
Hydrol. Earth Syst. Sci., 25, 1165–1187, 2021
https://doi.org/10.5194/hess-25-1165-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Snow water equivalents exclusively from snow depths
and their temporal changes: the 1SNOW model
Michael Winkler1,�, Harald Schellander1,2,�, and Stefanie Gruber1

1ZAMG – Zentralanstalt für Meteorologie und Geodynamik, Innsbruck, Austria
2Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Austria
�These authors contributed equally to this work.

Correspondence: Michael Winkler (michael.winkler@zamg.ac.at) and Harald Schellander (harald.schellander@zamg.ac.at)

Received: 3 April 2020 – Discussion started: 17 April 2020
Revised: 25 January 2021 – Accepted: 25 January 2021 – Published: 5 March 2021

Abstract. Reliable historical manual measurements of snow
depths are available for many years, sometimes decades,
across the globe, and increasingly snow depth data are also
available from automatic stations and remote sensing plat-
forms. In contrast, records of snow water equivalent (SWE)
are sparse, which is significant as SWE is commonly the
most important snowpack feature for hydrology, climatology,
agriculture, natural hazards, and other fields.

Existing methods of modeling SWE either rely on de-
tailed meteorological forcing being available or are not in-
tended to simulate individual SWE values, such as seasonal
“peak SWE”. Here we present a new semiempirical multi-
layer model, 1SNOW, for simulating SWE and bulk snow
density solely from a regular time series of snow depths. The
model, which is freely available as an R package, treats snow
compaction following the rules of Newtonian viscosity, con-
siders errors in measured snow depth, and treats overburden
loads due to new snow as additional unsteady compaction; if
snow is melted, the water mass is stepwise distributed from
top to bottom in the snowpack. Seven model parameters are
subject to calibration.

Snow observations of 67 winters from 14 stations, well-
distributed over different altitudes and climatic regions of the
Alps, are used to find an optimal parameter setting. Data from
another 71 independent winters from 15 stations are used for
validation. Results are very promising: median bias and root
mean square error for SWE are only −3.0 and 30.8 kg m−2,
and +0.3 and 36.3 kg m−2 for peak SWE, respectively. This
is a major advance compared to snow models relying on em-
pirical regressions, and even sophisticated thermodynamic
snow models do not necessarily perform better. As such, the

new model offers a means to derive robust SWE estimates
from historical snow depth data and, with some modification,
to generate distributed SWE from remotely sensed estimates
of spatial snow depth distribution.

1 Introduction

Depth (HS) and bulk density (ρb) are fundamental char-
acteristics of a seasonal snowpack (e.g., Goodison et al.,
1981; Fierz et al., 2009). Their product yields the areal den-
sity [kg m−2] of the snowpack, which is often referred to
as snow water equivalent (SWE). Water resource manage-
ment, agricultural applications, hydrological modeling, cli-
mate analyses, natural hazard assessments, and many other
fields depend on good estimates of SWE. The mass of wa-
ter stored in the snowpacks is often more relevant than
snow depth. Particularly seasonal SWE maxima, i.e., peak
SWE (SWEpk), is required for, for example, discharge or
flood forecasting as well as analyses of climate and extremes.
The latter, in turn, rely on long-term or “historical” data.
While measurements of HS are relatively widely available,
the more useful value of SWE is more difficult to determine
and is consequently relatively poorly known, hampering ef-
forts to understand SWE variance and related vast manage-
ment practices. To address this limitation, this paper focuses
on developing a robust method to derive SWE from more
readily available and historical records of HS.
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1.1 Measurements of HS and SWE

Measuring HS is relatively easy (e.g., Sturm and Holmgren,
1998): manual measurements at a certain point only require
a rod or ruler (e.g., Kinar and Pomeroy, 2015), and decades-
long series of daily HS measurements exist in many regions
– both lowlands and alpine areas (e.g., Haberkorn, 2019).
More recently, automatic measurements of HS (mostly sonic
or laser distance ranging) have become available, typically
with sub-hourly resolution (McCreight and Small, 2014), and
remotely sensed HS vastly expands on the areal coverage
of manual measurements, although in most cases at the cost
of accuracy, temporal resolution, and regularity. (Dietz et al.
(2012) give a general review of remotely sensed HS measure-
ments, and Painter et al. (2016) provide a thorough overview.
Deems et al. (2013) review lidar measurements of HS, while
Garvelmann et al. (2013) and Parajka et al. (2012) illustrate
the potential of time-lapse photography.)

In contrast, measurements of SWE (or ρb) are more dif-
ficult (e.g., Sturm et al., 2010): manual measurements are
time consuming and require some skill and basic equipment
like snow tubes or snow sampling cylinders. For most snow-
packs, a pit has to be dug to consider the layered structure
of the snowpack (e.g., Kinar and Pomeroy, 2015). As a con-
sequence, SWE measurements are much more sparse than
HS measurements (e.g., Mizukami and Perica, 2008; Sturm
et al., 2010), their accuracy is lower, and time series are
shorter. Only in very rare cases are consecutive, decades-long
measurement series available (e.g., in Switzerland; cf. Jonas
et al., 2009). Even for regularly measured “snow courses”,
data are sporadic in time and rarely more than biweekly. Also
automatic measurements of SWE are not at all comparable in
quality and quantity with automated HS measurements. They
are quite expensive, often inaccurate, still at a developmen-
tal stage, and/or suffer from significant problems if not in-
tensively maintained throughout the snowy season. Methods
involve weighing techniques (snow scales; e.g., Smith et al.,
2017; Johnson et al., 2015), pressure measurements (snow
pillows; e.g., Goodison et al., 1981), upward-looking ground
penetrating radar (e.g., Heilig et al., 2009), passive gamma
radiation (e.g., Smith et al., 2017), cosmic ray neutron sens-
ing (e.g., Schattan et al., 2019), and L-band Global Navi-
gation Satellite System signals (e.g., Koch et al., 2019); the
biggest and best serviced network of automated SWE mea-
surements most likely is SNOTEL with about 800 sites in
western North America (Avanzi et al., 2015).

Remotely sensed SWE data are not operationally available
for the local and point scale, and deriving this snow property
from satellite products at sub-kilometer resolution is still not
possible (Smyth et al., 2019). Furthermore, the available au-
tomated measurements and rough estimates of SWE remote
sensing instruments are only available for some 20 years at
best (e.g., SNOTEL, operated since the late 1990s), which
is short compared to decades-long daily HS data (e.g., Kinar
and Pomeroy, 2015).

1.2 Modeling SWE

1.2.1 Thermodynamic snow models

Modern snow models such as Crocus (e.g., Vionnet et al.,
2012), SNOWPACK (e.g., Lehning et al., 2002), SNTHERM
(Jordan, 1991), or the dual-layer model SNOBAL (Marks
et al., 1998) resolve mass and energy exchanges within the
ground–snow–atmosphere regime in a detailed way by de-
picting the layered structure of seasonal snowpacks. Echo-
ing Langlois et al. (2009), these models, which comprise
all energy balance and temperature index models, will be
termed “thermodynamic snow models” hereafter. They all
need atmospheric variables as input, primarily precipitation,
temperature, humidity, wind speed, and radiative fluxes, and
even simplified variants require temperature and/or precipi-
tation (e.g., De Michele et al., 2013) or climatological means
thereof (Hill et al., 2019). Avanzi et al. (2015) provide a
good review. Unfortunately, many valuable long-term HS se-
ries do not have accompanying data required to force a ther-
modynamic snow model for calculating the associated SWE,
and parametrizing or downscaling forcing data from other
sources in turn is susceptible to errors. Thermodynamic snow
models are typically able to simulate snowpack features be-
yond SWE and bulk snow density (e.g., grain types, energy
fluxes, stabilities), but they are not applicable to derive SWE
exclusively from HS.

1.2.2 Empirical regression models

Statistical models of SWE derived from HS and a combina-
tion of date, altitude, and regional parameters (like Guyen-
non et al., 2019; Pistocchi, 2016; Gruber, 2014; Mizukami
and Perica, 2008; Jonas et al., 2009) are hereafter termed
“empirical regression models” (ERMs), and a listing of ex-
isting approaches is given in Avanzi et al. (2015). ERMs rely
on the strong, near-linear dependence between HS and SWE
(cf., e.g., Jonas et al., 2009). According to Gruber (2014)
and Valt et al. (2018), HS describes 81 % and 85 % of SWE
variance, respectively. This behavior is based on the narrow
range within which the majority of bulk snow densities lie
and leads to the well-known characteristic of HS–SWE–ρb
datasets: log-normally distributed HS and SWE and normally
distributed ρb (e.g., Sturm et al., 2010).

In most ERMs, absolute, single-day HS observations are
the only snow characteristics used. Depending on calibra-
tion focus, they can usually only adequately model single
SWE features (e.g., mean SWE or SWEpk, midwinter or
spring). For example, those calibrated for good estimates of
mean SWE fail to model SWEpk sufficiently well; those de-
signed for SWEpk often give poor SWE results during phases
with shallow snowpacks. Typically, they simulate unrealistic
mass losses during phases with compaction only by meta-
morphism and deformation. The timing of SWEpk as well as
the duration of high snow loads cannot be modeled well. As
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stated by Jonas et al. (2009), those models cannot be used to
“convert time series of HS into SWE at daily resolution or
higher”, because they may “feature an incorrect fine struc-
ture in the temporal course of SWE”. Therefore, ERMs are
not suitable to calculate SWE for individual days.

McCreight and Small (2014) not only use single-day HS
values for their regression model but also the “evolution” of
daily HS. They make use of the negative correlation of HS
and ρb at short timescales and their positive (negative) cor-
relation at longer timescales during accumulation (ablation)
phases. This development is limited by the fact that the model
parameters can only be estimated through regressions relying
on “at least three” training datasets of HS and ρb from nearby
stations. This disqualifies the model of McCreight and Small
(2014) for assigning SWE to long-term and historical HS se-
ries as consecutive SWE measurements are not available.

1.2.3 Semiempirical models

An alternative approach that links HS and SWE throughout a
snowy season without the need of further meteorological in-
put is provided by Martinec (1977) and revisited by Martinec
and Rango (1991): they use a method already developed by
Martinec (1956) “to compute the water equivalent from daily
total depths of the seasonal snow cover”. Snow compaction is
expressed as a time-dependent power function. Each layer’s
snow density ρn after n days is given by ρn = ρ0 · (n+ 1)0.3,
where ρ0 is the initial density of the snow layer. Martinec and
Rango (1991) set ρ0 to 100 kg m−3; Martinec (1977) varied
it from 80 to 120 kg m−3. This computation is meant to give
good results for the seasonal maximum snow water equiva-
lent (SWEpk). It is shown that the older the snow, the less
important is the correct choice of the crucial parameter ρ0
(Martinec, 1977; Martinec and Rango, 1991). Their model
interprets “each increase of total snow depth [. . . ] as snow-
fall” and if “the total snow depth remains higher than the
settling by [the power function], this is also interpreted as
new snow. If the snow depth drops lower than the value of
the superimposed settling curve of the respective snow lay-
ers, it is interpreted as snowmelt, and a corresponding wa-
ter equivalent is subtracted. In this way the water equivalent
of the snow cover can be continuously simulated” (Martinec
and Rango, 1991). Rohrer and Braun (1994) improved this
model particularly for the ablation season by further increas-
ing density whenever melt conditions are modeled and by in-
troducing a maximum possible snow density of 450 kg m−3.

Semiempirical snow models simulate individual snowpack
layers and make use of simple densification concepts. (Hence
they are not “fully” empirical.) They cannot model snow
properties aside from SWE and density, but their only re-
quired input is a HS record: no forcing by atmospheric con-
ditions is needed. In some respects these models bridge the
gap between thermodynamic models and ERMs.

Table 1. Different types of SWE models, categorized by their essen-
tial input. TD, SE, and ERMs are abbreviations for thermodynamic,
semiempirical, and empirical regression models, respectively.

Essential input TD SE ERMs

HS (single values) x
HS (regular records) xa x

One or more
atmospheric variable(s) x

Date xb x
Location parametersc xb x

a or another precipitation input; b only essential in some cases,
e.g., for parameterizations; c altitude, regional climate, etc.

1.3 Motivation for a new approach

Table 1 summarizes the classification of SWE models with
respect to their essential input. Given the strong need for
robust SWE data for numerous applications and the com-
bined simplicity and effectiveness of semiempirical models,
it is notable that this type of model has received little atten-
tion in recent years. Here we focus on developing a robust
semiempirical model that can be used to capitalize on more
widespread modern-day HS data, as well as to derive SWE
from historical HS records.

The semiempirical method of determining SWE presented
here maintains the key feature of previous semiempirical
models considering only the change of snow depth as a proxy
for the various processes altering bulk snow density and snow
water equivalent, but it further

– bases its (dry) snow densification function on Newto-
nian viscosity;

– provides a way to deal with small discrepancies between
model and observation (on the order of HS measurement
errors);

– takes into account unsteady compaction of underlying,
older snow layers due to overburden snow loads; and

– densifies snow layers from top to bottom during melting
phases without automatically modeling mass loss due to
runoff.

The ideas for the last three advancements are taken from
Gruber (2014), who described them but did not suitably
include them as a model. The new modeling approach is
named 1SNOW. Its code is available as niXmass package
in R (R Core Team, 2019), which also includes other models
that use snow depth and its temporal change (nix. . . Latin for
snow) to simulate SWE (i.e., snow mass).
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Figure 1. Schematic of 1SNOW.

Table 2. Summary of compaction processes and processes forcing mass changes that are integrated in 1SNOW, as well as processes that are
ignored.

Module Process

New Snow significant rise of HS and enhanced compaction due to overburden load (Overburden submodule)
Dry Compaction significant decline of HS due to dry metamorphism∗ and/or deformation∗

Drenching significant decline of HS due to wet metamorphism∗ and runoff through melt (Runoff submodule)
Scaling adjustments to small changes of HS within threshold deviation τ

Ignored snow drift compaction∗ and mass changes due to the following:
rain on snow, runoff during snowfalls, wind drift, small snowfalls, sublimation, and deposition

∗ Terminology follows Jordan et al. (2010).

2 Method

Snow compacts over time due to various processes. Jordan
et al. (2010) categorize them in snow drift, dry and wet
metamorphism, and deformation. The1SNOW model cannot
deal with snow drift; however, it differentiates between the
other processes. Table 2 shows the processes modeled and
their corresponding 1SNOW modules and outlines the pro-
cesses that are ignored. The specific modules are described
in Sect. 2.2 and 2.3, and a schematic of the model is shown
in Fig. 1.

2.1 Preliminary: the first snow layer

For nonzero snow depth observations (HSobs > 0) after a
snow-free period, the following features are assigned to the
1SNOW model snowpack. There is one snow layer (ly= 1).
Thickness of this model layer (hs) and total model snow
depth (HS) are equal and set to observed snow depth: hs =

HS := HSobs. Analogously, the layer’s snow water equiva-
lent equals total snow water equivalent: swe= SWE := ρ0 ·

HSobs, with new-snow density ρ0 being an important param-
eter of the 1SNOW model (cf. Sect. 3). The treatment of the
first snow event is illustrated at t = 2 in Fig. 1.

2.2 Dry Compaction module

Martinec and Rango (1991) used a power function to de-
scribe densification of aging snow, because this way errors in
initial density ρ0 become less relevant over time. As1SNOW
also aims to robustly model SWE of ephemeral snowpacks
(e.g., at low-elevation sites) and as overburden load is con-
sidered in a particular way (Sect. 2.3.1), it is not expedient to
have a direct dependence between density and age of a layer.
Instead of a power law, 1SNOW (like most modern snow
models) simulates snow compaction by way of Newtonian
viscosity with associated exponential densification over time
(e.g., Jordan et al., 2010). In the Dry Compaction module, the

Hydrol. Earth Syst. Sci., 25, 1165–1187, 2021 https://doi.org/10.5194/hess-25-1165-2021



M. Winkler et al.: Snow water equivalents exclusively from snow depths 1169

densifying effects of dry metamorphism and deformation are
combined, by adopting the relations of Sturm and Holmgren
(1998) and De Michele et al. (2013):

hs(i, t − 1)
hs(i, t)

=1+1t ·
σ̂ (i, t)

η(i, t)
,

with σ̂ (i, t)= g ·
ly(t)∑
î=i

swe(î, t)

and η(i, t)= η0 · e
k·ρ(i,t). (1)

t and t − 1 are the points in time of the actual and the pre-
ceding snow depth observation, respectively. The time span
between these measurements is 1t , which is in general ar-
bitrary, but usually it is taken to be 1 d. hs(i, t) is the actual
modeled thickness of the ith snow layer. The actual depth of
the total snowpack is HS(t)=

∑
i

hs(i, t).

The individual snow water equivalents of the layers are
given by swe(i, t), and their sum represents total mass of
the snowpack SWE(t)=

∑
i

swe(i, t). The vertical stress at

the bottom of layer i is given by σ̂ (i, t) (De Michele et al.,
2013). It is induced by the sum of loads overlying layer i,
with ly(t) being the total number of snow layers.

The Newtonian viscosity of snow η is made density-
dependent in the framework of the 1SNOW model (follow-
ing Kojima, 1967), but dependencies on temperature or grain
characteristics are consciously ignored – due to the lack of
information on it when dealing with pure snow depth data.
The actual density of layer i is ρ(i, t); it equals swe(i,t)

hs(i,t)
; k and

η0 are tuning parameters of the Dry Compaction module (see
Sect. 3).

To avoid excessive compaction, a crucial parameter is in-
troduced in 1SNOW, as was done by Rohrer and Braun
(1994): ρmax. It defines the maximal possible density of a
snow layer and, consequently, also the maximum bulk snow
density. Finding its optimal value for 1SNOW is subject to
calibration (Sect. 2.4).

According to Eq. (1), the rate of densification of a cer-
tain snow layer is linearly dependent on the overlying snow
load σ̂ (i, t) and exponentially dependent on the layer’s den-
sity ρ(i, t). Sturm and Holmgren (1998) conclude that this
difference is one reason why “snow load plays a more limited
role in determining the compaction behavior than grain and
bond characteristics and temperature”. Equation (1) links the
densification rate to the layer age (but indirectly by the use
of density) and not directly as it was the case with the power-
law approach by Martinec and Rango (1991). Consequently,
1SNOW’s compaction is not directly dependent on layer age,
which is a prerequisite for the functioning of the Overburden
submodule (Sect. 2.3.1).

The Dry Compaction module is illustrated by the light blue
arrows in Fig. 1. This module is applied at every point in
time (except if there is no snow; see t = 1 in Fig. 1). It is the

core module as its output determines the subsequent process
decisions and which module will be applied.

2.3 Process decisions

At every point in time, after the Dry Compaction module
is run, observed HSobs(t) and modeled HS(t) are compared.
The 1SNOW’s process decision algorithm confronts the dif-
ference 1HS(t)= HSobs(t)−HS(t) with τ [m]. τ is another
tuning parameter of1SNOW (see Sect. 2.4). Technically, τ is
a threshold deviation and defines a limit of 1HS(t) whose
overshooting, adherence, and undershooting heads for one of
the modules described in the following Sect. 2.3.1 to 2.3.3.
Table 2 links them to snow physics.

2.3.1 New-Snow module

In the case of 1HS(t) >+τ , meaning observed snow depth
is significantly higher than modeled snow depth, a new-snow
event is assumed to have occurred, and a new top snow layer
is modeled (see at t = 2 and t = 7 in Fig. 1). Other mod-
els have implemented this mechanism (e.g., Martinec and
Rango, 1991; Sturm et al., 2010). However, 1SNOW goes
further and explicitly models the effect of overburden load
on underlying layers, defined as their enhanced densification
due to stress, which is applied by the weight of new snow.
Grain bonds get broken; grains slide, partially melt, and warp
(Jordan et al., 2010); and the layers densify comparatively
rapidly and strongly. 1SNOW interprets overburden load as
an “unsteady and discontinuous” stress on the snowpack, un-
der which snow presumably does not react as a viscous New-
tonian fluid. As long as the time between two consecutive
observations, 1t , is on the order of at least some hours, dis-
continuity is an intrinsic feature of the process.

The New Snow module realizes the effect of overburden
load through the Overburden submodule by reducing each
layer’s thickness, hs(i, t), using the dimensionless “overbur-
den strain”, ε(i, t), defined as

ε(i, t)=cov · σ0 · e
−kov

ρ(i,t)
ρmax−ρ(i,t)

with σ0 =1HS(t) · ρ0 · g. (2)

cov [Pa−1] is another tuning parameter of the model (see
Sect. 2.4) and controls the importance of the unsteady com-
paction due to overburden load. According to Sturm and
Holmgren (1998) (and in consistency with Eq. 1) snow load
has a linear effect on the bulk density. Therefore, ε(i, t) is a
linear function depending on the load, applied by the over-
lying new snow on the underlying layers. This load is well
approximated by σ0 [Pa]; the larger the overburden load,
the stronger the compaction. (The overburden load does not
fully equal σ0, since 1HS(t) is not the depth of the new
snow, but it is the difference between modeled depth “be-
fore” knowing about the new-snow event and observed depth
“after” the new-snow event. An iterative calculation would
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be more precise; however, Eq. (2) proved to be an adequate
compromise between simplicity and accuracy.) In order to
avoid ε(i, t) > 1, cov is restricted at least to the range of val-
ues between 0 and the minimum value of the data record for
1
σ0

. As σ0 hardly ever exceeds 1000 Pa, 1
σ0

normally is larger
than 1×10−3 Pa−1. This value marks an upper bound for cov
(Sect. 2.4). Dimensionless kov controls the role of a certain
snow layer’s density on ε(i, t) and has to be specified by cali-
bration (see Sect. 2.4). The density dependence of ε(i, t) was
chosen to be exponential and is constrained by ρmax.

The “overburden strain” ε(i, t) theoretically lies between 0
and 1 and compresses all snow layers of the model in the
case of a new-snow event. Practically, ε(i, t) is often close to
zero (in this study 90 % of all computed ε values are smaller
than 0.09) and extremely rarely higher than 0.3 (in this study
only 9 out of 10 000).

The intermediate snow layer thicknesses are hs∗(i, t)=
(1− ε(i, t)) ·hs(i, t) and HS∗(t)=

∑
i

hs∗(i, t). The com-

pressed layer’s masses, swe(i, t), remain unaffected during
this process. A new-snow event, identified by the condition
1HS(t) >+τ , of course not only impacts the older snow
and compacts it more strongly but also adds a new-snow
layer and mass to the snowpack (pink arrow at t = 2 and
t = 7 in Fig. 1). The following attributes are given to the
new layer: hs(ly, t)= HSobs(t)−HS∗(t) and swe(ly, t)=
hs(ly, t) · ρ0, and the total snow water equivalent arises:
SWE(i, t)= SWE(i, t−1)+swe(ly, t). The model snowpack
with its new properties is subsequently compacted according
to Eq. (1), and the process decision starts again as described
in Sect. 2.3. The Overburden submodule is illustrated with a
purple arrow at t = 7 in Fig. 1.

2.3.2 Scaling module

Equations (1) and (2) are highly simplified representations
of the complex viscoelastic behavior of snow, and available
HS observations typically only show an accuracy of a few
centimeters. The 1SNOW model accepts these inherent in-
accuracies by not applying too strict criteria in the process
decisions described in Sect. 2.3. The threshold deviation τ
acts as a buffer to avoid too frequent gain or loss of mass:
in the case of |1HS| ≤ |τ |, the snowpack does not lose mass
nor gain mass, but mass is kept constant. In order to bene-
fit from having a new measurement at every point in time,
HS(t) is intentionally set to HSobs(t) by the Scaling module.

The Scaling module forces a partial revaluation of the pre-
vious compaction, which was modeled by the Dry Com-
paction module between t−1 and t . The best-fitted parameter
setting for η0 is temporarily rejected and substituted by η∗0 .
It would be straightforward to use one adjusted η∗0(t) for all
layers. However, this leads to multiple solutions for η∗0(t),
making it necessary to calculate different η∗0(i, t) for each
layer i. See Appendix B for details on that.

η∗0(i, t) is then used instead of η0 in Eq. (1) to re-
calculate the compaction of individual layers. HS(t) now
equals HSobs(t). In most cases all layers get slightly more
or slightly less compacted by the Scaling module than by the
Dry Compaction module. Only at rare occasions the scaling
does not lead to a compaction but to a small stretching of the
snowpack. This only happens if there was a small increase
in observed snow depth and very little modeled dry meta-
morphic compaction; the condition HS(t)+ τ > HSobs(t) >

HSobs(t − 1) has to be fulfilled. Of course, such stretching
does not occur in reality, but also in the model it occurs only
rarely and at small scale: in any case the stretching is smaller
than τ . The issue is accepted as a model artifact, not least
because the stretching enables the very valuable adjustment
to HSobs at every point in time without forcing mass gains for
insignificant HS raises within the measurement accuracy.

In the case when the density of an individual layer ex-
ceeds ρmax by the scaling process, the excess mass is dis-
tributed layerwise from top to bottom. SWE remains constant
during scaling, unless it would be necessary to compact all
layers beyond ρmax. In this case, the appropriate excess mass
is taken from the model snowpack and interpreted as runoff,
SWE is reduced and all layer thicknesses are cut accordingly
(see Runoff submodule in Sect. 2.3.3 for details). As τ turns
out to be reasonably chosen on the order of a few centime-
ters by calibration (Sect. 3), the resulting reduction of SWE
within the Scaling module is always quite small: for example,
with τ = 2 cm and maximum density chosen as 450 kg m−3

(like Rohrer and Braun, 1994), the mass loss due to runoff is
only 9 kg m−2.

The Scaling module is illustrated as black arrows in Fig. 1.
Note that the scaling is nothing physical but also nothing sub-
stantial in terms of SWE, yet it is a way to utilize the advan-
tage of having a measured snow depth at every point in time.

2.3.3 Drenching module

The Drenching module simulates compaction due to liquid
water percolating from top to bottom through the snowpack,
loosening grain bonds and leading to densification (wet snow
metamorphism). In the case when observed snow depth at a
certain point in time is significantly lower than modeled snow
depth (1HS(t) <−τ ), the Drenching module is activated.
1SNOW ignores rain on snow since it concentrates on

modeling SWE for pure snow depth records without having
any further information on, for example, precipitation, tem-
perature, and snowfall level. Possibilities of how rain could
be addressed in future developments are outlined in Sect. 4.6.

To cope with the model–observation discrepancy
1HS(t) <−τ , the Drenching module densifies the model
layers until ρmax is reached, starting from the uppermost
one. Figuratively spoken, a certain layer gets drenched
until saturation and meltwater is further distributed to the
underlying layer. This process is repeated until transient HS∗

equals HSobs(t). One or more layers might reach ρmax.
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Table 3. The seven parameters of 1SNOW. The last column depicts model sensitivity to changes in the density parameters. The respective
gradients [kg m−2 per kg m−3] are means over the whole calibration ranges.

Parameter Unit Optimal Calibration Literature Sensitivity

value range range
δSWEpk

δρ0 or δρmax

ρ0 kg m−3 81 50–200 75a, 10–350 (70–110)b
+0.37 (+0.50∗)

ρmax kg m−3 401 300–600 450c, 217–598d, 400–800e
+0.24

η0 106 Pa s 8.5 1–20 8.5a, 6f, 7.62237g not calc.
k m3 kg−1 0.030 0.01–0.2 0.011–0.08a, 0.185h, 0.023f,g, 0.021i not calc.
τ cm 2.4 1–20 – not calc.
cov 10−4 Pa−1 5.1 0–10 – not calc.
kov – 0.38 0.01–10 – not calc.

a Sturm and Holmgren (1998), b Helfricht et al. (2018) with range for means in brackets, c Rohrer and Braun (1994), d Sturm et al. (2010),
e Cuffey and Paterson (2010), f Jordan et al. (2010), g Vionnet et al. (2012), h Keeler (1969), i Jordan (1991). See Sect. 2.4 for more details. ∗ The
value in brackets is the gradient taken from the smaller window between 70 and 90 kg m−3 (cf. Sect. 4.1).

In the case when 1HS(t) is so negative that all model
snow layers are compacted and densified to ρmax but still
HS∗ > HSobs(t), the Runoff submodule is activated, and
runoff R(t) is defined as R(t)= (HS∗−HSobs(t)) · ρmax.

All layer thicknesses are cut by a respective portion:
(HS∗−HSobs)·

hs∗i
HS∗ . This mechanism does not reduce the total

number of layers, but layers potentially get very thin. During
the melt season, where most of the runoff is produced, the
Runoff submodule is more or less continuously active until
HSobs(t)= 0 and all the snow has been converted to runoff.
For a distinct snowpack from the first snowfall (t1) until get-

ting snow-free again (t2), one has
t2∑
t1

R(t)= SWEpk.

In Fig. 1 the Drenching module is shown by the brown
arrows and its Runoff submodule by the green arrows.

2.4 Calibration

1SNOW has seven parameters that have to be calibrated: ρ0,
ρmax, η0, k, τ , cov, and kov (cf. Table 3). For the first four
parameters, one finds suggestions and ranges in the literature:

Sturm and Holmgren (1998) do not address the critical-
ity for the choice of new-snow density; however, they use
constant ρ0 = 75 kg m−3. It is a well-known characteristic
of new snow to show large variations in densities. Helfricht
et al. (2018) reviewed many studies and give a general range
of 10–350 kg m−3, narrowing it down to “mean values” be-
tween 70–110 kg m−3. Note that this is daily densities. Sub-
daily means of new-snow densities are lower. Helfricht et al.
(2018), for example, come up with an average of 68 kg m−3

for hourly time intervals. During the calibration process for
the 1SNOW model, ρ0 was varied from 50 to 200 kg m−3.

The second density-related calibration parameter is ρmax,
which is the maximum possible density within the model
framework. Rohrer and Braun (1994) set such a maximum
at 450 kg m−3. Sturm et al. (2010) defined it for five different
climate classes, ranging from 217 to 598 kg m−3. Glaciolo-

gists consider the density at which snow transitions to firn
to span 400 to 800 kg m−3 (e.g., Cuffey and Paterson, 2010).
Still, manual density measurements of seasonal snow used in
previous studies hardly ever exceed 500 kg m−3 (e.g., Jonas
et al., 2009; Guyennon et al., 2019). Armstrong and Brun
(2010) limit it to approximately 400 to 500 kg m−3 too. In
order to find the best value for ρmax used in 1SNOW, it was
varied from 300 to 600 kg m−3.

Equation (1) needs η0, the “viscosity at [which] ρ equals
zero” (Sturm and Holmgren, 1998). It is found to be on
the order of 8.5× 106 Pa s (Sturm and Holmgren, 1998),
6× 106 Pa s (Jordan et al., 2010), and 7.62237× 106 Pa s
(Vionnet et al., 2012). During the calibration process for the
1SNOW model, η0 was varied from 1 to 20×106 Pa s. Param-
eter k, the second necessary parameter in Eq. (1), was varied
from 0.011 to 0.08 m3 kg−1 by Sturm and Holmgren (1998)
depending on climate region and respective different types of
snow. However, they cite Keeler (1969) in their Table 2 with
values for k for “Alpine-new” snow of up to 0.185 m3 kg−1.
In more complex snow models k is set to 0.023 m3 kg−1

(see Crocus: bη in Eq. (7) by Vionnet et al. (2012); and
also in Eq. (2.11) of Jordan et al., 2010) or 0.021 m3 kg−1

(see SNTHERM: Eq. (29) in Jordan, 1991). Its range for the
1SNOW model calibration was set from 0.01 to 0.2 m3 kg−1.

There are no references for the latter three parameters.
Threshold deviation τ , as mentioned, might be interpreted
as a measure of observation error, is regarded to be on the or-
der of a few centimeters, and was modified from 1 to 20 cm
for calibration. The last two parameters, cov and kov, deter-
mine the role of overburden strain and are newly introduced
in the 1SNOW model. At least the limits of cov could be de-
fined (Sect. 2.3.1) as cov ∈ [0, min( 1

σ0
)]; kov is only known

to be a dimensionless, real, positive number. For calibrat-
ing 1SNOW, cov and kov were restrained by [0, 10−3 Pa−1]
and [0.01, 10], respectively.

The calibration performed in this study is based on 1t =
1 d, but longer as well as shorter 1t values are conceivable
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and could be handled by the 1SNOW model too. Note, how-
ever, that at least some calibration parameters will change
significantly when changing 1t . This gets obvious when
considering new-snow density ρ0, which of course is differ-
ent if defined for 1 h or for a 3 d time step. The usage of this
publication’s calibration parameters can, therefore, only be
suggested for daily snow depth records.

2.4.1 Calibration data and method

The calibration process needs SWE data, which are quite rare
per se (see Sect. 1), and regular snow depth records from the
same places. There are surprisingly few places where both
parameters have been consequently observed side by side for
many years, e.g., daily HS measurements accompanied by
weekly, biweekly, or monthly SWE measurements.

Gruber (2014) collected 14 years of weekly SWE data
from six stations in the Eastern Alps, measured by the
observers of the Hydrographic Service of Tyrol (Austria)
between winters 1998/99 and 2011/12. The measurements
of snow depth and water equivalent were made manu-
ally in snow pits with rulers and snow sampling cylinders
(500 cm3), respectively. The sites range from 590 to 1650 m
altitude and are situated in relatively dry, inner-alpine regions
as well as in the Northern Alps and Southern Alps, which
are more humid due to orographic enhancement of precipita-
tion (see Gruber, 2014, for details). The sites in the Southern
Alps even show a moderate maritime influence due to their
vicinity to the Mediterranean Sea, which is the most impor-
tant source of moisture for this region (e.g., Seibert et al.,
2007). These 6× 14= 84 winter seasons cover 1166 mea-
sured HS–SWE pairs. Besides these SWE measurements,
manual HS measurements are available for every day at the
respective stations. Figure A1 and Table A1 provide a map
and a list, respectively.

The second source for SWE measurements used for cali-
bration is Marty (2017). The Swiss SLF (Institute for Snow
and Avalanche Research) freely provides biweekly SWE and
daily HS data from 11 stations in Switzerland. The HS mea-
surements, accompanying the biweekly SWE measurements,
were compared with the contemporary value of the daily
HS records. Only those sites and years where and when the
respective values of the daily HS record match the values of
the biweekly measurements were used for calibration. If this
condition is fulfilled, it is supposed that SWE and HS mea-
surements fit together sufficiently well, although they unfor-
tunately cannot always be taken exactly at the same place,
which introduces uncertainty (e.g., López-Moreno et al.,
2020). Consequently, nine stations were used, most of them
in the Northern Alps, some inner-alpine, spanning an altitude
range from 1200 to 1780 m, with all in all 56 winters and
363 pairs of HS and SWE measurements. Details are given
in Fig. A1 and Table A1. Other stations and years suffer from
discrepancies caused by too far spatial distances between the
measurements and so on.

In order to ensure an unperturbed validation, the observa-
tion datasets from Austria and Switzerland (1529 SWE–HS
pairs) were split into two almost equally big halves: one for
model calibration (SWEcal) and one for validation (SWEval).
The two data sources (Gruber, 2014; Marty, 2017) do not ad-
dress the accuracy of the manual SWE observations. Mostly,
SWE measurements made with snow sampling cylinders are
used as references in comparison studies, without address-
ing their accuracy (e.g., Sturm et al., 2010; Dixon and Boon,
2012; Kinar and Pomeroy, 2015; Leppänen et al., 2018).
López-Moreno et al. (2020) provide a reported range of 3 %–
13 % and condense the results of their own experiments to an
error range of 10 %–15 % for bulk snow density. The ma-
jority of SWEcal and SWEval comes from the Hydrographic
Service of Tyrol, Austria, where snow sampling cylinders
(500 cm3) are used (Sect. 2.4.1). The repeatability of this
kind of measurement is estimated at ±4 % for glacier mass
balance studies (Rainer Prinz, University of Innsbruck, Aus-
tria, personal communication, 2020). Roughly interpreting
these density measurement “variabilities” as relative obser-
vation errors for SWE, the results for absolute accuracy
would typically spread across the wide range of about 2 to
50 kg m−2.

Model calibration was performed with the statistical soft-
ware R (R Core Team, 2019) and the R package optimx
(Nash, 2014). Results were obtained with optimization meth-
ods L-BFGS-B (Byrd et al., 1995) followed by bobyqa (Pow-
ell, 2009), which both are able to handle lower and upper
bound constraints. The function to be minimized was the root
mean square error (RMSE) of SWEs from the1SNOW model
and observed SWEs, using the calibration dataset SWEcal.

3 Results

This section evaluates the ability of 1SNOW to calculate
snow water equivalents exclusively from snow depths, as
well as its practicability. Table 3 gives an overview of all pa-
rameters and summarizes the optimal setting for 1SNOW. A
discussion of the best-fitted values and of the model sensitiv-
ity to parameter changes can be found in Sect. 4.

The minimal RMSE between all SWE observations used
for calibration (SWEcal) and the respective modeled val-
ues were reached for new-snow density ρ0 = 81 kg m−3,
maximum density ρmax = 401 kg m−3, viscosity parameters
η0 = 8.5× 106 Pa s and k = 0.030 m3 kg−1, threshold devi-
ation τ = 2.4 cm, and overburden parameters cov = 5.1×
10−4 Pa−1 and kov = 0.38.

3.1 Validation and comparison to other models

In this study no quantitative comparison with thermodynamic
snow models was performed, since they need further meteo-
rological data and the focus was on data records constrained
to snow depths. However, the1SNOW model was thoroughly
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Figure 2. Root mean square errors (RMSE) and biases (BIAS) between the 1SNOW model and different empirical regression models from
the SWEval observations. The 1SNOW model, models by Pistocchi (2016) and Guyennon et al. (2019), and the “constant density approach”
were calibrated with SWEcal data (1SNOW, Pi16cal, Gu19cal, ρ278; upper panels, solid lines). Dashed lines indicate the Pistocchi (2016),
the Guyennon et al. (2019), the Jonas et al. (2009), and the Sturm et al. (2010) models with their standard parameters (Pi16, Gu19, Jo09R6,
Jo09R7, and St10). Jo09R6 and Jo09R7 together illustrate the maximum possible spread of the Jonas et al. (2009) model since Region 6 (R6)
and Region 7 (R7) are characterized by the highest and lowest “region-specific offset”, respectively. The upper left panel shows RMSEs
for all SWEval values (short horizontal lines) as well as for three SWE classes: SWE≤ 75, SWE> 150, and intermediate. Analogously
for SWEpk (upper right panel), RMSEs are shown. The boxes for the biases (lower panels) encompass 774 values (left panel, SWE) and
71 values (right panel, SWEpk) and spread from the 25 % to the 75 % quantiles; the whiskers indicate 1.5 times the interquartile range. Units
are kg m−2.

evaluated against ERMs. Figure 2 and Table 4 show the re-
sults. Even though ERMs do not need meteorological data,
it is not straightforward to calibrate them for new sites and
applications. From the vast number of ERMs (cf. Avanzi
et al., 2015), the ones of Pistocchi (2016) and Guyennon et al.
(2019) were chosen to be fitted to SWEcal. These models are
quite new and easy to calibrate. Additionally, an approach
simply using a constant bulk snow density at every point in
time was calibrated to fit this study’s data. Thus, 278 kg m−3

turned out to be the optimal value minimizing root mean
square errors of all SWEcal values. Moreover, Jonas et al.
(2009) and Sturm et al. (2010) were used for comparison.
Unfortunately, calibration of these powerful models would
have needed much more data than the 780 SWE–HS pairs of
the SWEcal dataset. Therefore, Jonas et al. (2009) and Sturm
et al. (2010) were used with their standard parameters, but

for Jonas et al. (2009) it was distinguished between regions
(see the caption of Fig. 2). Other contemporary approaches
had to be ignored, mostly because of the problematic trans-
ferability of regional parameters (e.g., McCreight and Small,
2014, or Mizukami and Perica, 2008).

The bias of modeled SWE (lower left panel in Fig. 2)
is quite low and tends to be positive, meaning SWE is of-
ten slightly overestimated by the ERMs. 1SNOW slightly
underestimates SWE on average, with a median bias of
−3.0 kg m−2. The overall good results for the ERMs is not
surprising, since they are dedicated to perform well on av-
erage. The specially calibrated versions of Pistocchi (2016)
and Guyennon et al. (2019) show a significantly smaller bias
than their originals. The model of Jonas et al. (2009) has
the smallest bias for their “Region 7”, encompassing the dry,
inner-alpine Engadin as well as parts of the Southern Alps
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Table 4. Overview on SWE accuracies of different models and studies. The numbers in brackets represent the results for the example
portrayed in Figs. 3 and 4 from station Kössen in 2008/09. Units are kg m−2, TD is short for thermodynamic snow models. For model
abbreviations, see caption of Fig. 2.

Source Model SWE SWE SWE SWEpk SWEpk
(version) BIAS RMSE MAE BIAS RMSE

This study 1SNOW −3.0 30.8 (21) 21.9 0.3 (-3) 36.3
Gu19cal 4.8 39.1 (43) 27.6 63.0 (93) 85.6
Pi16cal 5.6 39.4 (47) 28.1 70.3 (106) 80.8
Jo09R7 −3.2 39.4 (41) 27.3 52.0 (74) 70.2
St10 14.0 45.1 (57) 32.6 91.1 (154) 117.2
ρ278 10.6 50.9 (51) 36.3 45.2 (77) 66.4

Guyennon et al. (2019) Gu19 49.2
Pi16cal 50.6
Jo09cal 48.5
St10cal 51.0

Jonas et al. (2009) Jo09 50.9–53.2

Sturm et al. (2010) St10 (“alpine”) 29± 57

Vionnet et al. (2012) Crocus −17.3 39.7

Langlois et al. (2009) Crocus −7.9 to −5.4 10.8–12.5
SNTHERM 9 to 18.1 18.3–19.3
SNOWPACK −0.1 to 5.6 7.4–14.5

Egli et al. (2009) SNOWPACK 56

Wever et al. (2015) SNOWPACK ca. 39.5

Sandells et al. (2012) SNOBAL 30–49 17–44a

Essery et al. (2013) various TDb 23–77

a This is not RMSE of SWEpk but RMSE “from establishment of snowpack to SWEpk”. b See Table 10 in Essery et al. (2013): RMSE for
up to 1700 uncalibrated and calibrated simulations.

and the very east of Switzerland (Samnaun), which is partly
influenced by orographic precipitation from northwesterly
flows. In terms of heterogeneity in precipitation climate, “Re-
gion 7” is comparable to the region where the SWE data of
this study come from.

The other three indicators illustrated in Fig. 2 and summa-
rized in Table 4 show the improved performance of 1SNOW
compared to ERMs: the latter are intrinsically tied to snow
depth (see Sect. 1.2) and are systematically forced to overes-
timate SWEpk. Note that the maximal SWE of a winter sea-
son does not necessarily equal the highest measured SWE,
because measurements are only taken weekly or biweekly.
In the vast majority of the SWE records used for this study,
the highest seasonal observation is followed by at least one
lower SWE reading. Sometimes real SWE might be higher
after the highest measurement of a winter season was taken,
but a thorough data check revealed that this is of minor im-
portance here. It is sufficiently precise to assume that mea-
sured seasonal maximum SWE equals SWEpk; 1SNOW’s
bias of SWEpk is very minor, only +0.3 kg m−2. Moreover,
the1SNOW model works better for the timing of SWEpk (not

shown in Fig. 2 and Table 4). ERMs tend to model SWEpk
some days too early, because the date of modeled SWEpk is
shifted towards the date of highest HS (cf. Fig. 4).

Another satisfactory validation result for1SNOW is shown
in the upper panels of Fig. 2. RMSEs for all SWE values are
constantly lower than if modeled with ERMs: an RMSE of
30.8 kg m−2 (1SNOW) contrasts RMSEs between 39.1 and
50.9 kg m−2 (ERMs). Calibrating the models of Pistocchi
(2016) and Guyennon et al. (2019) results in some improve-
ment; at least they perform much better than the “constant
density approach” after the calibration. The model of Jonas
et al. (2009) does a decent job even without recalibration.
The method by Sturm et al. (2010) is calibrated with data
from the Rocky Mountains. For this comparison, the “alpine”
parameters of Sturm et al. (2010) were taken; however, con-
ditions might differ too much from the European Alps. Abso-
lute errors in SWE increase with increasing SWE. For snow-
packs lighter than 75 kg m−2,1SNOW’s RMSE is 17 kg m−2,
between 75 and 150 kg m−2 it is 26 kg m−2, and for snow-
packs heavier than 150 kg m−2 it increases to 43 kg m−2.
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The1SNOW model also has a small RMSE of 36.3 kg m−2

when modeling SWEpk (Fig. 2, upper right; Table 4, last two
columns). Also the SWEpk RMSEs for the different SWE
classes are very close to those for SWE, which emphasizes
1SNOW’s ability to model all individual SWEs comparably
well. The evaluated ERMs have much higher, mostly at least
doubled, errors in simulated SWEpk. Remarkably, the sim-
ple ρ278 approach performs relatively well. In the case when
the Jonas et al. (2009) model is suitably adjusted to regional
specialties, it performs better than the other ERMs but still
significantly worse than 1SNOW.

These results demonstrate that 1SNOW outperforms
ERMs. This can be argued on the basis of Fig. 2 but even
more when looking at the ERM studies themselves: Jonas
et al. (2009) provide RMSEs between 50.9 and 53.2 kg m−2

for their standard model, which are quite high values com-
pared to the findings of the study in hand (39.4 kg m−2

for their Region 7; see Table 4). One explanation could
be that Jonas et al. (2009) as well as other ERM studies
rely on a huge amount of (but still diverse measurements in
terms of record length) observations per season. The1SNOW
model study only consists of data from selected stations with
long and regular SWE readings, where also ERMs seem to
work better. Guyennon et al. (2019) summarize their and
other studies’ validation results using MAE, the mean ab-
solute error. Sturm et al. (2010) assess the bias for their
“alpine” model at +29 kg m−2 with a standard deviation of
57 kg m−2, and they outline that “in a test against exten-
sive Canadian data, 90 % of the computed SWE values fell
within ±80 kg m−2 of measured values”. Table 4 provides
an overview and shows that ERMs generally perform better
with this study’s data than with their original data.

3.2 Illustration

Figure 1 schematically shows the functioning of the1SNOW
model. A practical example is provided in Fig. 3, based
on the optimal calibration parameters found during this
study. Kössen, the station shown, is situated in the North-
ern Alps at 590 m (cf. Fig. A1). Although it is a low-lying
place, it is known to be snowy, which is, firstly, due to
intense orographic enhancement of precipitation associated
with northwesterly to northeasterly flows in the respective
region (Wastl, 2008) and, secondly, comparably frequent in-
flow of cold continental air masses from northeast. Showing
the example of Kössen should emphasize the versatile us-
ability of1SNOW: it is not only designed for high areas with
deep, long-lasting snowpacks but also for valleys with shal-
low, ephemeral snowpacks. Winter 2008/09 was chosen be-
cause1SNOW shows a rather typical performance in terms of
RMSE and BIAS in Kössen (see Table 4, values in brackets),
and because some important, model-intrinsic features can be
addressed and discussed:

Late November 2008 brought the first, however transient,
snowpack of the season (Fig. 3). The 1SNOW model iden-

Figure 3. Winter of 2008/09 in Kössen (Northern Alps, Austria)
portrays density evolution as simulated by the 1SNOW model. Re-
spective (sub)modules are depicted in colors at the bottom, when-
ever activated. Note that 1SNOW is not intended to simulate indi-
vidual layers but to calculate daily SWE, SWEpk, and daily bulk
density. Descriptions and discussions of some features are given in
the text.

Figure 4. SWE simulations and observations (SWEobs) for the win-
ter 2008/09 in Kössen (cf. Fig. 3). Details and abbreviations are
given in the text (Sect. 3.2) and summarized in Fig. 2.

tifies 2 d with snowfall (purple markings) and models two
respective snow layers, which can be distinguished by the
thin black line in Fig. 3. After about a week, the snowpack
starts to melt, the snow layers reach ρmax very fast (the blue
shading gets dark), and finally all the snow was converted
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to runoff (green markings). In the second half of Decem-
ber, there were 3 d with new snow, followed by a strong
decline in snow depth. In the frame of the 1SNOW model,
this HS decrease is only possible if the layers “get wet”
and the Drenching module is activated (marked in brown).
The layers get denser, starting at the top. However, the de-
crease was “manageable” only by increasing the two upper-
most layer densities to ρmax and making the third layer just
a bit denser. Not all layers got to ρmax, and no runoff was
modeled. The 1SNOW model conserves the two dense lay-
ers until the end of the winter, which can clearly be seen
in Fig. 3. One could interpret the layers as consisting of
melt forms or a refrozen crust. However, such interpreta-
tions require caution, because modeling detailed layer fea-
tures is not the intention of 1SNOW. During January Fig. 3
shows a phase where modeled values and observations agree
to a high extent, and only the Scaling module is activated
for small adjustments (white markings). Small “stretching
events” can be recognized, e.g., on 2 and 3 January, where
model snow layers are set less dense in order to avoid too fre-
quent mass gains. During continuous snowfalls in February
the successive darkening of the blue layer shadings illustrates
a phase of consequent compaction, which actually lasts until
March, when strong decreases in HSobs start to activate the
Drenching module. Still, runoff is not yet produced. Only in
the second half of March does the whole model snowpack
reach ρmax (“saturation”). The ablation phase is clearly dis-
tinguishable and lets the snowpack vanish rapidly towards
10 April 2009.

The snow depth record of Kössen from 2008/09 was also
used to compare different ERMs and 1SNOW to SWE ob-
servations (Fig. 4). These measurements (light blue circles)
are part of the SWEval sample and were manually made
with snow sampling cylinders; one after the December 2008
snowfall and another nine on a nearly weekly basis between
late January and late March 2009. Figure 4 also provides
various model results, and some respective key values are
given in Table 4. Not surprisingly and thus evidently, the
ERM SWE curves follow the snow depth curve (black dashed
line). The first four measurements are not well simulated
by the 1SNOW model (red line); the ERMs perform bet-
ter in this illustrative case. But after the stronger snowfalls
of February the picture changes indisputably in favor of the
1SNOW model. This is a typical pattern, because ERMs
are too strongly tied to snow depth and therefore mostly
(1) overestimate SWEpk, (2) model its occurrence too early,
and (3) – most importantly – force modeled SWE to reduce
during pure compaction phases after snowfalls. Evidently,
the ability of 1SNOW to conserve mass during the phases
with dry metamorphism is its strongest point, not only in
Kössen 2008/09 but also on average (cf. Fig. 2 and Table 4).

4 Discussion and outlook

Model results clearly depend on the parameters. Their opti-
mal values are subject to calibration. The choice of the best-
fitted values is rated and discussed in the following Sect. 4.1
to 4.5. Section 4.6 to 4.8 cover possible future developments,
accuracy issues, and 1SNOW’s applicability in remote sens-
ing.

4.1 New-snow density ρ0

Being aware of both the potentially large variations of new-
snow density and the possible cruciality of this parameter for
SWE simulation by the 1SNOW model, ρ0 was chosen to be
a constant in the framework of the model. ρ0 = 81 kg m−3

turned out to be the best choice after calibration with SWEcal.
This value clearly lies within the broader frame of possible
new-snow densities (Table 3) and quite closely to 75 kg m−3

by Sturm and Holmgren (1998), but it is found in the lower
part for typical new-snow densities (e.g., Helfricht et al.,
2018). A possible explanation is that the SWE measurement
records used for the calibration tend to underrepresent late
winter and spring conditions. Regular (weekly, biweekly)
observations capture the short melt seasons worse than the
longer accumulation phases. Therefore, SWE records might
be biased towards early and midwinter new-snow densities,
which are lower (e.g., Jonas et al., 2009). Still, there are also
some indications that using, for example, 100 kg m−3 as con-
stant for new-snow density when modeling SWE results in an
overestimation of precipitation (up to 30 % according to Mair
et al., 2016). The calibrated value for ρ0 can be regarded as
a reasonable result, even more when only considering it as a
model parameter but not as a physical constant.

The sensitivity analysis illustrated in Fig. 5 confirms the
importance of a good choice of ρ0. Increasing ρ0 leads
to a decrease of the relative bias of seasonal SWE max-
ima (SWEpk). Note the definition of the relative bias in the
caption of Fig. 5. In absolute values, too small ρ0 values
cause too small SWEpk values, while using higher values
leads to an overestimation of SWEpk. This behavior supports
the above-mentioned tendency to overestimate precipitation
when choosing constant 100 kg m−3 as new-snow density. As
expected, the new-snow density is the most crucial parameter
of the 1SNOW model (cf. Table 3). The median relative bias
of SWEpk changes by −0.46 % per +1 kg m−3 if the whole
calibration range of ρ0 is considered to calculate the sensitiv-
ity (50–200 kg m−3). This means a median change in SWEpk
of +0.37 kg m−2 when ρ0 is risen by +1 kg m−3. If the lim-
its are restricted more tightly around the optimal value, the
gradient is even steeper: −0.62 % and +0.50 kg m−2 per
+1 kg m−3, respectively, when the gradient is approximated
for the range 70–90 kg m−3. The widely used ρ0 value of
100 kg m−3, consequently, causes a median overestimation
of SWEpk of about 12 % in the 1SNOW model. Daily SWE
shows the same behavior (not shown), and users should be
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Figure 5. Sensitivity of SWEpk to changes in model parameters. The “relative bias of SWEpk” is defined as the difference between SWEpk
with best-fitted values and SWEpk with changed parameters (while all others are kept unchanged) divided by the best-fitted SWEpk. The
boxes comprise SWEpk of all stations and all years of the validation dataset SWEval (71 values) and display medians as well as 25 % and
75 % percentiles; the whiskers indicate 1.5 times the interquartile range. For details and analysis, see the text.

aware of this. The suggestion is to either use the best-fitted
parameters of this study or recalibrate all parameters with
appropriate SWE data but not to adjust only single parame-
ters. The value of ρ0 = 81 kg m−3 seems to be a good com-
promise, at least in alpine areas. However, for maritime, very
dry, polar, or tundra regions, the optimized ρ0 should be used
with caution.

4.2 Maximum density ρmax

The maximum bulk snow density of a snowpack changes
from year to year and site to site. For 1SNOW, simplicity
and independence from meteorological variables outweigh
precision. Even more so when there are good arguments for
the existence of a typical maximum bulk density ρmax. Put
simply, seasonal and also ephemeral snowpacks melt away
when they get water saturated. Before that, there is limited
time for dry densification; dry winter snow’s bulk density is
widely described as staying below about 350 kg m−3 (e.g.,
Cuffey and Paterson, 2010; Sandells et al., 2012). Account-
ing for the fact that volumetric liquid water content of about
10 % marks the funicular mode of liquid distribution in old,
coarse-grained snow (Denoth, 1982; Mitterer et al., 2011),
this leads to the rough estimate of a typical maximum bulk
density of about 9

10 ·350+ 1
10 ·1000= 415 kg m−3. Convinc-

ingly, the optimal value for ρmax in the 1SNOW model turns
out to be 401 kg m−3, which is close to that value and well
within the range given in the literature (Table 3). Moreover,
this is virtually the same as the median maximum seasonal

density of the SWEval data records (400 kg m−3; see box plot
in Fig. 6), which is another indication why ρmax could be
regarded as a typical seasonal maximum of ρb.

Figure 5 illustrates the similarity between ρ0 and ρmax
regarding their influence on SWE simulations. Keeping the
other six 1SNOW parameters constant but increasing ρmax
leads to increased SWEpk and vice versa – just like ρ0. The
1SNOW model is not as sensitive to changes in ρmax as it is to
changes in ρ0: raising ρmax by+1 kg m−3 leads to a mean de-
crease of the relative bias of SWEpk of −0.06 %, which cor-
responds to an increase in absolute SWEpk of +0.24 kg m−2

per+1 kg m−3. We consider the ρmax value of 401 kg m−3 to
be representative for Alpine areas as our calibration dataset
encompasses the full range of environmental conditions. Be
aware that solely changing parameter ρmax for an application
of the1SNOW model elsewhere, without proper recalibration
of the other parameters, might lead to significant changes in
the results for SWE.

4.3 Viscosity parameters η0 and k

Equation (1) represents the settlement and densification func-
tion of 1SNOW. Two parameters η0 and k act as adjust-
ment screws and have to be calibrated. In this study, best-
fitted η0 is 8.5× 106 Pa s, and the optimized value for k is
0.030 m3 kg−1. Both values are close to other studies’ results
and suggestions (Table 3).
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Figure 6. Scatter plot of all modeled bulk snow densities ρb ver-
sus all observed ρb from the validation dataset. (SWEval, 767 data
pairs. Seven observations, which are higher than 600 kg m−3, were
ignored.) Red circles reflect the 71 observed yearly maxima (ρobs

max),
most of them occur when also modeled snowpack is at ρmax =
401 kg m−3. The box plot shows the distribution of ρobs

max with me-
dian, 25 % and 75 % percentiles, and whiskers at 1.5 times the in-
terquartile range.

As far as 1SNOW’s sensitivity to changes in the viscos-
ity parameters η0 and k is concerned, Fig. 5 shows that an
isolated rise of the model snow viscosity – either by enhanc-
ing η0 or k – increases the relative bias of SWEpk, which
means a decrease in absolute values of SWEpk. This behav-
ior is consistent, since higher viscosity reduces the densi-
fication rate, and the model snowpack tendentiously stays
deeper. Consequently, increases in observed snow depth tend
to bring less new snow while the New Snow module is run
(Sect. 2.3.1). Finally, simulated SWEpk is reduced when
η0 or k values are increased and vice versa.

4.4 Threshold deviation τ

1SNOW’s parameter to cope with uncertainties in snow depth
is τ , and it is considered to be not more than a few cen-
timeters. In particular, it should avoid excessive production
of snow mass in the model through too frequent simulation
of new-snow events (see Sect. 2.3). τ is kind of a peculiarity
of the 1SNOW model, and therefore no bounds can be found
in literature. It was generously accepted to range between
1 and 20 cm for calibration and turned out to be optimal at
τ = 2.4 cm (Table 3). Given the wide range of possible val-
ues, this is very close to what would be expected as a measure
for HSobs accuracy.

Model sensitivity to changes in τ turns out to be quite low
for values on the order of a few centimeters, but the influ-

ence on simulated SWEpk is strongly increasing if τ is cho-
sen greater than about 5 cm (Fig. 5). This result makes a
lot of sense if τ is seen as a measure of observation accu-
racy, because this is very likely to be better than 5 cm. Like
changes in η0 and k, changes in τ are indirectly proportional
to changes in SWEpk, for a closely related reason: the bigger
τ , the more often small new events are not counted as such,
because the Scaling module (Sect. 2.3.2) is more frequently
activated at the cost of the New Snow module (Sect. 2.3.1).

4.5 Overburden parameters cov and kov

Aside from τ , there are two more parameters that are pecu-
liar to the 1SNOW model. They are needed to simulate un-
steady compaction by overburden load of new snow. Because
of their presumed uniqueness in the snow model spectrum,
there is no information available on how to choose them (see
Sect. 2.4). The calibration produces cov = 5.1× 10−4 Pa−1

and kov = 0.38 as best-fitted values (Table 3).
The sensitivity of modeled SWEpk to changes in either

cov or kov are quite minor. (See Fig. 5 for cov; kov is not
shown, because it is comparable but of opposite sign.) The
reason for this relative insensitivity of the model to changes
in cov and kov could be the contradicting effects of these two
overburden parameters: higher cov leads to higher SWE and
SWEpk, and higher values of kov cause lower SWE.

4.6 Incorporating rain on snow and other possible
improvements

In principle, 1SNOW could deal with rain-on-snow events.
Unsteady compaction due to overburden load, for example,
is not restricted to new snow. It could also be triggered by the
mass of rain water, both in nature and in the framework of
the 1SNOW model. Still, the respective feature is not imple-
mented at the moment, because identifying criteria for rain-
on-snow events based on pure snow depth records is very
problematic and beyond the scope of this paper.

Another eventual future development is the refinement of
the density parameters ρ0 and ρmax since, firstly,1SNOW re-
acts quite sensitively to their changes and, secondly, some
relations are well known, e.g., ρ0’s dependence on the cli-
matic aridity or ρmax’s tendency to increase for aging snow.
Setting ρmax to a fixed value of 401 kg m−3 actually dis-
qualifies the 1SNOW model for snow older than an esti-
mated 200 d. Additional calibrations could be performed for
maritime, very dry, polar, or tundra regions as well as for
very long-lasting snowpacks. Note, however, that all of these
adaptions introduce more parameters to the 1SNOW model
and reduce its generality. Benefits should be evaluated criti-
cally, and probably this evaluation should start with the over-
burden load treatment of 1SNOW. It is possible that refining
the density parameters is more valuable than the special treat-
ment of unsteady compaction due to overburden loads.
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4.7 SWE accuracy

Table 4 provides an overview of uncertainties for SWE,
also for thermodynamic models: Vionnet et al. (2012) find
an RMSE and bias of 39.7 and −17.3 kg m−2, respec-
tively, comparing 1722 manual samplings at Col de Porte
(Chartreuse Mountains, France) and Crocus. Wever et al.
(2015) and Sandells et al. (2012) come up with RM-
SEs of about 39.5 kg m−2 (SNOWPACK) and 30–49 kg m−2

(SNOBAL), respectively. Langlois et al. (2009) find more
optimistic values, however, based on much fewer data. On
the contrary, Egli et al. (2009) give reason to expect higher
RMSEs, but their study is exclusively based on data from
the snowy, high-altitude station Weissfluhjoch (Switzerland),
which intrinsically promotes higher absolute errors. The
comprehensive simulation experiment by Essery et al. (2013)
results in an RMSE range of 23–77 kg m−2.

As a synopsis of the study in hand, absolute SWE accu-
racies could be estimated as follows: (1) 2 to 50 kg m−2 for
manual measurements, which are widely used as reference,
(2) 30 to 40 kg m−2 for thermodynamic models, and (3) 40 to
50 kg m−2 for empirical regression models. In this respect, it
is striking to find 1SNOW’s RMSE at 30.8 kg m−2.

4.8 Application to remote sensing data

Looking at current developments in deriving SWE from
snow depths monitored with lidar and photogrammetry,
1SNOW might be considered one of the “potential [. . . ] other
snow density models” (Smyth et al., 2019) that could be in-
cluded in respective future research. Lidar and photogram-
metry have errors on the order of 10 cm (Smyth et al., 2019),
typically corresponding to SWE errors of 20 to 40 kg m−2.
This is on the order of the 1SNOW model errors. Remote-
sensing-derived snow depth data are discontinuous through
time, but 1SNOW could be adapted for that in order to up-
grade from a point model to a computationally fast dis-
tributed model. A possible combination of 1SNOW with
modern, large-scale snow depth products like those presented
by Lievens et al. (2019) motivates future developments in this
direction.

5 Conclusions

A new method to simulate snow water equivalents (SWEs)
is presented. It exclusively needs snow depths and their tem-
poral changes as input, which, given the nature of available
data, is its major advantage compared to many other snow
models. It is shown that basic snow physics, implemented
in a layer model, suffice to better calculate SWE than snow
models relying on empirical regressions.

Regular snow depth records are used to stepwise model
the evolution of seasonal snowpacks, focusing on their mass
(i.e., SWE) and respective load. Snow compaction is as-
sumed to follow Newtonian viscosity, unsteady stress for un-

derlying snow layers by the overburden load of new snow is
regarded separately, melted mass is distributed from upper to
lower layers, and – eponymous for the model – the measured
change in snow depth between two observations is used as
a precious corrective by accounting for measurement uncer-
tainties.

The 1SNOW model mainly draws on Martinec and
Rango (1991) and Sturm and Holmgren (1998) and trans-
forms them to an open-source R code, which is available
through https://cran.r-project.org/package=nixmass (last ac-
cess: 2 March 2021). 1SNOW requires only HS as input and
does not need meteorological or geographical forcing, al-
though calibration of seven parameters is needed. To provide
an optimal setting and utmost applicability, data from 14 cli-
matologically different places in the Swiss and Austrian Alps
are utilized. This is challenging, since calibration needs mul-
tiyear SWE observations as well as consecutive (e.g., daily)
snow depth readings from the same places. 1SNOW is cal-
ibrated with 67 winters. The validation dataset consists of
another 71 independent winters. Whereas calibration is quite
complex, the application of the 1SNOW model is cheap in
terms of computational effort: deriving a 1-year SWE record
from 365 snow depth values, for example, only takes a few
seconds with today’s standard desktop CPUs and can cer-
tainly be sped up significantly.

In this study it is argued that 1SNOW is situated between
sophisticated “thermodynamic snow models”, necessitating
meteorological and other inputs, and modest “empirical re-
gression models” (ERMs), relying on simple statistical rela-
tions between SWE and snow depth, date, altitude, and re-
gion. The key qualities of the 1SNOW model are the follow-
ing.

– Low complexity:1SNOW is a semiempirical multilayer
model with seven parameters. In some respect it is even
less demanding than ERMs, because no information on
date, altitude, or region is required.

– High universality: 1SNOW simulates individual SWE
values – like the important seasonal maximum SWEpk
– comparably well as SWE averages.

– High accuracy: 1SNOW’s performance in modeling
SWE and SWEpk is comparable to thermodynamic
models and superior to ERMs. Root mean square errors
for SWEpk are 36.3 kg m−2 for1SNOW and about 70 to
> 100 kg m−2 for ERMs.

As the development of the 1SNOW model is application-
driven, it provides no new findings in snow physics. Still,
1SNOW takes well-known basic snow principles and ar-
ranges them in a physically consistent way, while retaining
the simplicity of using the single forcing parameter of snow
depth. After calibration, the 1SNOW model is widely usable
and particularly of value for attributing snow water equiva-
lents to all long-term and historic snow depth records, which
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are so valuable for climatological studies and extreme value
analysis for risk assessment of natural hazards.
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Appendix A

A map with the stations used for calibration and validation of
the 1SNOW model is shown in Fig. A1. Table A1 provides
details on the stations and the data.

Figure A1. Locations of the stations used for calibration and validation. Austrian stations are operated by the Hydrographic Service of Tyrol
(HD Tirol), and the Swiss stations by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) Institute for Snow and
Avalanche Research SLF. See Table A1 and text for more details.

Table A1. Overview of stations with daily snow depth records and about weekly or biweekly (Austria or Switzerland) manual SWE obser-
vations which were used for calibration and validation. #SWE

cal and #SWE
val give the numbers of respective manual SWE observations. Stations

nos. 1 to 6 are located in the Austrian province of Tyrol and nos. 5 and 6 are in the subprovince of East Tyrol, which are all operated by
the Hydrographic Service of Tyrol. Swiss station nos. 7 to 15 are operated by the WSL Institute for Snow and Avalanche Research SLF.
(Compare Fig. A1.) The data sources are Gruber (2014) and Marty (2017).

No. Station name Long [◦] Lat [◦] Alt. [m] #SWE
cal #SWE

val Calibration seasonsa Validation seasonsa

1 Holzgau 10.333300 47.25000 1100 116 100 7 odd in 1999–2011 7 even in 1998–2010

2 Ladis 10.649200 47.09690 1350 83 66 7 odd in 1999–2011 6 even in 1998–2010b

3 Obernberg 11.429200 47.01940 1360 105 88 7 odd in 1999–2011 7 even in 1998–2010

4 Koessen 12.402800 47.67170 590 87 70 7 odd in 1999–2011 6 even in 1998–2010b

5 Felbertauern 12.505600 47.11810 1650 126 114 7 odd in 1999–2011 7 even in 1998–2010

6 Innervillgraten 12.375000 46.80830 1400 96 115 7 odd in 1999–2011 7 even in 1998–2010

7 Muerren 7.890193 46.55818 1650 37 27 2009, 2012, 2015, 2017 2006, 2011, 2014, 2016

8 Truebsee 8.395291 46.79121 1780 4 11 2016 2015, 2017

9 Ulrichen 8.308283 46.50461 1350 24 23 2009, 2013, 2015, 2017 2007, 2011, 2014, 2016

10 Zermatt 7.751165 46.02340 1600 47 76 1961, 1963 and 3 even 1960–1964,
7 even in 2004–2016 7 odd in 2005–2017

11 Davos Flueelastr. 9.848163 46.81255 1560 8 19 2012 2008, 2017

12 Klosters KW 9.895973 46.86058 1200 12 22 1999 1998, 2017

13 San Bernardino 9.184634 46.46326 1640 11 14 2007 2006, 2014

14 Sta. Maria 10.419344 46.59981 1415 0 8 – 1969

15 Zuoz 9.962676 46.60433 1710 24 21 2011, 2013, 2015, 2017 2006, 2012, 2014, 2016∑
780 774 67 71

a Indicated years mark the start of respective winter seasons. b 2006 is missing.
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Appendix B

The Scaling module (Sect. 2.3.2) recalculates the viscosity
parameter η0. This temporary η∗0(i, t) does not only depend
on the point in time t whenever the Scaling module is ac-
tivated but is also different for each layer i. The reason is
described in the following.

The Scaling module aims for the condition that the actual
model snow depth HS(t) equals the actual observed snow
depth HSobs(t).

HS(t)=
ly(t)∑
i=1

hs(i, t)
!
= HSobs(t)

It follows from Eq. (1) and substituting x(i, t)=1t · σ̂ (i, t) ·
e−k·ρ(i,t) that

ly(t)∑
i=1

hs(i, t)=

ly(t)∑
i=1

η∗0(t) ·hs(i, t − 1)
η∗0(t)+ x(i, t)

!
= HSobs(t), (B1)

which is a rational function f of the form

f (η)=

N∑
i=1

η ·hi

η+ xi
.

Because f (η) has poles at −x1, . . . ,−xN , the equation
f (η)= HSobs has multiple solutions. Consequently, this ap-
proach – with η∗0(t) being independent from layer i – shows
a clear nonphysical behavior making it necessary to calculate
different η∗0(i, t) for each layer i based on Eq. (B1):

η∗0(i, t)=
x(i, t) ·hs(i, t)

hs(i, t − 1)−hs(i, t)
.

The solution to this issue in the Scaling module of the
1SNOW model is based on the assumption that observed
compaction between t−1 and t can be approximated linearly
for each layer:

hs(i, t)

hs(i, t − 1)
!

≈
HSobs(t)

HSobs(t − 1)
.

The layer-individual viscosities can be calculated as

η∗0(i, t)=
x(i, t) ·HSobs(t)

HSobs(t − 1)−HSobs(t)
.

Substituting those values for η∗0 in Eq. (B1) fulfills its pre-
condition, and the modeled equals the observed snow depth.
The newly calculated η∗0(i, t) values are different for each
layer – in contrast to the fixed η0 defined in Sect. 2.2, which
is valid for the whole snowpack (outside the Scaling module).
Note that these new viscosities are only used temporarily in
the Scaling module. They have no analog in reality and can
also have negative values, but they are mathematically sound.

Appendix C: Example of application – snow load map
of Austria

In this section an example is given of how the1SNOW model
can be used to attain a map of snow loads in Austria. Euro-
pean Standards (e.g., European Committee for Standardiza-
tion, 2015) define the “characteristic snow load” sk as the
weight of snow on the ground (which is the product of SWE
and the gravitational acceleration) with an annual probability
of exceedance of 0.02, i.e., a snow load that – on average –
is exceeded only once within 50 years. Unfortunately, SWE
is not measured on a regular basis at a reasonable number
of sites in Austria (and most other countries). The 1SNOW
model, however, can provide long-term Austrian SWE series
from widely available HS series, which can in turn be used
for a spatial extreme value model. No other snow model is ca-
pable of this in a comparable manner, since either SWEpk is
poorly modeled (ERMs) or more meteorological input would
be needed (thermodynamic models). Among several possi-
bilities to spatially model snow depth extremes like max-
stable processes (see e.g., Blanchet and Davison, 2011), the
smooth modeling approach of Blanchet and Lehning (2010)
can be used when marginals instead of spatial extremal de-
pendence are in focus.

C1 Smooth modeling

Extremes following a generalized extreme value distribution
(GEV; Coles, 2001) with parameters µ, σ , and ξ can be mod-
eled in space by considering linear relations for the three pa-
rameters of the form

η(x)= α0+

m∑
k=1

αkyk(x) (C1)

at location x, where η denotes one of the GEV parame-
ters, y1, . . . , ym are the considered covariates as smooth func-
tions of the location, and α0, . . . ,αm ∈ R are the coefficients.
Assuming spatially independent stations, the log-likelihood
function then reads as

l =

K∑
k=1

`k (µ(xk) ,σ (xk) ,ξ (xk)) , (C2)

where l only depends on the coefficients of the linear models
for the GEV parameters. This approach was termed smooth
modeling by Blanchet and Lehning (2010). A smooth spa-
tial model for extreme snow depths in Austria was already
presented in Schellander and Hell (2018), using longitude,
latitude, altitude, and mean snow depth at 421 stations. Con-
sidering the strong correlation between snow depth and snow
water equivalent, it would be natural to spatially model SWE
extremes in the same manner.
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C2 Fitting a spatial extreme value model

For this application, 214 stations with regular snow depth
observations in and tightly around Austria of the national
weather service (ZAMG, Zentralanstalt für Meteorologie
und Geodynamik) and the hydrological services are used.
The dataset has undergone quality control by the maintain-
ing institutions and covers altitudes between 118 and 2290 m.
The records have lengths of 43 years and cover winters
from 1970/71 to 2011/2012.

In a first step the1SNOW model was applied to these snow
depth series to achieve 214 data series of SWE across Aus-
tria. Then the linear models for the three GEV parameters
according to Sect. C1 were defined via a model selection
procedure. For that purpose, a generalized linear regression
was performed between the parameters and the covariates
longitude, latitude, altitude, and mean snow depth, which
were added in a stepwise manner. Using the Akaike infor-
mation criterion (AIC; Akaike, 1974), the best linear model
between a given full model (µ∼ all covariates) and a null
model (µ∼ 1) with the smallest AIC was selected. Using
these models and the covariates of the 214 stations, a smooth
spatial model for the yearly maxima of the SWE values was
fitted.

C3 Return level map of 50-year snow load in Austria

The spatial extreme value model developed in the previous
section was applied to a grid provided by the SNOWGRID
climate analysis (Olefs et al., 2013). It offers the necessary
covariates longitude, latitude, altitude, and yearly mean snow
depths from 1961 to 2016. The grid features a horizontal res-
olution of 1× 1 km. Some minor SNOWGRID pixels have
unrealistically large mean snow depth values, arising from a
poor implementation of lateral snow redistribution at high al-
titudes (18 px, i.e., 0.02 % with values between 5 and 65 m).
They are masked for the calculation of SWE return level
maps. The return level map for a return period of 50 years
can be seen in Fig. C1.

As expected, due to the strong correlation of the SWE
maxima with mean snow depth, the largest snow loads are lo-
cated in the mountainous areas of Austria. Although the unre-
alistic mean snow depth values of SNOWGRID are masked,
the model produces a number of 59 (0.06 %) unrealistic snow
load values larger than 25 kN m−2 in an altitude range be-
tween 1500 and 3700 m. For a model that would be seriously
used, for example, in general risk assessment or structural
design, this problem could possibly be tackled with a non-
linear relation between SWE maxima and mean snow depth
or altitude. This is, however, beyond the scope of this study.
Note that in the actual Austrian standard (Austrian Standards
Institute, 2018) there are no normative snow load values de-
fined above 1500 m altitude.

All but two locations of the Austrian SWE measurement
series that were used for calibration and validation of the
1SNOW model (see Sect. 2.4.1) are included in the dataset
used to fit the spatial model in Sect. C2. Those two stations,
Holzgau and Felbertauern with 14 years of SWE observa-
tions each, are used to qualitatively compare (1) the spatial
model fitted in Sect. C2, (2) SWE extremes modeled from
daily snow depths with the 1SNOW model, and (3) extremes
computed “directly” from (ca. weekly) observed SWE val-
ues. Figure C2 gives an idea of the model performance at sta-
tions Holzgau and Felbertauern (see Figs. A1 and C1 for their
locations). For the lower-lying station Holzgau (1100 m), all
three variants overlap very well. The 50-year return level
is 4.65 kN m−2 for the smooth spatial model, 4.72 kN m−2

for 1SNOW, and 4.8 kN m−2 for the observations. Note that
the last value stems from weekly observations and therefore
does not necessarily reflect the true yearly maxima, which
naturally must be equal or slightly higher. By the way, the
corresponding value of sk from the Austrian snow load stan-
dard for Holzgau is 6.3 kN m−2 (Austrian Standards Institute,
2018; accessible online at eHORA, 2006).

For the higher station Felbertauern (1650 m), the agree-
ment between SWE from the 1SNOW model and observed
values is again very good. However, their GEV fits differ sig-
nificantly. While the fit to the observations shows a negative
shape parameter of ξ =−0.1, the fit to the values modeled
with the 1SNOW model gives a positive shape parameter of
ξ = 0.1, leading to much larger return levels for higher re-
currence times. It should be pointed out that the GEV fits
based on 1SNOW simulations and observations are unreli-
able, given the short data sample of only 14 yearly maxima.
Indeed, by using a sample size of 43 years and borrowing
strength from neighboring stations, the spatial model pro-
vides the best fit to observations as well as modeled SWE val-
ues. The 50-year snow load return values are 6.4 kN m−2 for
the spatial model, 6.8 kN m−2 for 1SNOW, and 5.7 kN m−2

for the fit to the observations. No normative value is defined
for Felbertauern, because it is situated higher than 1500 m
(Austrian Standards Institute, 2018).

https://doi.org/10.5194/hess-25-1165-2021 Hydrol. Earth Syst. Sci., 25, 1165–1187, 2021



1184 M. Winkler et al.: Snow water equivalents exclusively from snow depths

Figure C1. 50-year return levels of snow load in Austria. Two stations with SWE observations are outlined for a qualitative validation. This
map is based on 214 snow depth records, 1SNOW-derived SWE, and smooth spatial modeling of their extremes.

Figure C2. Return levels of snow load at stations Holzgau (left) and Felbertauern (right). Return periods in years are shown on the logarithmic
x axis. The blue line shows return levels obtained with the spatial extreme value model, pink bullets and lines depict yearly maxima and the
GEV fit of SWE values modeled from daily snow depths with the 1SNOW model, and green colors represent yearly SWE maxima and the
corresponding GEV fit from (ca. weekly) observations.
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