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Abstract. Accurate, timely, and reliable precipitation obser-
vations are mandatory for hydrological forecast and early
warning systems. In the case of convective precipitation, tra-
ditional rain gauge networks often miss precipitation max-
ima, due to density limitations and the high spatial variability
of the rainfall field. Despite several limitations like attenu-
ation or partial beam blocking, the use of C-band weather
radar has become operational in most European weather
services. Traditionally, weather-radar-based quantitative pre-
cipitation estimation (QPE) is derived from horizontal re-
flectivity data. Nevertheless, dual-polarization weather radar
can overcome several shortcomings of the conventional
horizontal-reflectivity-based estimation. As weather radar
archives are growing, they are becoming increasingly im-
portant for climatological purposes in addition to operational
use. For the first time, the present study analyses one of the
longest datasets from fully operational polarimetric C-band
weather radars; these are located in Estonia and Italy, in very
different climate conditions and environments. The length
of the datasets used in the study is 5 years for both Esto-
nia and Italy. The study focuses on long-term observations
of summertime precipitation and their quantitative estima-
tions by polarimetric observations. From such derived QPEs,
accumulations for 1 h, 24 h, and 1-month durations are cal-
culated and compared with reference rain gauges to quantify
uncertainties and evaluate performances. Overall, the radar
products showed similar results in Estonia and Italy when
compared to each other. The product where radar reflectiv-
ity and specific differential phase were combined based on a

threshold exhibited the best agreement with gauge values in
all accumulation periods. In both countries reflectivity-based
rainfall QPE underestimated and specific differential-phase-
based product overestimated gauge measurements.

1 Introduction

Detailed surface rainfall information is of great importance
in many fields, not only for agricultural or hydrological ap-
plications. In the recent past the COST 717 Action entitled
“Use of radar observations in hydrological and NWP mod-
els” investigated the assimilation of weather-radar-based pre-
cipitation in numerical weather prediction (NWP; Macpher-
son, 2004). Weather radar data have been assimilated in a
variety of assimilation systems and models of increasing res-
olution. At the beginning, latent heat nudging was the most
popular technique (Gregorc̆ et al., 2000), while researchers
have recently moved towards volume reflectivity assimilation
techniques: for example, Schraff et al. (2016) proposed the
KENDA (ensemble Kalman filter for convective-scale data
assimilation) operator to assimilate reflectivity volume data
in the COSMO (COnsortium for Small-scale MOdelling)
model. For decades, gauge networks have provided the best
reference datasets. The E-OBS 50-year daily European grid-
ded interpolated dataset has been widely used in climato-
logical studies (Cornes et al., 2018). Gauge-based datasets
have well-known shortcomings in their low spatial resolu-
tion and to a lesser degree temporal resolution. Precipitation
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data from satellites provide good spatial coverage but still
not in very high temporal resolution, especially in higher lat-
itudes (Sun et al., 2018). Polar-orbiting satellites provide bet-
ter spatial resolution data in higher latitudes, but they are
very limited in temporal resolution (Tapiador et al., 2018).
What is more, satellite-based precipitation estimates are lim-
ited by the accuracy of the estimates. The accuracy of the
estimates has a regional dependency and therefore can vary
due to the physiography of the study areas (e.g. precipitation
climate, land use, and geomorphology) (Petropoulos and Is-
lam, 2017). Now that weather radars have already been used
for decades in many countries, their archives are getting long
enough to use the data in climate studies (Saltikoff et al.,
2019). In the last decade, various studies have used multi-
year single-polarization weather radar data successfully in
deriving rainfall climatology with high spatio-temporal res-
olution (Overeem et al., 2009; Goudenhoofdt et al., 2016).
However, quantitative precipitation estimation (QPE) with
single-polarization C-band radar is strongly affected by at-
tenuation of the electromagnetic wave in heavy precipitation
or a wet radome, hail contamination, partial beam blockage,
and absolute radar calibration (Krajewski et al., 2010; Cifelli
et al., 2011).

All prior shortcomings can be mitigated by the use of
dual-polarization weather radar data. Several studies have
shown that rainfall retrieved from dual-polarimetric radar
differential phase measurements outperforms rainfall esti-
mated from horizontal reflectivity, especially in heavy pre-
cipitation (Wang and Chandrasekar, 2009; Vulpiani et al.,
2012; Wang et al., 2013; Crisologo et al., 2014). Because
differential phase measurements tend to be noisy and less re-
liable in low-intensity precipitation, Crisologo et al. (2014)
and Vulpiani and Baldini (2013) improved the robustness of
their rainfall retrieval technique by employing a combina-
tion of horizontal radar reflectivity R(ZH) and specific dif-
ferential phase R(KDP), where a threshold was set below
which R(ZH) was used and above which R(KDP) was used.
Bringi et al. (2011) also compared performances of R(ZH),
R(KDP), and the combination product of the two on a rela-
tively long set of data of 4 years.

The main aim of this study is to evaluate the potential of
using polarimetric weather radar QPE on long-term warm-
season datasets in various climatological environments. Pre-
vious studies in which the benefits of dual-polarimetric radar
QPE have been shown are mostly based on selected short pe-
riods or only single events (Wang and Chandrasekar, 2010;
Chang et al., 2016; Montopoli et al., 2017; Cao et al., 2018).
While the performance of the QPE methods can be com-
pared based on short periods as well, only a study based
on long-term data can prove the robustness of a method and
suitability for long-term operational use. The uniqueness of
this paper is ensured by various features. First of all, we
have a long 5-year dataset, starting already from 2011, de-
rived by operational dual-polarimetric C-band weather radar
made by different manufacturers. The dataset is gathered

from the archive of weather radar scans set up for opera-
tional surveillance in the meteorological services. Secondly,
the study areas are from heterogeneous climatologies, the
weather radars being located in Estonia and Italy. This is
also the first ever study evaluating weather radar QPE in Es-
tonia. What is more, we will assess the effect of the radar
scan interval as the radar data scan frequency is 5 and 15 min
from Italy and Estonia respectively. The study analyses result
first in a few selected cases. The whole dataset is analysed at
three accumulation intervals of 1 h, 24 h, and 1 month. Three
radar QPE products are generated for comparison: first the
horizontal-reflectivity-based product R(ZH), then the spe-
cific differential-phase-based product R(KDP), and as a third
radar QPE product, an R(ZH) and R(KDP) combination. To
investigate the performance of all these weather-radar-based
QPE products, they are compared with gauge accumulations.

The paper is organized as follows. Section 2 describes the
rainfall estimation datasets from radar and rain gauges and
methods used for comparisons. The results are discussed in
Sect. 3. In Sect. 4 conclusions are provided.

2 Data and methods

2.1 Statistical methods for comparison

To estimate the performance of the radar rainfall products,
they were compared with gauge accumulations. The study
period was limited to the warm season (May–September
for Estonia and April–October for Italy). In Estonia, the
mean annual precipitation is 649 mm. Precipitation clima-
tology has distinct seasonality, with a maximum in summer
(215 mm) followed by autumn (198 mm), winter (128 mm),
and spring (108 mm). The summer maximum of seasonal
mean precipitation is especially pronounced in the continen-
tal part of Estonia (246 mm in Mauri, south-east Estonia)
(Tammets et al. 2013).

In Piemonte, close to the radar, the mean annual precipi-
tation is 870 mm having a bimodal distribution with peaks in
spring (266 mm) and autumn (255 mm) (Devoli et al. 2018).

Radar-based QPEs have been accumulated to the 1 h du-
ration, and longer durations have been calculated based
on these accumulations. Accumulations were calculated by
adding subsequent instantaneous radar QPE values without
any space–time interpolation. No missing data for radar or
gauges were tolerated to prevent underestimation. A thresh-
old of 0.1 mm was set and applied such that both gauge and
radar QPE values must exceed this value to make the pair
valid.

The quality of the rainfall estimates was estimated by the
following verification measures (where ri is the ith out of n

radar precipitation estimates, gi the ith out of n gauge ob-
servations, rm the mean of all n radar precipitation estimates,
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and gm the mean of all n gauge observations).

Pearson’s correlation coefficient:

CC=
∑n

i=1(ri − rm) · (gi − gm)√∑n
i=1(ri − rm)2 ·

√∑n
i=1(gi − gm)2

. (1)

Normalized mean absolute error:

NMAE=
∑n

i=1 |ri − gi |∑n
i=1gi

. (2)

Normalized mean bias:

NMB=
∑n

i=1 (ri − gi)∑n
i=1gi

. (3)

Root mean squared error:

RMSE=

√
1
n

∑n

i=1
(ri − gi)

2. (4)

Nash–Sutcliffe efficiency:

NASH= 1−
∑n

i=1(ri − gi)
2∑n

i=1(gi − gm)2 . (5)

The Nash coefficient is typically used to assess the accu-
racy of hydrological predictions, but it has also been used for
weather-radar-based rain rates and gauge comparisons (Nash
and Sutcliffe, 1970).

2.2 Rain gauge measurements

In Estonia major renewal and automation of the rain gauge
network run by the Estonian Environment Agency (EstEA)
started in 2003. From 2003 to 2006 the network was up-
dated to automatic tipping-bucket gauges. Starting from 2006
the tipping-bucket gauges were progressively replaced by
weighted gauges. This process was finished by the end of the
year 2011. By that time there were 33 automatic weighted
gauge stations and 27 stations with tipping-bucket gauges.
According to the comparative study of parallel measurements
of the tipping-bucket gauges and weighted gauges, the latter
exhibited much higher quality (Alber et al., 2015). From the
end of 2010, the data were recorded with a 10 min interval.
Until 2010 the temporal resolution was 1 h. Both 10 min and
1 h data have been saved by EstEA since then, but only 1 h
data have been quality-controlled by EstEA staff. Because
the 10 min data are not quality-controlled, 1 h gauge data
were used in this study as a more reliable ground truth. The
offline manned data quality control includes using mainly
weather sensor data as an additional source for comparisons
but also neighbouring stations and weather radar data on
some occasions. Only weighted gauge data were used be-
cause of the higher quality of these measurements and to
ensure uniformness of the dataset. In this work, eight rain
gauges close to Sürgavere, Estonia, are included (Fig. 1).
Data have a resolution of 0.1 mm.

Since 1987, Arpa Piemonte, the Regional Agency for the
Protection of the Environment, in Piemonte, Italy, has oper-

ated a regional automatic gauge network made up of about
380 tipping-bucket gauges. Most of the gauges are heated to
avoid solid precipitation accumulation during the cold sea-
son. The temporal resolution of the gauges network is 1 min.
The Arpa Piemonte weather stations are equipped with CAE
PMB2 tipping-bucket rain gauges. Their resolution (0.2 mm)
is the amount of precipitation for one tip of the bucket. The
working range of measures is from 0 mm to 300 mm/h, with
underestimation for high precipitation intensities. Such er-
rors are corrected according to results of the WMO Field In-
tercomparison of Rainfall Intensity Gauges (Vuerich et al.,
2009). An automatic data quality check is run on real-time
data, followed by offline manned data validation. In this
study, a network subset made of 42 rain gauges close to
Turin, Italy, has been considered (Fig. 1). Precipitation mea-
surements range from 2012 to 2016.

2.3 Weather radar precipitation estimation

Data from C-band dual-polarization Doppler weather radars
in Estonia and Italy were used in this study. The weather
radars considered in this study are from different manufac-
turers, in Estonia Vaisala WRM200 and in Italy Leonardo
Germany GmbH METEOR 700C radar. Figure 1 illustrates
the location of the Estonian radar (Sürgavere) and the Ital-
ian radar (Bric della Croce), together with the locations of
available rain gauges.

Sürgavere radar, located in central Estonia at an altitude of
128 m a.s.l., has been operational since May 2008, but for
this study data starting from 2011 were used because the
gauge network had been updated by that time. The radar per-
forms a surveillance volume scan at eight elevation angles
(0.5, 1.5, 3.0, 5.0, 7.0, 9.0, 11.0, and 15.0◦) every 15 min,
starting each scan from the lowest elevation angle. Only the
lowest elevation angle data were used. The resolution of the
raw radar data is 300 m in range and 1◦ in azimuth. Data up
to 10 km from radar were discarded because of the ground
clutter and unreliable KDP estimation. Close to the radar, sta-
ble and reliable differential phase observations are not avail-
able due to both the antenna itself and the TR limiter’s re-
sponse time or the dual-polarization switch in the case of
alternate transmission. A Doppler filter was used to elim-
inate residual non-meteorological fixed clutter. In addition
to speckle and clutter-to-signal ratio filtering at the signal
processor level, polarimetric hydrometeor classification was
used to filter non-meteorological targets from the display
(Chandrasekar et al., 2013). After careful analysis, some of
the data from Sürgavere radar had to be omitted completely.
The years 2014 and 2015 were excluded because of gradu-
ally decreasing polarimetric data quality caused by a broken
limiter which was replaced in March 2016. Data from 2017
were discarded because the quality was inconsistent as a re-
sult of a broken stable local oscillator (STALO), which was
replaced in May 2018. From Estonia, the investigated period
ranges then from 2011–2018 and includes 5 years of data.
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Figure 1. Study areas (shaded) located in Estonia (upper left zoomed-in area) and in Piemonte, Italy (lower right zoomed-in area). Grey dots
denote gauge locations of both the Estonian and Piemonte region and blue dots gauges inside the study area. Blue stars reveal radar locations.

On the Turin hill, at an altitude of 770 m a.s.l., the opera-
tional dual-polarization Doppler C-band weather radar Bric
della Croce is located. The radar site is in the central part of
the Piemonte region: toward west and north at about 20 km
the Alps start, with peaks 2500–3000 m above sea level. The
radar performs fully polarimetric volume scans, made up of
11 elevations up to the 170 km range, with 340 m range bin
resolution. Bric della Croce observations used in the study
ranged from 2012 to 2016, whereas observations from 2012
to 2013 have a 10 min interval and from 2013 to 2016 have a
5 min interval. As can be seen from Fig. 1, a circular area
around the radar is used in Estonia, but in Italy a rectan-
gular area is used. The reason for this is that orography in
Piemonte is very complex, ranging from flat plains in the
Po valley (about 100 m a.s.l.) to the Alps up to more than
4000 m a.s.l. The Bric della Croce weather radar is located
on Turin hill, which is about 30 km from the Alps. Therefore,
the elegant and simple limitation in range by some kilometres
from the radar site does not work. To avoid mountainous ar-
eas, where there is partial and total beam blocking and where
heavy ground contamination increases, a rectangle area, that
extends towards flat grounds, has been preferred.

The maximum distance of the gauges to be included in
the comparison was limited to a 70 km radius from the radar
location in the case of Estonia and up to 30 km distance in
Italy. Thus, in Estonia and Italy rainfall data were from 8 and

42 gauges respectively. By limiting data analysis to the warm
season, and constraining the maximum radar range, we were
able to ensure that radar data were mainly originating from
liquid precipitation (hail can also occur), which is required
for more reliable rainfall intensity estimation. The possible
occurrence of hail was not removed from the data because
of the intention to keep additional data processing minimal
and to allow for equal comparison of the various QPE meth-
ods. In the case of Italy, the applied range limit is also aimed
at eliminating uncertainties due to complex orography, like
shielding by the mountains, overshooting, and bright-band
contamination.

QPEs, based on horizontal reflectivity, are extensively de-
scribed by Cremonini and Bechini (2010) and by Cremonini
and Tiranti (2018); meanwhile, KDP precipitation estimates
are derived according to Wang and Chandrasekar (2009).
When KDP was equal to or less than zero, then R(KDP) was
set to zero. The area close to the weather radar up to 8 km has
been left out due to heavy ground clutter contamination and
unreliable estimations of KDP.

The Sürgavere radar specific differential phase product
(KDP) and differential propagation phase product (ØDP) were
recalculated from raw ØDP data using the Python ARM
Radar Toolkit (Py-ART) (Helmus and Collis, 2016) func-
tion phase_proc_lp (Giangrande et al., 2013), with carefully
tuned parameter values according to data specifics. With de-
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fault parameter values, the rays where differential propaga-
tion phase folding occurred did not unfold correctly, and
thus the function did not produce correct specific differen-
tial phase values. To fix the folding issue, function parame-
ters self_const (self-consistency factor) and low_z (the low
limit for reflectivity – reflectivity below this value is set to
this limit) had to be tuned. The self-consistency factor takes
into account the spatial variability of reflectivity and differ-
ential reflectivity within a given path. It is used to improve
KDP field behaviours to more closely follow the cell patterns
found in ZH. The default values for self_const and low_z
were 60000.0 and 10.0 respectively, and after testing with
various combinations of various values the values 12000.0
and 0.0 were found to produce optimal results and there-
fore were chosen for final calculations. The values were first
chosen after preliminary tests with single scans from mul-
tiple years between 2011–2018 and then confirmed after a
final test with 1 month of 1 h accumulation data from August
2018. The quality of the results was evaluated by using the
verification measures introduced in Sect. 2.1 (Eqs. 1–5). The
final test results are shown in Table 1. The product with opti-
mal values for the KDP processing algorithm (R(KDP tuned))
improves all verification measures when compared to the
product based on the KDP processing with default parame-
ter values (R(KDP def)). The KDP retrieval process involves
filtering that reduces the range resolution of KDP to approx-
imately 1 km. Horizontal reflectivity (ZH) was recalibrated
using a method that utilizes the knowledge that ZH, ZDR (dif-
ferential reflectivity), and KDP are self-consistent with one
another and that one can be computed from two of the oth-
ers. ZDR is not suitable for QPE on C-band radars, but it can
be used in this calibration methodology after applying strict
restrictions on the data used for this purpose. The calibration
was carried out using the self-consistency theory set down in
Gorgucci et al. (1992, 1999) and Gourley et al. (2009), where
the methodology is described in detail. The method essen-
tially compares the observed differential propagation phase
product (Øobs

DP ) to a calculated theoretical differential propa-
gation phase product (ØDPth). The data used for calibration
had to be filtered using several restrictions: only data from
June to September were allowed; only data from 0.5◦ ele-
vation and 10–70 km range were used; only bins where the
horizontal and vertical polarization channel correlation co-
efficient was over 0.92 were used; any bins where ØDP was
greater than 12◦ were removed; whole rays where reflectiv-
ity was greater than 50 dBZ were removed; whole rays where
ZDR was greater than 3.5 dB were rejected; only rays where
1Øobs

DP was greater than 8◦ and where the consecutive rain
path was at least 10 km were used; any scans in which precip-
itation occurred on top of the radome were removed. As a re-
sult, ZH bias values from the range of −2.0 to −5.0 dB were
obtained depending on the date. The bias values were used to
correct the corresponding observed ZH before to rain rate es-
timation. The impact of the recalibration was evaluated on 1
month of 1 h accumulation data from August 2018 using the

verification measures introduced in Sect. 2.1 (Eqs. 1–5). The
verification results are presented in Table 1. The QPE product
based on recalibrated reflectivity (R(ZH cal)) shows clearly
superior results compared to the non-calibrated reflectivity-
based product (R(ZH def)), most notably by decreasing the
negative bias.

To convert reflectivity ZH to rainfall rate R (mm/h), the
following relation was used:

ZH = 300R1.5. (6)

Specific differential phase KDP was converted to rainfall rate
using the expression suggested by Leinonen et al. (2012):

R = 21.0K0.720
DP . (7)

The QPE of R(ZH) can be affected by attenuation on C-
band radars, especially in heavy precipitation and at long dis-
tances. While this can be corrected using ØDP in our study,
it was not applied to the reflectivity data so as to not intro-
duce another possible source of error between the results of
Estonia and Italy that could not be easily quantified. The ef-
fectiveness of attenuation correction using ØDP is hampered
by its temperature, shape, and size distribution dependence,
which affect the accompanying error (Vulpiani et al., 2008).
The QPE of R(ZH) can also be affected by the effect of the
non-uniform vertical profile of reflectivity (VPR). In the cur-
rent study, the effect of VPR will be limited because only
data from the warm season were used, and distance limits
to the radar data were set (70 km for Estonia and 30 km for
Italy, respectively).

Several studies have shown that R(KDP) provides much
more reliable intensity estimates in heavy rainfall (Vulpi-
ani et al., 2012; Wang et al., 2013; Chen and Chandrasekar,
2015). On the other hand, it has been indicated that KDP
retrieval itself is less reliable in light precipitation condi-
tions (Giangrande and Ryzhkov, 2008; Ryzhkov et al., 2014).
Thus, combining the two methods has the potential to be su-
perior to using each method separately. For example, Vulpi-
ani et al. (2013) used a weighted combination of R(ZH) and
R(KDP), where only reflectivity data were used for bins with
KDP less than or equal to 0.5◦/km, and KDP was used addi-
tionally with increasing weight above that value up to 1◦/km,
above which it was solely used. Cifelli et al. (2011) used
a simple threshold method where R(KDP) was used when
R(ZH) exceeded 50 mm/h intensity. Several authors have
successfully added R(ZDR)-based intensity estimation to the
combination of S-band weather radars (e.g. Ryzhkov and Zr-
nic, 1995; Ryzhkov et al., 2005; Chandrasekar and Cifelli,
2012). Due to residual effects such as resonance, noise, and
attenuation, R(ZDR) should not be used for C-band radars
(Ryzhkov and Zrnic, 2019).

In our study rainfall from a combined threshold ap-
proach was used for both weather radars as a third product
R(ZH,KDP). In the combined product, R(ZH) was used in
areas with ZH less than or equal to 25 dBZ and R(KDP) oth-
erwise if available. The ZH threshold value was selected after
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Figure 2. The 1-month 1 h rainfall cumulative accumulations for
Sürgavere radar data and Jõgeva station gauge data. ZH is not cor-
rected for attenuation.

testing with various reflectivity levels. The reflectivity thresh-
old was selected after verifying QPE performances at differ-
ent reflectivity levels from 15 to 35 dBZ in 5 dBZ steps. The
evaluation was based on 1 h accumulation rainfall for August
2018 in Estonia, and the verification statistics introduced in
Sect. 2.1 (Eqs. 1–5) were applied using the same gauges em-
ployed in the latter parts of the study as reference. From Ta-
ble 1 it can be seen that the best scores are reached using
25 dBZ (QPE product R(ZH25,KDP)). The same evaluation
for the R(ZH,KDP) algorithm was carried out for Bric della
Croce in Italy with a 1 h accumulation period, and it also con-
firmed the suitability of the 25 dBZ level. The threshold level
is considerably lower than some of the thresholds used in the
literature referred to above, but on our datasets it performed
the best.

The impact of the temporal sampling was analysed using
Italian Bric della Croce weather radar second-elevation PPI
(plan position indicator) data, which produce a 5 min inter-
val dataset. A degraded dataset of a length of 1 d, 10 Octo-
ber 2020, with a 15 min sampling rate, was created by re-
moving two out of three files. Hourly accumulation was cal-
culated based on both sampling rates, which resulted in a
sample size of 253 514. As expected from the comparison of
these accumulation pairs, the obtained normalized mean bias
was close to zero (0.03), while the correlation coefficient was
0.922, and the normalized mean absolute error was 0.21.

If we compare different skill scores for 1 h QPEs in Esto-
nia and Italy, part of the differences in correlation coefficient
and normalized mean absolute error can be explained as be-
ing due to different time sampling. Table 2 below summa-
rizes correlation coefficient and normalized mean absolute
error values in Estonia and Italy.

Compensating the values obtained in Estonia for loss
of correlation (0.078) and increased NMAE (0.21) due to
15 min time sampling with values estimated in Italy, it is vis-
ible that CC and NMAE are comparable in Estonia and Italy
(last row in Table 2). It is worth noting that after the com-

Figure 3. The 1-month 1 h rainfall cumulative accumulations for
Sürgavere radar data and Tartu-Tõravere station gauge data. ZH is
not corrected for attenuation.

pensation is applied, QPE estimated by R(ZH) shows lower
NMAE in Estonia. The difference in NMAE of R(KDP) and
R(ZH) QPEs might stem from different precipitation regimes
(more intense precipitation in Italy).

3 Results and discussion

3.1 Case comparisons

In this section radar QPE products are compared with single-
location gauge measurements of selected short periods from
Estonia and Italy. This allows for evaluating the performance
of the radar QPE against gauge measurements from a time-
series viewpoint.

Figure 2 shows 1 month of precipitation at the Jõgeva
station location (60 km away from the radar site) in Es-
tonia with 1 h temporal resolution. Overall, radar products
follow the gauge measurements well, but there are consid-
erable differences among them. Reflectivity-based product
R(ZH) is not affected by noise and clutter in clear weather
or light rain cases, but on the other hand, it underesti-
mates rainfall amounts particularly in medium- to heavy-
precipitation cases. By the end of the month, its sum of
40.5 mm was 19.6 mm less than gauge-measured accumu-
lation (70.1 mm). R(KDP) then again heavily overestimates
precipitation amounts, especially during light rain cases. By
the end of the month, the accumulated amount of 150.2 mm
was more than double the gauge sum. The third product,
R(ZH,KDP), showed the best performance of all the three
compared, and it correlated well with gauge accumulation
time series; the 1-month accumulation of 69.5 mm was just
0.6 mm lower than the rain gauge sum.

Gauge and radar accumulations are not always so well cor-
related as Fig. 3 demonstrates. In this accumulation period,
there are rainfall events which show that gauge values can
be both under- and overestimated by radar products. Rainfall
around 11 June 2016 is overestimated by all radar QPE prod-
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Table 1. Verification results of the test dataset of 1 month (August 2018) of the radar-based rainfall 1 h accumulation products of Estonia.
ZH is not corrected for attenuation.

R R R R R(ZH15, R(ZH20, R(ZH25, R(ZH30, R(ZH35,
(ZH cal) (ZH def) (KDP tuned) (KDP def) KDP) KDP) KDP) KDP) KDP)

CC 0.699 0.699 0.659 0.428 0.687 0.721 0.726 0.713 0.705
NMAE 0.572 0.634 1.074 1.491 0.855 0.69 0.605 0.596 0.595
NMB −0.212 −0.421 2.652 4.958 1.441 0.655 0.067 −0.118 −0.184
RMSE (mm) 1.611 1.709 2.329 2.656 2.071 1.832 1.714 1.718 1.704
NASH 0.247 0.202 −0.088 −0.241 0.032 0.144 0.199 0.197 0.204

Table 2. Verification of the 1 h accumulation QPE products of Estonia and Italy and differences without (“Difference”) and with (“Comp.
diff”) compensating for the impact of the temporal sampling. CC and NMAE values are obtained from Tables 3 and 4. ZH is not corrected
for attenuation.

R R R (ZH, R R R(ZH,
(ZH) (KDP) KDP) (ZH) (KDP) KDP)

CC (Estonia) 0.679 0.674 0.697 NMAE (Estonia) 0.537 0.868 0.594
CC (Italy) 0.843 0.808 0.870 NMAE (Italy) 0.531 0.514 0.423
Difference −0.164 −0.134 −0.173 Difference 0.006 0.354 0.171
Comp. diff. −0.086 −0.056 −0.095 Comp. diff. −0.204 0.144 −0.039

ucts, with the smallest overestimation by R(ZH) and greatest
by R(KDP), which overestimated the gauge by more than 2
times in this event. In the following days until 21 June 2016,
light to medium precipitation was recorded by the gauge, and
during this time R(KDP) mostly overestimated the gauge ac-
cumulations, while R(ZH) underestimated rainfall. On the
21 June 2016, a convective rainfall event occurred during
which 51 mm of rainfall was measured in 2 h with a gauge.
All radar QPE products underestimated the rainfall amount
during this event. By the end of the month-long accumu-
lation period, R(ZH,KDP) was closest to the gauge value
(underestimation by 16.6 mm), while R(ZH) underestimated
even more, and R(KDP) again overestimated gauge measure-
ments.

Figure 4 illustrates a case from Italy, a comparison of a
gauge located within 30 km distance from the radar to Bric
della Croce radar precipitation estimation products. At the
end of the 34 h period, the specific differential-phase-based
product R(KDP) has the smallest error compared to gauge
as it overestimates the gauge measurement of 40.6 mm by
2.0 mm. On the other hand, in light rain R(KDP) overesti-
mated significantly – in the first 13 h when a gauge mea-
sured 3.4 mm of accumulated rainfall, it had already esti-
mated 12.2 mm. R(ZH) underestimated, even in light rain,
and in heavy rain, the difference compared to gauge mea-
surement increased further. At the end of the period, the un-
derestimation was nearly 3-fold (15.6 mm compared to gauge
accumulation of 40.6 mm). The R(ZH,KDP) product showed
good correlation with gauge measurement in light precipita-
tion as it was mostly based on reflectivity data, but in the case
of more intense precipitation, it still underestimated com-

Figure 4. The 1 h rainfall cumulative accumulations from
Verolengo gauge, located 29 km from the radar, and co-located Bric
della Croce radar QPE. ZH is not corrected for attenuation.

pared to gauge data. At the end of the period, the accumu-
lated value for R(ZH,KDP) was 26.7 mm.

In all selected cases the general behaviour of QPEs is simi-
lar. Weather radar estimations, even when sampled by 15 min
interval observations, follow gauge measurements with good
agreement, although the second case from Estonia illustrated
well that a longer scan interval increases the scatter and par-
ticularly with small-scale convective precipitation, for which
a minimal sampling interval is the most beneficial. From
Italy, the example case was much shorter, but the precipi-
tation intensity was higher. In both cases, R(KDP) generally
overestimates precipitation amounts, especially in light rain
cases. In Italy, the R(KDP) overestimation is smaller. One of
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Table 3. Verification of the radar-based rainfall 1 h accumulation
products of Estonia. ZH is not corrected for attenuation.

R R R(ZH,
(ZH) (KDP) KDP)

CC 0.679 0.674 0.697
NMAE 0.537 0.868 0.594
NMB −0.143 1.861 0.298
RMSE(mm) 1.615 2.131 1.677
NASH 0.214 −0.037 0.184

Table 4. Verification of the radar-based rainfall 1 h accumulation
products of Italy. ZH is not corrected for attenuation.

R R R(ZH,
(ZH) (KDP) KDP)

CC 0.843 0.808 0.870
NMAE 0.531 0.514 0.423
NMB −0.296 0.678 0.120
RMSE(mm) 3.136 3.037 2.750
NASH 0.364 0.385 0.443

the causes of this behaviour might be more intense precipi-
tation in Italy for which KDP measurement was more accu-
rate. More intense rainfall on the other hand caused greater
underestimation of R(ZH)-based precipitation accumulation
from gauge values compared to Estonia. Another cause of
differences between the two countries might be differences
in the drop size distribution climatologies. Rainfall retrieval
relations also cause errors, and to keep the comparison as
uniform as possible, we decided to use the same relations for
both Italy and Estonia. These example cases demonstrated
that radar can be used for 1 h accumulations, but system-
atic errors cannot be excluded. These cases also presented
the shortcomings of studies based only on a few cases. The
performance of a QPE method depends heavily on a chosen
case, and it might perform differently on a long-term analy-
sis. Errors and uncertainties will be calculated and how QPEs
compare to gauge measurements on a longer scale will be
looked at in the next sections.

3.2 Comparison of 1 h accumulations

The quality of the rainfall estimates is compared at various
accumulation intervals. Comparing different intervals can
also be useful to point out representativeness issues caused
by low radar scan rates. The investigated period covers the
years 2011–2018 in Estonia and 2012–2016 in Italy.

First, in this section hourly accumulations are analysed.
Hourly accumulations are especially important for small
basins and in extreme precipitation climatology analysis.
Hourly rainfall maxima can provide valuable data for flash
flood nowcasting and other hydrological applications.

Table 3 presents the verification results for the hourly ac-
cumulation interval in Estonia. Figure 5 shows the corre-
sponding scatter plots. As can be seen, the R(ZH) estimation
generally underestimates rainfall, especially heavy events,
while it has the best error verification values (Nash–Sutcliffe
efficiency 0.214, NMAE 0.537, NMB −0.143, and RMSE
1.615 mm). R(KDP) on the other hand overestimates ac-
cumulations for low-intensity events as could be presumed.
R(ZH,KDP) shows considerable improvement by combining
strong aspects of the two methods. It has the highest correla-
tion coefficient (0.697) of all the products.

Nevertheless, it can be seen from the scatter plots that there
is a lot of scatter in the hourly radar accumulations with all
products. Mostly, it can be linked to the low spatial repre-
sentativeness of the point measurements of rain gauges. This
effect is more pronounced on a short timescale, and it orig-
inates from a scarce gauge network and insufficient radar
scan rate. Small-scale effects like wind drift might also be
more influential on a shorter accumulation period (Lauri et
al., 2012). The reason why R(ZH) might have the best per-
formances when NMAE and RMSE are considered is that
there are not very many heavy rainfall cases in Estonia, and
this tends to favour R(ZH) in the verification comparisons.

From Italian hourly accumulation scatter plots in Fig. 6,
it can be seen that the overall behaviour of the radar prod-
ucts is similar to Estonia, although from Fig. 6 it can be no-
ticed that of the four highest 1 h accumulations measured by
the gauge, three of them have significantly higher radar es-
timates for R(ZH,KDP) than either R(ZH) or R(KDP). This
could be explained by precipitation that was very variable in
intensity and also in spatial coverage in these three cases,
which in turn caused unsteady behaviour of the precipita-
tion estimates. ZH underestimates high intensities, but with
low intensities, KDP becomes noisy, and the rainfall inten-
sity estimation is not feasible. Finally, to reduce KDP uncer-
tainties, range averaging is mandatory, leading to underesti-
mation in the case of very localized showers. By blending
both R(ZH) and R(KDP), a better rainfall estimation is ex-
pected. Table 4 presents the corresponding verification re-
sults. R(ZH) underestimates rainfall, particularly for intense
precipitation events. R(KDP) generally overestimates hourly
accumulations, especially at low-intensity cases: as stated by
Wang et al. (2013), R(KDP) generates noisier estimations at
low rain rates. R(ZH,KDP) outperforms both other products
in Italy, which is confirmed by verification metrics as it over-
comes the shortcomings of the other estimations.

Less random scatter is visible in Italian hourly data due to
the more frequent scan strategy. R(ZH) underestimated accu-
mulations more than in Estonia as expected because in Italy
intense rainfall is more frequent – it has a larger RMSE and
an even more negative NMB. Probably for the same reason,
R(KDP) is more accurate in Italy than in Estonia as it has a
smaller NMAE and NMB while having a larger RMSE due
to higher rainfall intensities recorded in Italy.
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Figure 5. Scatter plots of radar-based rainfall estimates against rain gauge observations for 1 h accumulation intervals in Estonia 2011–2018.
The corresponding verification measures are presented in Table 3. The number of radar–gauge data pairs with eight gauges and accumulations
>0.1 mm is 7019. ZH is not corrected for attenuation.

Figure 6. The 1 h accumulations for Italy, 2012–2016. The corresponding verification measures are presented in Table 4. The number of
radar–gauge data pairs with 42 gauges and accumulations >0.1 mm is 1233. ZH is not corrected for attenuation.

Table 5. Verification of the radar-based rainfall 24 h accumulation
products of Estonia. ZH is not corrected for attenuation.

R R R(ZH,
(ZH) (KDP) KDP)

CC 0.831 0.792 0.827
NMAE 0.475 0.845 0.438
NMB −0.050 2.290 0.343
RMSE(mm) 4.366 7.195 3.992
NASH 0.335 −0.097 0.392

Table 6. Verification of the radar-based rainfall 24 h accumulation
products of Italy. ZH is not corrected for attenuation.

R R R(ZH,

(ZH) (KDP) KDP)

CC 0.692 0.661 0.708
NMAE 0.504 0.636 0.553
NMB −0.01 0.789 0.459
RMSE(mm) 8.909 11.071 10.552
NASH 0.238 0.054 0.098

3.3 Comparison of 24 h accumulations

Table 5 shows the verification results for the daily accumu-
lation interval in Estonia, while Fig. 7 presents the corre-
sponding scatter plots. As expected, much less scatter can be
seen than on the daily level, but overall, the results are con-
sistent with the hourly interval verification outcomes. Using
longer accumulation intervals leads to less severe errors as
the longer period compensates for both underestimates and
overestimates. The reflectivity-based product, R(ZH), still
underestimated rain depths, while the negative bias is consid-
erably smaller than in hourly interval data. By looking at the
definition of NMB in Eq. (3), it can be seen that in the case
that the same underlying samples are used, NMB should be
equal on all accumulation lengths. In our study, the underly-
ing samples were different as the 0.1 mm threshold was ap-
plied after the accumulation as the last step before calculating
the verification metrics. This emphasizes the importance of
low-intensity precipitation for total accumulations. R(KDP)

is the least accurate of the three products, also on a daily
accumulation level, with the lowest correlation and highest
error scores. The combined product, R(ZH,KDP), removes
the negative bias of R(ZH) and shows better correlation and
substantial improvement in terms of both the systematic er-
ror and the overall error compared to R(KDP). R(ZH,KDP)

has the smallest NMAE of 0.438, a RMSE of 3.992 mm, and
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the highest Nash–Sutcliffe efficiency, equal to 0.392. Overall
there is noticeably less scatter in the daily radar accumula-
tions compared to the 1 h interval.

Table 6 shows the verification results for the daily accumu-
lation interval in Italy, while Fig. 8 presents the correspond-
ing scatter plots. R(ZH) slightly underestimated accumula-
tions compared to gauge results, and surprisingly it outper-
forms other competing products in all metrics except Pear-
son’s correlation coefficient. R(KDP) again overestimated
accumulations the most and has the lowest correlation with
gauge data. R(ZH,KDP) notably improves the R(KDP) in all
verification metrics but does not exceed R(ZH), except for
the correlation coefficient, which is the highest of all three
products with an r of 0.708. In Italy, the decrease in scatter of
radar accumulations cannot be observed compared to the 1 h
level. In Fig. 7 two regimes can be observed, and we assume
that VPR correction leads to these regimes. Bric della Croce
weather radar is located on a top of a hill at 770 m a.s.l., and
during the winter season, a vertical profile reflectivity cor-
rection (VPR) is applied (Koistinen, 1991). This correction
is manually switched on at the beginning of the cold season,
and it is switched off at the end. In the case of convective pre-
cipitation, this correction may lead to rainfall overestimation.
On the other hand, stratiform cold precipitation is heavily un-
derestimated when VPR correction is switched off.

3.4 Comparison of monthly accumulations

Table 7 shows the verification results for the monthly accu-
mulation interval in Estonia, while Fig. 9 presents the cor-
responding scatter plots. Compared to shorter timescales,
overall on a monthly scale the correlation of all the prod-
ucts with gauge accumulations is higher. R(ZH) underesti-
mated accumulations, with a larger mean bias (−0.284) than
on a daily level but with a smaller normalized mean ab-
solute error (0.360). R(KDP) showed less scatter than on
shorter timescales like other products while it still heav-
ily overestimated accumulations (NMB equal to 1.042 with
a RMSE equal to 62.466 mm). On the monthly accumu-
lation level, R(ZH,KDP) outperforms the two other prod-
ucts to a great extent. It is well correlated to gauge values
with small scatter as it performs very well, both in low-
and high-accumulation cases. The correlation coefficient is
nearly identical to R(ZH), but it removes the systematic un-
derestimation of R(ZH) and overestimation of R(KDP) and
exceeds them in all other verification metrics.

Table 8 shows the verification results for the monthly ac-
cumulation interval in Italy, while Fig. 10 presents the corre-
sponding scatter plots. Scatter plots reveal similar character-
istics to the daily level accumulations of the products. R(ZH)

underestimated rainfall, also on a monthly scale, and R(KDP)

overestimated rainfall. R(ZH, KDP) still overestimated rain-
fall but with a decreased RMSE compared to the R(KDP)

product. It also exhibits the highest correlation coefficient of
the three. According to the verification results, most of the

Table 7. Verification of the radar-based rainfall monthly accumula-
tion products of Estonia. ZH is not corrected for attenuation.

R R R(ZH,
(ZH) (KDP) KDP)

CC 0.877 0.789 0.875
NMAE 0.360 0.822 0.214
NMB −0.284 1.042 0.109
RMSE(mm) 27.448 62.466 16.704
NASH 0.155 −0.924 0.486

Table 8. Verification of the radar-based rainfall monthly accumula-
tion products of Italy. ZH is not corrected for attenuation.

R R R(ZH,
(ZH) (KDP) KDP)

CC 0.776 0.726 0.799
NMAE 0.375 0.488 0.408
NMB −0.128 0.310 0.337
RMSE(mm) 23.737 30.802 24.914
NASH 0.288 0.076 0.253

metrics indicate better performance of the radar products on
a monthly scale compared to daily intervals. The correlation
coefficient is higher and the NMAE is lower for all the prod-
ucts when the two timescales are compared.

4 Conclusions

In the present study polarimetric rainfall retrieval methods
for the fully operational C-band radars in Sürgavere, Estonia,
and Bric della Croce, Italy, have been analysed. The study
focuses on the warm period of the year, and a long period of
multi-year data is used. From Estonia 5 years of data from
2011 to 2018 has been included; from Italy, the data interval
ranges from 2012 to 2016. Reflectivity data were calibrated
following a self-consistency theory, and measured horizon-
tal reflectivity (ZH) was corrected accordingly. To calculate
rainfall from polarimetric variables, the differential propaga-
tion phase product (ØDP) was reconstructed, and based on
that the specific differential phase product (KDP) was re-
trieved. To achieve this the transparently implemented algo-
rithm phase_proc_lp (Giangrande et al., 2013) in the open-
source toolkit Py-ART was used for Estonian data. For Ital-
ian data, KDP precipitation estimates were obtained follow-
ing the theory set down in Wang et al. (2009).

Three radar rainfall estimation products were computed:
a horizontal reflectivity-based product R(ZH), a specific
differential-phase-based product R(KDP), and a combined
product based on the previous two R(ZH,KDP). Rain gauge
network data of Italy and Estonia were used as ground truth.
The 1 h, 24 h, and monthly accumulations were derived from
the radar products and gauge data.
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Figure 7. The 24 h accumulations for Estonia, 2011–2018. The corresponding verification measures are presented in Table 5. The number of
radar–gauge data pairs with eight gauges and accumulations >0.1 mm is 2148. ZH is not corrected for attenuation.

Figure 8. The 24 h accumulations for Italy, 2012–2016. The corresponding verification measures are presented in Table 6. The number of
radar–gauge data pairs with 42 gauges and accumulations >0.1 mm is 3010. ZH is not corrected for attenuation.

Time-series comparison revealed that even with a 15 min
scan interval, radar is suitable for QPE, at least with more
widespread precipitation like stratiform rain. Still, on the
shortest accumulation period of 1 h, the scarcer radar data
from Estonia had more scatter than data from Italy, where the
scan interval was 10 min on older data and 5 min since 2013.
As an overall trend, the longer the accumulation period, the
less scattering that was visible. The case comparisons also
revealed the shortcomings of analysis based only on selected
short periods. The performance of the QPE methods then de-
pends on the representativeness of the chosen cases, and re-
sults can easily be skewed. Using a dataset with a length of at
least several years without preselection provides more robust
results and allows for evaluating the operational usability of
the methods.

When the three products are compared to each other based
on the full length of 5 years of data, in the case of Estonia,
the R(ZH,KDP) was superior to R(ZH) and R(KDP) in all
accumulation periods. Especially on the monthly accumula-
tion scale, it performed distinctly better as it had a RMSE
39% lower than the nearest competitor, the R(ZH) product,
and even 73% lower than R(KDP). In Italy, the R(ZH,KDP)

product exceeded the two others clearly on an hourly level.
On 24 h and monthly accumulation scale, it had the highest
correlation with gauge measurements, but the error verifica-
tion measures were slightly higher than those of the R(ZH).
Nevertheless, it outperformed R(KDP) on all timescales.

Overall the results show that the combined product
R(ZH,KDP) performs better in almost all of the verification
measures in both countries compared to R(ZH) and R(KDP)

as it successfully uses the benefits of each other product and
eliminates the weaknesses. R(ZH) was good at low precipi-
tation intensities, but in general, it underestimated precipita-
tion. It had an average NMB of −0.159 for all accumulation
lengths in Estonia and −0.145 in Italy. R(KDP) performed
well at higher intensities but in general overestimated pre-
cipitation. It had an average NMB of 1.731 for all the ac-
cumulation lengths in Estonia and 0.592 in Italy, while the
combined product R(ZH,KDP) slightly overestimated pre-
cipitation, with an average NMB of 0.250 for all the accu-
mulation lengths in Estonia and 0.305 in Italy. In both coun-
tries the R(ZH,KDP) product also had the highest average
CC over all the accumulation lengths, with CC of 0.800 in
Estonia and 0.792 in Italy. Generally, the CC was higher the
longer the accumulation period was, with the highest CC in
monthly accumulations (R(ZH,KDP) CC of 0.875 in Estonia
and 0.799 in Italy).

In Estonia, the overestimation of R(KDP) was noticeably
higher than in Italy. We hypothesize that this is mostly due
to different climatological regimes between Italy and Esto-
nia as high-intensity rainfalls occur more frequently in Italy,
although one has to keep in mind that the radars were from
different manufacturers and thus also the KDP retrieval algo-
rithms used were different, which might be the cause of some
discrepancy. Another source of error might originate from the
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Figure 9. Monthly accumulations for Estonia, 2011–2018. The corresponding verification measures are presented in Table 7. The number of
radar–gauge data pairs with eight gauges is 179. ZH is not corrected for attenuation.

Figure 10. Monthly accumulations for Italy, 2012–2016. The corresponding verification measures are presented in Table 8. The number of
radar–gauge data pairs with 42 gauges is 675. ZH is not corrected for attenuation.

implemented ZH–R and KDP–R relations, which might not
perform equally in different climates. Overall the results of
the study showed that dual-polarimetric radar QPE and espe-
cially the combined product R(ZH,KDP) show good poten-
tial to be used on long-term datasets if certain limitations are
considered.

Synoptic patterns could be used as an additional source for
classifying the radar accumulations. This would enable the
performance of each radar product to be verified for strati-
form and convective events. Moreover, it could be used to
investigate if frequent scans play a bigger role in convective
events than stratiform events as could be hypothesized and to
quantify the effect.

For future studies, it would also be useful to calcu-
late probabilities and return periods of extreme rainfall for
weather-radar-based rainfall climatology.
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