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Abstract. Floods cause extensive damage, especially if they
affect large regions. Assessments of current, local, and re-
gional flood hazards and their future changes often involve
the use of hydrologic models. A reliable hydrologic model
ideally reproduces both local flood characteristics and spatial
aspects of flooding under current and future climate condi-
tions. However, uncertainties in simulated floods can be con-
siderable and yield unreliable hazard and climate change im-
pact assessments. This study evaluates the extent to which
models calibrated according to standard model calibration
metrics such as the widely used Kling—Gupta efficiency are
able to capture flood spatial coherence and triggering mech-
anisms. To highlight challenges related to flood simulations,
we investigate how flood timing, magnitude, and spatial vari-
ability are represented by an ensemble of hydrological mod-
els when calibrated on streamflow using the Kling—Gupta
efficiency metric, an increasingly common metric of hy-
drologic model performance also in flood-related studies.
Specifically, we compare how four well-known models (the
Sacramento Soil Moisture Accounting model, SAC; the Hy-
drologiska Byrans Vattenbalansavdelning model, HBV; the
variable infiltration capacity model, VIC; and the mesoscale
hydrologic model, mHM) represent (1) flood characteristics
and their spatial patterns and (2) how they translate changes
in meteorologic variables that trigger floods into changes in
flood magnitudes. Our results show that both the modeling of

local and spatial flood characteristics are challenging as mod-
els underestimate flood magnitude, and flood timing is not
necessarily well captured. They further show that changes
in precipitation and temperature are not always well trans-
lated to changes in flood flow, which makes local and re-
gional flood hazard assessments even more difficult for future
conditions. From a large sample of catchments and with mul-
tiple models, we conclude that calibration on the integrated
Kling—Gupta metric alone is likely to yield models that have
limited reliability in flood hazard assessments, undermining
their utility for regional and future change assessments. We
underscore that such assessments can be improved by devel-
oping flood-focused, multi-objective, and spatial calibration
metrics, by improving flood generating process representa-
tion through model structure comparisons and by consider-
ing uncertainty in precipitation input.

1 Introduction

Many studies use a hydrological model driven by present
or future meteorological forcing data to derive flood es-
timates for current and future conditions. However, data,
model structure, and parameter uncertainties can be con-
siderable (Clark et al., 2016), especially when considering
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extreme events such as floods (Brunner et al., 2019b; Das
and Umamahesh, 2018) and when considering hydrological
change. It is therefore challenging to produce statistically re-
liable estimates of future changes in flood hazard.

A model ideally reproduces different aspects of flooding,
including local characteristics such as event magnitude and
timing. To obtain such satisfactory flood simulations, hydro-
logical models are often calibrated using one or several ob-
jective functions. One widely used metric that is often used in
flood studies (e.g., Hundecha and Merz, 2012; Ko6plin et al.,
2014; Vormoor et al., 2015; Wobus et al., 2017) is the Nash—
Sutcliffe efficiency (Ens; Nash and Sutcliffe, 1970) because
it is considered integrative compared to others and focuses
attention on high flows. However, Eng is formulated so that
its optimal value systematically underestimates flow variabil-
ity (Gupta et al., 2009), undermining the ability of a model
to reproduce peak flow values. A related metric, the Kling—
Gupta efficiency (Exg; Gupta et al., 2009), is free from this
constraint and may improve simulations of peak flows, es-
pecially if the variability-related component of the score is
emphasized in calibration (Mizukami et al., 2019). This met-
ric has been frequently used in recent flood modeling studies
(e.g., Harrigan et al., 2020; Hirpa et al., 2018; Huang et al.,
2018; Thober et al., 2018; Brunner and Sikorska, 2018) and
seems to be widely accepted as a suitable choice for flood
studies. This acceptance may arise from the general practice
of developing models for a range of objectives. However, re-
cent studies have shown that capturing flood magnitude and
timing is challenging when such standard calibration metrics
are used for parameter estimation (Lane et al., 2019; Brunner
and Sikorska, 2018; Mizukami et al., 2019).

In addition to simulating the timing and magnitude of
flow at individual catchments, it is also important to realisti-
cally reproduce spatial dependencies, i.e., the relationship of
flood occurrence across gauging stations (Keef et al., 2013;
De Luca et al., 2017; Berghuijs et al., 2019). An over- or
underestimation of spatial dependencies across a network of
gauging stations in regional flood hazard and risk assess-
ments has been shown to under- or overestimate regional
damage, respectively (Lamb et al., 2010; Metin et al., 2020).
Prudhomme et al. (2011) have shown for a set of large-scale
hydrological models that simulated high-flow episodes are
less spatially coherent than observed events. Despite their
high relevance for impact, the spatial aspects of flooding have
often been overlooked in past simulation studies.

Local and spatial flood characteristics should be reliably
simulated, not only under current but also under future cli-
mate conditions. However, models calibrated for current con-
ditions may not be transferable in time (Thirel et al., 2015),
partly because of a suboptimal representation of flood pro-
ducing mechanisms. To overcome this transferability prob-
lem, the differential split-sample test has been proposed,
whereby the model is calibrated and validated on two peri-
ods with differing climate conditions (Klemes, 1986; Seibert,
2003).
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In this study, we evaluate the extent to which models cal-
ibrated according to the model calibration metric Exg are
able to capture flood spatial coherence and flood triggering
mechanisms. To this end, we first evaluate how well differ-
ent hydrological models capture local flood events follow-
ing the current paradigm. Secondly we expand the evalua-
tion by analyzing how well the models capture spatial flood
dependence, and finally we evaluate how the models capture
flood triggering mechanisms. With this thorough evaluation,
we assess which aspects of hydrological models may need
to be improved if we want to bring hazard and change im-
pact assessments to a point where we can make more reliable
assessments of regional flood hazard and future changes.

For documenting modeling challenges related to floods,
we look at the model output of four widely used hy-
drological models (Addor and Melsen, 2019), namely, the
Sacramento Soil Moisture Accounting model (SAC-SMA;
Burnash et al.,, 1973) combined with SNOW-17 (Ander-
son, 1973), the Hydrologiska Byrans Vattenbalansavdelning
model (HBV; Bergstrom, 1976), the variable infiltration ca-
pacity model (VIC; Liang et al., 1994), and the mesoscale hy-
drologic model (mHM; Kumar et al., 2013; Samaniego et al.,
2010). Identifying and documenting model weaknesses re-
garding regional and future flooding will highlight avenues
for future model development and reveal potential deficien-
cies of a calibration strategy often applied for research stud-
ies on floods.

2 Data and methods

To study how local and spatial flood characteristics are re-
produced by hydrological models calibrated on streamflow
using the individual calibration metric, Exg, we compare ob-
served to simulated flood event characteristics for a set of 488
catchments in the conterminous United States that have min-
imal human impact and catchment areas ranging from 4 to
2000 km? (Fig. 1a) (Newman et al., 2015b).

The data set comprises catchments with a wide range of
climate and streamflow characteristics, ranging from catch-
ments with intermittent regimes and a very weak seasonality
to catchments with a very strong seasonal cycle under the
influence of snow (New Year’s and melt regimes; Fig. 1b;
Brunner et al., 2020b). Observed streamflow time series are
available from the U.S. Geological Survey (USGS, 2019).

2.1 Model simulations

We use daily streamflow simulations for the period 1981—
2008 generated with four well-known hydrological models
(Addor and Melsen, 2019) offering different model struc-
tures and complexity: the lumped SAC model (Fig. SM 1;
Burnash et al., 1973), the lumped HBV model (Fig. SM
2; Bergstrom, 1976), the lumped version of the VIC model
(Fig. SM 3; Liang et al., 1994), and the grid-based, dis-
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Figure 1. (a) Map of the 488 catchments in the conterminous United States belonging to the five regime classes indicated by their gauge
location: (1) intermittent, (2) weak winter, (3) strong winter, (4) New Year’s, and (5) melt. (b) Median regime per regime class (colored lines)
and variability of regimes within a class (one line per catchment, grey) (Brunner et al., 2020b).

tributed mesoscale hydrologic model mHM (Fig. SM 4; Ku-
mar et al., 2013; Samaniego et al., 2010). Basing the study on
four different modeling efforts has the advantage of enlarg-
ing the sample size from which conclusions can be drawn
but the disadvantage that the models were not run as part of
a controlled study, with consistent forcings, calibration pe-
riods, and parameter selection. The model parameters were
calibrated on streamflow observations by minimizing Exg
by Melsen et al. (2018) using Sobol-based Latin hypercube
sampling (Bratley and Fox, 1988) for SAC, HBYV, and VIC
and by Mizukami et al. (2019) for mHM using multi-scale
parameter regionalization, whereby the transfer function pa-
rameters were identified using the dynamically dimensioned
search algorithm (Tolson and Shoemaker, 2007). Exg is de-
fined as

Exa(Q) =
1= \Isp - (0= DP + D50 - (@ — DR +[s5- (B— D, (D)

where p is the correlation between observed and simulated
runoff, « is the standard deviation of the simulated runoff di-
vided by the standard deviation of observed runoff, and B
is the mean of the simulated runoff, divided by the mean
of the observed runoff. s,, sy, and sg are scaling param-
eters enabling a weighting of different components. When
used individually, Exg has been found to result in a better
performance for annual peak flow simulation than the long-
standing and related hydrologic model evaluation metric Engs
(Mizukami et al., 2019).

For SAC, Melsen et al. (2018) calibrated and evaluated 18
out of the 35 parameters available in the coupled SNOW-
17 and SAC-SMA modeling system, for HBV 15 parame-
ters, for VIC 17 parameters, and for mHM Rakovec et al.
(2019) and Mizukami et al. (2019) calibrated and evalu-
ated up to 48 parameters. All the models were driven with
daily, spatially lumped meteorological forcing data repre-
senting current climate conditions: SAC, HBV, and VIC were
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driven with Daymet meteorological forcing (1 km resolution;
Thornton et al., 2012) and mHM with the forcing by Maurer
et al. (2002) (12 km resolution), both derived from observed
precipitation and temperature. SAC, HBV, and VIC were cal-
ibrated and evaluated on the period 1985-2008, while mHM
was calibrated on the period 1999-2008 and evaluated on the
period 1989-1999. After calibration, all four models were
run for the period 1980-2008 (calendar years), whereby the
period 1980-1981 was here used for spin-up and therefore
discarded from the analysis.

To provide insights with respect to where model perfor-
mance is better/worse, we provide model evaluation results
for five different streamflow regime types, which have been
shown to be distinct in their flood behavior: (1) intermittent,
(2) weak winter, (3) strong winter, (4) New Year’s, and (5)
melt (Fig. 1; Brunner et al., 2020b). Catchments with inter-
mittent regimes experience floods mainly in spring and sum-
mer, those with weak winter regimes in winter and spring,
those with strong winter regimes in winter, those with a
New Year’s regime around New Year, and those with a melt-
dominated regime in spring because of snowmelt.

Model performance in terms of Exg varies spatially and
is related to the hydrological regime (Fig. 2). It is overall
lowest for catchments with intermittent regimes and a weak
seasonality and highest for catchments with a strong season-
ality such as a melt and New Year’s regime. However, there
is a high within-class variability in model performance. The
finding that intermittent regimes are challenging to model
successfully is well known in hydrology and reproduced in
many studies, e.g., Unduche et al. (2018), who show that
hydrological modeling on Prairie watersheds is very com-
plex (Hay et al., 2018). Intermittent regimes may suffer in
calibration if they rely solely on correlation-type measures
because their day-to-day variation is more difficult to repro-
duce than a more pronounced and regular seasonality. Over-
all model performance decreases from mHM (median Exg
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0.69), over SAC (median Exg 0.63) and VIC (median Exg
0.60) to HBV (median Exg 0.52). In addition to streamflow,
we use areal precipitation and simulated soil moisture to ex-
plain potential differences in model performance.

2.2 Model evaluation for floods

We compare local and spatial flood characteristics extracted
from the observed time series to those of the series sim-
ulated with the four models for the period 1981-2008 for
the five streamflow regimes introduced above. Such a com-
parison enables identification of flood characteristics whose
model representation could potentially be improved. To bet-
ter understand potential model deficiencies, we look at how
models capture flood triggering mechanisms and how they
simulate floods under climate conditions different from the
current ones.

2.2.1 Flood event identification

Flood events are identified for each of the five time series
(one observed, four simulated) using a peak-over-threshold
(POT) approach, similar to the one used in Brunner et al.
(2019a, 2020b). This approach consists of two main steps
and results in two data sets each, which are used for the lo-
cal and spatial analysis, respectively: (1) POT events (i.e.,
peak discharges) in individual catchments and (2) event oc-
currences across all catchments. In Step 1, independent POT
events are identified in the daily discharge time series of the
individual catchments using the 25th percentile of the corre-
sponding time series of annual maxima as a threshold (Schlef
et al., 2019) and by prescribing a minimum time lag of 10d
between events (Diederen et al., 2019). This procedure re-
sults in a first quartile of 36, a median of 40, and a third
quartile of 47 events identified per basin.

In Step 2, a data set consisting of the dates of flood oc-
currences across all catchments is compiled. This set is con-
verted into a binary matrix which specifies for each catch-
ment (columns) whether or not it is affected by a specific
event (rows). We consider a catchment to be affected by a
certain event if it experiences an event within a window of
42 d of that event to take into account travel times. In addi-
tion to a binary matrix of all events, we set up seasonal binary
matrices (winter: December—February, spring: March—May,
summer: June—August, fall: September—November).

2.2.2 Flood characteristics at individual sites

We use the data sets resulting from Step 1, the POT events
at individual catchments, to evaluate how well the models
reproduce flood statistics at individual sites. We focus on the
total number of events n (actual error: ng — no, where “s”
represents simulations and “o” observations), magnitude in
terms of mean peak discharge x (relative error: (xs —xo)/Xo),

and mean timing (absolute error: circular statistics suitable
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for defining central tendencies of variables with a circular
behavior; Burn, 1997).

2.2.3 Spatial flood dependence

We then use the data sets resulting from Step 2 to evalu-
ate how models reproduce overall and seasonal spatial flood
dependence. To do so, we use the connectedness measure
introduced by Brunner et al. (2020a), which quantifies the
number of catchments with which a specific catchment co-
experiences floods. The number of concurrent flood events
for a pair of stations is determined based on a data set consist-
ing of the dates of flood occurrences across all catchments.
This set is converted into a binary matrix which specifies
for each catchment whether or not it is affected by a certain
event. The matrix compiled using observed streamflow time
series contained 1164 events, among which 258 occur in win-
ter, 291 in spring, 324 in summer, and 291 in fall. Following
the definition used by Brunner et al. (2020a), a catchment is
connected to another catchment if they share a certain num-
ber of events. We used here an event threshold of 1 % of the
total or seasonal number of events to define connectedness
(all months: 12 events, seasons: 3 events). We computed ac-
tual errors in flood connectedness by subtracting observed
from simulated connectedness over all seasons and per sea-
son.

2.2.4 Flood triggers

To explain potential differences in model performance, we
look at the relationship of simulated peak discharge with the
two flood triggers precipitation and soil moisture on the day
of flood occurrence. We focus on the day of occurrence be-
cause time of concentration is typically small for small head-
water basins (USDA-NRCS, 2010).

2.2.5 Floods under change

In addition to assessing model performance under current
climate conditions, we would like to understand potential,
additional challenges arising when interested in future con-
ditions. To do so, we look at how models translate changes
in event temperature and precipitation into changes in POT
discharge by performing a resampling-based sensitivity anal-
ysis. This sensitivity analysis aims at evaluating whether a
model is still reliable under climate conditions different from
the ones used in model calibration similar to split-sample or
differential split-sample calibration and validation schemes
(Klemes, 1986; Coron et al., 2012; Refsgaard et al., 2014;
Thirel et al., 2015). To perform this sensitivity analysis, we
generate surrogate time series of temperature, precipitation,
and streamflow for each catchment (Wood et al., 2004; Brun-
ner et al., 2020b). To generate these series, we randomly sam-
ple a series of years with replacement in the period 1981—
2008, which we use to compose time series consisting of
the daily values corresponding to these years for each of the
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Figure 2. Model performance in terms of Exg over the period 1981-2008 for the four models SAC (S), HBV (H), VIC (V), and mHM (M)
per hydrological regime: intermittent (114 catchments), weak winter (108), strong winter (176), New Year’s (50), and melt (40). For each
model and regime, three boxplots are shown: all catchments, catchments with Exg > 0.5, and catchments with Exg > 0.7. The percentage
[-] of catchments of a regime class above the corresponding threshold is indicated below the O line.

three variables. For each of the surrogate series, we again
extract POT flood events using the same procedure as de-
scribed under Step 1. For each of the extracted events we
then determine temperature and precipitation on the day of
peak discharge. We use the sets of peak discharge, event
temperature, and event precipitation to compute mean event
discharge, temperature, and precipitation, which enables the
derivation of a relationship between mean POT discharge
and the two meteorological variables during events. We re-
peat the resampling n = 500 times to derive a relationship
between changes in mean event temperature and precipita-
tion and changes in mean POT streamflow. This resampling
experiment results in a response surface of POT discharge
spanned by mean event temperature and mean event precipi-
tation for each catchment. We summarize the results obtained
at individual locations by computing horizontal and vertical
sensitivity gradients on these reaction surfaces using a lin-
ear regression model. The horizontal gradient describes the
strength of POT discharge changes in response to event tem-
perature changes, while the vertical gradient describes the
strength of change in response to changes in event precipita-
tion. Conducting this experiment for both observed and sim-
ulated time series allows for the determination of whether
the models react to changes in mean event temperature and
precipitation in the same way as the real-world system and
are therefore suitable for use in climate change impact as-
sessments of floods. If models produce different climate sen-
sitivities than the ones seen in the observations, the use of
models to simulate sets of flood events for future conditions
may preclude reliable change assessments.
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3 Results
3.1 Flood characteristics at individual sites

Model performance at individual sites with respect to the
number of events, event magnitude, and timing varies by
model and hydrological regime type (Fig. 3).

For most catchments, the median deviation between the
simulated and observed number of flood events lies close to
zero (SAC: —3 events, HBV: —1, VIC: —1, mHM: 0). How-
ever, the simulations result in over- and underestimations
of the number of events depending on the catchment (first
and third quartiles for SAC: —9, 4; HBV: —8, 15; VIC: —7,
6; mHM: —6, 6). The overestimation is strongest for HBV,
which overestimates the number of events for catchments
with intermittent, weak winter, and melt regimes (Brunner
et al., 2020b). Event magnitude in terms of peak discharge is
generally underestimated for all regime types independent of
the model, and also absolute flood timing errors are present
in all models. They are the highest in catchments with in-
termittent regimes with a high variability in flood timing and
low in catchments with a New Year’s and melt regime, where
the flood season is limited to a few months (Brunner et al.,
2020a).

3.2 Spatial flood dependencies

Over all seasons, most models show a median error close
to zero for flood connectedness. Flood connectedness can
be over- and underestimated dependent on the catchment
by most of the models, while HBV overestimates spatial
dependence in most catchments (Fig. 4). Seasonally, most
models over- or underestimate spatial dependence in cer-
tain regions. In winter, connectedness is overestimated by
most models except for VIC, and the strength of over-

Hydrol. Earth Syst. Sci., 25, 105-119, 2021
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boxplots are composed of one value per catchment belonging to the respective regime class.

estimation is strongest for HBV. In spring, most models
tend to underestimate spatial dependence except for HBV
that results in an overestimation of spatial dependence for
catchments with an intermittent regime. Connectedness over-
estimation by HBV is most pronounced for catchments
with an intermittent regime. Otherwise, connectedness over-
/underestimation seems to be independent of the regime.

3.3 Flood triggers

The differences in model performance regarding local and
spatial flood characteristics may be partially explained by
differences in their structure and how they transform pre-
cipitation into runoff. Figure 5 shows how simulated peak
discharge is related to event precipitation, event precipitation
plus snowmelt, and simulated soil moisture over all catch-
ments for the four hydrologic models. The SAC and VIC
models show similar simulated relationships for all three
variable pairs. There is a positive relationship between peak
discharge and precipitation and peak discharge and rainfall

Hydrol. Earth Syst. Sci., 25, 105-119, 2021

plus snowmelt; i.e., the higher the precipitation input or rain-
fall and snowmelt combined, respectively, the higher the re-
sulting peak discharge. This relationship is slightly more ex-
pressed for VIC than for SAC. In both models, soil moisture
and event magnitude are also positively related with lower
peak values, potentially associated with lower soil mois-
ture states than more severe events. The peak discharge—
precipitation relationship of HBV and mHM is less straight-
forward than the one of SAC and VIC. HBV and mHM also
show high discharge when precipitation input is high but may
in some cases still produce high discharge values, even for
low precipitation inputs. Such low precipitation inputs can
also lead to high peak discharge for SAC but to a lesser
degree than HBV and mHM. However, peak discharge and
rainfall plus snowmelt show a strong linear relationship; i.e.,
the higher the combined rainfall and snowmelt input to the
system, the higher the peak discharge. High flows are in most
cases related to nearly full storage states but can occasionally
also be triggered when soil moisture is low for SAC and VIC
and to a lesser degree for HBV.

https://doi.org/10.5194/hess-25-105-2021
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3.4 Floods under change

In addition to looking at how well local and spatial flood
characteristics are represented by models, we look at how
changes in temperature and event precipitation are translated
into changes in flood flows to assess each model’s suitabil-
ity for climate impact assessments on floods. Our sensitiv-
ity analysis shows that the models have difficulty translat-
ing changes in event temperature and precipitation into sen-
sitivities of flood flows (Fig. 6), which can be problematic
if we would like to use such models in climate change as-
sessments. Generally, flood flows show a relatively low sen-
sitivity to changes in mean event precipitation and temper-
ature. This is in contrast to the behavior for mean flow,
which is strongly influenced by changes in mean precipita-
tion as demonstrated in a similar experiment by Brunner et al.
(2020b). The much stronger relationship between mean pre-
cipitation and flow than between event precipitation and flow
might arise because mean flow is a climate signal (Knoben
et al., 2018), whereas floods are more an event (higher fre-
quency, short-term) signal. However, some catchments, e.g.,
Tucca Creek (New Year’s regime), show a clear relationship
between peak magnitude and both event temperature and pre-
cipitation. While these relationships are captured for some
catchments (e.g., Blackwater River, weak winter regime or
Tucca Creek, New Year’s regime), they are not in other catch-
ments. The simulated sensitivities may even point in another
direction than the observed ones (e.g., Pacific Creek, melt
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regime). In the case of melt regimes, the misrepresentation
of flood sensitivities by models suggests that they may have
difficulty simulating snow-influenced flooding.

This relatively poor model performance in capturing ob-
served flood sensitivities can be generalized to the larger set
of catchments studied here (Fig. 7). Temperature sensitivities
are found to be positive or negative; i.e., an increase in tem-
perature could lead to an increase or decrease of peak flow
depending on the catchment. In general, these temperature
sensitivities are relatively weak (i.e., gradients are close to
zero), which may be the reason why they are difficult to cap-
ture. In contrast, precipitation sensitivities are mostly posi-
tive; i.e., an increase in event precipitation leads to an in-
crease in peak flow. However, the strength of these sensitivi-
ties is underestimated by all models; i.e., a change in precip-
itation leads to too small a change in peak flow. This under-
estimation of sensitivity can be understood by the underesti-
mation of flood magnitude in general.

4 Discussion

4.1 Model performance in simulating floods

The results presented in this study demonstrate that simulat-
ing floods using hydrological models calibrated on the pop-

ular Kling—Gupta efficiency metric is challenging both at a
local and spatial scale. At the local scale, flood timing and
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Figure 5. Simulated relationships between normalized flood discharge (Q) and normalized precipitation (i; P), rainfall and snowmelt (ii;
R + M), and soil moisture (iii; SM, upper two soil layers for mHM) over all catchments represented by a binned scatter plot for the four
hydrologic models (1) SAC, (2) HBYV, (3) VIC, and (4) mHM. The darker the color, the higher the number of points within a bin (one point
per catchment and event). Kendall’s correlation coefficients are provided in the upper right corners of the subplots.

magnitude may not be perfectly captured, which can trans-
late into a suboptimal representation of spatial dependencies
because space and time are closely related. The challenges
related to flood simulations become especially pronounced
under climate conditions different from the current ones be-
cause additional sources of uncertainty are added to the mod-
eling chain.

Even though the models have been calibrated for the lo-
cal situation, substantial differences in magnitude and timing
were found between observations and simulations. Locally,
simulated floods showed smaller magnitudes and had differ-
ent timing than observed ones, while the number of floods
was reproduced relatively well except by the HBV model
for catchments with intermittent regimes. The flood magni-
tude underestimation found for all four models tested is in
line with previous studies showing that using Exg individ-
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ually results in an underestimation of peak flow (Mizukami
et al., 2019) due to an underestimation of variability, which
will result in an underrepresentation of extremes (Katz and
Brown, 1992). Another factor potentially contributing to this
underestimation is that the models were forced with spa-
tially lumped instead of distributed data, which may have
smoothed the simulated discharge response.

Under the current calibration paradigm, whereby models
are calibrated to local discharge conditions using Exg as
the objective function, flood connectedness is not accounted
for. As a result, flood connectedness is not well captured by
the models, as illustrated by the finding that flood connect-
edness is over- or underestimated depending on the season.
The overestimation of spatial dependence in winter for all
regimes except the melt regime is likely related to higher
simulated than observed snowmelt as high soil moisture and
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Figure 6. Climate sensitivity analysis for the VIC model: dependence of mean POT magnitude (Q) on mean flood event precipitation (1d;
P) and mean flood temperature (7') for five example catchments, those with the best Exg per regime type: intermittent regime (green; USGS
ID 09210500 Fontanelle Creek near Fontanelle, WY; Exg = 0.78), weak winter regime (yellow; USGS ID 02369800 Blackwater River near
Bradley, AL; Exg = 0.83), strong winter regime (blue; USGS ID 11522500 Salmon River above Somes, CA; Exg = 0.84), New Year’s
regime (pink; USGS ID 14303200 Tucca Creek near Blaine, OR; Exg = 0.9), and melt regime (purple; USGS ID 13011500 Pacific Creek
at Moran, WY; Exg = 0.92). Grid axes and grey scales differ between plots, where darker colors indicate higher flood magnitudes.

snow availability have been shown to increase spatial flood
connectedness (Brunner et al., 2020a). Related to this, the un-
derestimation of spatial connectedness in spring may be re-
lated to the subsequent missing snowmelt contributions. Spa-
tial connectedness in summer has been shown to be generally
weak due to the occurrence of localized, convective events
(Brunner et al., 2020a), which is reflected by most models
except for HBV in the case of intermittent and melt regimes.
Spatial flood connectedness has also been shown to be weak
in fall (Brunner et al., 2020a) but is overestimated by most
models. The finding that there is room to improve the rep-
resentation of spatial flood dependencies is in line with pre-
vious studies showing that large-scale hydrological models
have a weakness in reproducing regional aspects of floods
(Prudhomme et al., 2011).

There are slight variations in performance among models.
These variations may result from differences in the repre-
sentation of flood producing mechanisms, as indicated by
distinct behaviors in how the models translate precipitation
into runoff. VIC and SAC show more linearity in their event
precipitation and peak discharge relationship than HBV and
mHM, possibly because VIC and SAC have the capability to
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generate surface runoff when precipitation intensity exceeds
infiltration capacity (Burnash et al., 1973; Liang et al., 1994).
In this case, incoming precipitation is directly translated into
flood discharge. In contrast, HBV and mHM, the latter of
which is based on the HBV model structure (Kumar et al.,
2013), does not include a surface runoff component, and all
discharge originates in the model stores (Bergstrom, 1976).
This introduces a nonlinearity in the model response and may
explain why a smaller precipitation input may still gener-
ate high peak flows in these models. These differences in
process representation suggest that a “most suitable model”
could be identified for a specific application at hand. If one
is, e.g., interested in simulating floods in catchments with in-
termittent regimes, the HBV model does not seem to be an
ideal choice because there it simulates too many floods with
too small a magnitude. The overestimation of the number of
events in catchments with intermittent regimes by HBV may
be explained by its fast response to precipitation as expressed
through its model parameter 8, which introduces nonlinear-
ity to the system (Viglione and Parajka, 2020).

Our climate sensitivity analysis shows that the simulation
of floods becomes even more challenging under climate con-
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ditions different from the current ones as the hydrological
models employed in this study have limited capability in
reproducing observed hydrologic sensitivities during flood-
ing. These limitations may be related to input uncertainties
(Te Linde et al., 2007), insufficient model calibration (Fowler
et al., 2016), or equifinality in process contributions for sim-
ulations with (very) similar efficiency scores, leading to an
inability to unambiguously identify the appropriate relative
process contributions (Khatami et al., 2019).

4.2 Potential ways to improve model performance

The results of our model comparison highlight that there is
room for improvement regarding the representation of local
flood events, spatial flood dependence, and flood producing
mechanisms. We discuss here four potential ways for im-
proving model performance: developing flood-tailored cali-
bration metrics, considering spatial aspects in model calibra-
tion, improving representation of flood processes, and repre-
senting input uncertainties.

A first possibility to improve model performance is to de-
velop calibration metrics tailored to flooding instead of re-
lying on Exg. Our results show that Exg can lead to sim-
ulation performance deficits for phenomena of interest, in-
cluding an underestimation of peak flow, a misrepresentation
of timing, and over- or underestimation of seasonal spatial
flood connectedness. As is evident in some existing practice-
oriented applications of hydrological models (Hogue et al.,
2000; Unduche et al., 2018; World Meteorological Orga-
nization, 2011), the simulation of floods and other hydro-
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logic phenomena is likely to be improved by using more
tailored model calibration strategies. The representation of
streamflow variability could potentially be improved by giv-
ing more weight to the variability component of an integra-
tive metric such as the Exg (Pool et al., 2017), whereas the
representation of flood magnitude and timing may be im-
proved by giving more weight to the bias and correlation
components of the Exg. Alternatively, these characteristics
could be optimized explicitly by minimizing the error in
key hydrograph signatures related to site-specific flood phe-
nomena. Such flood-focused optimization may similarly to
Exg rely on multiple objectives in a scalar function (Gupta
et al., 1998; Efstratiadis and Koutsoyiannis, 2010), such as
volume error, root-mean-squared error, and peak flow error
(Moussa and Chahinian, 2009); Ens and relative peak devi-
ation (KrauBe et al., 2012); Exg, peak efficiency, and loga-
rithmic efficiency (Sikorska et al., 2018); or Exg, peak ef-
ficiency, and mean absolute relative error (Sikorska-Senoner
et al., 2020). In addition, model performance can potentially
be improved by using multiple metrics describing important
catchment processes (Madsen, 2003; Dembélé et al., 2020),
i.e., flood generating mechanisms such as soil moisture and
snowmelt.

A second way to improve model performance is to fo-
cus on the spatial representation of extremes, which may
be improved by considering spatially distributed features of
model response or spatial correlation within a spatial cali-
bration framework. Such a framework could build upon ex-
isting spatial verification metrics such as the spatial predic-
tion comparison test used, e.g., to validate precipitation fore-
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casts (SPCT; Gilleland, 2013), empirical orthogonal func-
tions (EOFs), or Kappa statistics (Koch et al., 2015). For the
calibration and evaluation of spatially distributed hydrolog-
ical models, Koch et al. (2018) recently proposed the SPA-
tial EFficiency (SPAEF) metric, which reflects three equally
weighted components: correlation, coefficient of variation,
and histogram overlap. To improve the spatial dependence of
floods across different sites, such spatial calibration frame-
works would need to include spatial verification metrics fo-
cusing on extremes, which could, e.g., be achieved by look-
ing at deviations of simulated from observed F-madograms,
which measure extremal dependence (Cooley et al., 2012).
Please note, however, that even the use of spatial verification
metrics may not overcome the lack of spatial heterogeneity
in precipitation or soil moisture data.

A third way of improving model performance is to test
whether a model is fit for purpose and to identify model
structures which accurately represent relevant flood produc-
ing mechanisms. The importance of model structure choice
has been highlighted in previous studies both for low- and
high-flow events (Melsen and Guse, 2019; Kempen et al.,
2020; Knoben et al., 2020) and should depend on the spa-
tial complexity of the phenomenon studied (Hrachowitz and
Clark, 2017). However, model structure choice for a spe-
cific application is not straightforward, and automatic model
structure identification frameworks have only been intro-
duced very recently (Spieler et al., 2020). To improve the rep-
resentation of flood processes, such frameworks would ide-
ally explicitly consider local and spatial flood characteristics
and the representation of different flood generation processes
such as rain-on-snow events or flash floods. The representa-
tion of rain-on-snow floods for example requires an accurate
representation of the energy balance in order to represent fac-
tors affecting snowmelt processes such as net radiation and
turbulent heat fluxes (Pomeroy et al., 2016; Li et al., 2019) .

A fourth possibility to improve model performance is
to address data uncertainty of streamflow observations and
of precipitation input. Errors in streamflow measurements
caused by stage—discharge rating-curve uncertainty (Coxon
et al., 2015; Kiang et al., 2018) influence model calibration
and evaluation. To improve uncertainty estimates, such un-
certainty should be accounted for by explicitly considering
streamflow measurement uncertainty in model calibration
(McMillan et al., 2010). In addition, the uncertainty of the
precipitation product used to drive a hydrological model can
lead to differences in observed and simulated flows (Te Linde
et al., 2007; Renard et al., 2011). Precipitation products
may show observation uncertainties (Mcmillan et al., 2012)
and underestimate extreme rainfall or the spatial dependence
of extreme precipitation at different locations because spa-
tial smoothing or averaging during the gridding process re-
duces variability (Haylock et al., 2008; Risser et al., 2019).
Such spatial uncertainty could be accounted for by using
probabilistic analyses of precipitation fields (Newman et al.,
2015a; Frei and Isotta, 2019). The consideration of such in-
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put uncertainty is particularly important if we are interested
in future changes because of climate model and scenario un-
certainty, where precipitation uncertainty is specifically pro-
nounced (Chen et al., 2014; Lopez-Cantu et al., 2020). Even
though many of these possibilities have been discussed in
previous studies, their consideration in flood analyses is not
standard practice.

5 Conclusions

Our model comparison shows that flood characteristics are
not always well captured in hydrological models developed
for research studies — even when the models have been cal-
ibrated with a calibration metric perceived suitable for flood
modeling, the Kling—Gupta efficiency metric (Exg). The
number of flood events was over- or underestimated depend-
ing on the catchment, flood magnitudes were underestimated
by all models in most catchments, and the ability of the
model to accurately reproduce event timing was proportional
to the hydroclimatic seasonality. These model deficiencies
in reproducing local flood characteristics, especially timing,
can lead to a misrepresentation of spatial flood dependencies,
particularly in winter, because the temporal and spatial di-
mensions of flooding are closely linked. Our sensitivity anal-
ysis also shows that climate sensitivities of floods, especially
to changes in precipitation, are not well represented in mod-
els, even if the model can be deemed “well calibrated” ac-
cording to the Exg metric. These sensitivities are generally
underestimated by models independent of the geographical
areas considered; i.e., an increase in event precipitation may
not be translated into a strong enough increase in flood peak.
The misestimation of these sensitivities may undermine the
reliability of future flood hazard assessments relying on such
models.

The limited capability of the models in reproducing local
and spatial flood characteristics and the sensitivity of runoff
to precipitation inputs is partly attributed to model struc-
ture and partly to a reliance of the calibration on an indi-
vidual variable (streamflow) and metric (Exg). While Exg
is integrative of certain properties (bias, variance, correla-
tion), it does nonetheless not explicitly focus on high-flow
values, their spatial dependencies, or processes generating
high-flow values. We conclude that calibration using only an
individual model performance metric or variable can result
in model implementations that have limited value for spe-
cific model applications, such as local and in particular spa-
tial flood hazard analyses and change impact assessments.
This study underscores the importance of improving the
representation of magnitude, timing, spatial connectedness,
and flood generating processes. Potential ways of achieving
such improvements include developing flood-focused, multi-
objective, and spatial calibration metrics, improving flood
generating process representations through model structure
comparisons, and reducing uncertainty in precipitation in-
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put. Such steps are recommended to improve the reliability of
flood simulations and ultimately local and regional flood haz-
ard assessments under both current and future climate condi-
tions.
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accessible by the USGS and can be downloaded via the website at
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