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Abstract. Irrigated agriculture is threatened by soil salinity
in numerous arid and semi-arid areas of the world, chiefly
caused by the use of highly salinity irrigation water, com-
pounded by excessive evapotranspiration. Given this threat,
efficient field assessment methods are needed to monitor the
dynamics of soil salinity in salt-affected irrigated lands and
evaluate the performance of management strategies. In this
study, we report on the results of an irrigation experiment
with the main objective of evaluating time-lapse inversion of
electromagnetic induction (EMI) data and hydrological mod-
elling in field assessment of soil salinity dynamics. Four ex-
perimental plots were established and irrigated 12 times dur-
ing a 2-month period, with water at four different salinity
levels (1, 4, 8 and 12 dSm−1) using a drip irrigation system.
Time-lapse apparent electrical conductivity (σa) data were
collected four times during the experiment period using the
CMD Mini-Explorer. Prior to inversion of time-lapse σa data,
a numerical experiment was performed by 2D simulations of
the water and solute infiltration and redistribution process in
synthetic transects, generated by using the statistical distribu-
tion of the hydraulic properties in the study area. These sim-
ulations gave known spatio-temporal distribution of water
contents and solute concentrations and thus of bulk electrical
conductivity (σb), which in turn were used to obtain known
structures of apparent electrical conductivity, σa. These syn-
thetic distributions were used for a preliminary understand-
ing of how the physical context may influence the EMI-based

σa readings carried out in the monitored transects as well as
being used to optimize the smoothing parameter to be used
in the inversion of σa readings. With this prior information at
hand, we inverted the time-lapse field σa data and interpreted
the results in terms of concentration distributions over time.
The proposed approach, using preliminary hydrological sim-
ulations to understand the potential role of the variability of
the physical system to be monitored by EMI, may actually
allow for a better choice of the inversion parameters and in-
terpretation of EMI readings, thus increasing the potentiality
of using the electromagnetic induction technique for rapid
and non-invasive investigation of spatio-temporal variability
in soil salinity over large areas.

1 Introduction

Soil salinization may be of a primary nature, when salt ac-
cumulation arises through pedogenetic processes, or of sec-
ondary origin, due either to abiotic factors such as exces-
sive evaporation or seawater infiltration or resulting from hu-
man intervention, chiefly the use of saline water irrigation
(Geeson et al., 2002). Approximately 20 % of irrigated land
(45× 106 ha) that produces one-third of the world’s food is
salt-affected (Shirvastava and Kumar, 2015), and it is esti-
mated that soil salinity affects 1× 106 ha in the European
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Union, mainly in the Mediterranean countries (Maréchal, et
al., 2008).

Effective agricultural management in many areas relies on
a good understanding of the effects of irrigation on the spa-
tial and temporal variability of soil salinity (Coppola et al.,
2015). However, it is very difficult to assess soil salinity on
a management scale using traditional methods. Soil salinity
is traditionally assessed by measuring the electrical conduc-
tivity of a saturated soil paste (ECe) in the laboratory; how-
ever, this technique is labour-intensive, time-consuming and
costly, given the large number of soil samples that need to be
collected. Alternatively, time domain reflectometry (TDR),
a non-destructive electromagnetic technique, can be used in
the field for simultaneous measurements of water content, θ ,
and bulk electrical conductivity, σb (Coppola et al., 2011b).
While the TDR method can provide accurate information
from the local measurements, the measurement support vol-
ume of sensors is limited to a few centimetres; thus extension
of the information to a large area can be problematic (Cop-
pola et al., 2016; Gonçalves et al., 2017, Dragonetti et al.,
2018).

The electromagnetic induction (EMI) technique is widely
used as an alternative to traditional techniques for soil salin-
ity assessment. It allows for rapid non-invasive, reliable and
repeatable measurements at a smaller cost than traditional
methods. This technique measures the soil electrical conduc-
tivity, which is primarily a function of soil salinity, soil tex-
ture, moisture content and cation exchange capacity; how-
ever, in a saline soil, the salinity is generally the dominant
factor responsible for the spatio-temporal variability of soil
electrical conductivity (Corwin and Lesch, 2005).

In the last few decades, EMI techniques have been used
increasingly to estimate soil salinity from apparent electri-
cal conductivity (σa) measurements (Lesch et al., 1995; Tri-
antafilis et al., 2000; Corwin et al., 2006; Ganjegunte et al.,
2014). σa is the weighted average of the soil electrical con-
ductivity distribution in the soil volume. In order to obtain
the depth distribution of σb from σa, a site-specific empiri-
cal calibration between σa and soil salinity measured at dif-
ferent depths can be applied by different approaches such
as multiple regression (Triantafilis et al., 2000; Amezketa,
2006; Yao and Yang, 2010; Coppola et al., 2016), modelled
coefficients (Slavich and Petterson, 1990), theoretical coeffi-
cients calculated with theoretical EMI depth response func-
tions (Cook and Walker, 1992) or empirical-mathematical
coefficients (Corwin and Rhoades, 1984).

Alternatively, to assess the distribution of σb with depth,
σa data collected in the field can be modelled through an in-
version process. Several inversion methods have been pro-
posed to obtain the σb from the measured σa data, includ-
ing the gradient-based inversion technique (Monteiro Santos,
2004; von Hebel et al., 2014; Schamper et al., 2012; Farza-
mian et al., 2015a) and probabilistic inversion (Jadoon et
al., 2017; Moghadas, 2019; Shanahan et al., 2015). Recently,
multi-coil EMI measurements and inversion algorithms have

been widely used for mapping soil salinity and sodicity dis-
tribution in quasi 2D (e.g. Goff et al., 2014; Farzamian et
al., 2019; Paz et al., 2019, 2020a, b) and 3D (e.g. Huang et
al., 2017). However, the potential of this method in assess-
ing temporal variability of soil salinity has not been fully
explored. Several time-lapse inversion methods for direct-
current resistivity methods have been developed. These in-
clude the ratio method (Daily et al., 1992), the difference in-
version (LaBrecque and Yang, 2001) and, more recently, 4D
space–time algorithms (Kim et al., 2009). A number of stud-
ies have also demonstrated how the use of time-lapse inver-
sion algorithms can reduce the inversion artefacts (e.g. Hay-
ley et al., 2011) and improve the quantitative investigations of
geophysical monitoring (e.g. Farzamian et al., 2015b). How-
ever, the usefulness of the time-lapse inversion algorithms
in modelling EMI data has not been attempted yet to assess
soil salinity dynamics, and only few studies have been con-
ducted to estimate soil water content changes (Huang et al.,
2016; Whalley et al., 2017). In addition, a prerequisite for
such an approach concerns the reliability of the inversion of
the EMI result. In fact, inverting profile-integrated EMI data
to obtain the vertical distribution of σb is an ill-posed prob-
lem, suffering from non-uniqueness (the problem has more
than one solution) and instability (incomplete data and mea-
surement errors can lead to large changes in the parameters;
e.g. Tarantola, 1987). Ill-posedness is generally treated by
regularizing the inverse solution. However, different regular-
ization schemes and parameters can have a significant impact
on the results (e.g. Dragonetti et al., 2018; Zare et al., 2020);
thus, inversion results of EMI data are always affected by
uncertainties, which can be minimized in case of prior infor-
mation from the experiment.

In this direction, preliminary numerical simulations of the
same hydrological processes to be monitored by an EMI sen-
sor, by applying real boundary conditions measured during
an EMI sensor monitoring campaign, may be especially help-
ful to figure out the response to be expected by the sensor
and its variability in the space and time and may allow for a
more rational choice of the EMI inversion parameterization.
In other words, hydrological simulations may help provide
a priori knowledge of “where the EMI inversion has to go”.
In any case, this would require the actual distribution of the
hydraulic properties along the transect or, more in general, in
the field to be monitored by the EMI. One can immediately
realize that this is quite utopian, especially when the area to
be monitored is relatively large (as previously recalled in the
case of EMI measurements). By contrast, it is more common
that, for the study area, one has the statistical distribution of
hydraulic properties available. Thus, the statistical distribu-
tion of the hydraulic properties may be used for generating
synthetic (but realistic in a probabilistic view) equiprobable
realizations of the physical conditions the EMI sensor will
potentially experience during the monitoring, which may be
used for addressing the inversion of EMI reading.
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The main objective of this paper is to propose an approach
to improve the parameters’ optimization and the constraints
in the time-lapse EMI inversion using soil water and solute
modelling. In the paper we will show how the synthetic tests
may be used to guide the optimization of inversion parame-
ters and understanding of the impact of solute concentration
and water content variations on EMI σa readings.

The key features of this study are (i) performing a con-
trolled irrigation experiment, allowing for the simulation of
the spatial and temporal variability of soil salinity during the
irrigation experiment; (ii) monitoring of σa using the multi-
coil CMD Mini-Explorer EMI sensor which takes σa mea-
surements over six different depth sensitivity ranges; (iii)
running numerical simulations using a physically based hy-
drological model to study how well the EMI survey and time-
lapse inversion can resolve the σb distribution in space and
time in our experimental set-up and to infer the best inver-
sion parameters; (iv) inverting time-lapse field σa to map
the spatio-temporal variability of σb and to interpret them in
terms of concentration distributions over time.

2 Material and methods

2.1 Experimental set-up

The experiment was carried out at the Mediterranean Agro-
nomic Institute of Bari in south-eastern Italy. The soil is clas-
sified as Colluvic Regosol, consisting of silty loam material
of an average thickness of 0.7 m lying on fractured calcaren-
ite bedrock. Figure 1 shows the experimental set-up, con-
sisting of four experimental plots each of 30 m length and
3.6 m width, equipped with a drip irrigation system, with
nine irrigation dripper lines placed 0.40 m apart, and charac-
terized by an inter-dripper distance of 0.20 m. Pressure self-
compensating drippers were used, and the emission unifor-
mity was over 90 %. The soil was bare during the experiment
period to avoid the effect of root uptake on the interpreta-
tion of the results. The four experimental plots were irrigated
with water at four different salinity levels, experimental plot
1: water at 1 dSm−1 (hereafter referred to as P1); experimen-
tal plot 2: water at 4 dSm−1 (hereafter P2); experimental plot
3: water at 8 dSm−1 (hereafter P3); experimental plot 4: wa-
ter at 12 dSm−1 (hereafter P4).

The soil–bedrock depth was measured at 40 points by
augering, and the resulting spatial distribution is shown in
Fig. 2. An apparent variability in the depth to bedrock was
revealed, which may have significant impacts on the spatio-
temporal distribution of water and solute concentration.

Irrigations were started on 30 September 2016, and all ex-
perimental plots were irrigated 12 times until 21 November
2016 with the same amount of water and delivering day. Wa-
ter salinity was induced by adding calcium chloride (CaCl2)
to well water with a salinity of about 1 dSm−1. Each saline
application was of about 18 mm, with a Cl− concentration of

Figure 1. A schematic display of the experimental set-up. Four ex-
perimental plots were designed equally and irrigated with the same
amount of water at four different salinity levels.

about 0.1 mmolcm−3. The volumes of supplied water were
calculated according to the differences between two consec-
utive level measurements in a Class A evaporimeter. The de-
tails of irrigation events and precipitation information are
given in Fig. 3. EMI measurements were taken four times
during the experiment period in each experimental plot along
three transects, 1.2 m apart and at 2 m spacing, as shown in
Fig. 1. All measurements were taken 1–3 d after the irriga-
tions, allowing relatively time-stable water contents to be as-
sumed at each site throughout the monitoring phases.

2.2 EMI analysis

2.2.1 Characteristics of the EMI sensor

σa data were collected using a CMD Mini-Explorer device
(GF Instruments, Brno, Czech Republic). The characteris-
tics of this device make it especially suitable for monitor-
ing electrical conductivity at relatively shallow depths. The
CMD Mini-Explorer was used to measure σa in VCP (ver-
tical coplanar, i.e. horizontal magnetic dipole configuration)
mode and then HCP (horizontal coplanar, i.e. vertical mag-
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Figure 2. Measured spatial distribution of the soil depth along four
experimental plots, P1, P2, P3 and P4.

netic dipole configurations) mode by rotating the probe 90◦

axially to change the orientation from VCP to HCP mode.
The probe has three receiver coils with 0.32 (ρ32), 0.71
(ρ71) and 1.18 (ρ118) m distances from the transmitter coil
and operates at 30 kHz frequency. With the largest coil spac-
ing, the instrument has an effective depth investigation of
1.8 m in the HCP mode and 0.9 m in the VCP mode.

2.2.2 Electromagnetic forward model

The electromagnetic forward modelling is solved by apply-
ing the full solution of the Maxwell equations to calculate the
σa responses of a 1D model. The response of a layered me-
dia (secondary magnetic field) excited by a small horizontal
transmitter loop above the ground surface can be expressed
in terms of the Hankel transform (Zhang et al., 2000):

Hz =
M

4π

∞∫
0

[
RTEe

−β(2zs−zr)
]
β2Jo(βr)dβ, (1)

where M is the moment of the transmitter loop emitting
at an angular frequency ω, and zs and zr are the heights
of the transmitter and receiver loops, respectively. r is the
transmitter–receiver distance, and Jo is the Bessel function
of first kind and order zero.

The kernel function RTE is defined as

RTE =
Z1
−Z0

Z1+Z0
, (2)

where Z0 is the intrinsic impedance of free space, and Z1 is
the input impedance at the first layer calculated by a recur-

sive procedure. Similar equations can be written for vertical
coplanar loops. In such cases the secondary magnetic field is

Hy =
M

4π r

∞∫
0

[
RTEe

−β(2zs−zr)
]
βJ1(βr)dβ, (3)

where J1 is the first-order Bessel function.
σa (mSm−1) is usually calculated assuming the low induc-

tion number (LIN) approximation using the formula

σa =
4000
ωµor2

(
Hs

Hp

)
Q

, (4)

where µ0 is permeability of free space, and Q denotes the
out-of-phase component of the secondary to primary mag-
netic field coupling ratio.

2.2.3 Time-lapse inversion

With the time-lapse inversion, one seeks to calculate the
temporal variation of the conductivity along a transect. The
quasi-2D inversion algorithms based on Monteiro Santos
(2004) with a modification of the algorithm proposed by Kim
et al. (2009) were used in this study. The problem is resolved
in both algorithms iteratively starting from a uniform model.
Two different levels of constraints, S1 and S2, were applied.
In the S1 option, the corrections to the model parameters at
each iteration are calculated by solving the system of equa-
tions(
JTJ+ λCTC+αMTM

)
δp = JTb−αMTMp. (5)

In the S2 option, the corrections of the parameters at each
iteration are calculated solving the equations(

JTJ+ λCTC+αMTM
)
δp = (6)

JTb+ λCTC
(
p−po

)
αMTM

(
p−po

)
,

where δp is the vector comprising corrections of the param-
eters (logarithm of conductivities, pj ) of an initial model; po
refers to a reference model; b is the vector containing the
differences between the logarithm of the observed and calcu-
lated apparent conductivities. J is the Jacobian matrix with
elements given by σj

σ cai

∂σ cai
∂σj

. λ is a Lagrange multiplier and
determines the amplitude of the parameter corrections in the
space domain, and the regularization matrix C stores the co-
efficients of the spatial roughness of the model parameters at
time t , which is defined as

δrj = δPjE+ δPjW− 4δP+ δPjN+ δPjS, (7)

where the elements of matrix C are 1 or −4 according to
the position of the neighbours. α is a parameter that deter-
mines the amplitude of the parameter corrections in the time
domain, and M is a square matrix that accounts for the tem-
poral continuity of the model parameters.
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Figure 3. The details of irrigation events and precipitation information during the experiment. The dates of EMI measurements are marked
with triangles.

The elements of matrix M are defined in terms of models
at time t−dt and t+dt . The model misfit is calculated using
the following equation:

misfit=

√
1
N

∑N

i=1
ln
(
σ o

ai − σ
c
ai
)2
, (8)

where N is the number of apparent conductivity value, with
σ o

ai and σ c
ai representing observed and calculated σa, respec-

tively.
In this algorithm, two regularizations are imposed in both

space and time domains. Consequently, the spatial and tem-
poral Lagrangian multipliers have to be optimized. The spa-
tial Lagrangian multiplier (λ) controls the relative impor-
tance of spatial model smooth and data-response misfit and
decreases gradually during the inversion process to resolve
more detailed model parameters. A larger λ tends to gener-
ally produce a model with a larger misfit error but smooth
variation of conductivity values. A larger λ is usually accept-
able if the soil conductivity changes in a smooth manner and
allows a model to be produced that is reasonably more realis-
tic. In contrast, a smaller λ is usually required when sharper
soil conductivity changes are expected in order to resolve the
sharp boundaries. A suitable λ value is usually determined
empirically based on the expected distribution of σb and by
performing inversions with different values. The second reg-
ularization, the temporal Lagrangian multiplier (α), is the
temporal damping factor that gives the weight for minimiz-
ing the temporal changes in the conductivity along the time
axis. α is a constant value and is defined by the similarity of
the two consecutive reference times. The larger the α value,
the more similar the reference models are that result from
the inversion; a value of zero means no temporal constraints
are applied (i.e. a traditional non-time-lapse inversion). The
misfit function in this algorithm is the square root of the sum
of the squares of the differences divided by the number of

the measurements and is expressed in millisiemens per me-
tre (mSm−1).

2.3 Synthetic experiment

2.3.1 Hydraulic properties’ dataset

A large dataset of hydraulic properties was already available
from the experimental site, which was obtained by previ-
ous laboratory and field hydraulic characterizations carried
out during several measurement campaigns (e.g. Coppola et
al., 2011a, b, 2013, 2015). A total of 70 soil samples were
collected from the Ap and Bw horizon in the experimental
farm. Saturated hydraulic conductivity, K0, and water reten-
tion experimental data were measured in the laboratory by
the falling head permeameter (Reynolds and Elrick, 2003)
and tension table method (Dane and Hopmans, 2003), re-
spectively. The water retention data were fitted to the van
Genuchten model (van Genuchten, 1980):

Se =
θ − θr

θ0− θr
=
[
1+ |αh|n

]−m
, h < 0 (9)

θ = θ0, h= 0, (10)

where Se (–) is the effective saturation, α (cm−1), n (–) and
m (–) are shape parameters, and θ0 (–) and θr (–) are the sat-
urated and residual water content, respectively.

The hydraulic conductivity was estimated by the van
Genuchten–Mualem model (van Genuchten, 1980), with
m= 1− n−1:

Kr (Se)=
K (Se)

K0
= Sτe

[
1−

(
1− Sm

−1

e

)m]2
, (11)

where K0 is the saturated hydraulic conductivity, Kr (–) is
the relative hydraulic conductivity and τ (–) is a parameter
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which accounts for the dependence of the tortuosity and the
correlation factors on the water content.

Due to the different hydrological behaviour between the
laboratory and the field (Kutilek and Nielsen, 1994), the
laboratory-derived curves were scaled to the field curves
by applying the procedure described in Basile et al. (2003,
2006). Statistics of the parameters are reported in Table 1.
The data in the table indicate a larger variability of the hy-
draulic properties of the Bw horizon, compared to the Ap
horizon. This is probably due to the frequent roto-tillage of
the Ap horizon, inducing significantly greater homogeneity
of this soil layer. Actually, even the apparent larger variability
of theK0 for the Ap horizon is much lower than the variabil-
ity reported in the literature, which is generally characterized
by a coefficient of variation (CVs) much larger than 100 %
(Kutilek and Nielsen, 1994; Mallants et al., 1996; Coppola et
al., 2011a) and may even reach values of 450 % (Carsel and
Parrish, 1988). The hydraulic properties’ parameters for the
bedrock were those determined on the same type of bedrock
by Caputo et al. (2010, 2015).

2.3.2 Synthetic hydrological simulations

2D numerical simulations of the infiltration and redistribu-
tion process were carried out using Hydrus 2D/3D software
(Šimůnek et al., 2016), by introducing the actual boundary
conditions imposed during the experiment to (i) gain an in-
sight into the spatio-temporal distribution of water and so-
lute concentration during the experiment period, prior to in-
terpreting the field EMI data, and to (ii) optimize the EMI
inversion parameters. The Richards equation and advection–
dispersion equation were used to simulate water flow and so-
lute transport, respectively. The distributions of the hydraulic
parameters (see Table 1) were used to generate several syn-
thetic transects, with variable hydraulic properties and depth
to bedrock (electrically resistive layer), in order to simulate
different distributions of water contents, solute concentra-
tions and soil depths and to explore their role in the variabil-
ity of the σa response. Each synthetic transect consisted of an
assembly of 30 interacting soil columns, each with its own
hydraulic properties and depth to bedrock. Each of the 30
soil profiles included three horizons: Ap (0–15 cm), Bw and
bedrock. The Bw and bedrock thickness changed in each soil
profile according to the depth of the soil–bedrock interface.
For hydraulic properties, the transect variability was assumed
to be characterized by the variability of the parameters θ0,
α, n and K0. The hydraulic properties and depth to bedrock
were assigned randomly to each soil column by using the
statistical distribution of each parameter (see Table 1). Sta-
tistical tests showed that θ0 and n were normally distributed,
K0 and α log-normally distributed and depth to bedrock uni-
formly distributed. The means and the covariance matrix for
θ0, log K0, log α, and n were computed. Due to continuous
ploughing and other tillage practices (see Sect. 2.1), the Ap
horizon is rather homogeneous, and therefore only the hy-

draulic parameters of the horizon Bw were considered to vary
stochastically. The hydraulic parameters of both Ap horizon
and bedrock were fixed to their average values.

A total of 20 synthetic transects with 30 random vectors of
the four parameters (θs, α, n andK0) were produced from the
correlated multivariate distribution by generating a vector x
of independent standard normal deviates and then applying
a linear transformation of the form x =m+Lrn, where m is
the desired vector of means, and L is the lower triangular ma-
trix derived from the symmetric covariance matrix V= LLT

decomposed by Cholesky factorization (Carsel and Parrish,
1988). θr was set to zero for all simulations. For solute trans-
port, a longitudinal dispersivity of 2 cm was assumed accord-
ing to a previous experiment carried out in the same field
(Coppola et al., 2011b). Transverse dispersivity was assumed
to be one-tenth of the longitudinal dispersivity (Mallants et
al., 2011). The simulation time – according to the field exper-
iment data – included a period of 91 d from 1 September to 30
November 2016 in which 12 irrigations were applied (a total
of 210 mm), the water with an electronic conductivity (EC)
of 12 dSm−1 (each one of about 18 mm with a Cl− concen-
tration of about 0.1 mmolcm−3). The level of 12 dSm−1 was
considered because spatial and temporal variabilities of σb
were expected to be larger and more apparent due to greater
salinity changes. Potential evapotranspiration was estimated
by a local agrometeorological station; irrigation fluxes and
Cl− concentration in the irrigation water were considered
to be top boundary conditions. Free drainage was assumed
at the lower boundary (z=−150cm). The initial soil water
content value was set to 0.25 cm3 cm−3, based on the field
measurements by a TDR probe, and the initial Cl− concen-
tration was set equal to zero.

It is worth noting that the use of synthetic transects does
not aim to address the overall spatial variability of soil prop-
erties potentially observable in the investigated field but to
randomly select a reasonable number of different scenarios
to better understand how solute concentration and water con-
tent changes during the experiment influence σb distribution.
They also help to identify a proper regularization strategy to
invert measured σa data in the field. In this sense, the number
(20) of transects is a trade-off between the need of account-
ing for the possible heterogeneity of the field and the com-
putational challenge of carrying out too many synthetic data
inversions.

For each generated transect, numerical simulations pro-
duced distributions of water contents and Cl− concentra-
tions.

2.4 Site-specific calibration θ − σw − σb

The water content and Cl− concentration distributions were
converted to bulk electrical conductivity (σb) distributions by
using the model proposed by Malicki and Walczak, 1999:

σw =
σb− a

(εb− b)(0.0057+ 0.000071S)
, (12)

Hydrol. Earth Syst. Sci., 25, 1509–1527, 2021 https://doi.org/10.5194/hess-25-1509-2021
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Table 1. Statistics (mean and coefficient of variation, CV) of the hydraulic property parameters of the two soil layers and bedrock.

Layer θr
(cm3 cm−3)

θs
(cm3 cm−3)

α

(cm−1)
n
(–)

K0
(cmd−1)

τ

(–)

Ap Mean 0.000 0.329 0.070 1.40 10.30 0.5
CV % 4.6 15.7 7.9 64.2

Bw Mean 0.000 0.315 0.025 1.38 33.42 0.5
CV % 13.2 78.2 11.5 240.2

Bedrock 0.068 0.354 0.055 3.67 19.02 0.5

where εb (–) is the dielectric constant, which is related to the
water content, and σw (dSm−1) is the electrical conductivity
of the soil solution. The latter was obtained by using a linear
relationship C–σw for solutions at different concentrations of
calcium chloride.

The parameters for the Malicki and Walczak model were
calibrated through a laboratory experiment. Specifically, εb
and σb for different values of σw were simultaneously
measured on reconstructed soil samples values using TDR
probes. For this purpose, four PVC cylinders (8 cm in di-
ameter and 15 cm height) were filled with air-dried soil,
reaching a dry bulk density of about 1.1 gcm−3, imitating
the field condition. Each soil sample was wetted by adding
10 mL of CaCl2 solution at a specified electrical conductiv-
ity: 1, 2, 4 and 6 dSm−1, respectively. The cylinders were
covered by 0.05 mm plastic foil before the measurement in
order to avoid evaporation and to equilibrate with the air
temperature of 20 ◦C. The procedure was repeated 16 times
for each soil sample to measure soil water content values
ranging from air-dried to near saturation. For each wetting
step, the measurements of θ and σb were carried out us-
ing TDR three-wire probes (10 cm long with a rod diame-
ter of 0.3 cm and rods spaced 1.2 cm) vertically inserted in
the soil columns. The following parameters of Eq. (10) were
obtained: a = 3.6 dSm−1; b = 0.11.

2.5 Schematic view of the approach used in the paper

The logical sequence of the different steps used in the pro-
posed approach is described in Fig. 4.

1. Starting from the statistical distribution of the hydraulic
properties and the physical characteristics of the sys-
tem under study (the latter limited to only depth to
the bedrock, in this specific case), as described in
Sect. 2.3.1, several synthetic transects are generated,
each accounting for some of the variability in terms of
hydraulic properties and physical characteristics that the
EMI sensor potentially experiences during the monitor-
ing.

2. Hydrological simulations for each of these synthetic
transects are thus carried out, each producing synthetic

distributions of both water contents and solute concen-
trations, as described in Sect. 2.3.2, which, in turn, are
converted to as many synthetic distributions of σb by
using a specifically developed θ − σb− σw calibration
relationship, discussed in Sect. 2.4.

3. These σb distributions are used in a forward EMI mod-
elling procedure (see Sect. 2.2.2.) to generate synthetic
σa data for all the synthetic transects considered.

4. The σa, θ and σw (C) distributions are used to guide the
inversion of EMI readings obtained during real moni-
toring campaigns carried out in the physical system un-
der study in two different (but related) ways: (i) to have
a priori knowledge of where a measured EMI reading
may come from (e.g. at a given time, a measured σa
distribution could come from the depth of the water or
solute propagation front, from the depth to the bedrock
or from water accumulation at the soil–bedrock inter-
face); (ii) to identify the optimal regularization parame-
ters, discussed in Sect. 2.2.3, to be used in the inversion
model of the real EMI data, by looking for example to
the parameter value, allowing for satisfactory results for
most of the synthetic transects. For the latter purpose,
we compare different inversion parameter combinations
in terms of correlation (correlation coefficient, R), pre-
cision (mean square error, RMSE) and bias (mean error,
ME) between the simulated and modelled σb.

5. Finally, with all this information at hand, one is ready
to look at the real EMI datasets, by producing more
realistic σb distributions which can now be seen with
much more confidence compared to cases where EMI
inversion has to be carried out without any prior infor-
mation from the experiment and, thus, producing less
interpretable and more uncertain σb distributions.

The Results and discussion section below will show the ap-
plication of the approach to the system under study, with an
analysis of the real EMI data carried out only in the final
phase, when all the information needed are available to guide
the inversion of the real EMI data and interpretation of the
obtained models.
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Figure 4. Flow chart of the applied procedure, with the key steps in bold. The procedure is explained in detail in the text.

3 Results and discussion

3.1 Synthetic spatio-temporal distributions of solute
water content and solute concentration

This section shows how the synthetic simulations described
in Sect. 2.3.2 can be used to analyse the sensitivity of the
EMI response to both the hydrological behaviour and physi-
cal characteristics of the system under study.

As an example, Fig. 5 depicts the depth to the bedrock for
one of the synthetic transects described in Sect. 2.3.2. For
the same transect, Fig. 6 shows, for 4 selected days, the spa-
tial distribution of water content obtained from the Hydrus
2D/3D simulations with irrigation water at 12 dSm−1. The
soil shows very high values of water content on the selected
days. This is because the water was supplied to the soil only
1–3 d before the selected days. On the other hand, lower val-
ues were obtained at larger depths within the bedrock. The
water content distributions show a significant lateral hetero-
geneity, while the temporal variations are very small. The
spatial variations of water content distribution can be partly
explained by the variability of the hydraulic properties. How-
ever, soil depth proved to be the dominant factor in determin-
ing water content lateral variability. In fact, high inverse cor-
respondence of soil depth with water content is revealed in
the vertical profiles where bedrock is superficial (e.g. profiles
3, 4 and 5) or deep (i.e., profiles 19, 20 and 21). The corre-
lation between soil depth and water content averaged along
each profile is very high (r = 0.88) for the four dates, thus

Figure 5. Simulated spatial distribution of the soil depth for the
selected scenario.

confirming that the depth of the bedrock is the main factor
governing the water distribution.

In terms of the temporal variations, the water content dis-
tribution did not change significantly, and the average soil
water content of the whole soil profile was found to be simi-
lar on the selected dates, with an average in the range 0.20–
0.22 cm3 cm−3 and a standard deviation of 0.02 cm3 cm−3.
This was expected as the experimental field was irrigated
regularly, and the four selected dates refer to approximately
the same time after an irrigation application (1–3 d). How-
ever, small differences of water content may be observed
near the soil surface, which may well be explained by the
evaporation process taking place during the 1–3 d after irriga-
tion and mostly involving the shallower soil layer. For exam-
ple, the near surface shows higher water content (i.e. 0.25–
0.30 cm3 cm−3) on 26 October because the irrigation took
place 1 d before on 25 October. On the other hand, lower wa-
ter content is evident in the near surface on 17 October due to
a 3 d gap between the water irrigation on 14 October and the
simulation date. Figure 7 shows the spatio-temporal distri-
bution of Cl− concentration obtained for the same synthetic
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Figure 6. Soil water content distribution simulations for the selected scenario: (a) 17 October, (b) 26 October, (c) 14 November and (d) 23
November 2016.

transect of Fig. 6. Compared to the water content, Cl− con-
centrations show a significantly greater evolution over time,
with a slow and steady Cl− concentration increase along the
soil profile due to the 12 injections of saline water. On aver-
age, the front of chloride deepens slowly at a fairly constant
rate but with a lateral variability, which is related to the lateral
variability of water contents and hydraulic properties. The
lateral variability is quite low on the first days of solute appli-
cations and becomes evident only when the solute migrates
deeper into the soil profile. The lateral variability of Cl− con-
centration is mainly related to the depth to bedrock, as can be
immediately observed by comparing the solute distributions
and the transect morphology shown in Fig. 5. The depth of
the soil–bedrock interface as well as soil hydraulic properties
condition the spatial distributions of water contents, which,
in turn, influence the Cl− concentration distribution.

3.2 Simulated spatio-temporal distribution of σb

Figure 8 shows the spatio-temporal distribution of σb for the
same synthetic transect, obtained by converting water con-
tents and solute concentrations by applying Eq. (10). Fig-

ure 8 shows a resistive zone beneath a conductive zone. The
conductivity of the resistive zone varies slightly spatially and
temporally; however the conductivity of this zone is gener-
ally within 25 mSm−1. The resistive zones in the maps cor-
respond to the bedrock in the study area (see Fig. 5). The
conductivity of the upper layers changes significantly both
spatially and temporally from an average conductivity of
50 mSm−1 on 17 October to more than 100 mSm−1 on 23
November. The time evolution of the conductive zone is ev-
ident and, as the water content does not change significantly
over time, is mostly related to the chloride propagation dur-
ing the simulation. The lateral variation at any time, by con-
trast, is largely ascribable to bedrock topography.

3.3 Time-lapse synthetic σa data

The spatio-temporal distribution of σb shown in Fig. 8 was
used to generate the time-lapse synthetic σa data. The gener-
ated σa data for the model obtained on 23 November (see plot
d in Fig. 8) are shown in Fig. 9. Profile ρ32 shows the great-
est σa values in each orientation, while the minimum σa was
recorded on profile ρ118, indicating a conductive zone over
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Figure 7. Soil Cl− concentration distribution simulations for the selected scenario: (a) 17 October, (b) 26 October, (c) 14 November and (d)
23 November 2016.

a resistive zone, which is expected from the model shown in
Fig. 8d. In addition, significant lateral σa change is evident
along the transect, with strongest fluctuations in ρ32 in both
orientations. This is because of the strong lateral σb varia-
tions at the near surface due to the saline water infiltration
and heterogeneity of the subsurface. The general behaviour
of the synthetic σa data suggests that the field data might have
strong lateral σa changes along the transect, and a careful pro-
cessing of data is required (e.g. filtering of σa data should be
avoided).

3.4 Optimizations of the inversion parameters

In this section we show how well the developed inversion
method can resolve the σb distribution from generated syn-
thetic σa distribution. Firstly, we investigated the influence of
the spatial smoothing parameter (λ) and the inversion algo-
rithm S1 (Eq. 5) and S2 (Eq. 6) in the Supplement in resolv-
ing the σb distribution. In this regard, the generated σa data
were inverted using both S1 and S2 and different values of λ
in the 0.01 to 10 range. Figure 10 shows an example of the σb
distribution models after inverting the synthetic σa data pre-

sented in Fig. 9 This example was selected due to the larger
lateral and vertical contrast.

Ideally, the obtained σb distribution should be very simi-
lar to the one shown in Fig. 8d. However, looking closely at
the obtained σb distribution, we observe that all of them are
different, to some extent, to the one shown in Fig. 8d. First
of all, we note that the model obtained using λ values greater
than 1 (not shown here) and regardless of the choice of inver-
sion algorithm (i.e. S1 and S2) shows a high misfit error and
also significantly over-smoothed σb distribution. This is not
surprising as the sharp vertical spatial variability of σb due
to the saline water irrigation and soil heterogeneity as well
as the shallow bedrock cannot be well resolved using high
λ (over-smoothed parameters). Consequently, a high λ is not
a wise choice when sharp vertical and lateral conductivity
contrasts are expected in the field. The obtained model using
S2 algorithm and moderate λ values (i.e. 0.5) also yields a
very smooth model. In contrast, the obtained models using
S1–λ= 0.05, S1–λ= 0.5 and S2–λ= 0.05 do a better job in
resolving near-surface anomalies. However, the conductivity
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Figure 8. σb distribution simulations for the selected scenario: (a) 17 October, (b) 26 October, (c) 14 November and (d) 23 November 2016.

distribution at depth is not well recovered using the S1 algo-
rithm.

In Fig. 11, we plotted the synthetic σb distribution data
against the obtained modelled σb distributions using different
inversion parameters shown in Fig. 10, and we calculated the
statistical scores R, RMSE and ME to further investigate the
impact of the inversion algorithm and parameters in resolv-
ing the σb distributions. Firstly, we observed that both S1 and
S2 algorithms underestimated the σb to some extent, judging
from the ME values. The S2–λ= 0.5 and S1–λ= 0.05 show
weaker statistical scores, with higher RMSE and ME and rel-
atively lower R. The over-smoothed impact of S2–λ= 0.5
and the resulting highest ME indicates that the S2 algorithm
with moderate to high λ values is not a rational choice when
large spatial and vertical variations of σb are expected. On the
other hand, the lowest R and highest RMSE, obtained for S1–
λ= 0.05, suggest that the S1 algorithm with very small val-
ues of λ is not able to predict the spatial variation of σb well.
The use of the S1 algorithm with very small values of λ usu-
ally applies an insignificant spatial constraint that may result
in more inconsistency between synthetic σb and modelled σb
distributions. The S2–λ= 0.05 and S1–λ= 0.5 show better

statistical results, with higher R and lower RMSE and ME,
which makes them a better choice for the inversion of field
data. While both inversion parameters set present almost the
same RMSE, the S2–λ= 0.05 yields a higher R, suggesting
that the S2–λ= 0.05 can better resolve the spatial σb distri-
butions. This is expected from a comparison of S2–λ= 0.05
and S1–λ= 0.5 results in Figs. 10 and 11, where a relatively
lower correlation is evident between synthetic σb and mod-
elled σb at lower ranges of σb (Fig. 11) located at depths of
more than 70 cm (Figs. 10 and 11) when we used the S1–
λ= 0.5. The difficulty of resolving a resistive zone at depth
and beneath a conductive zone is indeed expected. In fact,
the sensitivity of the EMI signals is very limited over the re-
sistive zone, and therefore the resistive zone cannot be well
resolved. The condition will be worse in our study as a re-
sistive zone is located beneath a conductive zone: the EMI
response of the subsurface will be dominated by the influ-
ence of the near-surface conductive zone. In addition, five
of the six depths of investigation of the CMD Mini-Explorer
are limited to the first 1 m, and, as a result, a lower resolution
is expected at greater depths. The S2 algorithm did a better
job in resolving the resistive zone at depth. This is because
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Figure 9. σa data generated from the forward calculation of the σb distributions on 23 November, shown in Fig. 8d. (a) HCP-mode and (b)
VCP-mode configurations are displayed.

the S2 algorithm constrains the value of each cell to the ref-
erence model during the inversion process, which limits the
large variations of each cell during the inversion process.

In terms of recovering the absolute values of soil electrical
conductivity, it appears that all obtained models underesti-
mate the conductivity of the anomalies near the surface. This
can be explained by the over-parameterized inverse problem
and the effects of smoothing from regularization applied in
the inversion algorithm, as well as the impact of the resistive
zone beneath the conductive zone. In addition, the six mea-
surements per site with a site spacing of 1 m are not sufficient
for recovering sharp σb variability along the transect. Mea-
suring σa at different heights as well as smaller site spacing
enables more σa data to better resolve changes which occur
over short depth and length increments.

In terms of the influence of the temporal smoothing pa-
rameter (α), we explored different values (results not shown
here). We noticed that the values larger than 0.1 over-
smoothed the expected temporal variation, and thus the de-
tailed variations cannot be resolved. We conclude that, for
our study, a value of 0.05 is the best choice for α in resolving
the temporal variation of σb.

We repeated the same analyses using 20 different synthet-
ics transects, consisting of a random assembly of 30 interact-
ing soil columns, each with its own hydraulic properties and
depth to bedrock and different saline treatment (results not
shown here). The results of our analysis show that the algo-
rithm S2 is the best choice in the presence of a resistive zone
at depth and small values of λ and α work best for dealing

with the sharp lateral and temporal expected changes that oc-
curred during the experiment. Based on the synthetic tests,
the spatio-temporal algorithm S2 described in Eq. (6) with
λ and α values of 0.05 and 0.05 respectively were selected
to invert time lapse actual σa datasets measuring during the
experiment period.

3.5 Inversion of the real time-lapse σa field data

Using the optimized inversion parameters obtained in
Sect. 3.4., we inverted time-lapse σa data collected over the
four experimental plots, P1, P2, P3 and P4. Figure 12 shows
the σa data of the middle transect in each experimental plot
(Fig. 1) for the last date of monitoring, i.e. 23 November.
The σa data show a relatively similar pattern in both VCP
and HCP modes, with greater σa values on ρ32 and ρ71 and
the minimum σa values recorded on ρ118, indicating a con-
ductive zone over a resistive zone. In addition, greater lateral
σa changes in the VCP mode are evident along the four tran-
sects, with noticeable fluctuations in P4, suggesting greater
lateral σb variations at the near surface. The σa data obtained
from plot P1 and P2 show a lower range of conductivity,
varying in the 20–40 mSm−1 and 20–50 mSm−1 ranges, re-
spectively. P3 and P4 represent a higher range of conductiv-
ity, with the former in the 20–70 mSm−1 range and the latter
in the 20–80 mSm−1 range.

Figure 13 shows the time-lapse inversion results for the
same transects for four dates: 17 and 26 October and 14 and
23 November 2016. The same colour scale was used for all
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Figure 10. σb distributions obtained from the inversion of the synthetic σa data (23 November), shown in Fig. 9, using four different
combinations of two algorithms, S1 and S2, and λ parameters.

models, allowing for a comparison of spatio-temporal vari-
ation of σb along all profiles at different times. The corre-
sponding model responses for the last measurements on 23
November are shown in Fig. 12. The misfit errors for the
P1, P2, P3 and P4 are 1.43, 1.21, 2.15 and 2.95 mSm−1,
respectively, indicating a good fit between data and model
responses. Slightly higher misfit errors for P3 and P4 are
probably due to greater range of σa, as well as the larger
lateral variations of σa. Looking at EMI models at differ-
ent times and along all four experimental plots, we iden-
tify two distinct zones: a resistive zone at a depth of more
than 50 cm beneath a conductive zone. The conductivity of
the resistive zone varies laterally and temporally along all
four transects; however, the conductivity of this zone rarely
exceeds 25 mSm−1. The resistive zones in the maps shown
correspond to the bedrock in the study area (Fig. 2). The con-
ductivity of this zone is slightly lower in P3 and P4, which
is probably due to the shallower bedrock in these plots. In
contrast, the conductive zone at the near surface shows sig-
nificant spatio-temporal conductivity changes depending on
the conductivity of the injected water.

The time-lapse models obtained from plot P1 show the
minimum spatio-temporal conductivity changes in this zone,
with conductivity varying in the 30–60 mSm−1 range. The
P2 plot shows larger spatial and temporal conductivity
changes compared to P1, as expected, with conductivity
varying between 30 and 80 mSm−1. The conductivity of this
zone decreases slightly on 14 November. This is probably
due to the impact of heavy rain (31 mm) on 7 November, in-
ducing salt leaching and reducing the soil conductivity. The
P3 and P4 plots show stronger conductivity changes both
spatially and temporally, with conductivity varying between
50 and 100 mSm−1. The first models, obtained for 17 Oc-
tober, shows the minimum conductivity among the four se-
lected dates. This is consistent with the simulated distribu-
tions shown in Fig. 8, and it is probably due to the saline
front being still undispersed in the initial propagation phase
(Fig. 7).

As the saline water is continuously added to the soil sur-
face, the Cl− concentration increases in the soil and also
deepens slowly in the soil profile, thus increasing soil electri-
cal conductivity. Consequently, the higher soil conductivities
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Figure 11. Synthetic versus modelled σb distribution for four different combinations of S and λ inversion parameters. Different colours refer
to different depths. Main statistics are also reported.

seen on 23 October (Fig. 13, P3 and P4) are due to higher
Cl− concentration and its propagation to deeper layers. The
conductivity models obtained for 14 November show a de-
crease in soil conductivity in both P3 and P4, although there
were six irrigations after 23 October. On the other hand, the
conductive zone extends to deeper soil. This is not surprising
as we already expected it from the simulations (see Fig. 8).
This behaviour is probably due to the rainfall event on 7
November (as noted on P2) which diluted the Cl− concen-
tration in the soil. This suggests that the EMI surveys and
data modelling detected the expected change in Cl− concen-
tration well.

Finally, the models obtained for the data collected on 23
November, depicted in Fig. 13, show the maximum soil con-
ductivity and extension of the conductive zone among the
selected dates in P3 and P4. A comparison of these mod-
els with our simulations results discussed in Sects. 4.1 and
4.2 shows that the increase of Cl− concentration in soil af-
ter 12 irrigation events, as well as the redistribution of Cl−

during the experiment period, is the main reason for increase
in soil conductivity. Judging from the water content distribu-

tion maps, obtained from numerical simulations and shown
in Fig. 6, we expect very small temporal variations of water
content in all experimental plots. Consequently, the temporal
variations of Cl− concentration and distribution are expected
to be the key factor in temporal variations of soil electrical
conductivity.

From a management perspective, the discussion above
suggests that using the described approach regularly after ir-
rigation applications may allow for monitoring of salt prop-
agation and redistribution. As water content values and pat-
terns are expected to be quite similar at similar times after
each irrigation event, changes in bulk electrical conductiv-
ities obtained by an EMI sensor will be closely related to
changes in salt concentrations.

4 Conclusions

In this study, we carried out a time-lapse EMI survey over
four experimental plots irrigated with water at four differ-
ent salinity levels during 3 months. We examined how well
the time-lapse EMI measurements and a time-lapse inversion
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Figure 12. σa distribution of the middle transect in four experimental plots, P1, P2, P3 and P4, for 23 November. Panels (a), (b), (e) and (f)
show the VCP configuration, and panels (c), (d), (g) and (h) show the HCP configuration.

algorithm can be used to monitor soil salinity variability in
space and time through performing simulation experiments
and inversion processes. Based on our detailed simulations
and synthetic tests as well as the interpretation of the time-
lapse models, the following main conclusions can be drawn:

1. The numerical simulations performed in this study al-
low for predictions of the spatial and temporal variabil-
ity of soil salinity and water content during the irrigation
experiment prior to the modelling of field σa data. This
improves our understanding of how soil salinity and wa-
ter content changes during the experiment influence σb
distribution in time, which may be crucial for interpret-
ing EMI models in terms of soil salinity and water con-
tent distribution. They also provided a synthetic time-
lapse EMI dataset very similar to the field conditions,
allowing for the optimization of data processing and al-
lowing us to find the best inversion approach for the
field experiment. From the synthetic analysis, we also
established that the EMI measurements do not return
enough subsurface information to resolve the expected
sharp conductivity changes in this specific experiment.

2. A comprehensive investigation of our results and a joint
interpretation of numerical simulations and time-lapse
models reveal that the soil Cl− concentration change is
the key factor responsible for σb changes when the EMI
surveys are repeated after the irrigation at the same time.
In fact, repetition of the EMI surveys after the irrigation
has three main advantages: (i) the soil is wet and con-
ductive, and, in such a condition, the signal-to-noise ra-
tio is usually better and EMI data will be more reliable;
(ii) the water content distribution will not change signif-
icantly, allowing the impact of soil salinity changes in
time to be studied better; (iii) the sensitivity of σb to the
Cl− concentration in wet soils is higher, and thus EMI
inversion results may be used to interpret salt propaga-
tion with more confidence.

3. A previously developed least-squares 4D space–time
domain inversion algorithm was implemented in this
study to invert entire time-lapse EMI datasets simulta-
neously for monitoring soil salinity for the first time.
The regularizations in this algorithm are introduced in
both space and time domains to improve the stability of
the inversion process and to reduce the inversion arte-
facts. Using a synthetic test, the applicability of the al-
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Figure 13. Spatio-temporal distribution of σb along the middle transect in four experimental plots, P1, P2, P3 and P4, and for four selected
dates: 17 October, 26 October, 14 November and 23 November 2016.

gorithm has been examined, and we showed that this
approach can provide information about the conductiv-
ity variability in space and time. More synthetic tests
are required to further investigate the efficiency of the
inversion algorithm under different scenarios; however,
we anticipate that the algorithm can be used for other
EMI monitoring surveys.

4. Performing EMI surveys over four experimental plots
irrigated with water at four different salinity levels, we

evaluated the potential of EMI surveys for monitoring
the dynamics of soil salinity due to irrigation. Compar-
ing the EMI models obtained from four experimental
sites, we showed that the σb variations are consistent
with the expectations related to the amount of salt and
water irrigated at each plot during the experiment. The
water content did not change significantly during the
EMI measurement campaigns; hence, the temporal vari-
ations of σb as well as their difference at each plot are
mainly related to the soil salinity distributions. In other
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words, the results indicate that the applied experimental
methodology is strongly capable of giving information
on the spatial and temporal variability of soil salinity.
Further investigations have to be conducted to use EMI
sensors for monitoring salinity under significant water
content changes over time. In this case, discriminating
the role of water content changes and salinity changes
in the σa response may be quite complicated if not im-
possible.

5. The EMI method provides enormous advantages over
traditional methods of soil sampling because it allows
for in-depth and non-invasive analysis, covering large
areas in less time and at a lower cost. However, a proper
interpretation of the EMI inversion models in terms of
soil process is usually difficult, owing to the fact that
the soil electrical conductivity is a complex function of
soil properties, which may vary significantly over space
and time. Thus, retrieving soil properties from EMI data
requires appropriate understanding of site-specific soil
processes. Our study shows that the independent inter-
pretation of time-lapse EMI data without hydrologic in-
sight and understanding of soil processes may be mis-
leading. This fact highlights the necessity of collabora-
tion of geophysicists, soil scientists and hydrologists to
construct a hydrologic conceptual model which can ex-
plain the salinity and water process.
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and Seetharam, S.: Leaching of Contaminants to Groundwater,
in: Dealing with Contaminated Sites, edited by: Swartjes, F.,
Springer, Dordrecht, https://doi.org/10.1007/978-90-481-9757-
6_18, 2011.

Maréchal, B., Prosperi, P., and Rusco, E.: Implications of soil
threats on agricultural areas in Europe, in: Threats to Soil Quality
in Europe, edited by: Toth, G., Montanarella, L., and Rusco, E.,
Office for Official Publications of the European Communities,
Luxembourg, 129–138, https://doi.org/10.2788/8647, 2008.

Moghadas, D.: Probabilistic Inversion of Multiconfiguration Elec-
tromagnetic Induction Data Using Dimensionality Reduction
Technique: A Numerical Study, Vadose Zone J., 18, 1–16,
https://doi.org/10.2136/vzj2018.09.0183, 2019.

Monteiro Santos, F. A.: 1D laterally constrained inversion
of EM34 profiling data, J. Appl. Geophys., 56, 123–134,
https://doi.org/10.1016/j.jappgeo.2004.04.005, 2004.

Paz, A. M., Castanheira, N., Farzamian, M., Paz, M. C.,
Gonçalves, M. C., Monteiro Santos, F. A., and Triantafilis,
J.: Prediction of soil salinity and sodicity using elec-
tromagnetic conductivity imaging, Geoderma, 361, 114086,
https://doi.org/10.1016/j.geoderma.2019.114086, 2020a.

Paz, M. C., Farzamian, M., Paz, A. M., Castanheira, N. L.,
Gonçalves, M. C., and Monteiro Santos, F.: Assessing soil
salinity using time-lapse electromagnetic conductivity imag-
ing, SOIL, 6, 499–511, https://doi.org/10.5194/soil-6-499-2020,
2020b.

Paz, M. C., Farzamian, M., Santos, F. M., Gonçalves, M. C., Paz,
A. M., Castanheira, N. L., and Triantafilis, J.: Potential to map
soil salinity using inversion modelling of EM38 sensor data, First
Break, 37, 35–39, https://doi.org/10.3997/1365-2397.2019019,
2019.

PC-Progress: Hydrus-1D for Windows, Version 4.xx, available at:
https://www.pc-progress.com/en/Default.aspx?hydrus-1d, last
access: 23 March 2021.

Reynolds, W. D. and Elrick, D.: Constant head soil core (tank)
method, in: Methods of Soil Analysis, Part 4, Physical Methods,
SSSA Book series 5, 5, 809–812, Madison, WI, USA, 2003.

Schamper, C., Rejiba, F., and Guérin, R.: 1D single-site and lat-
erally constrained inversion of multifrequency and multicompo-
nent ground-based electromagnetic induction data – Application
to the investigation of a near-surface clayey overburden, Geo-
physics, 77, WB19–WB35, https://doi.org/10.1190/geo2011-
0358.1, 2012.

Shanahan, P. W., Binley, A., Whalley, W. R., and Watts,
C. W.: The Use of Electromagnetic Induction to Moni-
tor Changes in Soil Moisture Profiles Beneath Different
Wheat Genotypes, Soil Sci. Soc. Am. J., 79, 459–466,
https://doi.org/10.2136/sssaj2014.09.0360, 2015.

Shrivastava, P. and Kumar, R.: Soil salinity: A serious environ-
mental issue and plant growth promoting bacteria as one of
the tools for its alleviation, Saudi J. Biol. Sci., 22, 123–131
https://doi.org/10.1016/j.sjbs.2014.12.001, 2015.
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