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Abstract. Recent advances in soil moisture remote sens-
ing have produced satellite data sets with improved soil
moisture mapping under vegetation and with higher spa-
tial and temporal resolutions. In this study, we evaluate the
potential of a new, experimental version of the Advanced
Scatterometer (ASCAT) soil water index data set for multi-
ple objective calibrations of a conceptual hydrologic model.
The analysis is performed in 213 catchments in Austria
for the period 2000–2014. An HBV (Hydrologiska Byråns
Vattenbalansavdelning)-type hydrologic model is calibrated
based on runoff data, ASCAT soil moisture data, and Mod-
erate Resolution Imaging Spectroradiometer (MODIS) snow
cover data for various calibration variants. Results show that
the inclusion of soil moisture data in the calibration mainly
improves the soil moisture simulations, the inclusion of snow
data mainly improves the snow simulations, and the inclusion
of both of them improves both soil moisture and snow sim-
ulations to almost the same extent. The snow data are more
efficient at improving snow simulations than the soil mois-
ture data are at improving soil moisture simulations. The im-
provements of both runoff and soil moisture model efficien-
cies are larger in low elevation and agricultural catchments
than in others. The calibrated snow-related parameters are
strongly affected by including snow data and, to a lesser ex-
tent, by soil moisture data. In contrast, the soil-related param-
eters are only affected by the inclusion of soil moisture data.
The results indicate that the use of multiple remote sensing
products in hydrological modeling can improve the represen-

tation of hydrological fluxes and prediction of runoff hydro-
graphs at the catchment scale.

1 Introduction

Estimating the spatial and temporal variability in water bal-
ance components at the regional scale is important for solv-
ing a range of practical issues in water resources manage-
ment and planning and for understanding catchment func-
tioning in terms of how runoff-generation processes inter-
act to produce catchment response. An estimation approach
is using hydrologic models. There are a variety of model
types and model parameter estimation methods. Notwith-
standing their usefulness, the resulting simulations of the wa-
ter balance components are subject to uncertainty due to un-
certainty in model inputs, parameter estimation, and model
structure (Kavetski et al., 2006; Parajka et al., 2007; Wagener
and Montanari, 2011).

Previous studies have demonstrated that multiple objec-
tive calibration helps to constrain hydrologic models and,
hence, to reduce uncertainty and to improve predictions in
hydrological modeling (e.g., Efstratiadis and Koutsoyiannis,
2010). Most of these studies examined the value of constrain-
ing hydrologic models by combining different runoff signa-
tures (e.g., by simultaneous calibration of the models to low
and high flows or timing) or calibrating hydrologic models
to runoff and some additional hydrological variable, such as
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snow cover (e.g., Udnæs et al., 2007; Parajka and Blöschl,
2008; Franz and Karsten, 2013; Duethmann et al., 2014; Fin-
ger et al., 2015, Han et al., 2019, Sleziak et al., 2020), soil
moisture (e.g., Parajka et al., 2009; Sutanudjaja et al., 2014;
Wanders et al., 2014; Rajib et al., 2016; Kundu et al., 2017,
Li et al., 2018), evaporation (e.g., Immerzeel and Droogers,
2008; Zhang et al., 2009), groundwater level data (Seibert,
2000), or total water storage (e.g., Lo et al., 2010; Werth and
Güntner, 2010; Rakovec et al., 2016; Bai et al., 2018; Traut-
mann et al., 2018). These studies showed that the use of addi-
tional information typically improves the spatial and/or tem-
poral patterns of internal state variables and fluxes but does
not necessarily improve the efficiency of simulating runoff.
Most of the studies reported a small degradation of runoff
model efficiency while the internal consistency of the models
improved. A few studies also tested the combination of more
variables in multiple objective calibration (e.g., Milzow et
al., 2011; Kunnath-Poovakka et al., 2016; López López et al.,
2017; Nijzink et al., 2018; Demirel et al., 2019; Szeles et al.,
2020, 2021) and found that the combination of different vari-
ables generally reduced the parameter uncertainty, particu-
larly in data-poor regions. For example, Nijzink et al. (2018)
demonstrated that constraining hydrologic models profited
from an increased number of data sources. Interestingly, the
use of different soil moisture products had a positive impact
on the identifiability of not only soil but also snow module
parameters.

The factors that control these improvements are less well
understood. Snow cover data improved snow and runoff sim-
ulations in small catchments without precipitation observa-
tions (Parajka and Blöschl, 2008). They helped to reduce
snow underestimation errors in flatland catchments in chang-
ing climate conditions (Sleziak et al., 2020). Including evap-
otranspiration estimates improved regionalization and simu-
lations of daily and monthly runoff, particularly in drier re-
gions with lower runoff volumes (Zhang et al., 2009). The
use of total water storage data from the Gravity Recovery
and Climate Experiment (GRACE) improved runoff simu-
lations on monthly or longer timescales, particularly in wet
catchments (Rakovec et al., 2016). Only a few studies ex-
amined the factors that control the changes in soil moisture
efficiency when using soil moisture information (Rajib et al.,
2016). Parajka et al. (2006) showed that the soil moisture
efficiency of a model calibrated to runoff and satellite soil
moisture was lower in hilly and alpine regions, with large to-
pographical variability as compared to the flatlands. Nijzink
et al. (2018) reported that the Advanced Microwave Scan-
ning Radiometer for the Earth Observing System (AMSR-E)
soil moisture product improved the identifiability of model
parameters in peaty lowland catchments.

Recent advances in the observation techniques of soil
moisture, particularly in passive and active microwave re-
mote sensing, increase the availability of regional and global
soil moisture data sets (Babaeian et al., 2019). Passive mi-
crowave sensors operating in the 1–10 GHz frequency range

suitable for soil moisture retrieval include the L-band ra-
diometers flown on board the Soil Moisture Active Pas-
sive (SMAP) and Soil Moisture and Ocean Salinity (SMOS)
missions and the multifrequency radiometer Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2). In the active do-
main, soil moisture retrievals from the C-band Advanced
Scatterometer (ASCAT) have found widespread use in geo-
scientific applications (Brocca et al., 2017). All these satel-
lites have a rather coarse spatial resolution of the order of tens
of kilometers (10–50 km). Various validation studies have
shown that ASCAT soil moisture data sets (Wagner et al.,
2013) are less accurate than corresponding SMAP soil mois-
ture data sets (Kim et al., 2020) but are, overall, comparable
in quality with SMOS and AMSR2 (Chen et al., 2018; El
Hajj et al., 2018; Mousa and Shu, 2020). Nonetheless, there
are important regional differences in the quality of the satel-
lite soil moisture data sets, with ASCAT performing, in gen-
eral, the poorest over arid environments and the best over
more densely vegetated regions. Over the United States and
Europe, comparisons with in situ soil moisture data from
dense networks have revealed the presence of seasonal biases
in the ASCAT soil moisture time series (Wagner et al., 2014).
Pfeil et al. (2018) and Hahn et al. (2020) have demonstrated
that these seasonal biases can be reduced by enhancing the
vegetation parameterization of the TU Wien change detec-
tion model introduced by Wagner et al. (1999). The launch of
the Sentinel-1 series provides observations at a high spatial
resolution of 5×20 m. Over mountainous environments, soil
moisture retrievals from all microwave sensors are, in gen-
eral, much less reliable than over flatland regions due to sig-
nificant topographic variations within the coarse-resolution
satellite footprints and the presence of rocks, ice, snow, and
dense vegetation. Nonetheless, in the snow- and frost-free
summer months, the satellite retrievals may have some skill,
as demonstrated by Brocca et al. (2013) for an alpine catch-
ment in northern Italy.

The objective of this study is to test the value of a new
ASCAT soil water index (SWI) data product for multiple ob-
jective calibration and validation of a conceptual hydrologic
model. Compared to the operational ASCAT SWI product,
as distributed by the Copernicus Global Land Service, this
experimental SWI data product mainly benefits from a new
vegetation parameterization of the ASCAT surface soil mois-
ture retrieval algorithm and an improved spatial representa-
tion due to the application of a new directional resampling
method based on Sentinel-1 synthetic aperture radar (SAR)
data. The main aims are as follows: (1) to evaluate the perfor-
mance of a conceptual hydrologic model calibrated to satel-
lite soil moisture and runoff, (2) to test the impact of weight
on the runoff objective in model calibration, (3) to com-
pare the multiple objective calibrations to three different cal-
ibration variants, namely (i) traditional calibration to runoff
only, (ii) multiple objective calibration to satellite snow cover
and runoff, and (iii) multiple objective calibration to satellite
snow cover, soil moisture, and runoff, and (4) to examine fac-
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tors that control the model performance at the regional scale.
The analysis is performed by confronting a conceptual hy-
drologic model with ASCAT SWI soil moisture data for 213
catchments in Austria, which represent a wide range of phys-
iographic settings typical of central European conditions.

2 Data

2.1 ASCAT soil water index product

For producing a new, experimental version of the ASCAT
SWI data set, we deployed the same algorithms used within
the European Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT) Satellite Application Facil-
ity on Support to Operational Hydrology and Water Man-
agement (H-SAF) and the Copernicus Global Land Service.
The novelty is the application of a new parameterization for
the vegetation correction (Hahn et al., 2020) and a new ap-
proach for disaggregating the ASCAT soil moisture retrievals
to a finer grid. This approach is currently under review by H-
SAF for producing the planned MetOp (Meteorological Op-
erational satellite) ASCAT disaggregated surface soil mois-
ture near-real-time 1 km sampling (ASCAT DIS SSM NRT
1 km – H28) data product. The main steps in the processing
are as follows: (i) retrieving surface soil moisture from AS-
CAT backscatter time series using the TU Wien change de-
tection algorithm adopted by ASCAT (Naeimi et al., 2009)
and using the vegetation parameterization as recommended
by Pfeil et al. (2018), (ii) disaggregating the ASCAT surface
soil moisture data to a regular 500 m grid using the direc-
tional resampling method described in the Algorithm The-
oretical Baseline Document (ATBD) for the planned H-SAF
H28 data product, and (iii) computing the SWI using the iter-
ative implementation of the exponential filter introduced by
Wagner et al. (1999) and Albergel et al. (2008), with a char-
acteristic time value of T = 10 d, representing root zone soil
moisture. This last processing step makes the ASCAT soil
moisture data better comparable to the modeled soil mois-
ture data as it filters out high-frequency fluctuations of the
ASCAT surface soil moisture retrievals and samples the data
at regular time intervals. The disaggregation step is based on
the analysis of Sentinel-1 backscatter time series sampled to
500 m. It essentially looks for the best direction from which
the ASCAT data are interpolated to the 500 m grid. Thus, it
improves the resampling, especially near large lakes or near
large urban areas. The ASCAT product used in this research
is the same product which is used as the active product in
the European Space Agency Climate Change Initiative (ESA
CCI). The study of Dorigo et al. (2017) demonstrated the
quality of the active ESA CCI product over temperate cli-
mates such as Austria. Considering that the spatial sampling
of the ESA CCI data set is 0.25◦, whereas the ASCAT prod-
uct has a sampling of 12.5 km, the ASCAT product was cho-
sen to be applied in this study. In addition, the algorithm of

the ASCAT product, which improved vegetation parameters,
performed better over Austria (Pfeil et al., 2018).

To exclude invalid ASCAT measurements of snow and
frozen ground, soil moisture was masked using soil tempera-
ture and snow cover from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Copernicus Climate
Service ERA5-Land data set (Muñoz Sabater, 2019). Soil
moisture was masked when soil temperatures at a soil depth
of 0–7 cm were below 1 ◦C or snow cover exceeded 30 % of
the pixel.

2.2 MODIS snow cover product

Snow cover is mapped by combining the MODIS products
from the Terra (MOD10A1) and Aqua (MYD10A1) satellites
(Hall and Riggs, 2016a, b). Version 6 of the MOD10A1 and
MYD10A1 data sets provides daily maps of normalized dif-
ference snow index (NDSI) at a 500 m spatial resolution. The
NDSI values range between 0.0 and 1.0, and snow cover is
considered to be present if the NDSI is larger than a thresh-
old. Former MODIS versions used a fixed threshold (0.4),
but Tong et al. (2020) found that, in Austria, this threshold
can be seasonally optimized for different altitudes and land
cover classes. In this study, we use a threshold that varies
seasonally, decreases with increasing elevation, and is lower
in forested than open land cover settings (see Table S1 in
the Supplement). Such a varying threshold improves the re-
gional snow cover mapping by 3 %–10 %, mainly in forested
regions above 900 m a.s.l. (meters above sea level; Tong et
al., 2020). The classified snow cover maps from Terra and
Aqua are then combined to reduce the effect of clouds. Pix-
els classified as clouds or missing in Terra are replaced by
pixels from Aqua if these are classified as snow covered or
snow free (Parajka and Blöschl, 2008).

2.3 Study area and other data

The value of satellite data for the calibration of hydrologic
models is evaluated in 213 catchments in Austria (Fig. 1;
Table 1). This set of catchments has been selected in pre-
vious studies (Viglione et al., 2013; Sleziak et al., 2020)
to represent diverse physiographic, landscape, and hydro-
logic characteristics which are not significantly affected by
human impact. Selected catchment characteristics of this
data set are presented in Table 1. The size of the catch-
ments varies from 13.7 to 6214 km2, and their mean elevation
ranges from 353 to 2940 m a.s.l. Topographical characteris-
tics are derived from a digital elevation model with 500 m
spatial resolution. Land cover in Austria is mainly agricul-
tural crops and meadows in the lowlands and forest in the
medium elevation ranges. Alpine vegetation and rocks pre-
vail in catchments in the Alps. Land cover characteristics are
derived from the CORINE land cover mapping (CLC2006
data set; EEA, 2013; https://land.copernicus.eu/, last access:
5 June 2020), and the NDVI (normalized difference vegeta-
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tion index; MOD13A3v006) is generated from MODIS C6
1 km monthly data (Didan, 2015). Austria has a warm, tem-
perate climate, except for the Alps. The largest precipitation
rates (more than 2000 mm yr−1) occur in the west, mainly
due to orographic lifting of northwesterly airflows at the rim
of the Alps. Mean annual catchment precipitation is lower
(less than 800 mm yr−1) in the lowlands in the east, and the
contrast with the Alps is reinforced by the higher air tem-
perature and much higher evaporation in the lowlands. Soil
characteristics are derived from a 1 km global map of soil hy-
draulic properties (Zhang et al., 2018). This data set provides
the mean and standard deviations of selected soil hydraulic
parameters based on the Kosugi water retention model (Ko-
sugi 1994, 1996) at a 1 km resolution for surface soils (0–
5 cm).

Hydrological and meteorological data are obtained from
the Central Hydrographical Bureau (HZB; https://ehyd.gv.
at/, last access: 17 March 2021) and Zentralanstalt für Meteo-
rologie und Geodynamik (ZAMG). Model inputs (i.e., mean
daily precipitation and air temperature) are derived from the
gridded SPARTACUS data set (Hiebl and Frei, 2016, 2018).
This data set provides long-term daily gridded (1 km spatial
resolution) maps, which are consistently interpolated by us-
ing a consistent station network throughout the entire period
(Duethmann et al., 2020). Mean daily potential evaporation
is derived from gridded maps of mean daily air temperature
and potential sunshine duration index by using a modified
Blaney–Criddle approach (Parajka et al., 2003). Daily runoff
data from 213 catchments are used for calibrating and 208
catchments for validating the hydrologic model.

The precipitation, air temperature, runoff, and MODIS
snow cover data are available from September 2000 to Au-
gust 2014. The concurrently available period for the soil
moisture ASCAT SWI data is January 2007 to August 2014.

3 Methods

3.1 Conceptual hydrologic model

The hydrologic model used in this study is a semi-distributed
version of TUWmodel, following the structure of the
HBV (Hydrologiska Byråns Vattenbalansavdelning) model
(Bergström, 1992; Parajka et al., 2007). A simple illustration
of the model structure is presented in Fig. 2. The model con-
sists of three routines, i.e., snow accumulation and melt, soil
moisture accounting, and runoff routine. The snow part has
five model parameters and is based on a simple degree–day
method. This entails the snow correction factor (SCF), to ac-
count for errors in measurement of snowfall due to gauge
undercatch, the degree–day factor (DDF), and three thresh-
old temperatures (Ts, Tr, and meltT). The soil moisture rou-
tine has three parameters, namely the maximum soil moisture
storage in the root zone field capacity (FC), a limit that con-
trols the actual evapotranspiration limit potential (LP), and a

nonlinear parameter for runoff production beta. The routing
involves two parts, i.e., within-catchment routing and stream
routing. The within-catchment routing has five parameters,
including three storage coefficients k0, k1, and k2 for three
conceptual reservoirs representing overland flow, interflow,
and base flow, respectively, a threshold for very fast response
lsuz (see Table 2 for the definition), and a constant percola-
tion rate cperc connecting the fast and slow reservoirs. The
stream routing uses a triangular transfer function with two
parameters, namely bmax and croute. The total number of
model parameters calibrated is 15 (Table 2). The model is
run in a semi-distributed way, i.e., model inputs and outputs
are estimated for elevation zones of 200 m, while the model
parameters are assumed to be lumped (i.e., constant) in each
catchment. In order to match the model simulations to the
dimensionless satellite soil water index, the simulated soil
moisture is scaled by the field capacity (i.e., the model pa-
rameter FC) to obtain a relative root zone moisture ranging
from 0 to 1. More details about the model can be found in the
Appendix of Parajka et al. (2007).

3.2 Multiple objective calibration and validation of
hydrologic model

The value of using satellite soil moisture (SSM) data for mul-
tiple objective calibration of conceptual hydrologic models
is compared to the following three other calibration variants:
(1) traditional calibration to runoff only, (2) multiple objec-
tive calibration to satellite snow cover (SSC) and runoff, and
(3) multiple objective calibration to SSM, SSC, and runoff.
The general form of the calibration objective function F ,
used in this study, consists of minimizing the weighted sum
of individual objectives related to runoff (OQ), soil moisture
(OSM), and snow cover (OSC) as follows:

F = wQ ·OQ+wSM ·OSM+wSC ·OSC, (1)

where wQ, wSM, and wSC are the weights of the respective
objectives. In each multiple objective calibration variant, 11
runoff weights (from 0.0 to 1.0, with a step of 0.1) are tested
(Table 3). The soil moisture and snow weights are assumed
to be equal for symmetry and are calculated by setting the
sum of all weights to 1.0.

The individual objectives OQ, OSM, and OSC are defined
below. The runoff objective OQ consists of a combination
of two variants of the Nash–Sutcliffe coefficient, NSE and
NSElog (Nash and Sutcliffe, 1970), as follows:

OQ = 0.5 ·NSE+ 0.5 ·NSElog (2)

NSE= 1−

n∑
i=1

(
Qobs, i −Qsim, i

)2
n∑
i=1

(
Qobs, i −Qobs

)2 (3)
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Table 1. Statistics of the catchment attributes of the 213 catchments in Fig. 1, with abbreviation, unit, minimum, maximum, and median. The
standard deviations refer to spatial variability within each catchment. Note: m a.s.l. – meters above sea level.

Information Attribute Abbreviation Unit Min Max Median

Size Area A km2 13.70 6214.00 167.30

Elevation Mean elevation MELE m a.s.l. 353.01 2939.76 1010.73
Minimum elevation MiELE m a.s.l. 200.00 1939.00 561.00
Maximum elevation MxELE m a.s.l. 509.00 3760.00 1861.00
Elevation range ER m 80.00 3072.00 1279.00
Roughness index (MELE-MiELE)/ER RI – 0.15 0.65 0.38
Mean slope SL % 1.74 43.91 18.84
Mean daily potential global radiation MGR kW m−2 d 4.73 6.26 5.19
Standard deviation of MGR SDGR kW m−2 d 0.02 1.10 0.39

Land cover Coverage of forest FP % 0.00 94.59 46.88
Coverage of agricultural areas AP % 0.00 92.86 16.30
Mean monthly normalized difference vegetation index MNDVI – 0.00 0.71 0.60
Standard deviation of MNDVI SDNDVI – 0.02 0.19 0.06

Climate Mean annual precipitation MAP mm 728.13 2301.84 1274.40
Standard deviation of annual MAP SDAP mm 10.79 367.57 124.70
Mean air temperature MAT ◦C −2.83 10.30 7.36
Standard deviation of MAT SDAT ◦C 0.06 3.55 1.26
Mean annual potential evaporation MEPI mm 233.49 740.45 629.57
Standard deviation of MEPI SDEPI mm 4.33 162.07 60.17
Catchment aridity index (MEPI/MAP) CAI – 0.18 0.98 0.47
Standard deviation of aridity index SDAI – 0.01 0.31 0.08
Proportion of day with temperature below 0 ◦C MTL0 – 0.12 0.62 0.20

Soil Mean field capacity MFC cm3 cm−3 0.29 0.43 0.36
Standard deviation of MFC SDFC cm3 cm−3 0.01 0.05 0.02
Mean saturated hydraulic conductivity MKS cm d−1 24.88 327.77 161.17
Standard deviation of MKS SDKS cm d−1 6.43 76.03 40.35

Figure 1. Topography of Austria and the location of the 213 catchments.
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Table 2. Parameters of the hydrologic model (TUWmodel) and ranges used in model calibration. A suitable parameter range may vary by
climate and land cover regions and is usually set by expert judgment. The range used here is based on the previous experience of Merz et
al. (2011) and Viglione et al. (2013) in the study area.

Parameter Explanation (unit) General range

SCF Snow correction factor (–) 0.9–1.5
DDF Degree–day factor (mm/◦C d−1) 0.0–6.0
Ts Threshold temperature below which precipitation is snow (◦C) −3.0–1.0
Tr Threshold temperature above which precipitation is rain (◦C) 1.0–3.0
meltT Threshold temperature above which melt starts (◦C) −2.0–2.0
LP Parameter related to the limit for potential evaporation (–) 0.0–1.0
FC Field capacity, i.e., max soil moisture storage (mm) 0–600
beta Nonlinear parameter for runoff production (–) 0–20
k0 Storage coefficient for very fast response (d) 0-2.0
k1 Storage coefficient for fast response (d) 2–30
k2 Storage coefficient for slow response (d) 30–250
lsuz Threshold storage state, i.e., the very fast response starts if exceeded (mm) 1–100
cperc Constant percolation rate (mm d−1) 0.0–8.0
bmax Maximum base at low flows (d) 0.0–30.0
croute Free scaling parameter (d2 mm−1) 0.0–50.0

Figure 2. Conceptual description of TUWmodel structure.

NSElog = 1−

n∑
i=1

(
log(Qobs, i)− log(Qsim, i)

)2
n∑
i=1

(
log(Qobs, i)− log(Qobs)

)2 , (4)

where Qobs, i and Qsim, i represent observed and simulated
daily runoff of day i, respectively, and Qobs is the average of
observed daily runoff over the calibration (or verification) pe-
riod of n days. The choice of the equal weighting of NSE and
NSElog is based on previous studies in the study region (e.g.,
Parajka and Blöschl, 2008) that emphasize both the high- and
low-flow conditions.

The soil moisture objective function (OSM) is expressed
by the correlation coefficient r between relative soil moisture
estimated from the ASCAT and simulated by the hydrologic

model, as follows:

OSM =

n∑
i=1

(
(θsim, i − θsim)(θobs, i − θobs)

)
√

n∑
i=1

(
(θsim, i − θsim)2(θobs, i − θobs)2

)
,

(5)

where θsim is the relative root zone soil moisture simulated
by the model, and θobs is the ASCAT SWI. The correlation
coefficient is selected as a measure of similarity because it
allows a comparison of the temporal dynamics irrespective
of the respective magnitudes and possible intercepts in the
relationship between observed and simulated soil moisture.

The snow cover objective function OSC involves the sum
of snow overestimation SO and underestimation SU errors as
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Table 3. Weights given to runoff, satellite soil moisture (SSM), and satellite snow cover (SSC) in the multiple objective calibration (Eq. 1)
for different calibration variants. A set of 11 wQ weights in the range 0.0 and 1.0 is tested for each multiple objective calibration variant. The
sum of weights is always 1.0.

Calibration variant Weight of Weight of soil Weight of snow
runoff (wQ) moisture (wSM) cover (wSC)

Runoff only wQ = 1.0 wSM = 0.0 wSC = 0.0

SSM+ runoff (var1) wQ = {k/10}10
k=0 wSM = 1−wQ wSC = 0.0

SSC+ runoff (var2) wQ = {k/10}10
k=0 wSM = 0.0 wSC = 1−wQ

SSM+SSC+ runoff (var3) wQ = {k/10}10
k=0 wSM = wSC wSC = wSM

follows:

OSC = 1− (SO+ SU). (6)

The estimation of SO and SU follows the strategy proposed
and evaluated in Parajka and Blöschl (2008). The snow over-
estimation error indicates the relative number of days for
which the hydrologic model simulates snow, but the satellite
(MODIS) does not observe snow cover, as follows:

SO =
1

Ndays∑
i=1

Nzones∑
j=1

Ai, j

Ndays∑
i=1

Nzones∑
j=1

Ai, j

∩ (SWEi, j > ξSWE)∩ (SCAi, j = 0), (7)

where Ai, j is the area of zone j on the day i, which is
cloud free from MODIS. SWEi, j is the simulated snow wa-
ter equivalent in elevation zone j larger than 10 mm (Parajka
and Blöschl, 2008), SCAi, j is the snow-covered area esti-
mated from MODIS within this zone, and Ndays is the num-
ber of days i for which MODIS images are available with
cloud cover less than a threshold (ξC) 50 %.

The snow underestimation error indicates the relative
number of days for which the hydrologic model does not
simulate snow in a zone, but MODIS indicates that a snow-
covered area greater than a threshold of 25 % is present in the
zone, i.e., as follows:

SU =
1

Ndays∑
i=1

Nzones∑
j=1

Ai, j

Ndays∑
i=1

Nzones∑
j=1

Ai, j

∩ (SWEi, j = 0)∩ (SCAi, j > ξSCA). (8)

The snow-covered area, SCA, within each zone is calculated
from the MODIS data as follows:

SCA= S/(S+L), (9)

where S and L represent the number of pixels mapped as
snow and snow free, respectively, for a given day and a given
elevation zone.

The thresholds ξSWE, ξSCA, and ξC are chosen on the
basis of the sensitivity analysis performed by Parajka and
Blöschl (2008).

The procedure of model parameters calibration is carried
out for each calibration variant and each catchment indepen-
dently. All calibration variants are automatically calibrated
by using the Shuffled Complex–Self-Adaptive Hybrid Evo-
lution (SC–SAHEL) developed by Naeini et al. (2018). It
combines four evolutionary algorithms (EAs) with the self-
selected scheme, and hence, the evolution process of gener-
ating parameter values is more robust. The number of com-
plexes is set to eight, allowing the four EAs to be automat-
ically changed by each evolution generation. The optimiza-
tion is stopped at any of the following three criteria: if the
parameters converge to a space of geometric size less than
0.01, if the best objective function value has not improved by
0.1 % over the last 10 loops, and if the total number of runs
reaches 1 000 000 (see Chu et al., 2011; Naeini et al., 2018).

The calibration period used in all variants is from
1 September 2000 to 31 August 2010. The validation period
is from 1 September 2010 to 31 August 2014. The warmup
period is 1 year before the start of the calibration or valida-
tion period. Since soil moisture satellite data are available
only from January 2007, the soil moisture simulation effi-
ciency for the calibration period is calculated for a shorter
time period.

4 Results

4.1 Performance of multiple objective calibration

The calibration model performance of three multiple ob-
jective calibration variants is presented in Fig. 3 and Ta-
ble 4. The objective function involves a runoff component
weighted by wQ and additional soil moisture and snow com-
ponents (Table 3). The limiting case is wQ = 1, where only
the runoff component is used, and this case represents a typi-
cal calibration to runoff only. The case where wQ = 0 repre-
sents calibration only to SSM and/or SSC without the use of
runoff data. The median runoff efficiency over the 213 catch-
ments (Fig. 3a; Table 4) ranges between 0.74 and 0.79 for
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wQ larger than 0.3, irrespective of the calibration variants.
Using SSM and SSC with runoff for model calibration re-
sults in a similar pattern of model performance to the case
when only SSM and runoff are used, but the former variant
has a smaller regional variability (scatter) of runoff model ef-
ficiency forwQ less than 0.6. Interestingly, when no runoff is
involved (wQ = 0), using only SSC results in slightly better
runoff simulations than when using only SSM, while for wQ
from 0.1 to 0.3 the opposite is the case.

The correlation between ASCAT and simulated soil mois-
ture (Fig. 3b) has a much larger regional variability (i.e.,
variability between catchments) than the wQ variants. For
the SSM and runoff variant, the median correlation increases
from 0.29 to 0.52, with decreasing wQ, and the variant using
all three variables is similar. For the snow cover and runoff
variant, wQ has little effect on soil moisture correlation, and
correlation is similar to the runoff-only calibration (wQ = 1).

Similar patterns are observed for the snow cover effi-
ciency. The SSM weighting has little effect on the snow cover
simulations. The median OSC is between 0.75 and 0.79 for
wQ larger than 0.0. The variants that use SSC show increas-
ing performance with decreasing wQ, and the regional vari-
ability decreases. For wQ less than 0.5, the median OSC is
between 0.84 to 0.91, which is 5 % to 13 % larger than the
median for calibration to runoff only (OSC = 0.79). These
results indicate that the simultaneous use of SSM and SSC in
model calibration can improve simulations of soil moisture
and snow cover in the calibration period without any signifi-
cant reduction in runoff model efficiency, particularly forwQ
between 0.3 and 0.4.

The model performance for the validation period (2010–
2014) is presented in Fig. 4 and Table 5. The patterns of
changing model efficiency with changing wQ are very simi-
lar to those in the calibration period. The median of valida-
tion runoff model efficiency of the SSM and runoff calibra-
tion variant for wQ>0.3 is between 0.71 and 0.73, which is
similar or only somewhat smaller to that for calibration to
runoff only (wQ = 1). The SSC and runoff calibration vari-
ant results show a slightly lower runoff model performance
for weights wQ<0.3 compared to the other calibration vari-
ants. The calibration with all three variables gives practically
identical validation efficiencies to the variant with SSM and
runoff.

The median soil moisture correlation increases from 0.43
to 0.54, with decreasing wQ, for the SSM and runoff calibra-
tion variant and ranges from 0.42 to 0.49 for the variant that
uses all variables. The smallest correlations are found for the
SSC and runoff variant, where the median of correlation r
varies between 0.35 and 0.43. The regional variability in r is,
however, much larger for all variants than for the calibration
period. The scatter (i.e., difference between 75th and 25th
percentiles) in r is around 0.3 for all wQ. For the variants
that include SSM, the 75th percentiles vary between 0.60 and
0.68.

The snow cover efficiency for wQ larger than 0.5 is very
similar for all three variants. For wQ smaller than 0.5, OSC
tends to increase, and the regional variability decreases for
the variants involving SSC. The validation OSC is about 2 %
larger than that obtained in the calibration period. Similar
to the calibration period, the weighting of SSM and runoff
has hardly any impact onOSC. Adding SSC data to SSM and
runoff improves the snow simulation, particularly forwQ less
than 0.4.

It is also interesting to compare the relative performances
in the validation period to that in the calibration period. The
runoff model performance always decreases when moving
from the calibration to the validation period, although the
decrease is relatively small, suggesting that there is no over-
fitting. The soil moisture model performance, in contrast, al-
ways increases when moving from the calibration to the vali-
dation period. This is likely because, in the case of soil mois-
ture, the calibration period only consists of about 4 years.
The snow model performance increases slightly, probably
because the proportion of days with temperatures below 0 ◦C
for the validation period is 0.21, which is lower than that
for the calibration period (0.24), but the precipitation dur-
ing the days with the air temperature below 0 ◦C does not
show obvious changes (2.62 mm d−1 for the calibration and
2.67 mm d−1 for the validation periods).

The correlation (in terms of the Pearson correlation coef-
ficient) between model performance and selected catchment
attributes (Table 1) is evaluated in Figs. 5 and 6 in order to
understand in which type of catchments SSM and SSC have
the most relevant effect on model performance. The runoff
model efficiency during the calibration period (Fig. 5a) in-
creases with the increasing mean number of days, with neg-
ative air temperatures (MTL0; correlation over 0.57 for wQ
larger than 0.4) and mean catchment elevation (MELE; cor-
relation over 0.55 for wQ larger than 0.4), and tends to de-
crease with increasing catchment mean annual air tempera-
ture (MAT; absolute correlation over 0.57 for wQ larger than
0.4). The larger runoff model efficiency in Alpine catchments
compared to the lowlands is likely related to the seasonal-
ity of snowmelt runoff, which is easier to simulate than the
individual, more erratic events in the lowlands (Merz and
Blöschl, 2009). The correlation of runoff model efficiency
and catchment attributes increases with increasing runoff
weight wQ and is not statistically significant or low (i.e., less
0.4) for wQ<0.4 for most of the attributes. The correlations
of the catchment attributes with soil moisture and snow ef-
ficiencies are not consistently related to runoff weight. Soil
moisture efficiency increases with the increasing fraction of
agricultural land (AP), where the correlation varies between
0.75 and 0.79 for different wQ. This trend may be explained
by the fact that soil moisture can generally be monitored
more accurately in a relatively flat, agricultural landscape
than in rugged mountainous terrain (Brocca et al., 2013;
Parajka et al., 2006), which, in Austria, is furthermore domi-
nantly covered by forests and other dense vegetation impen-
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Table 4. Median of runoff (Eq. 2), soil moisture (Eq. 5), and snow cover (Eq. 6) model efficiency obtained from the following three multiple
objective calibration variants: (1) satellite soil moisture (ASCAT) and runoff (var1), (2) satellite snow cover (MODIS) and runoff (var2), and
(3) satellite soil moisture (ASCAT), satellite snow cover (MODIS), and runoff (var3) in 213 catchments in the calibration period 2000–2010.

Weight wQ Runoff model Soil moisture Snow cover
efficiency efficiency efficiency

Var1 Var2 Var3 Var1 Var2 Var3 Var1 Var2 Var3

0.00 0.07 0.19 0.18 0.52 0.26 0.45 0.66 0.91 0.91
0.10 0.65 0.60 0.59 0.49 0.30 0.44 0.75 0.91 0.91
0.20 0.71 0.62 0.69 0.47 0.32 0.43 0.80 0.91 0.88
0.30 0.74 0.70 0.73 0.46 0.32 0.43 0.80 0.88 0.86
0.40 0.75 0.74 0.76 0.44 0.31 0.42 0.80 0.87 0.84
0.50 0.76 0.77 0.77 0.43 0.31 0.42 0.80 0.85 0.83
0.60 0.77 0.78 0.78 0.43 0.30 0.40 0.80 0.84 0.82
0.70 0.78 0.78 0.78 0.41 0.30 0.37 0.80 0.82 0.81
0.80 0.78 0.79 0.79 0.39 0.29 0.36 0.80 0.81 0.80
0.90 0.79 0.79 0.79 0.34 0.30 0.32 0.80 0.80 0.80
1.00 0.79 0.79 0.79 0.29 0.29 0.29 0.79 0.79 0.79

Table 5. Median of runoff (Eq. 2), soil moisture (Eq. 5), and snow cover (Eq. 6) model efficiency obtained from the following three multiple
objective calibration variants: (1) satellite soil moisture (ASCAT) and runoff (var1), (2) satellite snow cover (MODIS) and runoff (var2), and
(3) satellite soil moisture (ASCAT), satellite snow cover (MODIS), and runoff (var3) in 213 catchments in the validation period 2010–2014.

Weight wQ Runoff model Soil moisture Snow cover
efficiency efficiency efficiency

Var1 Var2 Var3 Var1 Var2 Var3 Var1 Var2 Var3

0.00 0.06 0.11 0.17 0.54 0.35 0.48 0.69 0.93 0.93
0.10 0.60 0.57 0.57 0.49 0.43 0.48 0.75 0.93 0.92
0.20 0.67 0.59 0.66 0.51 0.43 0.49 0.81 0.92 0.91
0.30 0.69 0.65 0.70 0.49 0.43 0.49 0.82 0.91 0.88
0.40 0.71 0.70 0.72 0.48 0.42 0.49 0.81 0.89 0.86
0.50 0.72 0.72 0.72 0.48 0.41 0.48 0.82 0.87 0.85
0.60 0.72 0.73 0.73 0.48 0.41 0.47 0.82 0.86 0.84
0.70 0.72 0.73 0.73 0.46 0.40 0.45 0.82 0.84 0.83
0.80 0.73 0.73 0.73 0.45 0.41 0.43 0.82 0.83 0.83
0.90 0.73 0.73 0.73 0.43 0.40 0.42 0.82 0.82 0.82
1.00 0.73 0.73 0.73 0.40 0.40 0.40 0.81 0.81 0.81

etrable to the radar and scatterometer signals. Accordingly,
we find the soil moisture efficiency tends to decrease with in-
creasing forest cover (FP; correlation varies between −0.35
and −0.49). The active rooting zones are much shallower in
agricultural lands, whereas trees root much deeper. Hence,
the satellite soil moisture data used in this study which mon-
itored for the top 100 cm soil layer may fit the soil moisture
for arable land better. Also, snow model efficiency tends to
increase with decreasing MELE and SL (correlation is be-
tween −0.52 to −0.89) but increases with increasing MAT
(correlations exceed 0.8 for most of the wQ). In the flatlands,
snow is less important, so the cumulative number of days
with potential snow errors in the objective function is gener-
ally lower.

The correlations for the validation period (Fig. 6) have the
same pattern as for the calibration period (Fig. 5). The at-
tributes with the largest correlations with runoff efficiency
are the same, and correlation tends to increase with increas-
ing wQ as well. The correlation is generally only slightly
lower than that estimated in the calibration period. The soil
moisture efficiency in the validation period is positively cor-
related with AP (correlation equals 0.76–0.79) and MAT
(correlation equals 0.55–0.68), but the correlation with AP
is lower than in the calibration period. The largest nega-
tive correlation of soil moisture efficiency and attributions
is found for calibration to runoff only (wQ = 1) in general
and is larger than 0.7 for MELE, catchment elevation range
(ER), and standard deviation of MAT and mean daily poten-
tial global radiation (SDGR). The snow model efficiency is
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Figure 3. Hydrologic model performance for the following three multiple objective calibration variants: calibration to satellite soil moisture
and runoff (red boxes), calibration to satellite snow cover and runoff (blue boxes), and calibration to satellite soil moisture, snow cover, and
runoff (gray boxes). Panels (a), (b), and (c) show runoff (Eq. 2), soil moisture (Eq. 5), and snow cover (Eq. 6) model efficiency for different
weights of the runoff objective wQ in the calibration period 2000–2010, respectively. wQ = 1 represents calibration to runoff only. Boxes
represent the values from the different catchments, and the size of the boxes represents the spatial variability across the 213 catchments.

clearly related to topography, as it increases with decreasing
MELE and increasing MAT.

The relationship between model efficiencies and catch-
ment attributes for the other two calibration variants are
similar and are presented in Figs. S3–S6. The results show
that including snow or soil moisture data in model calibra-
tion does not change the correlation between model effi-
ciencies and catchment characteristics. It is obvious that for
runoff weight wQ>= 0.4 forOQ, wQ>= 0.0 forOSM, and
wQ>= 0.1 for OSC, the correlations between model effi-

ciency and catchment characteristics are similar to those for
the runoff-only calibration. The model efficiency is mainly
related to topography and certain climate, land cover, and soil
attributes, which are, on the other hand, cross-correlated with
topography (Fig. S3).

4.2 Variability in calibrated model parameter values

Figure 7 compares the medians of the model parameters for
all catchments obtained with the three multiple calibration
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Figure 4. Hydrologic model performance for the following three multiple objective calibration variants: calibration to satellite soil moisture
and runoff (red boxes), calibration to satellite snow cover and runoff (blue boxes), and calibration to satellite soil moisture, snow cover, and
runoff (gray boxes). Panels (a), (b), and (c) show runoff (Eq. 2), soil moisture (Eq. 5), and snow cover (Eq. 6) model efficiency for different
weights of the runoff objective in the validation period 2010–2014, respectively.wQ = 1 represents calibration to runoff only. Boxes represent
the values from the different catchments, and the size of the boxes represents the spatial variability across the 213 catchments.

variants grouped by snow, soil, runoff generation, and runoff
routing parameters in the columns from left to right. The
snow-related parameters (Fig. 7; left column) are similar for
the two calibration variants that use satellite snow cover. In
contrast, the variant that uses soil moisture and runoff tends
to have different values, particularly for the threshold tem-
perature parameters (Tr, Ts, and meltT). The medians of the
snow correction (SCF) and melt (DDF) factors tend to be
similar in all three variants if wQ>0.4.

The soil-related parameters (Fig. 7; middle column) show
similar patterns. The variants that use satellite soil moisture
in model calibration have more similar soil model parame-
ter values than the one that uses only SSC and runoff. This
suggests that adding soil moisture satellite data in model
calibration affects the soil-related parameters strongly, and
adding snow and soil moisture satellite data is complemen-
tary as they influence both snow and soil-moisture-related
parameters. The similarity of the variant using all three vari-
ables with those variants where, alternatively, SSC and SSM
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Figure 5. Correlation between catchment attributes (Table 1; other attributes can be found in Fig. S1) and model performance, i.e., runoff
(Eq. 2; a), soil moisture (Eq. 5; b), and snow cover (Eq. 6; c) obtained from multiple objective calibration to satellite soil moisture (ASCAT),
satellite snow cover (MODIS), and runoff (var3 of Table 4; SSM+SCM+ runoff) in the calibration period 2000–2010. Cool and warm
colors represent positive and negative correlations, respectively. Tex in bold indicates significance with p values lower than 0.05.

Figure 6. Correlation between catchment attributes (Table 1; other attributes can be found in Fig. S2) and model performance, i.e., runoff
(Eq. 2; a), soil moisture (Eq. 5; b), and snow cover (Eq. 6; c) obtained from multiple objective calibration to satellite soil moisture (ASCAT),
satellite snow cover (MODIS), and runoff (var3 of Table 5; SSM+SCM+ runoff) in the validation period 2010–2014. Cool and warm colors
represent positive and negative correlations, respectively. Text in bold print indicates significance with p values lower than 0.05.

are left out suggests that SSC is more important for the
snow-related parameters, and SSM is more important for
the soil-related parameters, as would be expected. Increasing
the runoff weight tends to decrease the difference between
the calibration variants of the snow-related and the soil-
related parameters. The runoff-generation-related parameters
(Fig. 7; right column) tend to be more similar for the two
variants that use SSC, and the runoff-routing-related param-
eters (Fig. 7; right column) are always rather similar.

In the next step, the model parameters obtained by multi-
ple objective calibration are compared with those obtained
by traditional calibration to runoff only (Fig. 8). The fig-
ure shows that the similarity between model parameters de-
creases with decreasing wQ.

Snow-related parameters calibrated using SSC (Fig. 8b;
top five lines) deviate quickly from those using runoff only
as wQ decreases. Similarly, the soil-related parameters cal-
ibrated using SSM (Fig. 8a; lines 6–8 from top) deviate
quickly from their counterparts based only on runoff cali-
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bration. The difference in the similarity or correlation be-
tween multiple objective calibration variants and runoff-only
calibration is smaller for runoff-generation parameters. The
runoff-routing model parameters seem to be not very sen-
sitive to selected model efficiencies, and the correlation be-
tween model parameters is very small.

4.3 Comparison of multiple objective and runoff only
calibration efficiencies

The relative difference between the model efficiency of the
three multiple objective variants and that based on calibration
to runoff only is presented in Fig. 9. The runoff model effi-
ciency of multiple objective calibration tends to be slightly
lower than the traditional calibration to runoff only. The me-
dian of difference in runoff model efficiency of the two vari-
ants that use SSM in model calibration is less than 3.2 % for
wQ larger than 0.3 in both calibration and validation periods.
The multiple objective calibration to SSC and runoff has a
somewhat larger median of difference for wQ between 0.2
and 0.4, but for larger wQ, the median is almost identical
with that of the other multiple objective variants. The integra-
tion of soil moisture in model calibration improves the cor-
relation of satellite and simulated soil moisture. The median
improvement for wQ<0.6 is larger than 30 % and 15 % in
the calibration and validation periods, respectively. The cal-
ibration to all variables has a median relative improvement
of about 3 % to 35 % lower than the calibration to SSM and
runoff in the calibration period but is very similar in the val-
idation period. The calibration to SSM and runoff does not
improve snow cover simulations, but the use of all variables
improves the snow model efficiency. For wQ less than 0.5,
the median improvement is larger than 5 % in both calibra-
tion and validation periods.

Given that the median runoff efficiency is not improved by
the addition of soil moisture and snow data (Fig. 9), it is of
interest to see how the changes are distributed in space. Fig-
ure 10 shows that, in up to 40 % of catchments, the validation
runoff efficiency is improved by using multiple objective cal-
ibration as compared to calibration to runoff alone. The num-
ber of catchments with runoff improvements increases with
increasing runoff weight. The flip side, of course, is that in
the remaining catchments the runoff model efficiency dete-
riorates. The calibration variants that use SSM data improve
soil moisture simulations in more than 80 % of the catch-
ments for all weights, and the addition of snow data does not
change the performance. The snow model efficiency is vastly
improved by the inclusion of the SSC data for wQ<0.6 in al-
most all catchments, and the inclusion of soil moisture (in the
variant that uses all variables) still has a very big improve-
ment in snow simulations as compared to the case when only
runoff is used in the calibration.

Overall, there are two important messages. The inclusion
of soil moisture data in the calibration mainly improves the
soil moisture simulations, the inclusion of snow data in the

calibration mainly improves the snow simulations, and in-
cluding both of them improves both soil moisture and snow
simulations to a similar extent. Second, when comparing the
panels of Fig. 10, one sees that the snow data are more ef-
ficient at improving snow simulations than the soil moisture
data are at improving soil moisture simulations.

It is now of interest to see whether the catchments for
which the runoff and soil moisture model efficiencies are
improved by the inclusion of SSC and SSM data (Fig. 10)
are different from those for which this is not the case. The
distribution of the catchment attributes of these two catch-
ment groups are therefore compared with the Kolmogorov–
Smirnov (KS) two sample test. Since the snow model effi-
ciency is improved in almost all study catchments, it is not
analyzed here. Tables 6 and 7 show the p values of the KS
for the runoff and soil moisture model efficiencies, respec-
tively, indicating statistically significant differences between
the catchment groups in many cases. For catchments with a
large frequency of runoff improvements (e.g., for wQ = 0.7
and 0.8) there are a number of differentiating factors includ-
ing those related to topography (mean catchment elevation
and mean catchment slope), proportion of agricultural land,
mean annual air temperature, number of days with negative
air temperature, and mean saturated hydraulic conductivity.
An example of differences between the groups in terms of
mean catchment elevation (MELE) and percentage of arable
land (AP) is presented in Fig. S7. The results indicate that
improvement in runoff is observed in catchments with lower
mean catchment elevation and a larger proportion of agri-
cultural land. The other catchment attributes with statisti-
cally significant differences are correlated with MELE, so
they have similar differences in the distributions to those pre-
sented in Fig. S7.

Since an improvement in soil moisture simulations is ob-
served in 80 % of the catchments (Fig. 10), their attributes are
particularly interesting. The factors controlling the improve-
ment include topographical (MELE, SL, ER, and SDGR),
land cover (FP and AP), climate (MAP, SDAP, MAT, CAI,
and MTLT0), and soil (MKS) attributes, similar to improve-
ment in runoff. This is illustrated in Fig. S8, which indicates
that improvement in soil moisture simulations occurs par-
ticularly in catchments with low mean catchment elevation
and a large proportion of agricultural land. In contrast to the
runoff improvements, the results for the improvement in soil
moisture are not related to the runoff weight wQ used in the
model calibration.

5 Discussion and conclusions

In this study, we tested three multiple calibration variants,
using runoff data along with ASCAT SWI soil moisture and
MODIS snow cover data. The calibration runoff model ef-
ficiency is similar to previous studies (Parajka et al., 2008,
2009; Sleziak et al., 2018) that used only runoff for model
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Figure 7. Medians of the parameter values from the three multiple objective calibration variants (lines) and different runoff weights wQ
(Table 3). Red, blue, and gray lines represent the calibration variants using soil moisture and runoff, snow cover and runoff, and soil moisture,
snow cover data, and runoff, respectively. Lines represent the median of the 213 Austrian catchments.

calibration. For example, the median of runoff model ef-
ficiency ranges between 0.77 and 0.79 (for runoff weights
larger than 0.4), which is similar than the medians of 0.80
and 0.84 found in Parajka et al. (2008, 2009) for 148 Aus-
trian catchments and better than the median of 0.76 found
for 320 Austrian catchments in Parajka et al. (2006) and the
range 0.70–0.73 found for the same set of catchments as in
this paper but from using a lumped model (Sleziak et al.,
2018).

Results show that the inclusion of satellite soil moisture
data in the calibration mainly improves the soil moisture
simulations. The median soil moisture correlation between
hydrologic model outputs and ASCAT SWI is 0.4 to 0.52
(depending on the weight wQ), which is significantly larger
than the median of 0.26 found by using the coarser ERS scat-
terometer data in model calibration in Parajka et al. (2006).
This reflects improvements, both in the instrument specifica-
tions (better temporal and spatial sampling, higher radiomet-
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Figure 8. Correlation of parameter values from three multiple objective calibration variants (runoff weights – wQ = 0.0 to 0.9; Table 3) with
those from traditional calibration to runoff only (wQ = 1.0). Panels (a), (b), and (c) represent calibration variants using soil moisture and
runoff, snow cover and runoff, and all three variables, respectively (var1, var2, and var3 of Tables 4 and 5). Cool and warm colors represent
positive and negative correlations, respectively. Text in bold indicates significance with p values lower than 0.05.

ric accuracy, etc.) and the retrieval algorithm (Naeimi et al.,
2009, Hahn et al., 2020).

The inclusion of satellite snow data mainly improves the
snow simulations. Using MODIS snow cover data to con-
strain the model parameters shows a strong ability to im-
prove the accuracy of representing the snow accumulating
and melting processes from the model. When giving weights
wQ<0.5 to snow, almost all the catchments showed improve-
ments in snow cover simulations. In terms of the improve-
ment in snow model efficiency, our results are better than the
results from Parajka et al. (2008). In their study only 3 years
of MODIS snow cover data was used, and the improvement
of snow mapping even depended on the data availability.

The satellite snow data are more efficient at improving
snow simulations than the satellite soil moisture data are at
improving soil moisture simulations. Part of the reason may
be related to problems in mapping soil moisture in the alpine
region while MODIS snow cover is very accurate both in the
lowlands and in the mountains. For example, Parajka and
Blöschl (2006) and Tong et al. (2020) showed the classifi-
cation accuracy of the MODIS snow cover range from 95 %
to over 97 % in Austria. Furthermore, it is interesting that
including both soil moisture and snow cover data improves
both soil moisture and snow simulations to almost the same
extent as including them individually does, without any sig-

nificant deterioration in the other variable. This gives the
possibility to consistently improve the simulations of snow
and soil moisture in future model applications. Our valida-
tion results indicate that snow simulations are improved in
almost all simulations, with soil moisture correlation in about
80 % and runoff in up to 40 % of the catchments. Overall, the
runoff performance changes very little when including soil
moisture and snow data in the calibration.

The calibrated snow-related parameters are strongly af-
fected by including snow data and, to a lesser extent, by in-
cluding soil moisture data, while the soil-related parameters
are only affected by soil moisture data. This separation is a
welcome property as it facilitates parameter calibration. The
soil moisture data also have some effect on the snow-related
parameters; this is consistent with Nijzink et al. (2018). As
the melting changes the soil moisture directly, the soil mois-
ture data provide additional constraints on the parameters
controlling snowmelt. This can be helpful in understanding
hydrological processes, especially for the variation in snow
water equivalent.

Our results indicate that the runoff and soil moisture simu-
lation improvement when including soil moisture data in the
calibration is found mainly in catchments with lower mean
catchment elevation and a larger proportion of agricultural
land. While, overall, in 40 % of the catchments, the validation
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Figure 9. Relative difference in model efficiency (OQ – runoff model efficiency; OSM – soil moisture model efficiency; OSC – snow
model efficiency) of three multiple objective calibration variants (lines), using different runoff weights wQ (Table 3) compared to traditional
calibration to runoff only (wQ = 1). Red, blue, and gray lines represent calibration variants using soil moisture and runoff, snow cover and
runoff, and soil moisture, snow cover, and runoff, respectively. Lines represent the median of the 213 Austrian catchments. Panels (a, d), (b,
e), and (c, f) refer to runoff, soil moisture, and snow cover efficiencies in the calibration (a–c) and validation (d–f) periods, respectively.

Figure 10. Relative number of catchments with improvement in runoff (a), soil moisture (b), and snow cover (c) model efficiency in the
validation period. Relative number relates to the 213 Austrian catchments used in this study.
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Table 6. Kolmogorov–Smirnov p values testing the similarity of the distribution of catchment attributes across the 213 catchments between
those catchments where the runoff model efficiency is improved in the validation period by the inclusion of the soil moisture and snow
data in the calibration and those catchments where this is not the case. The null hypothesis that the two samples were drawn from the same
distribution is rejected if the p value is less than the significance level (shown in bold).

wQ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A 0.70 0.34 0.22 0.32 0.15 0.93 0.05 0.26 0.46 0.96
MELE 0.23 0.00 0.00 0.01 0.01 0.00 0.17 0.03 0.05 0.25
MiELE 0.27 0.06 0.09 0.20 0.03 0.01 0.03 0.01 0.09 0.19
MxELE 0.60 0.00 0.00 0.00 0.01 0.00 0.23 0.03 0.03 0.35
ER 0.59 0.00 0.00 0.00 0.00 0.00 0.47 0.29 0.02 0.21
RI 0.49 0.00 0.00 0.00 0.01 0.00 0.14 0.03 0.03 0.05
SL 0.11 0.46 0.82 0.37 0.50 0.16 0.18 0.17 0.86 0.81
MGR 0.23 0.73 0.38 0.62 0.05 0.66 0.48 0.98 1.00 0.45
SDGR 0.44 0.00 0.01 0.00 0.00 0.00 0.11 0.07 0.02 0.06
FP 0.29 0.05 0.05 0.07 0.40 0.23 0.87 0.80 0.31 0.72
AP 0.20 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.02 0.17
MNDVI 0.71 0.01 0.10 0.03 0.04 0.04 0.05 0.04 0.15 0.21
SDNDVI 0.72 0.00 0.04 0.00 0.00 0.01 0.49 0.14 0.01 0.09
MAP 0.82 0.00 0.19 0.08 0.51 0.01 0.03 0.12 0.01 0.05
SDAP 0.34 0.00 0.05 0.04 0.15 0.38 0.93 0.92 0.03 0.39
MAT 0.20 0.00 0.00 0.00 0.01 0.00 0.11 0.03 0.10 0.42
SDAT 0.43 0.00 0.01 0.01 0.00 0.01 0.55 0.16 0.02 0.21
MEPI 0.15 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.13 0.26
SDEPI 0.36 0.00 0.02 0.00 0.00 0.01 0.63 0.18 0.01 0.06
CAI 0.56 0.00 0.01 0.00 0.05 0.00 0.20 0.05 0.00 0.03
SDAI 0.78 0.06 0.03 0.04 0.01 0.29 0.38 0.74 0.91 0.82
MTL0 0.20 0.00 0.00 0.00 0.01 0.00 0.19 0.02 0.11 0.31
MFC 0.67 0.14 0.03 0.30 0.38 0.08 0.10 0.16 0.03 0.10
SDFC 0.14 0.47 0.24 0.56 0.04 0.25 0.12 0.69 0.01 0.01
MKS 0.18 0.00 0.00 0.00 0.00 0.00 0.17 0.01 0.06 0.14
SDKS 0.40 0.19 0.38 0.98 0.07 0.05 0.47 0.55 0.11 0.27

runoff efficiency is improved by the inclusion of soil mois-
ture (Fig. 10a); these are about 50 % of the catchments if only
those with elevation lower than the median (1011 m a.s.l) and
agricultural area larger than the median (16.3 %) are consid-
ered. Similarly, while, overall, in 80 % of the catchments the
validation of soil moisture efficiency is improved by the in-
clusion of soil moisture (Fig. 10b), these are about 90 % of
the catchments if only those which low elevation and agricul-
tural use are considered. The higher efficiency for improving
the hydrologic model in the lowlands can be explained by the
better quality of the ASCAT soil moisture retrievals (com-
pared to the alpine regions), but it is likely also due to the
higher spatial consistency in soil texture and land cover type
and also lower slope and elevation variation. In contrast to
a previous assessment of ERS assimilation into model cal-
ibration (Parajka et al., 2006), we found soil moisture im-
provement not only in lowland catchments with lower to-
pographical variability but also in catchments with smaller
sizes (Fig. 5), which may be related to the higher spatial and
temporal resolution of ASCAT as compared to ERS. Over
flatlands, ASCAT retrievals have improved a lot compared
to the ERS retrievals from 15 years back, but in alpine re-

gions, the rugged topography, dense alpine vegetation, and
presence of snow and ice even during the summer still makes
using the data challenging, given the higher retrieval errors
and invalid measurements when the ground is snow covered
or frozen. Additionally, the large heterogeneity in tempera-
ture and snow cover in mountainous regions can lead to in-
sufficient masking for frozen soil and snow cover. In future
studies, the use of soil moisture products with much finer
spatial resolution may help in reducing these errors and de-
ficiencies for calibrating hydrological models (e.g., Bauer-
Marschallinger et al., 2019; Long et al., 2019; Vergopolan et
al., 2020; Abowarda et al., 2021).

This study has evaluated the potential of assimilating the
soil water index (representing root zone soil moisture) into
hydrologic model calibration. It would be useful to extend
this study to assimilate other variables, such as surface soil
moisture estimates by using a dual soil moisture conceptual
hydrologic model (Parajka et al., 2009), and also to compare
the role of the spatial resolution of soil moisture and snow
data with respect to their value in the assimilation.
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Table 7. Same as Table 6 but for the soil moisture model efficiency.

wQ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A 0.53 0.31 0.18 0.61 0.23 0.26 0.45 0.98 0.98 0.26
MELE 0.01 0.01 0.02 0.07 0.09 0.05 0.05 0.70 0.14 0.94
MiELE 0.01 0.15 0.13 0.13 0.20 0.04 0.05 0.54 0.20 0.74
MxELE 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.13 0.02 0.31
ER 0.07 0.08 0.08 0.03 0.04 0.02 0.06 0.22 0.10 0.35
RI 0.01 0.03 0.01 0.03 0.03 0.01 0.02 0.38 0.05 0.34
SL 0.32 0.02 0.50 0.93 0.35 0.73 0.90 0.45 0.80 0.46
MGR 0.59 0.55 0.69 0.43 0.79 0.25 0.50 0.61 0.49 0.81
SDGR 0.00 0.01 0.01 0.01 0.05 0.02 0.03 0.14 0.07 0.17
FP 0.00 0.00 0.00 0.00 0.01 0.02 0.10 0.58 0.05 0.35
AP 0.00 0.04 0.01 0.04 0.04 0.00 0.00 0.41 0.12 0.32
MNDVI 0.23 0.01 0.25 0.89 0.97 0.58 0.36 0.89 0.62 0.67
SDNDVI 0.06 0.63 0.87 0.78 0.62 0.27 0.11 0.69 0.56 0.59
MAP 0.00 0.02 0.01 0.00 0.17 0.01 0.03 0.23 0.07 0.72
SDAP 0.03 0.14 0.07 0.00 0.01 0.01 0.00 0.01 0.02 0.07
MAT 0.01 0.02 0.01 0.03 0.05 0.02 0.02 0.40 0.12 1.00
SDAT 0.04 0.05 0.07 0.08 0.09 0.05 0.07 0.19 0.36 0.22
MEPI 0.00 0.00 0.04 0.04 0.06 0.02 0.02 0.32 0.18 1.00
SDEPI 0.03 0.06 0.03 0.04 0.05 0.03 0.05 0.34 0.17 0.32
CAI 0.01 0.05 0.01 0.01 0.04 0.01 0.02 0.39 0.07 0.82
SDAI 0.44 0.95 0.59 0.79 0.52 0.40 0.44 0.05 0.75 0.04
MTL0 0.01 0.02 0.02 0.06 0.07 0.02 0.02 0.49 0.26 0.83
MFC 0.00 0.00 0.00 0.01 0.04 0.01 0.04 0.36 0.09 0.47
SDFC 0.19 0.47 0.34 0.15 0.24 0.05 0.86 0.97 0.16 0.76
MKS 0.03 0.00 0.05 0.05 0.06 0.02 0.04 0.53 0.18 0.76
SDKS 0.04 0.19 0.16 0.04 0.30 0.08 0.22 0.26 0.42 0.58

Data availability. The discharge data from the HZB can be ac-
cessed through https://ehyd.gv.at/ (BMLRT, 2020). The meteoro-
logical data from the ZAMG are currently not freely available; re-
quests should be directed to klima@zamg.ac.at. The original AS-
CAT soil water index data set is available via the Copernicus Global
Land Service (CGLS; https://land.copernicus.eu/global/products/
swi/; TU Wien, 2018). MODIS C6 snow cover products are from
NASA National Snow and Ice Data Center (https://nsidc.org/,
NASA National Snow and Ice Data Center, 2021; Hall and Riggs,
2016a; https://doi.org/10.5067/MODIS/MOD10A1.006; Hall and
Riggs, 2016b, https://doi.org/10.5067/MODIS/MYD10A1.006).
Processed ASCAT SWI and MODIS snow cover maps used
in this study are available upon request. The maps of
soil hydraulic properties are from Zhang and Schaap (2018,
https://doi.org/10.7910/DVN/UI5LCE). MODIS C6 Normalized
Difference Vegetation Index (MOD13A3v006) is from NASA
Earth Observing System Data and Information System (EOS-
DIS) Land Processes Distributed Active Archive Center (LP
DAAC; https://doi.org/10.5067/MODIS/MOD13A3.006; Didan,
2015). The R package of TUWmodel can be downloaded
from CRAN (https://CRAN.R-project.org/package=TUWmodel;
Viglione and Parajka, 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-1389-2021-supplement.
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Sleziak, P., Szolgay, J., Hlavčová, K., Danko, M., and Parajka, J.:
The effect of the snow weighting on the temporal stability of
hydrologic model efficiency and parameters, J. Hydrol., 583,
124639, https://doi.org/10.1016/j.jhydrol.2020.124639, 2020.

Sutanudjaja, E. H., van Beek, L. P. H., de Jong, S. M., van Geer,
F. C., and Bierkens, M. F. P.: Calibrating a large-extent high-
resolution coupled groundwater-land surface model using soil
moisture and discharge data, Water Resour. Res., 50, 687–705,
https://doi.org/10.1002/2013wr013807, 2014.

Széles, B., Parajka, J., Hogan, P., Silasari, R., Pavlin, L., Strauss,
P., and Blöschl, G.: The Added Value of Different Data
Types for Calibrating and Testing a Hydrologic Model in a
Small Catchment, Water Resour. Res., 56, e2019WR026153,
https://doi.org/10.1029/2019WR026153, 2020.

Széles, B., Parajka, J., Hogan, P., Silasari, R., Pavlin, L., Strauss,
P., and Blöschl, G.: Stepwise prediction of runoff using proxy
data in a small agricultural catchment, J. Hydrol. Hydromech.,
69, 691–711, https://doi.org/10.2478/johh-2020-0029, 2021.

Tong, R., Parajka, J., Komma, J., and Blöschl, G.: Map-
ping snow cover from daily Collection 6 MODIS
products over Austria, J. Hydrol., 590, 125548,
https://doi.org/10.1016/j.jhydrol.2020.125548, 2020.

Trautmann, T., Koirala, S., Carvalhais, N., Eicker, A., Fink, M., Nie-
mann, C., and Jung, M.: Understanding terrestrial water storage
variations in northern latitudes across scales, Hydrol. Earth Syst.
Sci., 22, 4061–4082, https://doi.org/10.5194/hess-22-4061-2018,
2018.

TU Wien: Soil Water Index (SWI) V3, available at: https://land.
copernicus.eu/global/products/swi/, Copernicus Global Land
Service, last access: 17 March 2021.

Udnæs, H.-C., Alfnes, E., and Andreassen, L. M.: Improving runoff
modelling using satellite-derived snow covered area?, Hydrol.
Res., 38, 21–32, https://doi.org/10.2166/nh.2007.032, 2007.

Vergopolan, N., Chaney, N. W., Beck, H. E., Pan, M., Sheffield, J.,
Chan, S., and Wood, E. F.: Combining hyper-resolution land sur-
face modeling with SMAP brightness temperatures to obtain 30-
m soil moisture estimates, Remote Sens. Environ., 242, 111740,
https://doi.org/10.1016/j.rse.2020.111740, 2020.

Viglione, A., Parajka, J., Rogger, M., Salinas, J. L., Laaha,
G., Sivapalan, M., and Blöschl, G.: Comparative assessment
of predictions in ungauged basins – Part 3: Runoff signa-
tures in Austria, Hydrol. Earth Syst. Sci., 17, 2263–2279,
https://doi.org/10.5194/hess-17-2263-2013, 2013.

Viglione, A. and Parajka, J.: TUWmodel: Lumped/Semi-
Distributed Hydrological Model for Education Pur-
poses, R package version 1.1-1, available at: https:
//CRAN.R-project.org/package=TUWmodel (last access:
17 March 2021), 2020.

Wagener, T. and Montanari, A.: Convergence of approaches toward
reducing uncertainty in predictions in ungauged basins, Water
Resour. Res., 47, https://doi.org/10.1029/2010WR009469, 2011.

Wagner, W., Lemoine, G., Borgeaud, M., and Rott, H.:
A study of vegetation cover effects on ERS scat-
terometer data, IEEE T. Geosci. Remote, 37, 938–948,
https://doi.org/10.1109/36.752212, 1999.

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer,
S., Figa-Saldaña, J., De Rosnay, P., Jann, A., and Schneider, S.:
The ASCAT soil moisture product: A review of its specifications,
validation results, and emerging applications, Meteorol. Z., 22,
5–33, https://doi.org/10.1127/0941-2948/2013/0399, 2013.

Wagner, W., Brocca, L., Naeimi, V., Reichle, R., Draper, C., Jeu,
R. d., Ryu, D., Su, C., Western, A., Calvet, J., Kerr, Y. H., Ler-
oux, D. J., Drusch, M., Jackson, T. J., Hahn, S., Dorigo, W., and
Paulik, C.: Clarifications on the “Comparison Between SMOS,
VUA, ASCAT, and ECMWF Soil Moisture Products Over Four
Watersheds in U.S.”, IEEE T. Geosci. Remote, 52, 1901–1906,
https://doi.org/10.1109/TGRS.2013.2282172, 2014.

Wanders, N., Bierkens, M. F. P., de Jong, S. M., de Roo,
A., and Karssenberg, D.: The benefits of using remotely
sensed soil moisture in parameter identification of large-scale
hydrological models, Water Resour. Res., 50, 6874–6891,
https://doi.org/10.1002/2013wr014639, 2014.

Werth, S. and Güntner, A.: Calibration analysis for water storage
variability of the global hydrological model WGHM, Hydrol.
Earth Syst. Sci., 14, 59–78, https://doi.org/10.5194/hess-14-59-
2010, 2010.

Zhang, Y., Chiew, F. H., Zhang, L., and Li, H.: Use of remotely
sensed actual evapotranspiration to improve rainfall–runoff mod-
eling in Southeast Australia, J. Hydrometeorol., 10, 969–980,
https://doi.org/10.1175/2009JHM1061.1, 2009.

Zhang, Y., Schaap, M. G., and Zha, Y.: A High-Resolution
Global Map of Soil Hydraulic Properties Produced by a
Hierarchical Parameterization of a Physically Based Wa-
ter Retention Model, Water Resour. Res., 54, 9774–9790,
https://doi.org/10.1029/2018wr023539, 2018.

https://doi.org/10.5194/hess-25-1389-2021 Hydrol. Earth Syst. Sci., 25, 1389–1410, 2021

https://doi.org/10.5194/hess-10-353-2006
https://doi.org/10.5194/hess-10-353-2006
https://doi.org/10.1002/hyp.6253
https://doi.org/10.5194/hess-13-259-2009
https://doi.org/10.5194/hess-13-259-2009
https://doi.org/10.3390/rs10111788
https://doi.org/10.1016/j.jhydrol.2016.02.037
https://doi.org/10.1002/2016WR019430
https://doi.org/10.5194/hess-4-215-2000
https://doi.org/10.2478/johh-2018-0031
https://doi.org/10.2478/johh-2018-0031
https://doi.org/10.1016/j.jhydrol.2020.124639
https://doi.org/10.1002/2013wr013807
https://doi.org/10.1029/2019WR026153
https://doi.org/10.2478/johh-2020-0029
https://doi.org/10.1016/j.jhydrol.2020.125548
https://doi.org/10.5194/hess-22-4061-2018
https://land.copernicus.eu/global/products/swi/
https://land.copernicus.eu/global/products/swi/
https://doi.org/10.2166/nh.2007.032
https://doi.org/10.1016/j.rse.2020.111740
https://doi.org/10.5194/hess-17-2263-2013
https://CRAN.R-project.org/package=TUWmodel
https://CRAN.R-project.org/package=TUWmodel
https://doi.org/10.1029/2010WR009469
https://doi.org/10.1109/36.752212
https://doi.org/10.1127/0941-2948/2013/0399
https://doi.org/10.1109/TGRS.2013.2282172
https://doi.org/10.1002/2013wr014639
https://doi.org/10.5194/hess-14-59-2010
https://doi.org/10.5194/hess-14-59-2010
https://doi.org/10.1175/2009JHM1061.1
https://doi.org/10.1029/2018wr023539


1410 R. Tong et al.: ASCAT soil moisture and MODIS snow cover data for hydrological model calibration

Zhang, Y. and Schaap, M. G.: A High-Resolution Global Map of
Soil Hydraulic Properties Produced by a Hierarchical Parameter-
ization of a Physically-Based Water Retention Model, Harvard
Dataverse, https://doi.org/10.7910/DVN/UI5LCE, 2018.

Hydrol. Earth Syst. Sci., 25, 1389–1410, 2021 https://doi.org/10.5194/hess-25-1389-2021

https://doi.org/10.7910/DVN/UI5LCE

	Abstract
	Introduction
	Data
	ASCAT soil water index product
	MODIS snow cover product
	Study area and other data

	Methods
	Conceptual hydrologic model
	Multiple objective calibration and validation of hydrologic model

	Results
	Performance of multiple objective calibration
	Variability in calibrated model parameter values
	Comparison of multiple objective and runoff only calibration efficiencies

	Discussion and conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

