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Abstract. Major multi-reservoir cascades represent a pri-
mary mechanism for dealing with hydrologic variability and
extremes within institutionally complex river basins world-
wide. These coordinated management processes fundamen-
tally reshape water balance dynamics. Yet, multi-reservoir
coordination processes have been largely ignored in the in-
creasingly sophisticated representations of reservoir opera-
tions within large-scale hydrological models. The aim of
this paper is twofold, namely (i) to provide evidence that
the common modeling practice of parameterizing each reser-
voir in a cascade independently from the others is a sig-
nificant approximation and (ii) to demonstrate potential un-
intended consequences of this independence approximation
when simulating the dynamics of hydrological extremes in
complex reservoir cascades. We explore these questions us-
ing the Water Balance Model, which features detailed rep-
resentations of the human infrastructure coupled to the nat-
ural processes that shape water balance dynamics. It is ap-
plied to the Upper Snake River basin in the western US and
its heavily regulated multi-reservoir cascade. We employ a
time-varying sensitivity analysis that utilizes the method of
Morris factor screening to explicitly track how the domi-
nant release rule parameters evolve both along the cascade
and in time according to seasonal high- and low-flow events.
This enables us to address aim (i) by demonstrating how
the progressive and cumulative dominance of upstream re-
leases significantly dampens the ability of downstream reser-
voir rules’ parameters to influence flow conditions. We ad-

dress aim (ii) by comparing simulation results with observed
reservoir operations during critical low-flow and high-flow
events in the basin. Our time-varying parameter sensitivity
analysis with the method of Morris clarifies how independent
single-reservoir parameterizations and their tacit assump-
tion of independence leads to reservoir release behaviors
that generate artificial water shortages and flooding, whereas
the observed coordinated cascade operations avoided these
outcomes for the same events. To further explore the role
of (non-)coordination in the large deviations from the ob-
served operations, we use an offline multi-reservoir water
balance model in which adding basic coordination mech-
anisms drawn from the observed emergency operations is
sufficient to correct the deficiencies of the independently
parameterized reservoir rules from the hydrological model.
These results demonstrate the importance of understanding
the state–space context in which reservoir releases occur and
where operational coordination plays a crucial role in avoid-
ing or mitigating water-related extremes. Understanding how
major infrastructure is coordinated and controlled in major
river basins is essential for properly assessing future flood
and drought hazards in a changing world.

1 Introduction

The cumulative impacts of reservoir cascades on river flows
has been recognized and demonstrated worldwide by early
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global hydrological models (Dynesius and Nilsson, 1994;
Vörösmarty et al., 1997). Since then, these findings, fre-
quently corroborated in the literature (e.g., Nilsson et al.,
2005; Adam et al., 2007; Döll et al., 2009; Biemans et al.,
2011; Grill et al., 2019), have taken a new significance with
the planned or ongoing construction of more than 3700 major
dams, most of them in the Global South (Zarfl et al., 2015).
This new wave of dam construction cements the role of arti-
ficial reservoirs as key actors on the global hydrological cy-
cle. A striking illustration of this fact is the cumulative con-
sequences of building multiple dams on river flow regimes,
ecosystem benefits or sediment transport in previously rel-
atively undammed major river basins such as the Amazon
(Latrubesse et al., 2017; Timpe and Kaplan, 2017) or the
Mekong (Schmitt et al., 2018).

In parallel, and as a response to evolving flood and drought
risks in a changing world, communities involved in large-
scale hydrological modeling aim to address the challenges
posed by representing, monitoring and forecasting these risks
at fine resolutions in both space and time (Wood et al., 2011;
Bierkens, 2015). For high-resolution modeling of multiple
reservoir systems, reservoirs should not be lumped together,
but their individual impacts on system dynamics should
rather be carefully accounted for (Shin et al., 2019). In this
context, better representations of how human societies (mis-
)manage their water resources needs to be integrated in these
models (Wada et al., 2017), especially since state-of-the-art
models currently yield mixed results for the modeling of
monthly extremes (Zaherpour et al., 2018). There remain op-
portunities for research to determine which aspects of hu-
man management are most urgent to integrate in standard
reservoir representations. One such aspect is coordination
between reservoirs, long-recognized as a key aspect of wa-
ter management (e.g., Loucks and van Beek, 2005; Marques
and Tilmant, 2013; Jeuland et al., 2014; Quinn et al., 2019).
Multi-reservoir coordination implies that release decisions at
each reservoir in the basin are explicitly influenced by the
current and future state of other reservoirs. So far, such be-
havior has not been implemented in release rules for large-
scale hydrological models. It is not clear to which extent this
can be related to results from a recent intermodel compar-
ison by Masaki et al. (2017), who found discrepancies be-
tween models when representing flows across large reservoir
cascades. This echoes an earlier study that found a deteriorat-
ing goodness of fit of monthly releases along such cascades
(Adam et al., 2007).

The present study uses a diagnostic analysis of the impli-
cation of non-coordinated parameterizations for reservoir re-
lease decisions to (i) provide evidence that the common mod-
eling practice of parameterizing each reservoir in a cascade
independently from the others is a significant approximation
and to (ii) demonstrate potential unintended consequences of
this independence approximation when simulating the dy-
namics of hydrological extremes in complex reservoir cas-
cades. We focus on a highly resolved model of the Upper

Snake River basin (USRB) – with 30′′ (approximately 780 m)
spatial resolution for an average grid cell of about 0.6 km2

and a daily time step – that encompasses a total of 128
reservoirs in the western US. Our model-based representa-
tion of the USRB exploits the Water Balance Model (WBM;
e.g., Wisser et al., 2010), which is well suited for regional-
or global-scale hydrological assessments (e.g., Wisser et al.,
2008; Grogan et al., 2017) and includes a representation of
human impacts on the water cycle. The remainder of this in-
troduction reviews reservoir representations in hydrological
models, including their use for flood and drought modeling,
and key aspects of our contributed diagnostic assessment.

Early attempts at representing artificial reservoirs mod-
eled them as natural reservoirs (i.e., lakes; Meigh et al.,
1999; Coe, 2000; Döll et al., 2003). In 2006, representa-
tions proposed separately by Haddeland et al. (2006) and
Hanasaki et al. (2006) introduced the idea that artificial reser-
voirs should have a distinct parameterization that reflects the
reservoir’s purpose, leading to two different kinds of reser-
voir representations (Nazemi and Wheater, 2015). Hadde-
land et al. (2006) optimize release for the upcoming year,
assuming future inflows are known, and follow a manage-
ment objective in line with the reservoir’s primary purpose.
This optimization-based scheme has been extended in several
studies, most notably van Beek et al. (2011), who replaced
perfect foresight of the next year’s inflows with an uncertain
forecast (for other improvements, see also Adam et al., 2007;
Wada et al., 2014). Alternatively, Hanasaki et al. (2006) pro-
pose a parameterization that simulates releases based on a set
of site-specific parameters such as long-term average inflow,
reservoir capacity and beginning-of-year storage and down-
stream water demands. There exist several refinements of this
rule, which include changing the definition of what consti-
tutes downstream demand (Döll et al., 2009), considering
more reservoir purposes (Biemans et al., 2011; Yoshikawa
et al., 2014), allowing the reservoir’s primary purpose to vary
seasonally (Voisin et al., 2013a) or proposing a general rule
for differentiating refill and drawdown seasons for large mul-
tipurpose reservoirs (Wisser et al., 2010).

This first generation of reservoir representation has led to
improved simulations of historically observed discharge at
the monthly timescale (Pokhrel et al., 2012; Li et al., 2015;
Veldkamp et al., 2018). It has been integrated into increas-
ingly complex modeling frameworks. For instance, the rule
first proposed for a global flow routing model by Hanasaki
et al. (2006) has been integrated as part of the global hydro-
logical model H08 (Hanasaki et al., 2008), which has then
been integrated into a land surface model that models the
carbon, energy and water cycles (Pokhrel et al., 2012). Sim-
ilarly, the rule proposed by Voisin et al. (2013a) has been in-
corporated into increasingly complex modeling frameworks
accounting for regional-scale feedbacks between climate, so-
cioeconomic systems and heavily managed water, energy
and food systems (Voisin et al., 2013b; Kraucunas et al.,
2015). As the models including these reservoir representa-
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tions have grown more complex, so have the questions asked
of them. Applications typically include assessments of past
and present water withdrawals and human impacts on hy-
drology, water stress and scarcity (e.g., Biemans et al., 2011;
Wada et al., 2011, 2014; Yoshikawa et al., 2014; Hanasaki
et al., 2018; Liu et al., 2019; Meza et al., 2019). Recently,
modeling frameworks have been extended to include water
quality (Wanders et al., 2019) or economic appraisals of the
consequences of scarcity (Bierkens et al., 2019). These mod-
els are also increasingly being used for appraisals of future
water scarcity under integrated socioeconomics and climatic
scenarios (e.g., Hanasaki et al., 2013; Hejazi et al., 2015;
Jägermeyr et al., 2016; Herbert and Döll, 2019).

Reservoir management is also critical for understand-
ing flooding, where simulations must resolve much finer
timescales (i.e., daily or shorter). Reservoir rules like those
of Hanasaki et al. (2006) can be modified to be applied with
a daily time step to investigate the potential of reservoir man-
agement to alleviate flooding (Mateo et al., 2014) or be mod-
ified to better model the periods when reservoirs are nearly
full (Shin et al., 2019). Large-scale or global flooding assess-
ments are made more complex by the fact that hydrologic
routing by itself is insufficient for floodplain modeling (e.g.,
Sampson et al., 2015; Schumann et al., 2016). In this context,
a good first approximation to account for reservoirs is to al-
locate flood storage capacity following an extreme precipita-
tion event, especially since this alone can dramatically alter
a flood’s outcome (Metin et al., 2018). Yet, subtle changes
in flood management by reservoirs can have decisive im-
pacts, both in theory (Najibi et al., 2017) and in observed
catastrophic flooding events like in Kerala (southern India) in
2018 (Mishra et al., 2018). A finer assessment of the capac-
ity of reservoirs for flood management involves explicit con-
sideration of the multipurpose nature of reservoirs, as they
often are assigned flood control duties on top of other uses.
To achieve this, the representation proposed in LISFLOOD
by Burek et al. (2013) partitions storage into different com-
partments; Zajac et al. (2017) demonstrated the merits of this
formulation for flood impact assessment at the global scale.

Similar to Burek et al. (2013), several representations of
varying complexity have been proposed to divide active stor-
age capacity into several compartments, both to obtain sen-
sible operations at submonthly time steps and to account for
the fact that most reservoirs are inherently multipurpose in-
stallations (Wu and Chen, 2012; Zhao et al., 2016; Wang
et al., 2019; Yassin et al., 2019). Another way to account
for the complex nature of operations at a daily time step
has been to directly emulate observed operations using ma-
chine learning techniques (Ehsani et al., 2016; Coerver et al.,
2018). Both types of approaches have also been implemented
in the search for representations that can adapt to evolving
climate conditions (Ehsani et al., 2016; Zhao et al., 2016).
Thus, Ehsani et al. (2017) demonstrated the role of reservoir
storage in alleviating the impacts of both floods and droughts
under a changing climate in the northeastern US.

It is worth noting, however, that all of the reservoir rep-
resentations discussed above do not account for coordination
within multi-reservoir systems. In other words, consequences
of a release decision on downstream reservoir levels (and
management objectives) are not considered. To date, there
has not been a carefully designed diagnostic model evalua-
tion of the implications of errors in representing actual hu-
man coordination and controls in high-impact, complex river
basin contexts. This study links observed operations for re-
cent high- and low-flow events in the USRB’s reservoir cas-
cade to clarify how standard representations of release rules
capture the underlying coupled human–natural processes that
are critical for model-based assessments of our vulnerabili-
ties to extremes. The diagnostic model evaluation approach
used in this work employs a time-varying sensitivity anal-
ysis (e.g., Reusser and Zehe, 2011; Herman et al., 2013b;
Guse et al., 2014; Pianosi and Wagener, 2016; Lamontagne
et al., 2019; Quinn et al., 2019). Building on prior successful
diagnostic model evaluation studies, our sensitivity analysis
is based on the factor screening capabilities of the method
of Morris (Morris, 1991; Campolongo et al., 2007), which
requires significantly less computation time than other meth-
ods while providing high-fidelity measures of model controls
(Herman et al., 2013a; Iooss and Lemaître, 2015). We ex-
plicitly map how reservoir rule parameterizations relate to
the impacts of model behavior across the successive reser-
voirs within the USRB cascade at a daily timescale. To iso-
late the impacts of (not) including coordination in reservoir
release rules, we complete the analysis with simple offline
water balance models in which we add simple coordination
mechanisms similar to the ones we observed in recent real-
world operations of the USRB’s multi-reservoir cascade.

This diagnostic assessment exploits the Water Balance
Model with a simulation-based parametric release rule in-
troduced by Proussevitch et al. (2013) and incorporated into
the WBM in several recent large-scale assessments (Grogan
et al., 2015, 2017; Zaveri et al., 2016; Liu et al., 2017). This
representation is state of the art in its ability to reproduce
the climatological daily water balance of a single reservoir
over the year with high accuracy. The possibility to use dif-
ferent parameterizations, depending on the reservoir’s per-
ceived use and behavior and the fact that release behavior
structurally depends on storage level, is a feature that cap-
tures the advanced reservoir representations currently in use
in other models. Note that we do not seek to validate this re-
lease rule but, rather, to use it as a typical example of release
rule abstractions in large-scale hydrological models in that
it does not feature a direct coordination between reservoirs’
release decisions.

The rest of this work is structured as follows. Section 2
presents the study area and model used for the analysis, in-
cluding a detailed explanation of the reservoir rule. Section 3
introduces and justifies the methodological aspects of the
analysis. Section 4 presents the results from the diagnostic
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Figure 1. Upper Snake River basin (USRB) with the five reservoirs
on the main stem of the Snake River.

approach. Sections 5 and 6 discuss the implications of our
findings and our overall concluding remarks.

2 Study area and model

2.1 The Upper Snake River basin

The Snake River originates east of the Teton Range in
western Wyoming, then crosses the mountains into the
Snake River Plain in southern Idaho. After flowing west
through the entirety of that plain, it flows north to join the
Columbia River. This work focuses on the Upper Snake
River basin (USRB; Fig. 1), which has a drainage area of
about 92 000 km2 and is characterized by a snow-dominated,
semi-arid climate. To ensure water availability for the whole
agricultural season, the US Bureau of Reclamation has built
and operated a network of reservoirs, canals and lateral dis-
tribution ditches since the early 20th century (US Bureau
of Reclamations, 2012). Since then, a diverse array of de-
mands, including hydropower, irrigation, ecological conser-
vation and downstream water allocation, has increasingly re-
quired the USRB to be extensively managed with a network
of dams of a broad range of sizes, including 128 reservoirs
of over 10 hm3 (10 million m3) throughout the basin for a to-
tal volume of 6.93 km3. Its waters are over-allocated across
the USRB’s competing demands (McGuire et al., 2006). The
over-allocation is at least partially the result of historical per-
ceptions of water availability, where the 20th century was
wet compared with previous centuries (Wise, 2010). In fact,
water availability is decreasing (Ahmadalipour and Morad-
khani, 2017), forcing farmers to adapt to drier conditions
(Hoekema and Sridhar, 2011). These drying trends are ex-
pected to worsen with climate change, especially as this will
be accompanied by an increasing mismatch between sea-
sonal patterns of water availability and use (Hamlet and Let-
tenmaier, 1999; Rauscher et al., 2008; Wise, 2012).

The USRB is also vulnerable to rain on snow events
that can lead to extreme flooding. These events are a com-

mon occurrence in the wider US northwest and are ex-
pected to worsen in the future (Musselman et al., 2018).
In the USRB, a historically significant flood that caused
widespread damage occurred in February 1962, with rainfall
on frozen ground following a particularly cold spell (Thomas
and Lamke, 1962). This was despite the recent completion of
the Palisades Dam, giving the Minidoka Project a significant
ability to coordinate storage capacity for both water supply
and flood control. Following this event, the USRB was also
the site of the Teton Dam failure in 1976 (Independent Panel
To Review Cause of Teton Dam Failure, 1976). All of these
characteristics – heavy reliance on institutionally coordinated
reservoir management in a drought- and flood-prone area that
has experienced the consequences of dam failure and where
water extremes are expected to worsen with climate change
– make the USRB a particularly relevant basin for studying
the representation of reservoirs within large-scale hydrolog-
ical models. Any unintended consequences from modeling
non-coordinated operations would be a note of caution for
large-scale studies featuring water infrastructure balancing
protection against water extremes with other competing uses.

2.2 The Water Balance Model

The University of New Hampshire Water Balance Model
(WBM; Fig. 2) is a process-based, modular, gridded hydro-
logic model that simulates spatially and temporally varying
water volume and water quality across a wide range of spatial
domains, from global half-degree grid cell resolution (e.g.,
Grogan et al., 2017) to local 120 m grid cells (Stewart et al.,
2011). The WBM represents all major land surface compo-
nents of the hydrological cycle and tracks fluxes and bal-
ances between the atmosphere, aboveground water storage
(e.g., snowpack and glaciers), soil, vegetation, groundwa-
ter and local runoff. A digitized river network connects grid
cells, enabling the simulation of flow through the river and
groundwater systems and the simulation of water tempera-
ture (Stewart et al., 2013). Direct human influences on the
water cycle include domestic, industrial and agricultural (ir-
rigation and livestock) water demand and use and the impacts
of impervious surfaces. The WBM accounts for the opera-
tion of dams and reservoirs (Wisser et al., 2010), inter-basin
hydrological transfers (Zaveri et al., 2016) and agricultural
water use from irrigation (Wisser et al., 2010; Grogan et al.,
2015, 2017; Grogan, 2016; Zaveri et al., 2016; Zuidema
et al., 2020). Additionally, new WBM modules have been
developed recently to include the use of sub-grid elevation
band distributions derived from a high-resolution elevation
data set to improve handling of snowpack in mountainous
regions.

2.3 WBM representation of the USRB

A drainage network of the USRB that covered an area of
92 900 km2 (compared to US Geological Survey, USGS, esti-
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Figure 2. Conceptual representation of the Water Balance Model as
used in this study.

mate of 92 700 km2) was developed at a spatial resolution of
30′′ (approximately 780 m), based on HydroSHEDS (Lehner
et al., 2008) and corrected to better represent drainage as
mapped by the USGS National Hydrography Dataset (https:
//nhd.usgs.gov, last access: 16 April 2019). Reservoir data
were derived from the National Inventory of Dams (https:
//nid.usace.army.mil, last access: 16 January 2020). We man-
ually added the dams and updated reservoir capacities, lo-
cations and upstream drainage areas. The WBM simula-
tions used gridMET (Abatzoglou, 2013), for contempo-
rary precipitation and temperature, and Modern-Era Retro-
spective Analysis for Research and Applications, version
2 (MERRA2; Gelaro et al., 2017), for open water evapo-
ration, wind speed, relative humidity, leaf area index and
albedo, to calculate potential evapotranspiration following
Monteith (1965). Snow accumulation and melt followed
the temperature-index-based formulation of Willmott et al.
(1985). Human population density, which controls both do-
mestic and industrial water demand, came from the Grid-
ded Population of the World (GPW) data set (Center For
International Earth Science Information Network – CIESIN
– Columbia University, 2016). The WBM used Food and
Agricultural Organization (FAO) estimates of livestock den-
sity for cattle (Steinfeld et al., 2006) at 5 min resolution, fol-
lowing Wisser et al. (2010). These data compared favorably
with the US Department of Agriculture’s (USDA) National
Agricultural Summary Statistics (NASS) for 2005 but exhibit
more realistic spatial variability than county-level averages.
USDA Soil SURvey GeOgraphic (SSURGO) data parame-
terized available water capacity for the USRB.

WBM uses an adaptation of the FAO irrigation and
drainage paper (Allen et al., 1998) to estimate crop water re-
quirements based on potential evapotranspiration, soil mois-
ture and a crop coefficient (kc) that defines a particular crop’s
water use efficiency. Details regarding the crop water demand
calculations are provided in previous works (Grogan et al.,
2017; Wisser et al., 2010). This study used the US Depart-

ment of Agriculture’s Cropland Data Layer (CDL) estimates
of crop types (and land cover) at 30 m resolution (Han et al.,
2012), aggregated by surface area averaging and remapped
to a consistent group of crops as monthly irrigated and rain-
fed crop areas (MIRCA) crops (Portmann et al., 2010). We
applied kc, planting dates and crop depletion factors from
MIRCA to the CDL crop fractions. Open water, impervious
area and wetland data also came from CDL data. Process-
based representation of irrigation technology was recently
introduced to the WBM, following key aspects of the for-
mulation of Jägermeyr et al. (2015). Irrigation technologies
used in the USRB varied by county, following Maupin et al.
(2014) and Dieter et al. (2018). Additional details regarding
the specific implementation of irrigation technologies will be
reported in a separate paper.

2.4 Reservoir representation within WBM

The WBM’s release rule for managed reservoirs expresses
daily release as a fraction of long-term (5 years or more)
mean release at the reservoir, as illustrated in Fig. 3. This
is a refined convention for release rules within hydrologi-
cal models (Hanasaki et al., 2006; Wisser et al., 2010) to be
primarily controlled by instantaneous reservoir storage and
purpose rather than statistics on the probability distribution
of inflow rates. The WBM’s reservoir module operates on
an hourly time step to closely follow storage variations and
yield a daily release total. The general form of the reservoir
rule was first presented by Proussevitch et al. (2013) and val-
idated using the GRanD database (Lehner et al., 2011). Vari-
ants of this rule have been used with a daily time step on the
Niger river basin (Oyerinde et al., 2016) and with large-scale
assessments using WBM (Grogan et al., 2015, 2017; Zaveri
et al., 2016; Liu et al., 2017). The fine-tuning of the parame-
ters, when establishing this version of the rule, was made us-
ing a set of 22 large North American and Eurasian reservoirs
in offline mode, including the two largest reservoirs in the
USRB (Palisades and American Falls; daily release Nash–
Sutcliffe efficiency (NSE) coefficients of 0.70 and 0.60, re-
spectively). Similar to what happens when a reservoir rule
that classifies reservoirs by purpose is used in a large-scale
model, we did not fine-tune the rule to each reservoir. This al-
lows us to use the reservoir rule in conditions that are similar
to what is done in most state-of-the-art hydrological models.

In the WBM’s release rule, there are structurally different
behaviors delimited by a reference storage, Sref, below which
the priority is to refill the dam and above which release levels
increase rapidly as the reservoir becomes nearly full. We call
Rref the release at reference storage. For storage S < Sref, the
rule designed to favor filling the reservoir expresses release
R, a logarithmic function of storage S, as follows:

R = Rmin+
ln(1+PRS)

ln(1+PRSref)
(Rref−Rmin), (1)
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Figure 3. A six-parameter reservoir rule. Release is scaled by long-
term annual inflow, while storage is scaled by the active capacity; it
is 0 at dead storage and 1 at full storage.

where Rmin is release at minimal storage, and PR is a shape
parameter for the logarithmic part of the rule that controls the
propensity for release. Indeed, PR close to zero leads to an
almost linear rule, whereas the higher PR, the more release
comes close to Rref even for near-empty storage. For S ≥
Sref, releaseR varies exponentially with storage S as follows:

R = Rref+
(S− Sref+1S)

PS −1SPS

(Smax− Sref+1S)PS −1SPS
(Rmax−Rref), (2)

where Rmax is release at full storage and 1S is computed
from the other parameters to ensure that the transition be-
tween the logarithmic and exponential parts of the release
rule is smooth (continuously differentiable). The exponential
shape parameter PS is the propensity for storage since it min-
imizes releases until storage is close to its maximal level.

Thus, there are six parameters for the reservoir rule in
Fig. 3, including shape parameters PR and PS which rep-
resent, respectively, the propensity for release at low stor-
age (receiving releases closer to Rref faster) and for storage
in near-full reservoirs (delaying releases for as long as pos-
sible), releases Rmin and Rmax at minimum and maximum
storage and the coordinates Sref and Rref of the (reference)
inflection point. Note that this parameterization, similar to
those of other state-of-the-art rules in large-scale hydrologi-
cal models, does not account for possible coordination mech-
anisms in multi-actor, multi-reservoir systems. These param-
eters depend on the reservoir’s primary purpose, as shown in
Table 1.

The term irrigation, as shown in Table 1, represents the
dominant primary use; taken together, irrigation reservoirs
represent a storage capacity of 6.27 km3 or just over 90 % of
the USRB’s total storage capacity. Note that irrigation reser-
voirs require a seventh parameter to model the need to refill
or store water for the irrigation season and release it with the

Figure 4. Impact of the seasonal shape parameter on reservoirs
whose primary purpose is irrigation. Dashed lines indicate the in-
flection point S∗. We have irrFreq= 1 between 18 July and 30 Au-
gust included, 0 between 12 October and 23 April included and 0.5
during the shoulder seasons.

appropriate timing. This parameter, denoted as irrFreq, rep-
resents the relative frequency of water demand for irrigation
throughout the year. It affects the release rule through each
of the other parameters pi with 1≤ i ≤ 6, according to the
following:

pi = p
low
i + irrFreq · (phigh

i −plow
i ), (3)

with irrFreq between 0 and 1, and the low and high values
of the parameters defined in Table 1. This results in three
distinct release rules, depending on time of year, as shown
in Fig. 4. Winter features a refill phase (irrFreq= 0) with
low releases, except for keeping a flood control compart-
ment available, whereas peak irrigation season is a drawdown
phase (irrFreq= 1) with high releases no matter the storage
level. A shoulder season (irrFreq= 0.5) smooths out the tran-
sition between the two.

The reservoir rule for hydroelectric (see Table 1) primary
use shows a near-constant release, except at very low stor-
age levels, thanks to a very high propensity for release when
S < Sref. The primary function for the water supply (see Ta-
ble 1) use is to keep releases minimal and storage maximal
in order to maximize the quantity of water that can be drawn
directly from the reservoir – except for circumstances that re-
quire flood control at near-full storage. Other reservoirs mix
different uses, and they are represented by the generic (see
Table 1) rule form that corresponds to Fig. 3 and represents
an implicit trade-off between uses that prioritize release and
those that prioritize storage.
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Table 1. Parameters for reservoirs in the USRB. The last column classifies the basin’s 128 reservoirs by primary purpose.

Purpose PR PS Rmin Rmax Sref Rref irrFreq Number of
reservoirs

Irrigation
(low) 1 3 0.01 2 0.8 0.1

range [0,1] 73
(high) 297 3 0.292 0.885 0.949 1.44

Generic 4 6 0.2 5 0.8 1 n/a 33

Hydroelectric 200 3 0.2 1.25 0.9 1 n/a 12

Water supply 1 6 0.1 5 0.7 0.1 n/a 10

n/a stands for not applicable.

Despite its relative simplicity, the release rule proposed
here shares several important characteristics with other rules
proposed in the literature. The logarithmic and exponential
portions mirror the intuition that the release behavior is struc-
turally different depending on storage levels, a trait empha-
sized by some recent release rules (Wu and Chen, 2012; Zhao
et al., 2016; Wang et al., 2019; Yassin et al., 2019). Besides,
the representation of reservoirs based on their primary pur-
pose has been a recurring theme since the seminal release
rules by Hanasaki et al. (2006) and Haddeland et al. (2006);
the time-varying irrFreq parameter also enables irrigation
reservoir to have flood control behavior in winter, similar to
the improvement proposed by Voisin et al. (2013a). Finally,
there is the option to fine-tune individual reservoir release
rule parameters to better represent actual (generally multi-
purpose) operations. Yet, adjusting parameters implies the
assumption that the release rule is able to capture the main
processes at play in operations of a multi-reservoir system.
The following section introduces the experimental setup to
diagnose this.

3 Methodology

3.1 General approach

This work endeavors (i) to provide evidence that the common
modeling practice of parameterizing each reservoir in a cas-
cade independently from the others is a significant approxi-
mation and (ii) to demonstrate the potential unintended con-
sequences of this independence approximation when sim-
ulating the dynamics of hydrological extremes in complex
reservoir cascades.

Our diagnostic global sensitivity analysis uses the method
of Morris to mathematically trace how downstream parame-
ter choices or effects can be overwhelmed by upstream oper-
ational rules that are parameterized independently. The focus
is not on which parameters in the release rule are most in-
fluential in regulating flows, but on clarifying how the set of
dominant controls on water flows and reservoir storage lev-
els evolves along a complex multi-reservoir cascade through

time. Parametric sensitivities are then used alongside storage
and release trajectories for the simulated ensemble to assess
how sets of dominant controls in a point in time and at a
given reservoir can be associated to high- or low-flow con-
ditions. We detail the method of Morris in Sect. 3.2 and the
experiment we design with it in Sect. 3.3.

Tracking the set of dominant controls through space and
time with the method of Morris enables us to rigorously
document the quantitative effects of independent parameter-
izations of the reservoir cascade and highlight that down-
stream dynamics are not strongly controlled by independent
downstream operational curve parameter specifications, i.e.,
contribution (i). The unintended consequences of treating
the reservoirs independently – contribution (ii) – are shown
by comparing and contrasting the reservoir rule representa-
tion with real-world coordinated reservoir operations. For
this, several steps are implemented in succession. First, a
prerequisite is to observe dynamics in historical (i.e., ob-
served) operations that cannot be accounted for by a reser-
voir’s release rule simply by changing parameter values or
integrating a near-term (less than a month) inflow forecast,
as in some existing rules (e.g., Biemans et al., 2011). Other
variables would be necessary to incorporate these behaviors
within the hydrological models. These behaviors are hypoth-
esized as being preliminary indications of cooperation, and
the events they highlight will be investigated further. Sec-
ond, the comparison of historical and simulated operations is
used to understand how reservoirs are coordinated in the his-
torical record and contrast the impact of this with reservoir
non-coordination in simulations. Differences observed in this
comparison could be due to all sorts of errors in the model
and not just failing to represent coordination. Therefore, in
a third and final step, the hypothesis that coordination is a
key source of the release and storage discrepancies is further
evaluated using offline reservoir water balance models that
implement basic coordination on the simulated ensembles at
times where coordination is hypothesized to be present and
important in the real system’s dynamic management of ex-
treme events. These offline reservoir water balance models
show that very basic coordination strategies alone are capable
of correcting the documented differences between simulated
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and historical operations. Note that we cannot fully quantify
and explain all sources of errors; there is, to our knowledge,
no study of a real operational context using a hydrological
modeling experiment where one would know absolutely ev-
ery source of error or potential confounding factor. However,
the effectiveness of our basic representation of coordination
in the Water Balance Model does contribute a simple and
quantitatively direct reduction of errors relative to the actual
observed operational dynamics. The details of our water bal-
ance analysis can be seen in Sect. 4.5.

We focus our application of this approach on the USRB in
2009–2016. The geographical extent of the USRB is small
compared with that of areas traditionally considered in large-
scale hydrological models. However, the regional focus on
the USRB captures a highly dynamic and heavily controlled
major reservoir cascade that is critical to managing floods
and droughts. Conclusions from this study are fully trans-
ferable to larger scales, where critical representational errors
in major infrastructure remain consequential. For this rea-
son, we also aim to evaluate model outcomes in the same
conditions as large-scale hydrological vulnerability assess-
ments are carried out. For instance, we do not fine-tune
reservoir rule parameters to individual basins and, instead,
use purpose-based parameterizations typical in large-scale
studies (e.g., Biemans et al., 2011; Voisin et al., 2013a;
Yoshikawa et al., 2014).

3.2 Time-varying sensitivity analysis – method of
Morris

The method of Morris (Morris, 1991; Campolongo et al.,
2007) has proven to be a successful tool for detailed diag-
nostic evaluations of large and complex hydrological models
(e.g., Herman et al., 2013b; Zajac et al., 2017; Reinecke et al.,
2019). This section presents the sampling technique used, the
basic Morris sensitivity indices and a time-varying version of
these indices. All sensitivity analyses were performed using
the SALib toolbox written in Python by Herman and Usher
(2017).

The method of Morris samples points within the para-
metric spaces of interest by following so-called trajectories.
Thus, two consecutive points of a trajectory share the same
input values, except for parameter input i where they are
separated by a distance 1i . The value of input dimension
i is changed exactly once along a trajectory, and the order
in which input dimensions are changed is random. If D is
the dimension of the parametric input space being sampled,
then each trajectory comprises D+ 1 points. To ensure that
the Morris sensitivity measures are as accurate as possible,
sampling must cover the parametric input space as well as
possible. This paper implements the method proposed by Ru-
ano et al. (2012), which first generates a large number of
trajectories, then selects a subset that provides near-optimal
input space coverage using a computationally efficient opti-

mization technique (as implemented here, M = 50 trajecto-
ries were selected out of 1000).

To compute Morris indices from a set of M input trajec-
tories, one must run the model for which the parametric in-
put space is being sampled at each point x of each trajec-
tory. Therefore, there are M × (D+ 1) model runs. For each
trajectory j (1≤ j ≤M), model runs yield the so-called el-
ementary effect along input dimension i for each date t as
follows:

EEji (t)=
f (x1, . . .,xi +1i, . . .,xM)− f (x)

1i
, (4)

withM trajectories being sampled, sensitivity indexµi(t) for
input dimension i at date t is the average over the elementary
effects as follows:

µi(t)=
1
M

M∑
j=1

EEji (t). (5)

In this work, we are concerned with relative contributions
to sensitivity across reservoir rule parameters (1≤ i ≤D)
and over a given time period (t ∈ [t1, t2]). Therefore, we com-
pute the following normalized values for the Morris sensitiv-
ity index as follows:

µi(t)=
µi(t)

µmax
, (6)

where µmax is the maximal value of |µi(t)| over the input
space and time frame of interest as follows:

µmax = max
i∈[1,n],t∈[t1,t2]

|µi(t)| . (7)

As a result, each µi(t) value will be between −1 and 1. Ab-
solute values close to 1 represent inputs that have a dominant
influence on outputs, not only compared with other inputs
at that date but also compared with the inputs’ impacts on
outputs at other dates within [t1, t2]. Positive values indicate
that outputs values increase with input values, whereas the
contrary holds for negative values.

3.3 Reservoir parameters and ranges

We conduct this diagnostic analysis with seven groups of pa-
rameters. Each group contains one of the seven parameters
of the release rule for all 128 reservoirs in the USRB. This
analysis uses a range of ±10 % around base values for all
parameters in Table 1. These modest 10 % ranges would be
conservative if our focus were calibration and not diagnosis.
The results section (Sect. 4) will demonstrate that our narrow
sampling yields quite substantial effects when compounded
across the reservoir cascade in periods where coordinated op-
erations are significant. Besides, there are two reasons for
choosing the same range across all parameters, namely that
(1) it accounts for the fact that each parameter does not have
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the same base value across all reservoirs, and that (2) it facil-
itates comparisons between different parameters’ sensitivity
indices.

Our choice to explore seven groups of parameters serves to
reduce the computational burden of our diagnostic analyses
while facilitating a clear experimental mechanism to inves-
tigate the core parameterization assumptions used to capture
multi-reservoir release and storage dynamics. It also meets
the core objective of this study, which is to clarify the im-
portance of multi-reservoir coordination and control to our
model-based assessments of flood and drought vulnerabili-
ties in complex river basin systems. Indeed, the chosen pa-
rameter set is necessary and sufficient for answering two key
intermediary questions. First, we must understand how re-
lease rule parameters from a given reservoir influence its wa-
ter balance (release and storage) through time. This makes it
necessary to consider all seven parameters of the release rule.
Second, we must understand how the release rule parameters
from upstream reservoirs influence subsequent at-site reser-
voir controls. This is key for understanding how the non-
coordinated release rule affects the time-varying response to
high- and low-flow extremes as we move down a reservoir
cascade. Our experimental design highlights when paramet-
ric controls on reservoir releases are modified by upstream
interferences. Indeed, the same parameters that increase re-
lease at a given reservoir also increase upstream releases.
Both effects have the opposite consequences for a reservoir’s
storage. Our analysis will track the instances in which up-
stream controls dominate at-site controls and clarify the con-
sequences of this for the reservoir cascade’s response to hy-
drological extremes.

The D = 7 parameters and ranges thus defined are used to
set up a method of Morris experiment with M = 50 trajecto-
ries. The ensemble size is M × (D+ 1)= 400. We ran this
experiment on the cube cluster at the Cornell Center for Ad-
vanced Computing Results. The cube has 32 computational
nodes with dual eight core E5-2680 central processing units
(CPUs), at 2.7 GHz, with 128 GB of RAM. A single run of
the USRB WBM takes close to 7 h on average for the USRB,
with an 8-year simulation period (2009–2016) preceded by
a 5-year spinup period. The ensemble of 400 members took
almost 3000 h of computational time to receive and analyze,
using parallel runs exploiting Open Message Passing Inter-
face version 1.6.5.

4 Results

Our results focus on the reservoir cascade on the main stem
of the Upper Snake River (Table 2). The three upstream reser-
voirs in Table 2 are the three largest reservoirs in the basin,
and their capacity to store water for the irrigation season is
crucial to the agricultural sector in the USRB. Consequently,
they are classified as irrigation reservoirs. The two down-
stream reservoirs are smaller and must be maintained at high

Table 2. Reservoir cascade on the main stem of the Upper Snake
River, ordered from upstream to downstream.

Reservoir name WBM primary Capacity
usage (hm3)

Jackson Lake Irrigation 1078
Palisades Irrigation 1503
American Falls Irrigation 2145
Minidoka Water supply 123
Milner Water supply 62

storage levels during the irrigation season so that canals can
draw directly from them, leading to their classification as wa-
ter supply reservoirs. All but the most downstream reservoir
(Milner) are part of, or associated to, the Minidoka Project;
therefore, their operations for water supply and flood protec-
tion are largely coordinated when deemed necessary. Using
an ensemble of WBM simulations computed, as specified in
Sect. 3, we carry out a diagnostic evaluation of the parametric
controls of the release rules in three steps. Initially, we focus
on the upstream reservoir, Jackson Lake, where there are no
interferences from other reservoirs upstream (Sect. 4.1). This
is where simulation results enable us to quantify the main
controls on a reservoir’s release rule, a prerequisite for study-
ing how these controls evolve with hydroclimatic events and
along the reservoir cascade. This is also where we can find
indications of coordination within the historical record, as
defined in Sect. 3.1. Next, we quantify the upstream inter-
ference with downstream releases in the USRB’s cascade
(Sect. 4.2). Then, Sect. 4.3 and 4.4 contrast actual observed
operations with those from the simulated ensembles for re-
cent USRB low- and high-flow events, respectively. Finally,
Sect. 4.5 shows results from the offline water balance models
devised by modifying simulation results with simple coordi-
nation mechanisms.

4.1 Upstream – controls on release and storage

4.1.1 Dominant parametric controls in simulations

First, let us examine the WBM’s parametric reservoir rule’s
dynamic sensitivities through Jackson Lake, an upstream
reservoir that is not influenced by inflows from any other
reservoir in the USRB. Figure 5 provides a visualization of
time-varying sensitivities at the daily time step. Simulated
and observed hydrological time series overlay the sensitivi-
ties represented by the blue-to-red color scale. The left verti-
cal axis represents the plotted reservoir state (release or stor-
age). In Fig. 5, shades of blue, red and white report the nor-
malized Morris sensitivity index in a given time period (the
horizontal axis); they are organized over seven lines, each
corresponding to one of the seven reservoir rule input vari-
ables evaluated in our analysis and listed on the right ver-
tical axis. As indicated by the color bar to the right of the
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Fig. 5, shades of red correspond to normalized Morris sensi-
tivity values close to 1, indicating that the associated variable
is dominant, and that higher values of it correlate with higher
values of the reservoir state. Conversely, shades of blue cor-
respond to normalized Morris sensitivity values close to −1
and indicate that the associated variable is dominant, but that
higher values of it correlate with lower values of the reservoir
state. Finally, white indicates sensitivity is weak compared to
that of other variables and/or dates.

In Fig. 5a, storage differences that emerge across the
sampled parameterizations of the evaluated WBM ensemble
members are the time integral of daily release differences;
therefore, they indicate the cumulative effects over time of
how the parameters influence the release rule. Storage sen-
sitivities present clear annual patterns for Jackson Lake and
are more broadly representative of the dominant controls for
an irrigation reservoir within WBM that has an absence of
interactions from other reservoirs. Figure 5a shows that the
Jackson Lake storage sensitivities go to zero in periods where
maximum storage is attained; this is expected because then
there is no variation in storage across the ensemble. In all
other periods, there are three dominant parameters influenc-
ing storage, namely Sref, Rref and irrFreq, with a remarkably
consistent influence over the 8-year simulation period. The
direction in which these parameters influence the release rule
is consistent with the release rules of Figs. 3 and 4. Indeed,
higher values of Rref and irrFreq directly increase release,
therefore decreasing storage over time, whereas increasing
Sref delays the transition between the logarithmic and expo-
nential parts of the rule and has the opposite effect – except
if storage is very high during peak irrigation season due to
the dip observable for irrFreq= 1 in Fig. 4. Although some-
what reduced in effect relative to the top three parameters
controlling storage dynamics in the Jackson Lake reservoir,
the maximum storage releasesRmax are predictably inversely
correlated with storage (Fig. 5b). Yet, the three dominant pa-
rameters Sref, Rref and irrFreq yield what can be interpreted
as the signature of the parametric influence of the release rule
governing storage over time.

Transitioning to Jackson Lake’s parametric sensitivities
for releases, the overall magnitude of the normalized Mor-
ris indices are substantially reduced and less consistent rela-
tive to those for storage (Fig. 5b). A potential reason for this
is a dampening effect as parameters that increase current re-
leases also decrease future storage and, consequently, limit
future releases. Another potential reason for the diminished
sensitivities overall in Fig. 5b is that, contrary to storage that
registers the cumulative effects of parametric differences, re-
lease sensitivities peak on particular days, making other time
periods less sensitive in comparison. The parametric sensitiv-
ities for the Jackson Lake release have an opposite signature
to that of storage during large stretches in summer and fall
over 2009–2016. Indeed, the three dominant parameters are
Sref, Rref and irrFreq, with higher values of Sref correlating
with lower release whereas higher values of R(S∗) and ir-

rFreq correlate with higher releases. Both signatures are con-
sistent because parameters that have a sustained impact on
release are expected to have an opposite effect on storage.

4.1.2 Comparison with historical operations

Overall, a comparison of historical versus simulated storage
and releases in Fig. 5 shows a broad agreement during the
8-year study period, despite two major departures, especially
apparent for storage. In 2011, early spring release in the his-
torical record created flood control storage and enabled peak
flows to be lower than in the simulated ensemble. Observa-
tions of large drawdown in the summer of 2013, with the
reservoir replenished only in 2014, are not matched by the
simulations. In both situations, we compared release over a
whole month to total water availability (initial storage plus
total inflows over the month) for each of the 8 years covered
by our analysis. In both cases, results from Fig. 6 show that
both events correspond to a major departure with the expec-
tation that release should be indexed on water availability.
In 2013 (Fig. 6a), releases are much higher than any other
year despite the water availability in that August being the
lowest of the 8 years. This corresponds to a low-flow pe-
riod during which extra water is released to help downstream
reservoirs meet demand; we contrast this coordinated histor-
ical response with simulation results in detail in Sect. 4.3.
In 2011 (Fig. 6b), releases are over four times higher than
normal despite water availability being comparable to con-
ditions for 6 of the 7 other years. This is a prelude to an in-
tense snowmelt season, requiring anticipation and coordina-
tion from the two main reservoirs tasked with flood control
in the USRB, i.e., Jackson Lake and Palisades (US Bureau
of Reclamations, 2012). We contrast this response with the
simulation results in Sect. 4.4.

4.2 Absence of downstream coordination in controls

We now transition our focus to the fourth reservoir on the
USRB reservoir cascade, Minidoka, which is considerably
smaller than the first three. Our analysis in Fig. 7 focuses on
flows from a single year to clarify the complex interactions
between upstream releases and Minidoka operations. Start-
ing with inflows to the reservoir, shown in Fig. 7a, the domi-
nant parameters controlling inflows are Rref and irrFreq (and
to a lesser extent Sref). The time-varying pattern of domi-
nant release sensitivities across the year of 2013 (Fig. 7b)
mirrors that of inflows, as dominant parameters tend to posi-
tively and negatively correlate with inflows and releases alike
at the same time of year. Moreover, the strong release sensi-
tivities to the seasonal irrFreq parameter from May to Octo-
ber can only be due to interactions with upstream reservoirs
because irrFreq only influences irrigation reservoirs’ release
rule, whereas Minidoka is classified as a water supply reser-
voir. These results suggest that the upstream reservoirs’ rules

Hydrol. Earth Syst. Sci., 25, 1365–1388, 2021 https://doi.org/10.5194/hess-25-1365-2021



C. Rougé et al.: Diagnostics of reservoir in hydrological models 1375

Figure 5. The foreground shows a comparison of the observed (gold line) and simulated (black lines) trajectories at Jackson Lake for (a)
reservoir storage and (b) release. The background shows the daily sensitivities to the reservoir rule parameters on the left y axis.

Figure 6. Total monthly historical release vs. water availability (beginning-of-month storage plus inflows) for each year between 2009 and
2013 at Jackson Lake for the months of (a) August and (b) April.

are a dominating factor in this downstream reservoir’s release
decisions.

However closely variations in simulated releases in Fig. 7b
tend to follow simulated inflows in Fig. 7a, these releases
show unexpected high-frequency fluctuations that are arti-
facts that are not meant to occur in the reservoir’s release
rule. This shows the unintended consequences of interactions
with upstream reservoirs. In other words, it would arguably
be very difficult to calibrate the parameters of Minidoka’s
release rule without accounting for the complex upstream in-
teractions. Mathematically, this is termed non-separability.

All of these insights from comparing inflow and release
sensitivities are confirmed by looking at Minidoka’s 2013

storage sensitivities in Fig. 7c. Similar to the release sensitiv-
ities in Fig. 7b, the influence of irrFreq on storage is a direct
signature of interactions with upstream releases. In fact, the
dominant storage sensitivities for the whole year are end-of-
April sensitivities to irrFreq and Rref (dark red in Fig. 7c).
The former parameter is not defined for the Minidoka re-
lease rule, whereas the latter should be associated with neg-
ative sensitivity (with the color blue) in absence of upstream
interactions. The simulated reservoir filling for Minidoka is
strongly influenced by parametric artifacts outside of its own
parameterization. Beyond that, the picture of time-varying
storage sensitivities is extremely complex. For instance, the
direction of storage sensitivity to irrFreq (i.e., positive or neg-
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Figure 7. Simulated values (max, min and quartiles, shown with black lines) with historical values (gold line) and sensitivity to input variables
(background) for (a) Minidoka reservoir’s inflow, (b) release and (c) storage.

ative correlation with storage) does not always appear to be
clear and consistent with that same parameter’s sensitivities
for inflows and releases (compare panels in Fig. 7). This ap-
parent complexity cannot be dissociated from upstream in-
teractions, again reinforcing the notion that parameterizing
Minidoka’s release rule cannot be done separately from the
parameterizations of the upstream reservoirs. This meets aim
(i), confirming that separate parameterization and calibration
of individual reservoirs in a cascade is an approximation. The
two next sections explore some possible unintended conse-
quences of this assumption.

4.3 Drought risk

We now transition to the reservoir operations along the
USRB’s reservoir cascade for the consecutive dry years of
2012 and 2013. We contrast coordinated historical opera-

tions, illustrated here by storage levels in the basin’s three
main reservoirs, with the simulations results from our ensem-
ble of hydrological model runs – which we term simulated
storage in this Section and in the next (Sect. 4.4). We also
analyze the sensitivity of simulated storage to the WBM’s
parametric controls.

The 2012–2013 low-flow event led to a significant sim-
ulated drawdown at upstream Jackson Lake in 2013, previ-
ously shown in Fig. 5. The strong deviations in the dynamics
of historical (gold lines) and simulated (black lines) reser-
voir operations for both years, 2012 and 2013, are apparent
in Fig. 8. Recall that the two most downstream reservoirs in
the Snake River reservoir cascade – Minidoka and Milner
– are smaller reservoirs that must stay full during the irri-
gation season so farmers can draw water through gravity ir-
rigation. Therefore, it is key that American Falls, the main
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Figure 8. Recorded and historical storage during the dry years of 2012 and 2013, with sensitivities of the simulated variables illustrated in
the background. Panels (a) to (c) show the storage at the three largest USRB reservoirs from upstream to downstream.

reservoir in the Snake River Plain located just upstream of
Minidoka, is not empty so that it can keep regulating wa-
ter levels in downstream reservoirs, ensuring irrigation needs
are met. For this reason, our analysis will start with Ameri-
can Falls (Fig. 8c) and work its way upstream to shed light
on the historical observed coordination, and lack thereof in
the simulations, during the 2012–2013 low-flow period. The
pace and magnitude of the drawdown are the defining differ-
ences between historical and simulated operations at Amer-
ican Falls. For both years, historical operations show reser-
voir levels decreasing at a near-constant rate from nearly full
in early May to about 5 %–10 % by the end of summer. The
drawdown season spans 4–5 months, and the reservoir never

loses its capacity to regulate downstream reservoir levels. Al-
ternatively, simulated drawdown seasons are much shorter –
2.5 months from mid-June to the beginning of September –
and the reservoir swings from full (in 2012) or nearly so (in
2013) to completely empty either for the whole ensemble (in
2012) or nearly half of it (in 2013). In other words, Ameri-
can Falls loses its capacity to regulate irrigation delivery or
is simulated to be dangerously close to doing so.

The reason for this contrasting behavior can be found with
upstream operations. For instance, the historical storage tra-
jectory at Palisades (Fig. 8b) shows a marked drawdown
from early July to late October 2012. On average, the reser-
voir released over 0.5 km3 more towards American Falls in
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the observed record than it does in the simulations, and this
enabled American Falls to keep its capacity to regulate irriga-
tion withdrawals on the Snake River Plain. Simulated storage
sensitivities, however, reflect the lack of coordination across
the ensemble of simulations. Indeed, method of Morris re-
sults show that the main controls on storage from April 2012
onwards are the same as for large reservoirs for which at-
site controls dominate upstream interferences (see Sect. 4.1).
These controls, and the simulated storage trajectories, fully
ignore any connection with the simulated events unfolding
downstream.

Yet, in 2013, historical storage levels at Palisades (yel-
low line in Fig. 8b) had not recovered from the exceptional
2012 drawdown due to a combination of low carryover stor-
age and insufficient snowmelt. Palisades reservoir could no
longer supply extra water to the Snake River Plain. Instead,
exceptional historical Jackson Lake drawdown in the sum-
mer of 2013 (Fig. 8a) supplied over 0.5 km3 extra water to the
Snake River Plain compared to what the simulations record.
Thus, complex multi-year and multi-reservoir coordination
was needed to avert adverse drought impacts on agricul-
ture. The simulations do not account for this coordination, as
demonstrated by both simulated storage and by the consistent
parametric controls at both Jackson and Lake and Palisades
for both years. The ensemble of simulations left American
Falls empty whereas the two largest reservoirs upstream of it
remain close to full.

4.4 Flood risk

We next evaluate if these representational deficits in simulat-
ing coordinated operations also yielded consequential errors
in the spring of 2011, where the observed operations averted
a flood by exploiting forecast-based anticipatory releases in
the two upstream large reservoirs at Jackson Lake and Pal-
isades. Following the flow from upstream Jackson Lake to
downstream Palisades (Table 2), we contrast coordinated his-
torical storage and discharge levels observed in the spring of
2011 with the simulation results from our ensemble of hy-
drological model runs and the associated release and storage
sensitivities to WBM’s parametric controls.

4.4.1 Jackson Lake

Starting upstream, we focus on the storage and release dy-
namics, both simulated (black lines) and historical (gold
lines), at Jackson Lake (Fig. 9). All simulation results fill the
reservoir entirely between 14, at the earliest, and 26 May, at
the latest (Fig. 9a); this period coincides with maximal re-
lease sensitivity (Fig. 9b). Note that the method of Morris
found that the dominant controls on simulated release dur-
ing 14–26 May (Fig. 9b) are the same as the dominant con-
trols on simulated storage prior to that period (Fig. 9a), with
strong negative sensitivities to Rref and irrFreq and strong
positive sensitivity to Sref. The dominance of these three pa-

Figure 9. Simulated values (max, min and quartiles, shown with
black lines) with historical values (gold line) and sensitivity to input
variables (background) for Jackson Lake’s release and storage.

rameters corresponds well with our prior results, as detailed
in Sect. 4.1. These results, however, run contrary to the real-
world expectation that, for reservoirs with no upstream inter-
actions, release rule parameters should influence release and
storage in opposite directions.

This is because, during the snowmelt-driven peak flow sea-
son, higher simulated storage leads to quicker reservoir fill-
ing, which takes away the reservoir’s capacity to regulate
peak flows. Once the reservoir is full, simulated peak releases
out of Jackson Lake are much higher than the historically
observed releases. These have been mitigated by real-world
reservoir operators, who started releasing water in early April
to decrease reservoir storage by almost half between then and
early June. This created enough storage space to absorb the
runoff from the peak snowmelt season in June, while simulta-
neously reducing releases to limit the reservoir’s contribution
to downstream high flows. In contrast, all simulated releases
only increase gradually when the reservoir comes close to
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full capacity. Due to this lack of foresight-driven preventive
releases in the simulations, Jackson Lake is full by the end
of May and unable to absorb peak flow in June. This repre-
sents a large and consequential structural error in the model’s
representation of flooding operations and vulnerabilities.

4.4.2 Palisades

Moving to the next reservoir downstream, Fig. 10 illustrates
the simulated (black lines) and historical (gold lines) storage
and release dynamics for the Palisades reservoir in March–
July 2011. All simulation results fill the reservoir entirely
between 5, at the earliest, and 9 May, at the latest (Fig. 10a).
Similar to Jackson Lake, this coincides with a period of max-
imal release sensitivity, according to the method of Morris
results. The dominant controls for both storage and release
are identical; they have the same parameters (irrFreq, Rref
and Sref) with the same directional effects. Put simply, pa-
rameters that favor reservoir filling in simulations diminish
the Palisades reservoir’s capacity to store water and to absorb
peak snowmelt season flows, leading to heightened simulated
releases. Since Palisades is downstream of Jackson Lake and
snowmelt occurs earlier at lower altitudes, simulated filling
occurs earlier, and consequently, the WBM abstraction of the
reservoir is subsequently unable to absorb snowmelt peaks,
including the one event occurring on 24–26 May, as the result
of Jackson Lake filling. This is evidenced by parametric re-
lease sensitivities and the concurrent simulated release peak
(Fig. 10b) around these dates that necessarily come from up-
stream – there is no on-site release sensitivity when Palisades
is full.

In contrast, historical operations favored preventive re-
leases, as early as the end of March at Palisades, to free
up almost 1.3 km3 of storage space by early May – pre-
cisely at the time when the onset of snowmelt fills up the
reservoir in simulations. This leaves over 1.1 km3 of storage
space by early June, and the comparison of Figs. 9 and 10
shows that both Jackson Lake and Palisades filled at a near-
constant pace throughout June, nearing being completely full
around 10 July. This controlled and coordinated filling of
both reservoirs ensured that releases well below 700 m3 s−1

at Palisades, a full 900 m3 s−1 lower than the simulated peak
across virtually all of the simulated ensemble. The simulated
peak is almost 40 % higher than the highest observed daily
discharge over the past 40 years. Maximal Palisades release
over this period – 1140 m3 s−1 on the 20 June 1997 – corre-
sponds to a flooding event which led to six counties declaring
a state of disaster, leading to over USD 11 million in relief
by the US federal government (National Oceanic and Atmo-
spheric Administration, 2020). Coordination is mediated by
seasonal forecasts based on snowpack height and is apparent
through the reduction in Jackson Lake release (Fig. 9b) when
Palisades starts filling back up. As a result, neither reser-
voir ever loses its capacity to regulate streamflow by filling
completely, and downstream releases are capped. The simu-

Figure 10. Simulated values (max, min and quartiles, shown with
black lines) with historical values (gold line) and sensitivity to input
variables (background) for Palisades reservoir’s release and storage.

lation is strongly inconsistent with the institutional flood con-
trol objectives of the reservoirs (US Bureau of Reclamations,
2012).

4.5 Offline water balance experiments

For both the low-flow and high-flow events, our analysis re-
veals how the absence of simulated coordination between the
reservoir of the USRB cascade results in artificial erroneous
water shortage and flooding. The actual operational observa-
tions capture upstream to downstream coordination in stor-
ages and releases that enabled real-world operators to avoid
these outcomes. To support our hypothesis that coordination
is the difference between modeled and observed outcomes,
our offline water balance experiments add simple coordi-
nation mechanisms that quantitatively mimic the real-world
observations. The water balance models take offline inflow,
release and storage trajectories for each simulated ensem-
ble member from our global sensitivity analysis during the
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events of interest. The coordination mechanisms we add de-
pend on the event and are described below. Overall, our addi-
tion of simple coordination rules (Table 3) show that, for both
events, coordination is enough to avoid the falsely modeled
flooding in the 2011 event and the erroneous water shortage
in 2012–2013.

4.5.1 The 2011 flood event

We develop a simple offline water balance model for the two
flood control reservoirs (Jackson Lake and Palisades) with
the inflow, release and storage trajectories from every simu-
lated ensemble member. To simulate observed coordination,
we replace releases with a simple policy, starting in the last
week of March and matching the timing at which operators
started emptying Palisades. The Palisades release is set at
a full 100 m3 s−1 lower than the maximum historical daily
release of 682 m3 s−1, and a policy is set at Jackson Lake
to match observations from Fig. 9). Releases are set to be
(1) 200 m3 s−1 when Palisades is empty enough (less than
40 % full) or Jackson Lake is nearly (over 98 %) full and to
(2) cut the release back to 50 m3 s−1 otherwise. The routing
delay was fixed at 1 d, which is a conservative assumption
that makes any excessive release from Jackson Lake imme-
diately consequential for Palisades reservoir levels. Table 3
shows that including a simple coordinated flood control pol-
icy is enough to eliminate the flood peak obtained in model
results. Figure 11 shows that coordination enables the possi-
bility to avoid filling Jackson Lake across the whole ensem-
ble and to also avoid filling Palisades in most cases. The only
ensemble members for which Palisades is filled are the ones
that start with much higher initial storage at both reservoirs;
even then, filling only happens in late June, and peak flows
are less than half those simulated without coordination.

4.5.2 The 2012–2013 drought event

For both 2012 and 2013, we take model results from the
Jackson Lake, Palisades and American Falls reservoirs of-
fline for each of the 400 ensemble members. We then simu-
late operations obtained by releasing an extra 50 m3 s−1 than
planned during the summer, according to release rules, as
long as the reservoir is over 20 % full. The total extra vol-
ume released is thus consistent with the difference between
historical and WBM-based simulated releases. Similar to ob-
servations from Fig. 8, this policy concerns only Palisades
in 2012 and both Palisades and Jackson Lake in 2013. To
make sure that underestimating routing times between reser-
voirs does not falsely cause the reservoirs to store water, we
choose a conservatively high (for the area) routing time of
7 d between each reservoir and the one downstream. Results
displayed in Table 3 show that, with this simple coordina-
tion water balance measure, American Falls would not have
emptied in either year and across the full ensembles. Besides,
reservoirs upstream of it would not have lost their capacity to

supply downstream agriculture either (see Figs. S1 and S2 in
the Supplement).

5 Discussion

This work analyzes a state-of-the-art release rule from a
large-scale, high-resolution hydrological model to under-
stand the potential consequences of not capturing real-world
operational coordination across reservoirs when simulating
flood and drought events. It focuses on the USRB, a west-
ern US basin featuring a reservoir cascade managed with a
high level of coordination to avoid both floods and water
shortages, two risks made prominent by the area’s geography
and climate. An ensemble, simulated and analyzed using the
screening method known as the method of Morris, provides
evidence that parameterizing each reservoir in a cascade in-
dependently of the others is an approximation. This assump-
tion implies that reservoirs are not coordinated, which has
unintended consequences, as our work showcased (1) a quick
and complete drawdown of reservoirs in irrigation hotspots
during hot, dry summers and (2) the simulation of potentially
catastrophic floods with untimely filling across the cascade.
The historical record, and experiments based on offline wa-
ter balance models of the reservoir cascade, demonstrate that,
in both instances, coordinated reservoir management avoided
the occurrence of these events.

In both the high-flow and the low-flow events, coordina-
tion and control decisions are mediated both by other reser-
voirs’ operations and by other decision-relevant variables.
This is obvious for the averted flood of 2011, where snow-
pack monitoring led to forecasts of large snowmelt with
enough lead time to make space in two key reservoirs and co-
ordinate their response. Similarly, the 2012–2013 decisions
are mediated by water demands in the Snake River Plain. In
both cases, the mix of institutional communication – between
reservoirs and farmer representatives – and the monitoring of
key water supply and demand predictors are instrumental for
the implementation of successful coordination actions in the
face of adverse climatic events. Recent research on the wa-
ter management institutions of the Upper Snake River basin
suggests that they are well equipped to show resilience in
the face of expected climate change (Kliskey et al., 2019;
Gilmore, 2019).

There is a growing body of literature highlighting the po-
tentially highly interdependent nature of state-aware reser-
voir operations and institutional coordination in large, mul-
tipurpose reservoir cascades (Quinn et al., 2019). The im-
portance of the institutional context and the location-specific
nature of selecting key variables for informing forecasts is
a significant challenge to large-scale hydrological modeling.
Poor abstractions of forecast-informed reservoir operations
and basin-specific institutions that support coordinated emer-
gency responses limit the value of hydrological modeling in
understanding vulnerabilities to extremes. In a context where
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Table 3. Comparison of key variables for both the 2011 flood event and the 2012–2013 drought event for the historical record (displaying
coordination between the reservoirs), the hydrological model (no coordination) and the offline water balance (modifying model outputs with
simple coordination rules).

Year 2011 2012 2013

Risk Flooding Water shortage
Key variable Max Palisades Min American

release Falls storage

Historical record 682 m3 s−1 170 hm3 63 hm3

WBM simulations
(Ensemble median) 1573 m3 s−1 0 hm3 19 hm3

(Worst case) 1578 m3 s−1 0 hm3 0 hm3

Offline water balance
(Ensemble median) 582 m3 s−1 314 hm3 395 hm3

(Worst case) 747 m3 s−1 272 hm3 357 hm3

Figure 11. Results from the coordinated offline reservoir water balance model (dotted blue lines) compared with hydrological model sim-
ulation results from non-coordinated operations (continuous black lines), including min and max values and quartiles for both ensembles.
Differences in storage (a and c for Jackson Lake and Palisades, respectively) are due to a simple coordinated released policy starting in the
last week of March (b and d for Jackson Lake and Palisades, respectively).

high-resolution modeling (Wood et al., 2011; Bierkens et al.,
2015) is framed as a key element for informing, monitor-
ing and forecasting these risks at exquisitely fine spatial and
temporal resolutions, it is urgent to move beyond valida-
tion based exclusively on goodness of fit. Model evaluations
need to (1) identify key human and natural processes lead-
ing to flow extremes and (2) validate that these processes are
present in the hydrological model. As recent developments
in the literature on reservoir representations in hydrological

models illustrate, there has been a growing sophistication in
representations of release rules without addressing the key
concern of capturing the key variables managers use to ad-
dress unusual flow conditions in complex coupled human and
natural systems. Parameterizations that are deemed good in
the sense that they score well with respect to one or more
of the goodness-of-fit indicators may not necessarily rep-
resent the underlying processes correctly (e.g., Legates and
McCabe, 1999; Gupta et al., 2009). This point has recently
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been illustrated for reservoir representations in large-scale
hydrological models through the flawed structural behavior
of an upper Mekong (Lancang) basin model in which reser-
voirs had been omitted (Dang et al., 2020). This is why we
did not attempt to calibrate reservoir rule parameters in this
work. Besides becoming an increasingly difficult task going
downstream, it would only have served to mask a portion
of structural model errors without actually addressing them
(also known as being right for the wrong reasons). To the
contrary, this paper takes the view that the unintended con-
sequences from these errors need to be exposed before well-
calibrated but structurally deficient representations are used
to assess out-of-sample flood and drought risks with future
flow conditions that are often very different from those used
for model calibration and evaluation. In this case, we exposed
the need to refine representations of human-mediated coor-
dination and controls in hydrological models, so they do not
flag false vulnerabilities in a world where rapidly developing
global crises are expected to yield large capital investments.

Approaches to address this need will have to contend
with trade-offs between the quality of multi-reservoir oper-
ations modeling, computational costs and data availability
(Masaki et al., 2017). The most straightforward way to rep-
resent complex human coordination processes and the key
variables they rely on is to integrate actual management rules
directly into hydrological models (Zagona et al., 2001; Yates
et al., 2005). Such rule systems demonstrably improve hy-
drological models (Qiu et al., 2019), but they necessitate a
direct knowledge of operations that is unavailable in most
cases. Alternatively, machine learning techniques have been
developed to infer reservoir operator behavior from histor-
ical observations but often assume that decisions are taken
as a function of a set of standard hydrologic variables on a
reservoir-by-reservoir basis (Hejazi et al., 2008; Ehsani et al.,
2016; Coerver et al., 2018; Turner et al., 2020). Recently
though, applications to multi-reservoir systems in California
have seen these techniques extended to consider the impacts
of forecast variables such as snowpack depth on operations
(Yang et al., 2016) and to infer drought vulnerability from
monthly operations (Giuliani and Herman, 2018). Our work
demonstrates that further research is needed in this direc-
tion to fully account for complex feedbacks between climate
variables, water supply and flood control objectives and re-
lease decisions. Emerging techniques enabling storage level
monitoring, even in inaccessible areas including war zones
(Müller et al., 2016; Avisse et al., 2017), could then make it
possible to generalize machine-learning-based approaches.

An alternative to reproducing historical operations is to
improve operations through optimization instead. Such op-
timization needs to consider the distinct and sometimes con-
flicting management objectives, including but not limited to
protection against water shortages and floods. Using the ex-
ample of a single reservoir with multiple commitments in
terms of flood control, water supply and hydropower pro-
duction, Giuliani et al. (2014) showed that the multiple vul-

nerabilities associated with historical operations could be
mitigated using multi-objective heuristics. This emerging
approach, called evolutionary multi-objective direct policy
search (EMODPS Giuliani et al., 2016), proposes reservoir
rules that trade-off flood and drought vulnerabilities with
other reservoir management objectives. It has been success-
fully applied to a flood- and drought-prone multi-reservoir
system (Quinn et al., 2017). Yet, this approach is also com-
putationally expensive and needs to use offline water balance
models to parameterize parsimonious reservoir rules that can
be input into large-scale hydrological models.

6 Conclusions

The interactions between the multiple stakeholders in ma-
jor river basin systems are complex, as is the interplay be-
tween the key variables they use to monitor and manage flood
and drought risks. Although large-scale hydrological mod-
els have generally sought to abstract this complexity in their
representation of human processes, they, at present, strug-
gle to capture coordination and control processes in multi-
reservoir systems. The current standard practice treats each
reservoir’s release independently from other reservoirs’ stor-
age levels. This paper demonstrates the unintended conse-
quences this can have for flood and drought assessment,
using a well-established hydrological model with advanced
representations of multi-reservoir operations in the Upper
Snake River basin. Our diagnostic assessment of a state-of-
the-art release rule abstractions in large-scale hydrological
models exploits time-varying sensitivity analysis based on
the method of Morris to show how the behavioral controls
in parameterized reservoir representations can inadvertently
lead to amplifying errors. The diagnostic methodology used,
which combines the method of Morris with real-world obser-
vations and offline water balance modeling along a reservoir
cascade, can be replicated with other hydrological models,
release rule representations and river basins. It provides in-
sights to cumulative reservoir rules impacts across the basin
at a daily time step. Application to the reservoir cascade on
the Upper Snake River basin, with its complex institutions
and careful monitoring of frequent flood and water risks,
showed how failure to represent the appropriate monitoring
and reservoir coordination processes could lead a hydrolog-
ical model to simulate flood and drought events that actual
basin operators would unequivocally avoid.

This finding is consequential at a time where reservoir
rules of increasing sophistication are being proposed to come
to a better agreement between observed and simulated re-
leases, and where the monitoring and forecasting of water-
related risks at extremely high resolutions is hailed at the
future of hydrology. It demonstrates the necessity to com-
plement goodness-of-fit testing by devising validation tech-
niques that check for the structural behavior of human-
operated structures in the face of water emergencies. This
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is not a task for hydrologists alone as developments across
water resources management, operations research, machine
learning and assimilation of remotely sensed data, among
others, all have a role to play in tackling this challenge, and
this work highlights the urgency with respect to finding its
solution.

Code and data availability. Core WBM code is available from the
authors on request, and so is the code for this sensitivity analysis.
Result data and code necessary to compile the figures are available
online at https://github.com/charlesrouge/ (last access: 15 Septem-
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