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Abstract. Probabilistic seasonal forecasts are important for
many water-intensive activities requiring long-term plan-
ning. Among the different techniques used for seasonal fore-
casting, the ensemble streamflow prediction (ESP) approach
has long been employed due to the singular dependence
on past meteorological records. The Swedish Meteorologi-
cal and Hydrological Institute is currently extending the use
of long-range forecasts within its operational warning ser-
vice, which requires a thorough analysis of the suitability
and applicability of different methods with the national S-
HYPE hydrological model. To this end, we aim to evaluate
the skill of ESP forecasts over 39 493 catchments in Swe-
den, understand their spatio-temporal patterns, and explore
the main hydrological processes driving forecast skill. We
found that ESP forecasts are generally skilful for most of
the country up to 3 months into the future but that large
spatio-temporal variations exist. Forecasts are most skilful
during the winter months in northern Sweden, except for
the highly regulated hydropower-producing rivers. The re-
lationships between forecast skill and 15 different hydrolog-
ical signatures show that forecasts are most skilful for slow-
reacting, baseflow-dominated catchments and least skilful
for flashy catchments. Finally, we show that forecast skill
patterns can be spatially clustered in seven unique regions
with similar hydrological behaviour. Overall, these results
contribute to identifying in which areas and seasons and how
long into the future ESP hydrological forecasts provide an
added value, not only for the national forecasting and warn-
ing service, but also, most importantly, for guiding decision-
making in critical services such as hydropower management
and risk reduction.

1 Introduction

Regardless of the geographical setting, human society de-
pends on water resources to satisfy basic needs and allow
for social growth and development. At the same time, how-
ever, the variability of the hydrological systems, leading to
extreme events such as floods or droughts, puts pressure on
the viability and sustainability of many water-intensive ac-
tivities. In this setting, being able to predict the future evolu-
tion of the hydrologic system may improve societal resilience
by anticipating potentially hazardous events and enabling
the adoption of protective and/or adaptive measures (Girons
Lopez et al., 2017; Pappenberger et al., 2015b). Even if most
day-to-day decisions on water-related issues are based on
short- and medium-range forecasts, some activities, such as
water reservoir operation and optimization or strategic plan-
ning, benefit from long-term forecasts (Foster et al., 2018;
Giuliani et al., 2020; Vigo et al., 2018). Despite their inher-
ent uncertainties, such as hydro-meteorological model errors,
future atmospheric states, or past hydro-meteorological wa-
ter storages, long-term forecasts such as seasonal forecasts
are a valuable tool for such applications, as they provide in-
sights into the general trends of the hydrological system up
to several months into the future, leading also to economic
benefits (Bruno Soares et al., 2018; Giuliani et al., 2020).

Different techniques are available for generating seasonal
forecasts, each with different strengths and weaknesses.
These techniques may be based on dynamic or statistical
methods, or on a weighted combination of both. Among
these, the ensemble streamflow prediction (ESP) methodol-
ogy – originally named extended streamflow prediction (Day,
1985) – has long been widely adopted for seasonal forecast-
ing (Wang et al., 2011; Wood and Lettenmaier, 2006). Fol-
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lowing this methodology, ensemble streamflow forecasts are
generated using historical meteorological data as forcing to
a hydrological model. An advantage of this method com-
pared to methods based directly on streamflow climatology
is that ESP forecasts are initialized using the latest hydro-
logical conditions (Crochemore et al., 2020), thus benefiting
from the most recent hydrological knowledge when they are
initialized, which is of particular interest for unprecedented
hydrological conditions. This advantage can however also
lead to forecast overconfidence as this method does not con-
sider the impact of potential uncertainties in the initial hy-
drologic conditions, as noted by Wood and Schaake (2008).
Additionally, the reliance of ESP forecasts on historical me-
teorological forcing makes it impossible for them to cap-
ture hydrological responses to unprecedented meteorologi-
cal events. Conversely, forecasts based on numerical weather
prediction (NWP) models are not constrained by the obser-
vational period as they are driven with an ensemble of dy-
namical meteorological forecasts and are increasingly being
used to overcome these limitations (Monhart et al., 2019).
Nevertheless, ESP forecasts still offer the best study object
to focus on the role of initial hydrologic conditions alone,
which are better explained through catchment characteristics
than by using NWP forcings.

ESP forecasts have been used by the scientific commu-
nity to assess forecast skill sensitivity and uncertainties and
to benchmark seasonal forecast improvements (Arnal et al.,
2018; Harrigan et al., 2018), as well as for operational flood
forecasting in many different settings and scales (Candogan
Yossef et al., 2017). Over the years, different techniques have
been developed to improve the performance of forecasting
systems, such as data assimilation for improving the initial
conditions of forecasts (DeChant and Moradkhani, 2011),
multi-model approaches (Muhammad et al., 2018), or pre-
processing and post-processing techniques such as using ar-
tificial neural networks for reducing the effects of model er-
rors (Jeong and Kim, 2005; Macian-Sorribes et al., 2020),
historical scenario selection and weighting (Crochemore et
al., 2017; Trambauer et al., 2015), and calibration techniques
(Wood and Schaake, 2008).

Evaluation efforts are typically carried out based on fore-
casts issued retrospectively (re-forecasts) over time periods
long enough to ensure that the evaluation is statistically ro-
bust. For many operational applications it is important to
understand the spatio-temporal patterns of seasonal stream-
flow predictability as well as the driving processes behind
these patterns (Sutanto et al., 2020). Indeed, previous stud-
ies have identified different sources of forecast skill depend-
ing on hydrological characteristics; for instance, Greuell et
al. (2019), Shukla et al. (2013), and Wanders et al. (2019)
identified initial conditions of soil moisture and snow (dur-
ing spring) as the most important sources of skill over Eu-
rope, while Singla et al. (2012) found similar results for
France. In a study over the United Kingdom, Harrigan et
al. (2018) ascertained streamflow predictability was higher

for slow-responding catchments, as described by the base-
flow index (BFI). Some studies have even gone one step fur-
ther by investigating spatio-temporal patterns in streamflow
predictability in an attempt to regionalize the forecast skill.
For example, Pechlivanidis et al. (2020) showed that stream-
flow predictability is strongly dependent on the overall hy-
drological regime, with limited predictability in flashy basins
(low river memory), and hence, it can be regionalized based
on a priori knowledge of local hydro-climatic conditions.

The Swedish Meteorological and Hydrological Institute
(SMHI) has long been operationally providing streamflow
forecasts (catchment outflows) and hydrological warnings
for Sweden (Fig. A1) to relevant actors in hydrological risk
management (municipalities, county boards, Swedish Civil
Contingencies Agency), as well as to the general public. Ad-
ditionally, both professional actors and the general public
have access to the current hydrological situation and stream-
flow climatology through the open access Vattenwebb por-
tal (https://vattenwebb.smhi.se/, last access: 2 March 2021).
On top of that, SMHI’s consultancy services provide tailored
forecasts to relevant actors. These forecasts are however not
included in the public service and, as of today, are limited
to individual river basins. Forecasts were initially produced
with the HBV model (Bergström, 1976), but in recent years
operational forecasting has shifted to the Swedish implemen-
tation of the HYPE model (S-HYPE; Lindström et al., 2010),
which allows for an integrated, high-resolution description of
the hydrological system across the country. Where available,
in situ observations of streamflow are assimilated, which has
a beneficial impact on the hydrological predictions down-
stream. ESP seasonal forecasts are produced operationally
but have not been widely used in real-world applications due
to the lack of information on their skill and to the subsequent
potential misinterpretation by external parties. Nevertheless,
SMHI is now looking to extend the usage of long-term fore-
casts within its warning service, which requires a deeper un-
derstanding of forecast performance, its patterns, and con-
trolling factors.

The aim of this study is to evaluate SMHI’s operational
ESP seasonal forecasts by benchmarking and attributing ESP
forecast skill over Sweden with the operational S-HYPE
model. To achieve these objectives, we (a) evaluate the skill
of ESP seasonal forecasts generated with the operational
S-HYPE model over Sweden and understand the spatio-
temporal pattern of skill, (b) detect potential links between
streamflow forecast skill and hydrological characteristics,
and (c) attribute streamflow predictability patterns across the
country to hydrological behaviour of the river systems. The
paper is structured as follows: Sect. 2 presents the data used,
hydrological model setup, and methodology for the forecast
evaluation; Sect. 3 presents the results, followed by the dis-
cussion in Sect. 4; finally, Sect. 5 states the conclusions.
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2 Methods

2.1 Data

Daily precipitation and temperature data from the PTHBV
database (Johansson, 2002) were used as forcing data in the
S-HYPE model. This database contains gridded data based
on a weighted interpolation from all available station obser-
vations for any given day with a resolution of 4× 4 km, and
it is available from 1961 onwards. The interpolation method
used for generating PTHBV considers factors such as ele-
vation and wind frequency and direction to make interpo-
lated values for precipitation and temperature more reliable.
This dataset was processed using a weighted average method
based on the area fraction of the PTHBV grid cells’ inter-
section with a given model catchment to force the semi-
distributed S-HYPE model (Sect. 2.2). Additionally, daily
stream discharge and water level data from 539 stations of
SMHI’s gauge network were used to correct the model out-
puts for improved forecast initialization (see Fig. 1). Data
availability varies greatly among stations (Fig. A2a). Never-
theless, most stations have observations for the entire study
period (Fig. A2b).

2.2 Hydrological modelling and forecasting

The ESP re-forecasts were produced using the S-HYPE
model (Strömqvist et al., 2012), which is the operational im-
plementation of the HYPE model for Sweden (Lindström
et al., 2010). The HYPE model is a process-based hydro-
logical model for water quantity and quality which operates
on a daily time step and includes both hydrological (snow-
pack, groundwater, surface runoff, streamflow) and anthro-
pogenic (reservoir operation, irrigation) factors. This model
framework can be used in lumped, semi-distributed, and dis-
tributed modes. More specifically, the S-HYPE model is
semi-distributed and, in its current version, consists of 39 493
catchments (with an average spatial resolution of 10 km2),
covering the whole of Sweden as well as parts of Norway
and Finland in transboundary basins. The operational char-
acter of S-HYPE means that the model needs to perform ad-
equately for a range of applications (e.g. early warning ser-
vices, hydropower decision-making, water resources man-
agement), and it is therefore not parameterized towards a
specific set of hydrograph characteristics. The model, which
is continuously developed, has been calibrated and evalu-
ated using a combination of numerical metrics such as the
Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970),
the Kling–Gupta efficiency (KGE; Gupta et al., 2009), and
its components, in addition to multi-objective combinations
of these metrics and expert judgement through visual eval-
uation and manual fine-tuning of model parameters. Focus-
ing on the KGE metric, which is considered as a benchmark
metric and provides information on the timing, volume, and
variability of streamflow, S-HYPE has a median efficiency

of 0.79 for the period 1981–2016 at daily time step, ranging
from −0.56 to 0.96 (Fig. 1a). For reference, the KGE met-
ric ranges between −∞ and 1; the closer to 1 the KGE is,
the more accurate the simulations are. This high KGE en-
sures that the aforementioned aspects of streamflow (timing,
volume, and variability) are well represented by S-HYPE
at most locations. Those stations showing poor KGE val-
ues generally correspond to highly regulated or small catch-
ments, where the timing and variability are more difficult to
capture (Fig. 1).

A large percentage of water courses in Sweden are reg-
ulated, mainly for energy production purposes; see the de-
gree of regulation (%) in Fig. 1b; see also the definition in
Pechlivanidis et al. (2020). This makes the simulation and
prediction of water variables in the main water courses more
challenging, as regulation patterns, which can largely deviate
from the natural flow, need to be considered. In the opera-
tional S-HYPE model, general regulation regimes in the form
of constant flow or seasonally varying sine-wave-shaped flow
(or a combination of both) between predefined levels and,
in some cases, specific dates are provided for a number of
reservoirs. Nevertheless, since dam operation is continuously
adapted (within certain bounds) to the changing meteorolog-
ical and hydrological conditions, in addition to other factors
such as optimizing the economic benefit and ensuring safe
operation, long-range forecasts based on hydrological mod-
els with only a limited description of such complex deci-
sions on regulation patterns will most likely be conditioned
by these simplifications.

We produced a series of hydrological re-forecasts up to a
lead time of 190 d (approximately 6 months) at a daily time
step for all 39 493 locations across Sweden and transbound-
ary basins using meteorological forcing data from 25 random
years for the period 1961–2016 so as to mimic SMHI’s op-
erational setup (Fig. 2a). When selecting the forcing data, a
window of 3 years was left out around the analysis year (1
year before and 2 years after) to limit the impact of inter-
annual streamflow memory and thus avoid conditioning the
forecasts. We initialized the re-forecasts on the 1st, 8th, 15th,
and 22nd of each month (approximately once a week) and
aggregated the daily forecast data into weekly averages.

Following SMHI’s operational setup, model outputs were
corrected with stream discharge and water level observations,
where and when available, to obtain the best possible initial-
ization conditions. When observations were no longer avail-
able, an autoregressive (AR) correction method was used
(Lindström and Carlsson, 2000; Pechlivanidis et al., 2014).
To illustrate this procedure, let us consider the case of a
catchment which has observations throughout the analysis
period. For each forecast initialization, the model outputs
were corrected up to the day before forecast initialization,
and model errors were stored. Then, as observations were
theoretically no longer available, the model output correction
started from the latest stored model error value and exponen-
tially decreased with time based on a calibrated factor un-
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Figure 1. Study domain: (a) S-HYPE model Kling–Gupta efficiency (KGE) for the period 1981–2016 for each of the 539 hydrological
stations, (b) degree of regulation of each S-HYPE catchment, and (c) average model correction value for each S-HYPE catchment following
the autoregressive correction method.

til the model outputs converged with the simulation results.
This correction only affects catchments with or downstream
from observations and is especially relevant (at least for the
first forecast lead times) for regulated water courses with low
model performance where simulated streamflow can signifi-
cantly deviate from actual values (Fig. 1c).

In summary, the re-forecast dataset has the following size:
39 493 catchments and 43 200 forecast initializations (4 start
dates per month× 12 months× 36-year re-forecast period
(1981–2016)× 25 members), using AR correction where and
when available and averaged weekly up to 190 d.

2.3 Forecast evaluation

We evaluated the skill of the ESP re-forecasts produced with
the S-HYPE model over the period 1981–2016 using the
continuous ranked probability skill score (CRPSS; Appendix
B) and a cross-validation strategy. Although studies involv-
ing large-scale models often use model simulations as refer-
ence, as this minimizes the impact of model performance on
forecast skill (Arnal et al., 2018; Crochemore et al., 2020),
here we followed SMHI’s operational setup and therefore
used a reference based on a combination of observations
(for catchments with or downstream from observation points)
and model simulations (also known as perfect forecasts; else-
where) to achieve the best possible initial conditions. We as-
sessed the skill of the ESP re-forecasts so as to highlight the

added value of the ESP forecasts with respect to an ensemble
forecast based on streamflow climatology, which users would
have access to in the absence of SMHI’s forecast service
(Pappenberger et al., 2015a). To this purpose, we used an en-
semble whose 25 members were resampled from the station-
corrected streamflow climatology for the period 1981–2010
(excluding the forecast year) as a benchmark against which
to derive the skill of the ESP re-forecasts (Fig. 2b).

Even if hydrological models are typically run at a daily
timescale, forecast results from hydroclimate prediction sys-
tems are usually post-processed and aggregated over longer
periods to provide information tailored to the user needs
(Bohn et al., 2010). More specifically, a temporal aggrega-
tion of 1 month is typically used in seasonal forecasting ser-
vices (Apel et al., 2018; Bennett et al., 2017). Nevertheless,
different time periods may be of interest depending on the
sectorial use (e.g. water resources management, civil protec-
tion mechanisms, warning services). Therefore, in addition
to using a default temporal aggregation of 1 week to esti-
mate the predictive skill of the national operational service,
we were also interested in understanding how aggregating
streamflow forecasts over different time periods (i.e. 2, 4, 8,
12, and 24 weeks) would impact forecast skill at different
lead times.
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Figure 2. Schematic of the forecast generation procedure in this study: (a) ESP re-forecasts and (b) benchmark forecasts. Adapted from
Crochemore et al. (2020).

2.4 Forecast skill attribution

Thereafter, we investigated which hydrological characteris-
tics are associated with skilful forecasts. More specifically,
we selected a set of 15 hydrologic signatures (statistics de-
scribing the hydrological behaviour; see Table 1) to provide
diagnostics of the hydrological regime. Since no consensus
exists on an adequate set of hydrological signatures (McMil-
lan et al., 2017), the set we used in this study draws on pre-
vious literature on hydrological classification (Euser et al.,
2013; Viglione et al., 2013), process understanding (Kuentz
et al., 2017; Pechlivanidis and Arheimer, 2015), and fore-
casting skill attribution (Pechlivanidis et al., 2020) and is
based on the assumption that these signatures are not prone
to large uncertainties and can thus provide information to-
wards the identification of hydrologically similar river sys-
tems (Knoben et al., 2018; Westerberg et al., 2016). We used
the non-parametric Spearman rank test to assess the correla-
tion between forecast skill and each of the hydrologic signa-
tures.

Then, we applied a k-means clustering approach (Jin and
Han, 2011) within the 15-dimension space (hydrological sig-
natures) to group the catchments into clusters based on sim-
ilarities of basin functioning and further identify the dom-
inant streamflow generating processes for specific regions.
This is not the first regionalization effort done for Swedish
catchments. Indeed, four main hydro-climatic regions based
on hydro-climatic patterns (Lindström and Alexandersson,
2004; Pechlivanidis et al., 2018) have typically been used
for water management in Sweden. Nevertheless, this previ-
ous regionalization was based on different variables (e.g. ma-
rine basins) and is thus not suitable for the purposes of this
study.

Finally, we analysed the hydrologic predictability for each
of the clusters.

3 Results

3.1 Temporal and spatial distribution of forecast skill

The skill of the ESP re-forecasts varies with the lead time and
the forecast initialization date (Fig. 3). As expected, the ESP
skill for 1-week forecast averages with respect to streamflow
climatology, as measured by the CRPSS metric, is overall
very high for medium-range horizons (i.e. 1–2 weeks ahead),
with a median skill over Sweden starting at 0.7 (Fig. 3a) and
thereafter decreasing with time (CRPSS ranges between 1
(best) and−∞). After approximately 3 months, and until the
furthest horizon (190 d), the ESP provides, on average, no
added value with respect to streamflow climatology. Simi-
lar trends have been observed in other evaluations of fore-
casting systems over Sweden (Foster et al., 2018; Olsson et
al., 2016). In particular, we note a rapid decrease in skill
in the first forecast month (Crochemore et al., 2020; Harri-
gan et al., 2018). Consequently, under the common initializa-
tion frequency of 1 month for many climate prediction sys-
tems (Batté and Déqué, 2016; Johnson et al., 2019), stream-
flow predictability is expected to remain low for periods be-
yond a 2-week forecast horizon. By increasing the frequency
of forecast initialization (e.g. from once a month to once a
week), and hence frequently updating the initial hydrologi-
cal states, it is possible to maintain a high streamflow forecast
skill for extended forecast horizons (Fig. 3b).

Even if the forecast skill follows a similar decreasing pat-
tern for all initialization dates, both the maximum skill value
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Table 1. Hydrologic signatures used for catchment functioning.

Signature Abbreviation Unit Reference

Mean annual specific runoff Qm mm yr−1 Viglione et al. (2013)
Range of Pardé coefficients DPar – Viglione et al. (2013)
Slope of streamflow duration curve mFDC % %−1 Viglione et al. (2013)
Normalized low streamflow q95 – Viglione et al. (2013)
Normalized high streamflow q05 – Viglione et al. (2013)
Coefficient of variation CV – Donnelly et al. (2016)
Flashiness Flash – Donnelly et al. (2016)
Normalized peak distribution PD – Euser et al. (2013)
Rising limb density RLD – Euser et al. (2013)
Declining limb density DLD – Euser et al. (2013)
Normalized relatively low streamflow q70 – Viglione et al. (2013)
Baseflow index BFI – Kuentz et al. (2017)
Runoff coefficient RC – Kuentz et al. (2017)
Streamflow elasticity EQP – Sawicz et al. (2011)
High pulse count HPC – Yadav et al. (2007)

Figure 3. Streamflow ESP forecast skill (in terms of CRPSS) for 1-week forecast averages as a function of lead time and up to 190 d:
(a) median skill and 5th to 95th percentile range for the entire domain and (b) temporal disaggregation of forecast skill per initialization
date. Initialization dates within the same month (four times) are represented with the same colour, and the first initialization of each month is
marked with thicker markers and lines.

as well as the deterioration rate differ. The highest skill
(greater than 0.8) is observed for forecasts initialized be-
tween 8 December and 1 March, which roughly corresponds
to the winter months. In the other seasons, the forecast skill
starts at around 0.7, with the lowest skill value observed for
initializations in April (just under 0.6). Even if the forecast
skill deteriorates quickly and reaches a predictability value
close to the one of streamflow climatology (CRPSS close to
0) in long forecast horizons, forecasts initialized in March
and April (and to some extent also in February) show a small
secondary peak in the skill in May. This may be explained

by the hydrological regime in a large part of Swedish catch-
ments, in which streamflow generally starts to increase in
April–May, despite the general lack of precipitation in winter
and early March (see also Pechlivanidis et al., 2020).

The spatial distribution of forecast skill differs signif-
icantly across initialization dates and forecast horizons
(Fig. 4). For instance, forecasts initialized in winter (e.g.
1 December) maintain skill for inland forested areas of north-
ern Sweden up to 3 months in the future. Forecasts initialized
in spring (e.g. 1 March) show skill up to the same forecast
horizon but most notably in the southern and eastern parts
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of the country. Finally, forecasts issued in summer and au-
tumn are skilful up to 2 months except for some areas in the
central–western parts of the country.

For the first forecast month, forecasts tend to have a com-
paratively poorer skill in the mountainous areas of north-
western Sweden than in other parts of the country, except
when they are initialized in the spring. Agricultural areas lo-
cated around some of Sweden’s largest lakes, such as Lake
Mälaren and Lake Vänern (Fig. A1), also have comparatively
poor forecast skill. Interestingly, high predictability would
have been expected in such lakes with slow hydrological re-
sponse (long memory) (see Pechlivanidis et al., 2020). How-
ever, these great lakes are heavily regulated (see Fig. 1), and
the model correction seems to have impacted forecast skill.
Streamflow forecasts in the large, highly regulated rivers of
northern Sweden, such as river Umeälven and river Luleäl-
ven, also lack skill (Figs. 1b and A1). Again, the regulation
patterns that significantly differ from the natural regime of
watercourses are not adequately captured by the ESP. In these
cases, the broader ensemble of streamflow climatology is a
better estimator of future streamflow. Conversely, streamflow
forecasts show high skill in non-regulated rivers located in
the same area and of similar size and hydrological regime,
i.e. river Kalixälven and river Torneälven (Fig. A1).

3.2 Forecast skill as a function of temporal aggregation

We next investigate the impact of using different forecast
aggregation periods on the forecast skill for different lead
times. More specifically, in addition to the default aggrega-
tion period of 1 week, we consider the aggregation of stream-
flow forecasts over 2, 4, 8, 12, and 24 weeks. Since the fo-
cus here is not on the spatial patterns of skill, forecast skill is
therefore averaged over the entire domain. Results show that,
even if the average skill for the first forecast period decreases
when aggregating over longer time periods, the forecasts re-
main skilful (CRPSS greater than 0) for aggregation periods
of up to 12 weeks (Fig. 5). When aggregating over 24 weeks,
the ESP method generally provides no added value with re-
spect to streamflow climatology; the predictability from ESP
is very similar to the one from streamflow climatology. Even
if, as expected, forecast skill decreases when forecasts are
aggregated over long periods, a comparatively higher skill
is maintained over longer time horizons than when forecasts
are aggregated over short periods. In addition, forecasts ini-
tialized in February and March are skilful up to 16 weeks
ahead when aggregating over long periods (e.g. 8 weeks),
and the forecasts initialized in April and May show high skill
values, even when aggregating over a 12-week period. This
is probably due to the high predictability of the spring flood
season in May, also shown by the secondary skill peak ob-
served for these initializations in Fig. 3b. Many catchments
and rivers, especially in the northern half of Sweden, experi-
ence the peak of the spring flood during May. Using short ag-
gregation periods, skill is more influenced by the exact start

and end times of the spring flood event, while long aggre-
gations put more emphasis on a correct total flood volume.
Since the total volume linked to the accumulated snowpack
is easier to model than the timing of the event, which is con-
ditioned by meteorological variables, long aggregations tend
to perform better. In the southern parts of the country, the
spring flood is already over in May, and low streamflow con-
ditions start to dominate. Finally, for forecasts initialized in
July and October, long aggregation periods (e.g. 12 weeks)
tend to dilute the high forecast skill observed over the first
weeks.

3.3 Relating streamflow signatures and forecast skill

We next investigate potential correlations between fore-
cast skill and the 15 streamflow signatures using the non-
parametric Spearman rank test. In all cases the null hypoth-
esis (i.e. no correlation exists between forecast skill and the
streamflow signature) is rejected with a level of significance
of 0.01 for lead week 0. Different patterns emerge when com-
paring the forecast skill for each catchment with each of the
15 streamflow signatures (Fig. 6). More specifically, forecast
skill is strongly inversely correlated (defined here as Spear-
man’s rank correlation coefficient (ρ) being less than −0.50)
with high pulse count (HPC), flashiness (Flash), rising limb
density (RLD), declining limb density (DLD), and coeffi-
cient of variation (CV). Additionally, a strong direct corre-
lation (ρ>0.50) is found between skill and baseflow index
(BFI), normalized low streamflow (q95), and normalized rel-
atively low streamflow (q70), indicating that slow-reacting
catchments with a significant baseflow component generally
experience high predictability (Harrigan et al., 2018; Pechli-
vanidis et al., 2020). A similar analysis has been conducted
for longer forecast horizons (e.g. lead week 8); however,
since spatial patterns in forecast skill weaken and blend in
with the forecast horizon, the identified correlations do not
have any explanatory power. Overall, the identified correla-
tions highlight the existence of a generally high forecast skill
in slow-reacting, baseflow-dominated catchments, while low
forecast skill is predominant in flashy catchments. Although
this analysis indicates the existence of dependencies between
streamflow signatures and forecast skill, it can still be con-
sidered limited, given that a hydrological system is gener-
ally characterized by a wider set of streamflow signatures
than that considered here (Pechlivanidis and Arheimer, 2015;
Sawicz et al., 2011).

3.4 Attributing streamflow forecast skill to hydrologic
behaviour

Here, we investigate the potential attribution of streamflow
predictability in the Swedish river systems to hydrologi-
cal behaviour, given that such dependency has been high-
lighted in the previous analysis. Using the k-means clustering
method, an optimal number of seven distinct clusters (based
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Figure 4. Spatial distribution of streamflow forecast skill (in terms of CRPSS) for selected initialization dates (rows) and forecast time
horizons (columns).

on a silhouette analysis using a different number of clus-
ters; de Amorim and Hennig, 2015) has been obtained repre-
senting different hydrological regimes (Fig. 7). Table 2 pro-
vides additional information on the topographic, climatologi-
cal, and hydrological characteristics of each cluster, while the
spatial variability of each of the 15 streamflow signatures, as
well as of the catchment elevation, is presented in Fig. C1.

Catchments clustered in regions 1 and 5 are characterized
by a high baseflow contribution (BFI), a slow response to
precipitation (Flash), and, therefore, a generally small intra-
annual variability (DPar). In terms of topography, these re-
gions consist of forested areas mainly located in southern
Sweden. Catchments in cluster 2 are found in highland ar-

eas and boreal forest environments in northern Sweden and
are characterized by high seasonality (CV and DPar) due
to the alternance between snow melting and accumulation.
These catchments are also characterized by high runoff vol-
umes (Qm), given that they are subject to high precipitation
amounts and low evapotranspiration rates. Agricultural and
coastal areas located mainly in southern and central parts
of the country are found in cluster 3. These catchments are
characterized by a highly variable streamflow regime (HPC
and RLD) and a quick response to precipitation (Flash), yet
exhibit a relatively long hydrograph recession (DLD). Simi-
larly, catchments grouped in cluster 6, which are located in
lowland coastal and lake areas, experience flashy responses
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Figure 5. Skill of streamflow forecasts as a function of lead time (weeks) initialized on the 1st of each month for selected forecast aggregation
periods (i.e. 1, 2, 4, 8, 12, and 24 weeks). The skill is averaged over Sweden.

(Flash), as well as high streamflow (q05) and seasonal varia-
tions (CV and mFDC). Boreal forest catchments in the north-
ern part of the country are grouped in cluster 4 and are char-
acterized by a generally high runoff coefficient (RC) and a
slow response to precipitation events (Flash). Finally, catch-
ments in cluster 7 are found along several large and highly
regulated rivers in northern Sweden. These catchments are
characterized by a small variability (CV, DPar, and mFDC)
but high streamflow volumes (Qm) and runoff coefficients
(RC) explained by anthropogenic regulations.

The last step is to analyse the streamflow forecast skill in
each hydrological cluster (Fig. 8). Note that here we have
aggregated the skill for all initializations, and hence we have
not accessed the seasonal distribution of the forecast skill;
however, we have focused on the detection of dependencies
between skill and hydrologic regimes. Nevertheless, we note
that the clusters with high (or poor) forecast skill in rela-
tion to the others are the same, independent of the target
month/week. According to Pechlivanidis et al. (2020), this
is due to the intra-annual variability of the streamflow re-
sponse, which consistently varies between the catchments
from the different clusters. Clusters 1, 4, and 5, which have
high river memory due to baseflow domination, small intra-
annual variability, and generally low response to precipita-
tion (see Table 2), have a higher median skill than the coun-
try average. Among them, cluster 5 has the highest overall

median skill for all time horizons but also, interestingly, the
highest spread in forecast skill as a function of lead time. This
may be attributed to the large variability in rising limb den-
sity (RLD) for the catchments in this cluster (see Fig. 7a).
The strong but negative correlation between forecast skill
and RLD means that, despite the high baseflow contribu-
tion (BFI), some of the catchments in cluster 5 experience
sharp increases in their hydrographs, which translates into
low forecast skill. All of these clusters correspond mainly to
forested catchments across the country. Cluster 3 and, most
notably cluster 6, have a lower median skill than the country
average. These catchments are characterized by short river
memory with flashy responses and are strongly driven by pre-
cipitation and strong seasonal variations. Similar results are
observed for cluster 2. In this case, however, the median skill
is closer to the country-average skill than for clusters 3 and
6. The response from catchments in cluster 2 is highly sea-
sonal due to snow accumulation and melting processes and
hence not as rainfall-driven as for clusters 3 and 6. Finally,
cluster 7, which contains the catchments along the large regu-
lated rivers in northern Sweden, is the only set of catchments
in which the median forecast skill reaches negative values,
including also a large spread in the skill values (5th and 95th
percentiles). In these catchments, the ESP was expected to be
outperformed by streamflow climatology since, as previously
mentioned, the latter benefits from AR correction throughout
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Figure 6. Forecast skill (in terms of CRPSS) for lead week 0 (black dots) and lead week 8 (light grey dots) for each of the 39 493 catchments
in Sweden as a function of each of the 15 hydrological signatures. The non-parametric Spearman’s rank correlation coefficient for lead week
0 (ρ) is shown for each signature.
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Figure 7. Clustering analysis. (a) Distribution of the 15 hydrological signatures in each clustered region. The red lines represent the 33rd
and 66th percentiles for each signature. (b) Geographical distribution of hydrologically similar regions over Sweden.

Figure 8. Streamflow forecast skill (in terms of CRPSS) as a function of lead time for the entire country (top-left corner; also shown in
Fig. 3a) and each of the seven clusters. The median skill and range for Sweden are provided in the background of clusters 1–7 to provide a
reference for the values of each cluster.
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the forecast period and thus can better reproduce regulation
patterns with low intra-annual variability.

4 Discussion

4.1 Challenges and opportunities in an operational
forecasting service

The results obtained in this study indicate that ESP sea-
sonal forecasts produced with the operational S-HYPE hy-
drological model are skilful with respect to streamflow cli-
matology on average up to 3 months ahead, despite the large
temporal and spatial variabilities. This positive skill would
make operational seasonal forecasts, in general, suitable to
guide decision-making for applications requiring long-term
planning, (e.g. water resources management and agriculture).
Nevertheless, issues related to the modelling setup, the fore-
cast methodology, and the hydro-climatic characteristics of
the Swedish river systems (e.g. high degree of regulation in
many water courses), among others, can impact the reliabil-
ity of such a forecasting service.

The ESP forecasting approach is limited by its use of his-
torical meteorological forcing data to generate the stream-
flow forecasts, making it unable to capture unprecedented
meteorological events. Consequently, extreme events that lie
outside the observed range will inevitably be misrepresented,
limiting the service’s predictability of extreme conditions,
which can be important to some decision makers. This issue
may be addressed by using NWP models to predict the future
climate (Monhart et al., 2019). However, although NWPs are
not constrained by the observational period, they are lim-
ited by the chaotic nature of the weather system (aleatory
uncertainty), which makes small errors in the initial condi-
tions grow significant with time. In addition, NWP-based
forecasts require post-processing (i.e. downscaling and bias
adjustment) to be suitable to use in impact studies. Finally,
their added value for streamflow forecasting in comparison
to ESP is shown to be limited in Sweden, with the possible
exception of southern Sweden (Arnal et al., 2018).

As expected, ESP forecast skill decreases rapidly with
time, particularly in fast-responding river systems. Results
showed that monthly initialization, which is the most com-
mon initialization frequency of climate prediction models, is
critical to set high skill values; however, such frequency in
the initialization cannot account for skill deterioration within
the month. In this setting, increasing the initialization fre-
quency to, for instance, once a week would allow a high
skill to be maintained for up to monthly time horizons. Nev-
ertheless, considering the fact that climate prediction mod-
els are not developed to represent the exact daily dynamics
of the natural systems and that forecasts are therefore ag-
gregated into long time periods, more frequent (e.g. daily)
forecast initializations are not expected to provide an added
value to the forecast service in terms of useful information

for decision-making at seasonal horizons since long-term de-
cisions are in any case not taken daily. Moreover, forecast
information from such frequent initializations can easily be
misinterpreted by decision makers (Schepen et al., 2016).

Regarding the aggregation of forecast outputs, most stud-
ies have focused on a 1-month aggregation period as it is
reported to provide an “appropriate forecast at the seasonal
scale and a proxy of the underlying distribution” (Emerton et
al., 2018; Meißner et al., 2017; Yossef et al., 2013). Never-
theless, since the way a seasonal forecasting service is used
in decision-making depends on the sector, user, and service
properties, there may be value in considering aggregation pe-
riods different from the standard monthly aggregation (or
even adaptive aggregation periods) for providing guidance
on the usability of the forecasts for decision-making. For in-
stance, for the energy sector, Swedish hydropower compa-
nies tend to be interested in a fixed 3-month aggregation over
the period May–July. Alternatively, crop water needs can be
assessed over the entire summer season to get estimates of re-
quired water volumes for irrigation. The produced matrix for
different aggregations, initializations, and lead times (Fig. 5)
allows for communication of skill to various users depending
on their needs. Our findings suggest that aggregations over
periods longer than the default 1 month do not necessarily
mean a loss in skill. On the contrary, here we observed that,
in Sweden, long aggregations of streamflow forecasts cov-
ering the spring flood season tend to gain in skill. Overall,
however, from time horizons of, on average, 4 months into
the future, forecasts have very low or no skill, regardless of
the aggregation period of choice.

Another important factor driving hydrological predictabil-
ity at the seasonal scale is the adequate knowledge of the
initial hydrological conditions (Shukla et al., 2013). In many
cases, ESP forecasts are initialized based on the latest avail-
able model state (modelled reality), which may significantly
deviate from the actual hydrological state (observed reality).
Incorporating the latest available observations into forecast
initialization can thus be especially important to bridge the
gap between modelled and observed reality. Here, the model
outputs were corrected whenever observations were available
(and using AR correction thereafter), with the objective to
generate forecasts which are as close as possible to observed
reality (see Sect. 2.2). This method is straightforward and
easy to implement and takes advantage of streamflow mem-
ory to not only correct the initial forecast state, but also the
following forecast horizons when observations are no longer
available. More advanced data assimilation methods could
be considered in further developments of the presented op-
erational forecast system, such as Kalman filters (Sun et al.,
2016), allowing not only for a correction of model outputs,
but also an adjustment of model states and thus of process
representation (Musuuza et al., 2020). Additionally, observa-
tions other than streamflow, such as soil moisture or snow
water equivalent, could also be assimilated into the model
(Huang et al., 2017; Musuuza et al., 2020). Regarding snow
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Table 2. Main characteristics of each of the hydrological clusters. The values provided for elevation, annual precipitation, and annual actual
evapotranspiration correspond to the mean and interquartile range (25th–75th percentiles).

Cluster Number Elevation Annual Annual actual Low streamflow High streamflow
region of catch- (m a.s.l.) precipitation evapotranspiration signatures signatures

ments (mm yr−1) (mm yr−1)

1 8406 249 (109–344) 650 (557–694) 280 (232–334) q05, CV, Flash, PD, q95, q70, BFI
RLD, HPC

2 6705 478 (228–744) 733 (581–901) 175 (119–235) q95, q70, BFI, EQP Qm, DPar, q05, CV, PD,
RC, HPC

3 8250 165 (6–278) 654 (552–704) 294 (249–342) BFI, RC Flash, RLD, EQP, HPC

4 8305 371 (214–490) 653 (560–678) 219 (180–263) Flash, RLD, DLD DPar, PD

5 4329 266 (153–340) 642 (556–693) 270 (221–318) DPar, mFDC, q05, CV, q95, q70, BFI
Flash, PD, RLD, HPC

6 2405 31 (1–12) 732 (544–824) 306 (251–369) DPar, q95, q70, BFI mFDC, q05, CV, Flash,
RLD, DLD, HPC

7 1025 224 (99–321) 619 (552–639) 266 (233–294) DPar, mFDC, q05, CV, Qm, q95, DLD, q70, RC,
PD, EQP, HPC

water equivalent, snow is a key component of the hydrolog-
ical cycle in many Swedish catchments, and therefore, the
impact of snow accumulation and melting on ESP forecast
skill would deserve further investigation. Snow processes
play an important role in river memory together with other
processes such as groundwater/baseflow contribution or hy-
drograph dampening from lakes. Contrary to the other two,
however, snow processes tend to define the catchment dy-
namics only seasonally (e.g. precipitation in the form of snow
in early December may be accumulated and further released
as meltwater during the spring flood period), and hence the
role of snow on ESP forecast skill is expected to have a sea-
sonal pattern too.

Another approach to obtaining updated knowledge on the
initial hydrological conditions is through frequent forecast
initialization. Our findings suggest that using weekly forecast
initialization instead of the more common monthly initial-
ization may significantly improve the streamflow ESP fore-
cast skill, which is expected to add value to decision-making
in different contexts. This may be of particular importance
for periods in which decisions are subject to hydrological re-
sponses that alter in a short time window. For instance, in
Sweden it is important to be able to predict the onset of the
spring flood due to a combination of snow melting and pre-
cipitation and adjust the reservoir regulation accordingly to
optimize the power production for the coming months.

Different components of the S-HYPE modelling and fore-
casting chains, such as the model setup, forcing data, model
structure, and model parameters, lead to uncertainties in the
forecast results. Moreover, the setup used in this study, which
uses a combination of observations and perfect forecasts as
reference, makes the assessment of these uncertainties par-

ticularly complex. The contribution of model error to the to-
tal uncertainties in the results obtained here is removed from
those catchments in which forecasts are evaluated against
perfect forecasts. This non-represented contribution of model
errors can nonetheless be considered minimal due to the high
KGE performances of S-HYPE (see Fig. 1a), which ensure
a fair representation of temporal dynamics in non-regulated
Swedish rivers. However, these errors may become signif-
icant for catchments with – or downstream of – observa-
tions, especially due to the interplay between correction of
model outputs with observations and streamflow regulation.
While model outputs are corrected with all available obser-
vations, not all watercourses with observations are regulated,
and even those that are regulated do not necessarily have ob-
servations downstream from dams or other river regulation
structures. The correction of model outputs with observations
and, when these are no longer available (e.g. beyond fore-
cast initialization), with an exponentially decreasing factor
based on the last known model error (i.e. AR correction) may
effectively reduce corresponding uncertainties, especially in
the first time steps of the forecast. The downstream distance
of a given catchment with respect to an observation is also
relevant in this case, as model correction will only affect
a fraction of the streamflow forecast at that location. The
largest uncertainties, though, can be expected for heavily reg-
ulated catchments with or downstream of observations. In
these locations, complex river regulation routines, which de-
pend on factors external to hydrological models, make it al-
most impossible for these models to adequately reproduce
streamflow dynamics. Consequently, even if the correction
of model outputs with observations may minimize uncertain-
ties at forecast initialization, these errors will rapidly spread
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due to the inability of the model to reproduce the modified
hydrological regime.

4.2 Impact of regulation on forecasting skill

One of the main applications of long-term forecasting in
Sweden is for planning reservoir operation during the spring
flood season (May–July) (Foster et al., 2018). However, fore-
cast skill is low for the main hydropower-producing heavily
regulated rivers in the northern parts of the country, where
the highest spring flood peak volumes occur. Nevertheless,
high ESP forecast skill, and subsequently valuable forecast
information, can still be expected in the upstream reaches
of these rivers that are not affected by other upstream regu-
lation. Following this assumption, in these locations, even if
ESP forecasts have no value for predicting reservoir outflows
with respect to using the ensemble of streamflow climatol-
ogy, they may adequately predict the water inflows from the
headwaters to the reservoirs. In order to further understand
the impact of streamflow regulation on the results, we evalu-
ated the ESP forecasts using model simulations (without AR
correction) as reference. Forecast skill was in this case very
high for the highly regulated rivers where low forecast skill
was obtained in the main analysis. This exercise shows that
the regulation routines in some river stations in the S-HYPE
model still need improvement in order to correctly represent
the management rules dominating regulated streamflow pat-
terns. This issue is not as obvious in less heavily regulated
rivers elsewhere in the country, where ESP forecasts are gen-
erally skilful.

With the exception of river Luleälven and other compara-
tively smaller rivers in the Swedish mountains, the S-HYPE
model performance is generally high for most locations, in-
cluding the large rivers in the northern parts of the coun-
try. Similarly, ESP seasonal forecasts are skilful for non-
regulated rivers in that area that also benefit from long-term
planning. More specifically, river Torneälven and, to a lesser
extent, river Kalixälven are susceptible to severe ice break-
up events in connection to the spring melt season and subse-
quent spring flooding (Zachrisson, 1989). An important fac-
tor in predicting the timing of the ice break-up is the onset of
spring flood due to snowmelt. Skilful ESP seasonal forecasts
for these rivers should allow for early planning and allocation
of resources that could greatly contribute to mitigate poten-
tially severe ice break-ups.

4.3 Regionalization of skill in other domains

Besides streamflow regulation patterns, certain characteris-
tics of the hydrological regime have a high impact on hy-
drological predictability. Here we have shown that forecast
skill is high in baseflow-dominated catchments where past
hydrologic conditions drive the catchment response, while it
is low in flashy catchments where rainfall drives the stream-
flow dynamics, and hence accurate rainfall forecasts are cru-

cial. This corresponds well with findings from similar studies
over different geographical domains (Harrigan et al., 2018;
Pechlivanidis et al., 2020). However, contrary to the findings
by Harrigan et al. (2018), who identified a specific stream-
flow signature (i.e. the baseflow index) as the main driver
of hydrological predictability, we have found that, for Swe-
den, it is instead the result of the overall hydrological be-
haviour, even if some specific streamflow signatures may
have a greater impact than others. The exact magnitude of
the impact of the different signatures is however difficult to
quantify since, even if no consensus exists on an representa-
tive set of signatures (McMillan et al., 2017), one can argue
the hydrological system is generally characterized by a wider
set of streamflow signatures than that considered here. In this
context, we hypothesized that the selected signatures are ro-
bust enough to describe the hydrological regimes and further
guide the analysis towards the identification of hydrologic
similarities. Additionally, the seven clusters not only differ
in terms of hydrological response, but also in terms of clima-
tological patterns and physiographic characteristics.

The results obtained here may contribute to guiding in
which areas and seasons and how long into the future ESP
hydrological forecasts provide an added value, not only for
SMHI’s forecasting and warning service, but also, most im-
portantly, for guiding decision-making in critical services
such as hydropower management and risk reduction. Here,
we note that, even if the hydro-climatic gradient of Sweden
does not fully represent the equivalent gradients over the con-
tinent or the globe, our results are however transferable to
other locations with similar climatological and hydrological
conditions, as has also been highlighted in Pechlivanidis et
al. (2020).

5 Conclusions

Herein, we analysed the skill of ESP re-forecasts using
the operational S-HYPE hydrological model over Sweden
in an effort to evaluate the suitability of this methodology
for producing skilful forecasts at the seasonal scale within
SMHI’s hydrological forecasting and warning service as well
as for other activities requiring long-term planning. In addi-
tion, we aimed at understanding the underlying patterns and
drivers behind skilful forecasts and attributed the seasonal
predictability to hydrological characteristics. Approximately
39 400 catchments, lying along Sweden’s strong hydrocli-
matic gradient, were investigated. The main conclusions of
this study are as follows:

– The skill of the ESP forecasts varies both geograph-
ically and seasonally and depends on the initializa-
tion month and aggregation period. Moreover, the
skill decreases rapidly with time, particularly in fast-
responding river systems; however, the ESP forecasts
are generally skilful up to 3 months into the future.
Forecasts are most skilful during the winter months for
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the northern parts of the country, except for the highly
regulated hydropower-producing rivers.

– Initialization frequency is a key driver affecting stream-
flow forecasting skill. Monthly initializations are criti-
cal to preserve high forecast skill values without, how-
ever, addressing the skill deterioration over the first
forecast month. Increasing the initialization frequency
to once a week allows the high skill to be maintained
for up to monthly time horizons.

– The river systems in Sweden can be categorized into
seven clusters based on similarities in streamflow signa-
tures. This results in an improved understanding of the
dominating hydrological processes, which are shown
to vary spatially and seasonally. Particularly, dominant
streamflow generation processes over the mountain-
ous regions, including baseflow and snow accumula-
tion/melting, dampening from lakes, and reservoir alter-
ations, could explain the hydrological clustering across
the country.

– A link between forecast skill and streamflow signatures
has been detected. Over the 15 streamflow signatures in-
vestigated here, baseflow index, flashiness, rising limb
density, coefficient of variation, and high pulse count
show strong correlations with forecast skill. Streamflow
forecasts are most skilful for slow-reacting catchments
due to snow-related processes and/or dampening from
lakes and baseflow-dominated catchments (river sys-
tems with long memory). Conversely, forecasts are least
skilful for catchments with a flashy response to rainfall
(river systems with short memory).
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Appendix A: Study domain and data availability

Figure A1. Map of Sweden showing its topography and main hydrographic network. The rivers and lakes referred to in the main text are
indicated here for convenience.

Figure A2. Streamflow observations used in this study. (a) Temporal availability of observations for each of the 539 stations, sorted from
longer (bottom) to shorter availability (top). (b) Histogram showing the total number of years of observations for all the stations.
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Appendix B: Continuous ranked probability skill score

The continuous ranked probability score (CRPS; Hersbach,
2000) is a common measure of ensemble forecast perfor-
mance. It is formulated as the integral squared distance be-
tween the forecast ensemble and the observation step func-
tion. The CRPS is then averaged over all forecasts of the
evaluation period. Its dimension is that of the forecast vari-
able being assessed, here cubic metres per second (m3 s−1),
and its value is equivalent to the mean absolute error when
applied to deterministic forecasts.

The continuous ranked probability skill score (CRPSS) is
then assessed by comparing the CRPS value of the investi-
gated forecast system (here, ESP) to that of a selected bench-
mark (here, an ensemble of streamflow climatology selected
from the period 1981–2010). Given CRPSsys, the CRPS of
the forecasting system, CRPSbench the CRPS of the bench-
mark, and CRPSpft the optimal CRPS value (0), the CRPSS
is formulated according to Eq. (B1).

CRPSS=
CRPSbench−CRPSsys

CRPSbench−CRPSpft
(B1)

This metric is non-dimensional and takes values between
1 (optimum) and −∞. Positive (negative) skill scores indi-
cate that the forecast system performs better (worse) than the
benchmark in terms of CRPS. Skill scores close to 0 indi-
cate that the evaluated forecast system has equivalent perfor-
mance to that of the benchmark.
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Appendix C: Spatial variability of hydrological
signatures

Figure C1. Spatial variability of the 15 modelled hydrological signatures including the catchment mean elevation. The colour intervals are
based on the quantiles (15 % intervals) of each signature (and elevation) distribution. A clarification of the abbreviations used here can be
found in Table 1 in the main text.
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Data availability. The HYPE model code is available from the
HYPEweb portal (https://hypeweb.smhi.se/model-water/; SMHI,
2021a). The meteorological data used for driving the ESP re-
forecasts (PTHBV) can be obtained upon contact with SMHI, and
the hydrological data used for model correction are available from
the Vattenwebb portal (https://vattenwebb.smhi.se/; SMHI, 2021b).
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