
calculated as the remainder of a water balance using runoff, evapotranspiration, and precipitation.
Resolutions are annual (monthly provided via personal correspondence with authors) at 800 m from
2000 to 2013 for the conterminous United States (Reitz et al., 2017).

UoD-v5 University of Delaware (UoD) Air Temperature and Precipitation, V5
Reanalysis precipitation and temperature estimates calculated from in situ observational data with
an interpolation algorithm based on the spherical Shepard’s distance-weighting method with digi-
tal elevation model information. This paper uses the fifth product version. Resolutions are monthly
at 1/2◦ from 1950 to 1999 (Willmott and Matsuura, 2001). (Author’s acknowledgement – UoD
precipitation data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from https:
//www.esrl.noaa.gov/psd/, last access: 1 October 2019.)

WaterWatch WaterWatch
Estimates of runoff derived from the U.S. Geological Survey’s in situ stream gauge network. Reso-
lutions are monthly at watershed, with Hydrologic Unit levels 2–8, and state polygons from 1901 to
the present (Jian et al., 2008).
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Acronym Product description

Remote sensing

AMSR-E/Aqua AMSR-E/Aqua Monthly L3 Global Snow Water Equivalent EASE-Grids, V2
Scientifically identical to version 1 (there are updates to the product maturity code in V2), this model
estimates SWE using passive microwave data collected from the Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E) instrument hosted on NASA’s Aqua satellite. Mi-
crowave measurements are converted to SWE estimates using the AMSR-E snow water equivalent
algorithm that utilizes brightness temperature differences calculated using the dense media radiative
transfer equation and preselected snowpack profiles to develop an artificial neural network. Probable
SWE estimate ranges are then restricted using surface temperature and land cover attributes derived
from the ex situ MODIS sensor hosted on the NASA Terra satellite. Resolutions are daily at 25 km
from 2002 to 2011 for the globe (Chang et al., 2003; Chang and Rango, 2000; Tedesco et al., 2004).

ESA-CCI European Space Agency-Climate Change Initiative
Volumetric soil moisture estimates generated by merging both active and passive ex situ microwave
data-derived soil moisture products into three products, namely active, passive, and combined. Pas-
sive microwave products are from the Scanning Multichannel Microwave Radiometer (SMMR),
SSM/I, Tropical Microwave Imager (TMI), Advanced Microwave Scanning Radiometer-Earth Ob-
serving System (AMSR-E), WindSat, Soil Moisture and Ocean Salinity (SMOS), and AMSR2 sen-
sors. Active microwave products are from the Active Microwave Instrument Wind Scatterometer
(AMI-WS) and Advanced SCATterometer, with satellite A or satellites A/B (ASCAT-A or ASCAT-
A/B) sensors. Merging is performed by resampling target products to a uniform spatiotemporal struc-
ture, scaling to match ranges, and weighting using triple collocation. This research utilizes the com-
bined product. Resolutions are daily at 1/4◦ from 1978 to the present for the globe (Dorigo et al.,
2017).

GPCP-v3 Global Precipitation Climatology Project, V3 – precipitation data (beta)
Estimates of precipitation generated by assimilating radiometer data from Special Sensor Mi-
crowave/Imager (SSM/I) and SSM/Is, infrared data from the Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-
CDR), TIROS Operational Vertical Sounder (TIROS-TOVS) sensor and Tropical Rainfall Measur-
ing Missing (TRMM) Combined Climatology precipitation estimates with the GPCC global gauge
analysis (see above in the reanalysis section). This paper uses the combined satellite gauge product
rather than the satellite-only product. Resolutions are monthly at 1/2◦ from 1983 to 2016 for the
globe (Huffman et al., 2019).

MOD16-A2 MODIS Global Evapotranspiration Project
The Level 4 Moderate Resolution Imaging Spectroradiometer (MODIS) land data product estimates
evapotranspiration from ex situ observational MODIS vegetation data and reanalysis meteorological
data using an improved evapotranspiration model (Mu et al., 2011) based on the Penman–Monteith
equation. Resolutions are 8 d at 1 km from 2000 to 2010 for the globe (Running et al., 2017).

SMOS L4 Soil Moisture and Ocean Salinity, level 4
Volumetric root zone soil moisture estimates derived using Centre Aval de Traitement des Données
SMOS (CATDS)-generated ascending and descending orbit SMOS L3 surface volumetric soil mois-
ture estimates in conjunction with MODIS sensor-derived vegetation information, reanalysis NCEP
climate data, FAO soil textures, and ECOCLIMAP surface cover. A double bucket model, composed
of a simple water budget model (5–40 cm depth) and a budget model based on a linearized Richard’s
equation formulation (40–200 cm depth), is used to extrapolate surface SMOS L3 soil moisture (0–
5 cm) to the root zone domain. This study merged the ascending and descending orbit products by
mean. Resolutions are daily at 25 km EASE Grids from 2010 to 2017 for the globe (Al Bitar et al.,
2013).
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Acronym Product description

Remote sensing

SSEBop Operational Simplified Surface Energy Balance model
A parameterization of the Simplified Surface Energy Balance approach that estimates evapotranspi-
ration from ex situ MODIS vegetation, ex situ Shuttle Radar Topography Mission (SRTM) eleva-
tion data, reanalysis meteorological data, and other modeled data using an energy balance approach
where actual evapotranspiration is calculated as the difference between net surface radiation, sen-
sible heat flux, and ground heat flux. Resolutions are monthly at 1 km from 2000 to 2014 for the
conterminous United States and portions of surrounding countries (Senay et al., 2011, 2013).

TMPA-3B43 TRMM Multisatellite Precipitation Analysis, V7
From the larger Tropical Rainfall Measuring Mission (TRMM), this model generates spatiotempo-
rally continuous precipitation estimates by merging precipitation estimates from numerous ex situ
data sources. Primary data sources include (1) passive microwave data from various low Earth or-
bit satellites (e.g., TRMM and AMSR-E) that are converted to precipitation estimates using source-
specific algorithms, (2) infrared data collected by geosynchronous Earth orbit satellites, (3) a TRMM
Combined Instrument (TCI) estimate, which is a merged passive microwave and active radar prod-
uct, and (4) in situ GPCP and CAMS monthly precipitation measurements. Resolutions are sub-daily
at 1/4◦ from 1998 to the present for the globe (Huffman et al., 2007, 2010).
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Appendix B

Figure B1. Box plots of annual standard deviation (σ ) between component estimates at 10 ecoregions. σ distributions are subdivided into
two periods, namely 1985–1999 and 2000–2014. Box lower limits, midlines, and upper limits represent the 25th, 50th (median), and 75th
percentiles, respectively, of the associated data. Whiskers represent 1.5 times the interquartile range. Box colors denote ecoregions and
correspond to map colors in Fig. 1. Components displayed are precipitation (P ), evapotranspiration (ET), runoff (R), snow water equivalent
(SWE), soil moisture in units of equivalent water depth (SM(e)), and soil moisture in units of volumetric water content (SM(v)).

Hydrol. Earth Syst. Sci., 25, 1529–1568, 2021 https://doi.org/10.5194/hess-25-1529-2021



S. Saxe et al.: A comparison of publicly available, CONUS-extent hydrologic component estimates 1557

Figure B2. Box plot summarizing annual peak snow water equivalent (SWE) depths by ecoregion derived from the distribution of modeled
estimates used in this paper. Box lower limits, midlines, and upper limits represent the 25th, 50th (median), and 75th percentiles, respectively,
of the associated data. Whiskers represent 1.5 times the interquartile range.
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Figure B3. Heat maps showing the relative timing of the beginning of snow water equivalent (SWE) accumulation (a) and ablation (b) periods
for two ecoregions from 1985 to 2014. Relative timing is the difference between the month of the beginning of a model’s accumulation or
ablation period and the mean of all other model’s timing. The beginning of accumulation and ablation is defined as when the rate of change
of SWE between months is greater than 1 mm per month or less than −1 mm per month, respectively.

Figure B4. Heat maps summarizing the annual relative timing values of SWE accumulation (accum.) and ablation from Fig. B3 for two
ecoregions. Grid cells are colored by the percentage of years that have a positive relative timing (green) or by the percentage of years that
have a negative relative timing (purple), whichever is greater.
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Figure B5.
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Figure B5. Binned distributions of interannual model trends from 1982 to 2010, measured with Mann–Kendall’s tau (τ ) for 10 ecoregions, for
water balance components of precipitation, evapotranspiration, runoff, snow water equivalent, and soil moisture. Model names are binned into
very positive (τ ≥ 0.50; dark green), positive (0<τ<0.50; light green), negative (−0.50<τ<0; light purple), and very negative (τ ≤−0.50;
dark purple) significant trends, as well as an insignificant trend box (p>0.05; gray). Trend significance is assumed when the p value does
not exceed 0.05 (p<0.05). Model categories are denoted with a single letter identifying either a hydrologic (H ), reanalysis (R), or remote
sensing (S) model.
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Figure B6. Distribution of hydrologic model and reanalysis data set correlation against remote sensing products using Spearman’s rho (ρ),
provided by water budget component. Values of ρ are binned by>0.90, 0.50–0.90,<0.50, and statistically insignificant (p>0.05). Rectangles
are color paired with their associated ecoregions (Fig. 1). Water budget components shown are precipitation (precip), evapotranspiration (ET),
snow water equivalent (SWE), and soil moisture (SM).
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