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Abstract. The improvement of a forecasting system and the
continuous evaluation of its quality are recurrent steps in
operational practice. However, the systematic evaluation of
forecast value or usefulness for better decision-making is
less frequent, even if it is also essential to guide strategic
planning and investments. In the hydropower sector, sev-
eral operational systems use medium-range hydrometeoro-
logical forecasts (up to 7–10 d ahead) and energy price pre-
dictions as input to models that optimize hydropower pro-
duction. The operation of hydropower systems, including the
management of water stored in reservoirs, is thus partially
impacted by weather and hydrological conditions. Forecast
value can be quantified by the economic gains obtained with
the optimization of operations informed by the forecasts. In
order to assess how much improving the quality of hydrom-
eteorological forecasts will improve their economic value, it
is essential to understand how the system and its optimiza-
tion model are sensitive to sequences of input forecasts of
different quality. This paper investigates the impact of 7 d
streamflow forecasts of different quality on the management
of hydroelectric reservoirs and the economic gains generated
from a linear programming optimization model. The study
is based on a conceptual approach. Flows from 10 catch-
ments in France are synthetically generated over a 4-year
period to obtain forecasts of different quality in terms of ac-
curacy and reliability. These forecasts define the inflows to
10 hydroelectric reservoirs, which are conceptually parame-
terized. Relationships between forecast quality and economic
value (hydropower revenue) show that forecasts with a recur-

rent positive bias (overestimation) and low accuracy generate
the highest economic losses when compared to the reference
management system where forecasts are equal to observed
inflows. The smallest losses are observed for forecast sys-
tems with underdispersion reliability bias, while forecast sys-
tems with negative bias (underestimation) show intermediate
losses. Overall, the losses (which amount to millions of Eu-
ros) represent approximately 1 % to 3 % of the revenue over
the study period. Besides revenue, the quality of the forecasts
also impacts spillage, stock evolution, production hours and
production rates, with systematic over- and underestimations
being able to generate some extreme reservoir management
situations.

1 Introduction

According to the 2018 report of the International Hy-
dropower Association (IHA, 2018), the worldwide total gen-
erating capacity of hydropower plants is more than 1200 GW,
making hydropower the world’s leading renewable energy
source. The share of global renewable energy production was
25.6 % in 2018, of which 15.9 % came from hydroelectric
production. In France, hydropower is expected to play a cen-
tral role in meeting the flexibility needs of the evolving elec-
tricity system under the clean energy transition. The coun-
try has 25.5 GW of installed hydropower capacity, which
makes it the third largest European producer of hydroelec-
tricity (IHA, 2018). Among the existing hydropower plants,
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more than 80 % are operated by Électricité de France (EDF).
EDF develops in-house forecasting systems to forecast river
discharges and reservoir inflows in catchments of sizes rang-
ing from a few tens to thousands of square kilometers. Most
catchments are located in mountainous areas and are gov-
erned by different hydrological regimes from glacio-nival to
more pluvial-dominant runoff regimes. Forecasting systems
allow one to anticipate hydrometeorological conditions from
hours to days and months ahead. Over the years, investments
have been made to develop deterministic and probabilistic
forecast products that meet the requirements of being reli-
able and accurate. Usefulness is ensured by constant interac-
tion with users. However, questions remain: are investments
in forecast quality rewarding in terms of economic benefits
and improved hydropower production management; and how
does forecast quality impact reservoir management and hy-
dropower revenues?

Operating a hydroelectric reservoir involves deciding
when it is more beneficial to produce energy (i.e., use the
water stored in the reservoir by releasing it through the tur-
bines of the power plant) and when it is more beneficial to
store the water in the reservoir to use when demand (and
electricity prices) are higher. Management decisions are also
affected by other roles the reservoir may have within inte-
grated river basin management (e.g., irrigation for agricul-
ture, flood control and drought relief) as well as by manage-
ment constraints (e.g., reservoir capacity and production ca-
pacity), which are specific to each reservoir. To help reser-
voir management decision-making, tools exist that model
the management problem and help to find the optimal se-
quence of releases in order to fulfill the management objec-
tives. In the literature, there are several optimization algo-
rithms used to manage hydroelectric reservoirs. Dobson et al.
(2019), Rani and Moreira (2010), Ahmad et al. (2014), Ce-
leste and Billib (2009) and Labadie (2004) carried out ex-
tensive reviews of the most common optimization methods.
Three main classes of optimization algorithms that are ef-
ficient for optimizing reservoir management are (1) linear
and nonlinear programming (Arsenault and Côté, 2019; Yoo,
2009; Barros et al., 2003), (2) dynamic programming (Bell-
man, 1957) and its variants, deterministic dynamic program-
ming (DDP) (Haguma and Leconte, 2018; Ming et al., 2017;
Yuan et al., 2016), stochastic dynamic programming (SDP)
(Wu et al., 2018; Yuan et al., 2016; Celeste and Billib, 2009;
Tejada-Guibert et al., 1995), sampling stochastic dynamic
programming (SSDP) (Haguma and Leconte, 2018; Faber
and Stedinger, 2001; Kelman et al., 1990) and stochastic
dual dynamic programming (SDDP) (Macian-Sorribes et al.,
2017; Tilmant and Kelman, 2007; Tilmant et al., 2008, 2011;
Pereira and Pinto, 1991), and (3) heuristic programming
(Macian-Sorribes and Pulido-Velazquez, 2017; Ahmed and
Sarma, 2005). The choice among these algorithms depends
on many factors, such as the stakes and objectives to address,
as well as the configuration of the system and the data avail-
able to parametrize and run the model.

Among the data used in reservoir management and op-
eration, the water inflows to the reservoir, characterized by
their time variability, are crucial if they are either observed
hydrologic flows or forecasts. Streamflow forecasts provide
short- to long-term information on the possible scenarios of
inflows and, consequently, affect the decisions to be made
on releases and storage. The effectiveness of an optimiza-
tion model may thus depend on how good these forecasts
are. Murphy (1993) lists three main aspects that define if
a forecast is good: consistency, quality and value. Forecast
consistency relates to the correspondence between the fore-
cast and the forecaster’s best judgment, which depends on the
forecaster’s base knowledge. Forecast quality relates to how
close the forecast values (or the forecast probabilities) are to
what actually happened. Forecast value relates to the degree
to which the forecast helps in a decision-making process and
contributes to realize an economic or other benefit.

Forecast quality is often characterized by attributes, such
as reliability, sharpness, bias and accuracy. It is often as-
sessed with numeric or graphic scores and independently of
forecast value. When forecasts are affected by errors and dis-
play biases or inaccuracies, they can be improved by apply-
ing statistical corrections, also called postprocessing tech-
niques, to the biased forecasts. Postprocessing is widely
discussed in the literature (Ma et al., 2016; Crochemore
et al., 2016; Thiboult and Anctil, 2015; Pagano et al., 2014;
Verkade et al., 2013; Trinh et al., 2013; Gneiting et al.,
2005, 2007; Fortin et al., 2006) for deterministic and prob-
abilistic (or ensemble-based) forecasts. It is also widely
demonstrated that multiscenario ensemble forecasts provide
forecasts of better quality and enhanced potential usefulness
when compared to single-value deterministic forecasts, even
when the mean of all ensemble members is used (Fan et al.,
2015; Velázquez et al., 2011; Boucher et al., 2011; Roulin,
2007).

While the analysis of forecast quality receives much at-
tention, with numerous scores developed to quantify quality
gains when improving a forecasting system, the evaluation
of forecast value remains a challenge. The value of a fore-
cast represents the benefits realized through the use of the
forecast in decision-making. It is therefore necessary to ac-
quire knowledge on how decisions are made when informed
by forecasts. In the context of hydroelectric reservoir man-
agement, the value of a forecast is often assessed by the per-
formance and benefits obtained from optimal management,
when management objectives are satisfied and constraints are
respected (storage capacity and environmental constraints).
It can be expressed (1) in terms of economic revenues, often
associated with a monetary unit (Arsenault and Côté, 2019;
Tilmant et al., 2014; Alemu et al., 2011; Faber and Stedinger,
2001), and (2) in terms of utility, often associated with a pro-
duction unit (Côté and Leconte, 2016; Desreumaux et al.,
2014; Boucher et al., 2012; Tang et al., 2010).

The analysis of the relationship between the quality of
hydrometeorological forecasts and their economic value in
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the hydroelectric sector is more frequent in the context of
seasonal hydropower reservoir management. For example,
Hamlet et al. (2002) show that the benefits generated by the
use of seasonal forecasting for the management of a water
reservoir used for irrigation, hydropower production, nav-
igation, flood protection and tourism represent an average
increase in annual revenue of approximately USD 153 mil-
lion per year. Boucher et al. (2012) studied the link between
forecast quality and value at shorter, days ahead, lead times.
The authors reforecast a flood event that occurred in the
Gatineau river basin in Canada due to consecutive rainfall
events and evaluate the management of the Baskatong hy-
dropower reservoir under different inflow forecast scenarios.
They show that the use of deterministic or raw (without bias
correction) ensemble streamflow forecasts does not affect the
forecast management value. However, the use of a postpro-
cessor to correct ensemble forecast biases lead to a better
reservoir management.

In order to better understand the relationship between
the quality of hydrometeorological forecasts and their value
through the management of hydroelectric reservoirs, some
studies have created synthetic, quality-controlled hydrolog-
ical forecasts. The use of synthetic forecasts for reservoir
management is, for example, implemented by Maurer and
Lettenmaier (2004). The authors study the influence of syn-
thetic seasonal 12-month hydrological forecasts on the man-
agement of six reservoirs in the Missouri River basin in North
America. Synthetic forecasts are created by applying an er-
ror to past observed flows (flows reconstructed over a 100-
year period). The error is defined according to the lead time
(increasing error with lead time) and according to the level
of predictability the authors wanted to give to the synthetic
forecast. Predictability is assessed by the correlation between
past observed seasonal mean flows and the river basin ini-
tial conditions. Four levels of predictability are defined ac-
cording to the variables considered in assessing the initial
conditions: (1) good predictability (climate variables, snow
water equivalence and soil moisture are considered), (2) av-
erage predictability (only climate variables and snow water
equivalence are considered), (3) poor predictability (only cli-
mate variables are considered) and (4) zero predictability (no
variables are considered). These levels of predictability are
expressed in terms of coefficients (the stronger the coeffi-
cient, the higher the predictability), which are taken into ac-
count in the error of the synthetic forecast. The results of
this study draw two main conclusions: (1) synthetic fore-
casts with better predictability generate the highest revenues
(closer to those of a perfect forecast system) and (2) the size
of the reservoir influences the value of the synthetic forecast
(for a large reservoir, the difference between the benefits of
the synthetic forecast with zero predictability and those of
the perfect forecast system represented by observed stream-
flows are 1.8 %, compared to 7.1 % for a reservoir reduced by
nearly a third of its capacity, which represents a difference of
EUR 25.7 million in average annual revenues).

Lamontagne and Stedinger (2018) presented two statisti-
cal models to generate synthetic forecast values based on a
time series of observed weekly flows. The synthetic fore-
casts are then used in a simplified conceptual reservoir oper-
ation framework where operators aim at keeping their reser-
voir level at a target level during summer. Hydropower ben-
efits are maximized based on the weekly flows and benefits
are computed based on the assumption of constant electricity
prices. Forecast quality is evaluated using the coefficient of
determination as a measure of skill. The study showed that
more accurate forecasts result in higher reservoir freeboard
levels and reduced spills. It also highlighted the importance
of using synthetic forecasts with varying precision to com-
pare the relative merit of different forecast products.

Arsenault and Côté (2019) investigated the effects of sea-
sonal forecasting biases on hydropower management. The
study is based on the ensemble streamflow prediction (ESP)
method, which uses historic precipitation and temperature
time series to build possible future climate scenarios and
force a hydrological model. The forecasts are issued at 120 d
time horizons. The authors apply a correction factor to the
ESP hydrometeorological forecasts, generating a positive
bias of +7 % (overestimation) and a negative bias of −7 %
(underestimation). The study is carried out on the Saguenay-
Lac-St-Jean hydroelectric complex in Quebec, which con-
sists of five reservoirs. The authors also vary the manage-
ment constraints by imposing, or removing, a minimum pro-
duction constraint on management. The study concludes that
more constrained systems tend to be more robust to forecast
biases due to their reduced degree of freedom to optimize
the release/storage scheduling of inflows. Forecasts with a
positive bias (overestimation) led to lower spill volumes than
forecasts with a negative bias (underestimation). In addition,
it was shown that forecasts with a positive bias (overestima-
tion) were correlated with a lower reservoir level.

For practical applications, the value of synthetic forecasts
is related to how the biases in these forecasts reflect the ac-
tual biases encountered in operational forecasts. In opera-
tional hydrological forecasts, biases may vary according to
the time of the year, the magnitude of flows (different bi-
ases may be observed for high and low flows), the catch-
ment and its climatic conditions, among other things. Ad-
ditionally, forecast biases are often dependent on lead time.
Lamontagne and Stedinger (2018) emphasized that synthetic
forecasts should replicate the most important statistical prop-
erties (mean, variance and accuracy) of the real forecasts or
the specified properties of a potential forecast product to be
analyzed. Arsenault and Côté (2019) explained that they ex-
cluded larger variations of biases in their study since this
would not be of additional help in exploring the behavior
of biases on the hydropower system operation of their case
study.

Most of the studies in the literature deal with seasonal fore-
casts, specific flood events or specific contexts of applica-
tion, including single-site case studies. Furthermore, to the
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best of our knowledge, there have not been studies that tried
to untangle the influence of the different quality attributes
of a forecast on the management of reservoirs. Most of the
existing studies either conclude that there is an overall link
between the quality of hydrological forecasts and their eco-
nomic value without specifying which quality attribute has
the greatest influence on the economic value or focus on a
single particular attribute. For instance, Stakhiva and Stew-
art (2010) show that improving the reliability of hydrologi-
cal forecasting systems can improve hydroelectric reservoir
management. Côté and Leconte (2016) also mention the neg-
ative impact of underdispersion of a hydrological forecast-
ing system on reservoir management. Other studies focus on
impacts of forecast accuracy on reservoir management, par-
ticularly when dealing with extreme events, such as floods
or droughts (Turner et al., 2017; Anghileri et al., 2016; Kim
et al., 2007).

The aim of this paper is to present a study that inves-
tigates the impact of quality attributes of short-term (7 d
ahead) hydrological forecasts on the management of hydro-
electric reservoirs under different inflow conditions. For this,
we present a method for creating synthetic hydrological fore-
casts of controlled quality and we apply the different fore-
casting systems generated to a reservoir management model.
The model, based on a linear optimization algorithm, is de-
signed to represent conceptual reservoirs and management
contexts with a simplified parametrization that takes into
account hypothetical reservoir physical parameters and the
actual inflow variability from the upstream catchment area.
This framework allows us to investigate several sites and un-
tangle the influence of different attributes of forecast quality
on hydroelectric production revenues. Our study is based on
data from 10 catchments in France. In the following, Sect. 2
presents the case study areas, the data and methods used. Sec-
tion 3 presents the results and discussions and is followed by
Sect. 4, where conclusions are drawn.

2 Data and methods

2.1 Case study areas and streamflow data

This study is based on a set of 10 catchments located in the
southeast of France. They were selected to represent a vari-
ety of hydrological regimes and areas where the French elec-
tric utility company EDF operates, or has interest in operat-
ing, hydroelectric dams. Figure 1 shows the location and hy-
drological regimes of the studied catchments. Catchments 1,
9 and 10 are located in the French Alps. They are described
by a snow-dominated hydrological regime, with peak flows
observed in spring due to snow melt. Catchment 7 is located
in the Jura mountains and its hydrological regime is domi-
nated by peak flows in winter followed by high flows also
in spring. The same is observed for catchments 2–6 and 8,

located in the Cévennes mountains, where the hydrological
regime is also marked by very low summer flows.

Daily streamflow data come from the French database
Banque HYDRO (Leleu et al., 2014). They are either natural
flows or, when the flows are influenced by existing dams, nat-
uralized flows at the catchment outlet. In this study, they rep-
resent the inflows to the hydroelectric dams and are used to
create the synthetic hydrological forecasts of different qual-
ity for the period 2005–2008.

2.2 Generation of synthetic hydrological forecasts

In order to investigate the impact of the quality of the fore-
casts on the management of hydroelectric reservoirs, we cre-
ated time series of 7 d ahead synthetic daily streamflow fore-
casts of controlled quality for each studied catchment. For
this, for a given day and lead time, we first generate a re-
liable 50-member ensemble forecast based on the observed
daily streamflow value and a parameterized log-normal dis-
tribution, and then we introduce biases on the generation pro-
cesses. For a given day and lead time, the approach can be
described by the following two major steps:

1. Creation of synthetic reliable forecasts: we consider the
synthetic ensemble forecast probability distribution as a
log-normal distribution with two parameters: mean (µ)
and standard deviation (σ ). The standard deviation pa-
rameter is set as a function of a spread coefficient (D2)
and the mean. In other terms, σ is expressed by a multi-
plicative error around the mean (Eq. 1). The higher the
spread coefficient, the higher the standard deviation.

σ =D2
× |µ| (1)

The location parameter mean (µ) depends on the daily
observed streamflow. In probability theory, if a value X
follows a log-normal distribution with parameters (µ,
σ ), the variable Y = log(X) follows a normal distribu-
tion with parameters (µ, σ ). The variate Z = Y−µ

σ
fol-

lows a standard normal distribution of parametersµ= 0
and σ = 1. For a probability 0< p < 1, the quantile
function of the standard normal distribution returns the
value z such that

F(z)= Pr(Z ≤ z)= p. (2)

Considering that the variable X represents the observed
streamflow, with Y = log(X), the quantile qp associ-
ated with the probability p is then

log(X)−µ
σ

= qp. (3)

From Eq. (1), the log-normal mean µ is then given by

µ=
log(X)

1+ qp×D2 . (4)
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Figure 1. Location and hydrological regimes of the 10 studied catchments in France. Lines represent the 75th (upper black line), 50th (central
red line) and 25th (lower black line) percentiles of interannual daily flows (in m3 s−1), evaluated with observed streamflow data available for
the period 1958–2008.

In order to guarantee the creation of a reliable ensem-
ble forecast, values of p are drawn randomly between 0
and 1 from a uniform probability distribution for each
day and lead time. The sampling must thus be large
enough to achieve an equal selection of probabilities
and obtain a reliable ensemble forecast. Finally, from
the log-normal distribution with mean (µ) and standard
deviation (σ ), we randomly draw 50 members to gener-
ate an ensemble.

The steps above are carried out for each day of fore-
cast and each lead time independently, which means
that temporal correlations can thus be lost. To retrieve
correlated 7 d trajectories, we apply an approach based
on the ensemble copula coupling (ECC) postprocessing
methodology (Schefzik et al., 2013; Bremnes, 2008).
The approach consists of rearranging the sampled val-
ues of the synthetic forecasts in the rank order struc-
ture given by a reference ensemble forecasting system,
where physically based temporal patterns are present.
Forecast members are ranked and the rank structure is
applied to the synthetic forecasts to create reordered
trajectories that match the temporal evolution of the
reference forecasting system. In our study, the oper-
ational ensemble forecasting system produced at the

forecasting centers of EDF is taken as reference. It is
based on a conceptual rainfall-runoff model (MORDOR
model; Garçon, 1996) forced by the 50 members of the
meteorological ensemble forecasting system issued by
the European Centre for Medium-Range Weather Fore-
casts (ECMWF). It produces 7 d ahead streamflow fore-
casts daily. The quality of these operational forecasts,
for a similar catchment dataset and evaluation period, is
discussed in Zalachori et al. (2012).

2. Introduction of biases: from the previous step, we can
generate ensemble forecasts that are reliable, sharp
(very close to the observed streamflows) and unbiased.
To deteriorate the quality of the forecasts, we implement
perturbations to be added to the generation process.

To deteriorate the reliability of the synthetic forecasts,
the values of p, which define the position of the ob-
servation in the probability distribution of the ensem-
ble forecast, are not taken randomly. This is done by
introducing a reliability coefficient (R) as a power co-
efficient in the p value: pR. According to the value
taken by R, the random drawing will be biased (R 6= 1)
or not (R = 1). We created synthetic ensembles with a
negative bias (0<R < 1) and a positive bias (R > 1),
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which are associated with forecasts that underestimate
and overestimate the observations, respectively.

To generate underdispersed ensembles, the synthetic
generation is controlled so that high flows are under-
estimated and low flows are overestimated. In practice,
each daily observed streamflow is compared with the
quantiles 25 % and 75 % of the observed probability dis-
tribution. If the daily observation is lower than the quan-
tile 25 %, the p value is forced to be between 0 and 0.1.
If the daily observation is higher than the quantile 75 %,
the p value is forced to be between 0.9 and 1. In this
way, 50 % of the daily synthetic forecasts are forced to
under- or overestimate the observations.

Finally, to deteriorate the sharpness and the accuracy,
the spread coefficient (D) is increased. Higher spread
coefficients will generate less sharp and accurate en-
semble forecasts. An ensemble forecast very close to the
observed streamflows is generated from the synthetic
ensemble forecasting model with a D coefficient equal
to 0.01, corresponding to a spread factor of 0.01 %.
We then generated additional ensembles with D coef-
ficients equal to 0.1, 0.15 and 0.2, which corresponds
to spread factors of 1 %, 2.25 % and 4 %. These are
low values compared to actual biases that can be found
in real-world forecasts. However, since our synthetic
generation model is based on a log-normal distribu-
tion, the degree of skewness can increase fast as we in-
crease D (and, consequently, as σ is increased), gener-
ating streamflows that are too high to be realistic and
used in the reservoir management model.

In summary, for each studied catchment and over the 4-
year study period, we generated a total of 16 synthetic en-
semble forecasting systems represented in Table 1 (4 main
types to characterize biases× 4 spread factors to character-
ize sharpness).

Each synthetic ensemble forecasting system was generated
daily with 50 members and up to 7 d of forecast lead time.
Figure 2 shows examples of the four synthetic ensemble fore-
casts generated for the 1 d lead time at catchment 1 (Fig. 1)
for the year 2005. It shows:

– UnB (reliable and unbiased, Fig. 2a): forecasts uni-
formly distributed around the observed flows,

– OvE (overestimation, Fig. 2b): systematic positive bi-
ases towards forecasts that overestimate the observed
flows,

– UnE (underestimation, Fig. 2c): systematic negative bi-
ases towards forecasts that underestimate the observed
flows,

– UnD (underdispersed, Fig. 2d): flows greater than the
historic 75th percentile are underestimated and flows
lower than the historic 25th percentile are overesti-
mated.

2.3 Reservoir management model

The reservoir management model is based on linear program-
ming (LP) to solve the optimization problem: maximize hy-
dropower revenue under the constraints of maximum and
minimum reservoir capacities. Linear programming is one
of the simplest ways to quickly solve a wide range of lin-
ear optimization problems. The linear problem is solved by
the open-source solver COIN Clp, which applies the sim-
plex algorithm. The solver is called using PuLP, a Python
library for linear optimization. The model is an improvement
of a heuristic model of hydropower reservoir inflow manage-
ment that was previously designed by EDF and INRAE for
research purposes. It defines the reservoir management rules
at the hourly time step based on deterministic 7 d inflow fore-
casts and hourly time series of electricity prices.

Electricity prices in France have seasonal variability, with
higher prices in winter due to the higher electricity demand
for heating. They also vary within a week (lower prices are
observed during weekends when industrial demand is lower)
and within a day (higher prices are observed during peak de-
mand hours). In this study, we use the hourly energy price
time series for the period 2005–2008 from the EPEX-SPOT
market (https://www.epexspot.com/en, last access: 14 Febru-
ary 2021). This study period avoids the negative market
prices observed after 2008. Since we want to isolate the in-
fluence of the quality of inflow forecasts on the revenue, we
used observed prices instead of forecast prices.

The 10 studied catchments define the inflows to 10 hy-
droelectric reservoirs, which are conceptually parameterized
as follows: given the focus of the study on 7 d inflow fore-
casts, the storage capacity of each reservoir is defined as five
times the historic mean daily flow; the maximum electricity
production capacity, which is related to production power, is
set at three times the historic mean daily flow; and the min-
imum storage capacity is set at 0 Mm3 for each reservoir.
Given the historic mean daily flows of the studied catch-
ments, the conceptual sizes of the reservoirs vary between
3.18 and 34.22 Mm3 in this study. We do not use the ac-
tual reservoir dimensions and operational characteristics, al-
though the inflows from the synthetic hydrological forecasts
reflect the actual hydrological variability. For each synthetic
ensemble forecast, the reservoir management model is run
with the mean of the members of the ensemble. Running the
solver with each ensemble member and taking an average
decision would also be possible but would require additional
investigation on the influence of extreme values of individual
members on the decision, which is beyond the scope of this
paper.

The LP optimization model defines, for each day, an opti-
mal release sequence (operation scheduling), which amounts
to the water to be used to produce electricity. A rolling-
horizon optimization scheme is used. For each day, the op-
timization problem is solved considering a 7 d window. It is
informed by the 7 d synthetic streamflow forecast (ensemble
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Table 1. Summary of the 16 synthetic forecasting systems generated according to the four bias characterizations (UnB, OvE, UnE and UnD)
and the four sharpness characterizations (spread factors) applied.

Bias characterization

Sharpness characterization UnB: reliable OvE: overestimation UnE: underestimation UnD: underdispersed

Spread factor (%) 0.01 1 2.25 4 0.01 1 2.25 4 0.01 1 2.25 4 0.01 1 2.25 4

Figure 2. Illustration of the synthetic forecasts generated: (a) UnB (reliable and unbiased forecasts), (b) OvE (forecasts that overestimate),
(c) UnE (forecasts that underestimate) and (d) UnD (underdispersed forecasts). The example is for catchment 1 (Fig. 1) and the 1 d forecasts
of 2005. The spread factor used for this figure is 2.25 %.

mean) and the hourly electricity prices. The algorithm max-
imizes the hydropower revenue, searching for an optimal re-
lease sequence over the week. It tries to use all the incoming
volume to produce electricity, thus maximizing the imme-
diate benefits of electricity generation. We did not use final
water values to account for the state of the reservoir storage
at the end of the 7 d optimization period. However, we im-
plemented the weekly production as a soft constraint, which
should not be higher than the weekly volume of water enter-
ing the reservoir. This prevents the model from emptying the
reservoirs at the end of the period.

The main objective of the reservoir management model
is to maximize hydropower revenue while meeting the con-
straints of the reservoir. The management objective is quanti-

fied according to the objective function below, which is max-
imized over a week for each day of the study period:

max
H−1∑
h=0

ph× ρ× qh, (5)

where h refers to the hour of the week (in total, H = 168 h);
ph refers to the hourly electricity price at hour h; ρ refers to
the efficiency of the power plant, in MWh m−3 s−1, which
is a constant equal to 1 MWh m−3 s−1 in this study; and
qh refers to the release in m3 s−1 used for the production at
hour h.

Mayne et al. (2000) classify management constraints into
two categories: hard constraints and soft constraints. Dobson
et al. (2019) define these constraints as follows: “Hard con-
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straints are those constraints that cannot be violated under
any circumstance and typically represent physical limits [. . . ]
Soft constraints, instead, are those constraints that should not
be violated but that are not physically impossible to break.”
In our experiment, the maximum capacity is a soft constraint,
while the minimum capacity is defined as a hard constraint.
When a major event occurs and the reservoir does not have
the storage capacity required to store the inflow volume, the
maximum reservoir capacity constraint is violated. There are
penalty terms (associated with spills and minimum volumes)
in the cost function, which intervene in the objective function
during the optimization. Penalties are based on the order of
magnitude of the gains per hm3 (taking the maximum elec-
tricity price into account). The minimum volume penalty is
calculated to always be greater than the potential gains, and
the spill penalty is 10 times the minimum volume penalty.
For instance, for a gain of 8 per hm3, the order of magni-
tude will be 1; the power to 10, zero; the minimum volume
penalty, 10; and the spill penalty, 100. The storage constraints
and the temporal evolution of the stock are quantified as

vmin
h ≤ vh ≤ v

max
h (6)

vh = vh−1+K (ah− qh) , (7)

where vmin
h and vmax

h represent, respectively, the minimum
and maximum volume of the reservoir at hour h in Mm3;
ah represents the forecast inflow at hour h in m3 s−1

and K represents the conversion constant from m3 s−1

to Mm3 h−1 (equal to 0.0036).
The optimization is also constrained by the maximum pro-

duction capacity, which is considered a hard constraint. Pro-
duction therefore cannot exceed the maximum production
capacity:

0≤ qh ≤ qmax, (8)

where qh refers to the release in m3 s−1 at hour h and
qmax refers to the maximum release (associated with the max-
imum production capacity).

Furthermore, the optimization is constrained by the
weekly release for electricity production, which cannot be
higher than the weekly inflows. This constraint is considered
a soft constraint. It has been implemented for this research
management model and is not representative of the real op-
erational constraints. It can be expressed as

H−1∑
h=0

(K × qh)≤ A=

H−1∑
h=0

(K × ah) , (9)

where A represents the cumulative weekly inflows.
When applying the model, after the optimization phase

and once the operation schedule is defined for the coming
week, it simulates the management of the reservoir with the
actual observed inflows over the release schedule defined for
the first 24 h. This simulation phase consists of applying the

optimal command of releases obtained during the optimiza-
tion phase to the first day (there is no re-optimization). At
this phase, it may happen that the observed inflows are very
different from the forecast inflows used for the optimization
and, due to the management constraints, it is not possible to
follow the optimal command. In this case, the rule is modi-
fied to allow the operations to be carried out within the stor-
age constraints. When the management rule at one hour h
induces a violation of the minimum storage constraint, the
release is decreased until the constraint is respected. On the
other hand, when a volume of water is spilled, the release is
increased. We note that, in this case, the modified manage-
ment rule does not always avoid discharge and a volume of
spilled water may occur.

The volume obtained at the end of the 24 h simulation
phase is used to update the initial volume of the reservoir
for the next forecast day and optimization. This is done in
a continuous loop over the entire 4-year study period (2005–
2008) for each catchment and for the 16 synthetic streamflow
forecasts of different forecast quality. At the end, the amount
of hourly electricity produced is multiplied by the price (in
Euro per MWh) to obtain the revenue. The impact of forecast
quality on the revenue (economic value) is then assessed.

2.4 Evaluation of forecast quality

In terms of forecast quality, we focus on assessing the relia-
bility, sharpness, bias and accuracy of the forecasts.

The reliability is a forecast attribute that measures the
correspondence between observed frequencies and forecast
probabilities. It can be measured by the probability integral
transform (PIT) diagram (Gneiting et al., 2007; Laio and
Tamea, 2006) at each forecast lead time. The diagram repre-
sents the cumulative frequency of the values of the predictive
(forecast) distribution function at the observations. A reliable
forecast has a PIT diagram superposed with the diagonal (0–
0 to 1–1). It means that the observations uniformly fall within
the forecast distribution. A forecasting system that overesti-
mates the observations is represented by a curve above the di-
agonal. If the PIT diagram is under the diagonal, it indicates
that observations are systematically underestimated. A PIT
diagram that tends to be horizontal means that the forecasts
suffer from underdispersion (i.e., observations often fall in
the tail ends of the forecast distribution). On the other hand,
a PIT diagram that tends to be vertical means that the fore-
casts are overdispersed.

The sharpness of a forecast corresponds to the spread of
the ensemble forecast members. It is an attribute indepen-
dent of the observations, which is therefore specific to each
forecasting system. To evaluate the sharpness of a forecast
for each lead time, the 90 % interquantile range (IQR) can
be used (Gneiting et al., 2007). It corresponds to the differ-
ence between the 95th quantile and the 5th quantile of all en-
semble members. The IQR score is evaluated for each fore-
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cast day and then averaged over the entire study period. The
smaller the IQR, the sharper the forecast.

The forecast bias measures the average error of a forecast
in relation to the observation over a given time period. Bias
measurement is used to detect positive (forecasts greater than
observations) or negative (forecasts lower than observations)
biases. To evaluate the bias of the synthetic ensemble stream-
flow forecasts, the percent bias (Pbias) is computed for each
day i and lead time (Fan et al., 2016; Waseem et al., 2015). It
compares the daily observation o with the daily mean of the
ensemble forecast m. The Pbias score is then averaged over
the entire study period of N forecast days:

Pbias= 100 ·


N∑
i=1
(mi − oi)

N∑
i=1
oi

 . (10)

The Pbias is negative (positive) when forecasts underestimate
(overestimate) the observations.

The accuracy of a forecast represents the difference be-
tween an observed value and an expected forecast value. It
is often assessed with the root mean square error (RMSE),
which corresponds to the square root of the mean square er-
ror. In the case of an ensemble forecast, the average of the
ensemble forecast is often used to assess the accuracy of the
forecasting system. In this study, the RMSE is normalized
with the standard deviation (SD) of the observations to allow
comparison among different catchments:

NRMSE=
RMSE
SDobs

. (11)

The lower the NRMSE, the more accurate the forecast is.
Finally, we evaluated the overall forecast quality of each

forecasting system with the continuous ranked probability
score (CRPS) (Hersbach, 2000). It compares the forecast
distribution to the observation distribution (a Heaviside step
function at the observation location) over the evaluation pe-
riod. The score is better if the probability distribution of the
forecasts is close to that of the observations. The lower the
CRPS, the better the forecasts are. In this study, the CRPS
is also normalized with the SD of the observations to reduce
the impact of the catchment size on this score (Trinh et al.,
2013):

NCRPS=
CRPS
SDobs

. (12)

3 Results and discussions

3.1 Quality of the generated synthetic hydrological
forecasts

In order to validate the model used to generate synthetic fore-
casts of controlled quality, we evaluated the quality of each

Figure 3. IQR score for 1 d ahead synthetically generated forecasts
of different quality: unbiased system (UnB, yellow), underdispersed
system (UnD, green), underestimating system (UnE, blue) and over-
estimating system (OvE, red). Systems are based on ensembles gen-
erated with four different spread factors (0.01 %, 1 %, 2.25 % and
4 %). (a–d) Boxplots represent the maximum value, percentiles 75,
50 and 25, and minimum value over the 10 studied catchments.
(e) Median score value.

ensemble hydrological forecasting system in terms of sharp-
ness (Fig. 3), reliability (Fig. 4), systematic bias (Fig. 5), ac-
curacy (Fig. 6) and overall quality (Fig. 7). The quality of
the synthetic ensemble forecasts is presented at the 1 d lead
time only, since, by construction, the quality of the synthetic
forecasts does not vary according to the lead time. In all the
figures except Fig. 4, the top graphs show, in the form of box-
plots (maximum value, percentiles 75, 50 and 25, and mini-
mum value), the distribution of the scores of quality for the
10 catchments of the study. The bottom graphs highlight the
evolution of the median score (percentile 50). In both graphs,
the results are presented for four spread factors (0.01 %, 1 %,
2.25 % and 4 %).

Figure 3 shows the effect of the increase in the spread fac-
tor on the sharpness score (IQR) of each synthetic ensemble
forecasting system. The evolution of IQR values for the unbi-
ased system (UnB) can be used as a reference of expected im-
pacts; the dispersion of the ensemble system increases when
the spread factor increases. Therefore, the model designed
for the generation of synthetic ensemble forecasts of con-
trolled quality works as expected in terms of spread varia-
tions. Additionally, we also observe that the IQR scores are
not very different among the forecasting systems and the
studied catchments for the smaller spread factors. To differ-
entiate the ensemble systems in terms of their sharpness, it

https://doi.org/10.5194/hess-25-1033-2021 Hydrol. Earth Syst. Sci., 25, 1033–1052, 2021



1042 M. Cassagnole et al.: Impact of hydrological forecast quality on hydroelectric reservoirs

Figure 4. PIT diagram for 1 d ahead synthetically generated fore-
casts of different quality: unbiased system (UnB, yellow), underdis-
persed system (UnD, green), underestimating system (UnE, blue)
and overestimating system (OvE, red). For each system, each line
represents one of the 10 studied catchments. Forecasts are based on
ensembles generated with a 4 % spread factor.

is thus necessary to have a spread factor greater than 1 %
in the synthetic forecast generator model, regardless of the
catchment location or the bias of the system. The intercatch-
ment difference as well as the differences among the fore-
casting systems increase as the spread factor increases. These
differences also reflect the way the synthetic ensemble fore-
casts were generated. The implementation of a reliability bias
towards overestimation of streamflows (OvE system) has a
strong impact on sharpness. IQR score values are the highest
for this system, particularly when the spread factor is high.
The spread of the forecasts is thus the highest for this sys-
tem. This can be explained by the fact that, by construc-
tion, there is no physical upper limit imposed to the over-
estimation of streamflows. On the contrary, for the system
that was generated to present a bias towards underestima-
tion (UnE), the lower limit physically exists and corresponds
to zero flows. This explains why this system shows low IQR
scores even at the highest spread factor. In the underdispersed
system (UnD), the low flows are overestimated, while the
high flows are underestimated. By construction, the forecasts
are thus more concentrated and the dispersion of this system
tends to be small. This is also reflected in Fig. 3, where the
values of IQR for the UnD system are very close to those of
the UnE system.

The evaluation of reliability is shown in Fig. 4. The PIT di-
agram of each catchment is represented (lines) for the higher
spread factor only (4 %), when the differences in the quality
of the forecasting systems are higher. The lines in the PIT
diagram clearly show the effectiveness of the forecast gen-
erator model to introduce reliability biases in the unbiased
forecasting systems of all catchments. The cumulative distri-
butions of the PIT values of the unbiased systems (UnB) are
located around the diagonal, showing a uniform distribution

Figure 5. Pbias score for 1 d ahead synthetically generated fore-
casts of different quality: unbiased system (UnB, yellow), underdis-
persed system (UnD, green), underestimating system (UnE, blue)
and overestimating system (OvE, red). Systems are based on en-
sembles generated with four different spread factors (0.01 %, 1 %,
2.25 % and 4 %). (a–d) Boxplots represent the maximum value, per-
centiles 75, 50 and 25, and minimum value over the 10 studied
catchments. (e) Median score value.

of the PIT values as expected in a probabilistically calibrated
ensemble forecasting system. The forecast deficiencies of the
biased-generated systems are illustrated in the PIT diagram
by their distance to the uniformity of a reliable system. The
forms of the curves reflect well the underdispersion of the
system UnD, as well as the overestimation and the underes-
timation of the systems OvE and UnE, respectively.

The reliable system (UnB) also shows zero to very low
percent bias, as illustrated in Fig. 5. For this system, a slight
positive bias appears when using a 4 % spread factor. The fact
that the increase in spread leads to a slight positive bias (over-
estimation), even when the system is generated to be prob-
abilistically unbiased, may be the consequence of the skew-
ness of the log-normal distribution used in the forecast gener-
ation model, which increases as the spread increases and may
result in the generation of some very high values, affecting
the median bias. This impact is however much smaller com-
pared to the impact of adding biases to the reliable forecasts.
From Fig. 5, we can see a strong positive bias for the system
that tends to overestimate streamflow observations (37 % of
median Pbias value for OvE and spread factor of 4 %) and a
negative bias for the system that tends to underestimate them
(up to−18 % of median Pbias value for the UnE system). We
also observe that there are larger differences in Pbias values
among catchments in the OvE forecasting system, particu-
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Figure 6. NRMSE score for 1 d ahead synthetically generated fore-
casts of different quality: unbiased system (UnB, yellow), underdis-
persed system (UnD, green), underestimating system (UnE, blue)
and overestimating system (OvE, red). Systems are based on en-
sembles generated with four different spread factors (0.01 %, 1 %,
2.25 % and 4 %). (a–d) Boxplots represent the maximum value, per-
centiles 75, 50 and 25, and minimum value over the 10 studied
catchments. (e) Median score value.

larly at spread factor of 4 % (Pbias values vary from 25 % to
75 %). A negative bias is observed for underdispersed fore-
casts (−11.5 % of median Pbias value for UnD and spread
factor of 4 %). The values of Pbias for the OvE and UnD
systems are close to each other and present the same signal.
This indicates that, in the UnD forecasting system, the im-
pact of the underestimation of high flows in the percent bias
is higher than the impact of the overestimation of low flows.
The resemblance between the two synthetic systems is also
illustrated in Fig. 2. Finally, in all biased generated systems,
the higher the spread factor, the higher the absolute value of
the Pbias of the system.

The evaluation of the NRMSE (accuracy, Fig. 6) and
NCRPS (overall forecast quality, Fig. 7) scores also illus-
trates the impact of introducing biases in a reliable ensem-
ble streamflow forecasting system. Overestimation leads to
the worst scores and the highest differences in performance
among catchments. Systems generated with underestimation
and underdispersion biases have very similar scores, reflect-
ing their similarity when high peak flows are reduced (see
Fig. 2). For all systems, scores get worse when increasing
the spread factor (i.e., the ensemble spread). Although bet-
ter for the unbiased and reliable system (UnB), the accu-
racy score (NRMSE) does not strongly differentiate the UnB,
UnD and UnE systems in terms of accuracy of the ensem-

Figure 7. NCRPS score for 1 d ahead synthetically generated fore-
casts of different quality: unbiased system (UnB, yellow), underdis-
persed system (UnD, green), underestimating system (UnE, blue)
and overestimating system (OvE, red). Systems are based on en-
sembles generated with four different spread factors (0.01 %, 1 %,
2.25 % and 4 %). (a–d) Boxplots represent the maximum value, per-
centiles 75, 50 and 25, and minimum value over the 10 studied
catchments. (e) Median score value.

ble mean. This may be linked to the fact that the RMSE is
based on absolute values of the errors and is not sensitive
to the direction of the error (as in Pbias). Also, the fact that
larger differences have a larger effect on RMSE, given that
it is based on the square root of the average of squared er-
rors, the high streamflow values generated in the unbiased
system when using the higher spread factor penalize this sys-
tem, leading to RMSE scores very close to the scores of the
biased UnD and UnE systems, where high streamflow fore-
cast values tend to occur less often. Finally, we note that the
range of NRMSE values of the OvE system comprises the
range of normalized RMSE values found by Zalachori et al.
(2012) (NRMSE ranging from 1.7 to 2.4) when analyzing
the raw (without bias correction) operational forecasts over a
similar dataset of catchments.

3.2 Economic value of the generated synthetic
hydrological forecasts

The value of the different forecasting systems is assessed
based on the total economic revenue obtained from the hy-
dropower reservoir operation when using, on a daily basis,
each system’s 7 d forecasts as input to the reservoir manage-
ment model (LP optimization) over the study period (2005–
2008). The revenue obtained with each synthetic forecast-
ing system is then evaluated against the revenue obtained us-
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Figure 8. Percentage gain in hydropower revenue (N. Gain in %)
for synthetically generated forecasts of different quality: unbiased
system (UnB, yellow), underdispersed system (UnD, green), un-
derestimating system (UnE, blue) and overestimating system (OvE,
red). Systems are based on ensembles generated with four different
spread factors (0.01 %, 1 %, 2.25 %, and 4 %). (a–d) Boxplots rep-
resent the maximum value, percentiles 75, 50 and 25, and minimum
value over the 10 studied catchments. (e) Median value.

ing a reference system. This reference system is given by
the observed streamflows. It is thus equivalent to a “perfect
forecasting system”, where the forecasts are always identi-
cal to the observed inflows. Hence, the maximum revenue is
obtained by the reference system. The gain in revenue ob-
tained for each synthetic system is expressed as the percent-
age gain in relation to the revenue of the reference system
(N. Gain in %). This percentage gain is therefore negative
(i.e., a percentage of loss in relation to the reference). The re-
sults obtained are shown in Fig. 8. The graph on top shows,
in boxplots, the distribution of the percentage gains (maxi-
mum value, percentiles 75, 50 and 25, and minimum value)
of the 10 studied catchments. The graph at the bottom high-
lights the median gain. Both graphs show the gain for each
synthetic forecast system of controlled quality and as a func-
tion of the spread factor used to generate the forecasts.

The economic revenues of the different forecasting sys-
tems are very similar for the smaller spread factors. The
difference in economic value between the synthetic forecast
systems widens with the increase in the spread factor. More-
over, the percentage gains show a clear tendency to decrease
as the spread factor increases. A given forecasting system
will lose more revenue in comparison with the reference per-
fect system as it becomes more dispersed. This observation is
in line with the analysis of the quality of the systems: as the

spread increases, the quality (sharpness, accuracy, reliability
and overall quality) decreases and the value (percentage gain
in revenue) decreases.

Figure 8 and the analysis of synthetic forecast quality
(Figs. 3–7) clearly show that the forecasting system display-
ing the worst scores in terms of forecast quality is also the
one that displays the lowest economic value (system OvE,
red line in Fig. 8). In the ranges and within the conditions
of our experiment, a forecast system that, in median values,
overestimates streamflows at about 30 % (Pbias) generates a
loss in revenue of up to 3 %, compared to the revenue gener-
ated by a forecasting system that perfectly forecasts the ob-
served inflows to the reservoir. Similarly, the unbiased sys-
tem (UnB), which has the best quality among the synthetic
forecasting systems (reliability, bias and overall quality), is
the system that provided hydropower revenues the closest to
the revenues of a perfect system. The second best system in
terms of economic value is the system that suffers from un-
derdispersion (UnD). Although, in terms of forecast quality,
this system ranks closely to the forecast system that underes-
timates inflows (UnE), it performs, in median values, about
0.5 % points better in terms of economic gains. The systems
that under- and overestimate inflows (UnE and OvE, respec-
tively) are those that show a steeper rate of loss in economic
revenue as the spread of the forecasts increases. When mov-
ing from a spread factor of 2.25 % to a spread factor of 4 %,
the median percentage gains of the system UnE move from
−0.67 % to−1.5 %, while for the system OvE, it moves from
−1 % to −3 %. Notably, the overall rank in economic value
of the synthetic forecasting systems is similar to their rank in
quality according to the Pbias and the NCRPS scores.

3.3 Influence of forecast bias on the total amount and
hours of electricity production

The economic value of the synthetic forecasts is assessed
by the gains of revenue generated when using a given fore-
casting system as inflow to the reservoir management model.
Revenues (in euros) are calculated by multiplying the hourly
electricity production (MW) by the electricity price (euro
per MWh) at the time of production. It is not enough to pro-
duce a large amount of electricity to increase revenues. It is
also necessary to optimally place the production at the best
hours (i.e., when the prices are higher). Here, we investigate
how each synthetic forecasting system influences the total
production and number of hours of electricity produced over
the study period. Figure 9 shows the normalized total pro-
duction of each synthetic forecasting system, while Fig. 10
shows the normalized number of hours of production over
the entire period. Both are expressed in terms of percentage
of the total production (N. Production in % in Fig. 9) or of
the total hours of production (N. Hour of production in %
in Fig. 10) of the reference system (i.e., the perfect system,
where forecasts are equal to observations).
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Figure 9. Total production of the synthetic ensemble forecasting
systems as a percentage of the total production of the reference
system (i.e., the “perfect system”, where forecasts are equal to ob-
servations): unbiased system (UnB, yellow), underdispersed system
(UnD, green), underestimating system (UnE, blue) and overestimat-
ing system (OvE, red). Systems are based on ensembles generated
with four different spread factors (0.01 %, 1 %, 2.25 % and 4 %).
(a–d) Boxplots represent the maximum value, percentiles 75, 50
and 25, and minimum value over the 10 studied catchments. (e) Me-
dian value.

Compared to the reference system, the unbiased forecast-
ing system (UnB) results in lower total electricity production,
although the differences are very small (Fig. 9). The released
volumes (used to produce electricity) are thus very similar
to the released volumes of the reference system. In terms of
the number of hours of production (Fig. 10), we can see that
there are more production hours in the unbiased system than
in the reference system (about 0.5 % more). This indicates
that the unbiased system produces almost the same quan-
tity of electricity but distributes it over more hours within
the study period, which may reflect a less optimized place-
ment of production than in the reference system. This may
explain the tendency of this synthetic forecasting system to
show small losses in terms of economic value (Fig. 8) com-
pared to the reference system despite its overall good quality.
The increase in the spread factor does not seem to substan-
tially affect the results.

The total production seems to be more sensitive to fore-
cast underestimation of high flows, as present in the syn-
thetic forecasting systems with underestimation (UnE) and
underdispersion (UnD) biases. These systems show a loss
of production that is sensitive to the spread factor and can
reach up to 0.6 % in median values over the 10 studied catch-
ments (Fig. 9). This may be related to the fact that these sys-

Figure 10. Total hours of production of the synthetic ensemble fore-
casting systems as a percentage of the total hours of production of
the reference system (i.e., the “perfect system”, where forecasts are
equal to observations): unbiased system (UnB, yellow), underdis-
persed system (UnD, green), underestimating system (UnE, blue)
and overestimating system (OvE, red). Systems are based on en-
sembles generated with four different spread factors (0.01 %, 1 %,
2.25 % and 4 %). (a–d) Boxplots represent the maximum value, per-
centiles 75, 50 and 25, and minimum value over the 10 studied
catchments. (e) Median value.

tems tend to forecast less water flowing into the reservoir.
The management model will therefore plan fewer releases,
which, consequently, tends to reduce the electricity produc-
tion. The total production losses of these two systems are in
opposition to the increase in the number of production hours
(Fig. 10). Particularly in the case of the UnE system, pro-
duction is distributed over up to 7.4 % more hours than that
of the reference system. It seems that since the system fore-
casts lower inflows than what is observed, the management
model has to activate production hours that were not neces-
sarily planned based on the forecasts to release the exceeding
inflow that is observed. The optimized production rule thus
has to be adapted to the fact that more inflow is observed
than forecast. It is done by increasing the number of produc-
tion hours. We also note that, in percent points, the amount of
loss in production is lower than the amount of loss in revenue
(gain) for these systems (up to 1 % for UnD and 1.5 % for
UnE, as shown in Fig. 8). The loss in revenue may therefore
be explained by other factors than the loss in total produc-
tion only, and this loss is not compensated by the increase in
production hours. It seems that the way the production is dis-
tributed within the hours also plays a role (i.e., how the opti-
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Figure 11. Differences in production hours between the reference
system (i.e., the “perfect system”, where forecasts are equal to ob-
servations) and two synthetic ensemble forecasting systems: under-
estimating system (UnE, blue) and overestimating system (OvE,
red). Differences are pooled into four classes of production rate
(from lower C1 to higher C4 production rate). Synthetic systems
are based on ensembles generated with spread factors of 4 %. Box-
plots represent the maximum value, percentiles 75, 50 and 25, and
minimum value over the 10 studied catchments.

mization works in terms of finding the best hours to produce
electricity and, consequently, increase the total revenue).

The synthetic forecast system with a positive bias (OvE) is
the only one that displays a total production higher than the
reference system, although the difference is very small; for
a spread factor of 4 %, the percentage of increased produc-
tion is only 0.06 % (Fig. 9). The OvE system distributes its
production over a larger number of hours but only when the
spread factor increases (Fig. 10). The increase of spread also
increases the value of the ensemble mean of the OvE system
and, consequently, higher inflows are forecast to the reser-
voir than later observed. This seems to result in management
rules with a higher number of hours of production (i.e., pro-
duction is activated to release water and lower the levels of
the reservoir). However, as in the case of the UnE system,
the high number of hours of production does not result in
gains in revenue since the OvE system is the one with the
worst economic performance, followed by the UnE system
(Fig. 8).

3.4 Influence of forecast bias on the rate of electricity
production

More production hours does not necessarily lead to more to-
tal production or more gains in revenue, as seen in the UnE
and OvE biased forecasting systems. Here, we investigate
how the production is performed within the production hours
for these synthetic forecasting systems. In the reservoir man-
agement model, production is not always operating at maxi-
mum capacity. For instance, if the maximum production ca-
pacity is 200 MW and, at a given hour, only 20 MW is pro-
duced, the production rate at this hour is only 10 %. A fore-
casting system can thus be associated with a large number of

Figure 12. Differences in median electricity prices between the
reference system (i.e., the “perfect system”, where forecasts are
equal to observations) and two synthetic ensemble forecasting sys-
tems: underestimating system (UnE, blue) and overestimating sys-
tem (OvE, red). Differences are pooled into four classes of pro-
duction rate (from lower C1 to higher C4 production rate). Syn-
thetic systems are based on ensembles generated with spread fac-
tors of 4 %. Boxplots represent the maximum value, percentiles 75,
50 and 25, and minimum value over the 10 studied catchments.

production hours, although electricity is finally produced at
low rates. Additionally, the gains in revenue are influenced by
the electricity prices at the hours of higher production rates.
In order to investigate this issue, we considered the UnE and
OvE systems with the higher spread factor (4 %). We defined
four classes of production rates:

– class 1 (C1): production rate less than a quarter of the
maximum production capacity,

– class 2 (C2): production rate between a quarter and a
half of the maximum production capacity,

– class 3 (C3): production rate between a half and three
quarters of the maximum production capacity,

– class 4 (C4): production rate exceeding three quarters of
the maximum production capacity.

For each class, we evaluated the number of production
hours falling in each class in Fig. 11 and the median elec-
tricity price in Fig. 12 (i.e., the median value of all the prices
of all the hours that fall into the given class of production
rate). Both are expressed as differences between the values
evaluated when considering the reference system (i.e., the
perfect system, where forecasts are equal to observations)
and the values obtained with the synthetic forecasting sys-
tem. Therefore, negative values indicate that the production
hours or median price values of the synthetic forecasting sys-
tem are higher than those of the reference system. On the
other hand, positive values indicate that the production hours
or median price values of the synthetic forecasting system
are lower than those of the reference system. In Fig. 11, the
difference in hours within each class is shown and in Fig. 12
the differences in median prices within each class is shown.
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Boxplots represent the maximum value, percentiles 75, 50
and 25, and minimum value over the 10 studied catchments.

From Fig. 10, we had seen that the total number of pro-
duction hours of the UnE and OvE forecasting systems was
greater than the total number of hours of the reference sys-
tem. Figure 11 shows that their production is more frequent
in classes of lower production rate: UnE and OvE systems
show more hours than the reference system in classes C1–
C3 (boxplots at negative values) and less hours than the
reference system in the most productive class C4 (boxplots
at positive values). In median values, system UnE displays
600 h more than the reference system in the lower class C1,
i.e., when production is performed at less than a quarter of the
maximum capacity, the UnE system produces more than the
reference system. For the OvE system, its performance is no-
tably worse than the reference system for classes C2 and C3
(it has more hours of production at the C2 and C3 lower rates
than the reference system) and for class C4 (in median val-
ues, it has about 500 h less production at the higher rates than
the reference system). The impact of these biased forecast-
ing systems on the performance of the management model
is clearly demonstrated. These two biased forecasts tend to
produce more than the reference system when the produc-
tion rate is low. The reference system counts very few hours
of production rate in classes C1–C3 of low production rate.
Moreover, the biased systems tend to produce less when the
production rate is closer to the maximum production capac-
ity. The difference between the total production of the UnE
system and that of the reference system (Fig. 9) is therefore
explained by two factors: the high frequency of production
of the UnE system in class C1 of low production rate and its
low frequency of production in class C4 (which is the one of
highest production rate).

Compared to the management revenue of the reference
system, the losses of the OvE system are the strongest
(Fig. 8). This is due to the lower frequency of production
at the relatively higher prices of class C4 but also to the fact
that when the biased system shows more hours of produc-
tion than the reference system, these are at classes of low
production rate (notably C2 and C4; see Fig. 11), for which
the median prices of electricity are lower than the reference
system (Fig. 12). It is therefore possible that the lower eco-
nomic gains associated with the OvE system are related to
the lower average prices of electricity per hour of produc-
tion. In Fig. 12, we can see that the electricity prices, in
median values, used for the assessment of the management
revenues of each system, are lower for the UnE and OvE
systems than for the reference system, particularly for the
production rate classes C1–C3 (boxplots at positive values in
Fig. 12). Price differences can reach EUR 21.7 per MWh for
the OvE system and class C3, and EUR 14.2 per MWh for
the UnE system and class C3. Price differences are almost
zero for class C4, when the production rate is at or closer to
the maximum capacity. However, at this class, both biased
systems, UnE and OvE, have less hours of production. These

differences in prices and production hours at high capacity
between the biased systems and the reference system may
explain their lower economic performance in terms of total
management revenue (Fig. 8).

3.5 Influence of forecast bias on the evolution of stock
and on spillage

The reservoir management model evaluates the management
revenues based on the electricity produced. The total revenue
obtained from using a given forecasting system as inflow
forecasts to the reservoir does not take into account how the
stock in the reservoir evolves in time, compared to the man-
agement based on the reference system, where forecasts are
equal to observations. The reservoir management model does
not penalize spillage losses. Spillage can be caused by rare
and extreme hydrometeorological events but also by ineffi-
cient management of the stored water and reservoir releases.
It should be remembered that the reservoirs are conceptual
in this study and have been reduced in size from their actual
sizes according to their mean annual hydrological inflows.
Here, we focus on investigating how the biases in the syn-
thetic forecasting systems impact the evolution of the stock
and the spillage losses.

Figure 13 shows the differences in stock between the oper-
ation with the reference system and the operation with each
of the four synthetic forecasting systems (UnB, OvE, UnE
and UnD), for each spread factor (0.01 %, 1 %, 2.25 % and
4 %). To build this figure, we considered the level of the
reservoir at the first hour of each day of the study period.
In order to be able to pool the results of the 10 catchments,
the differences are divided by the maximum storage capac-
ity of the reservoir for each catchment. A positive (negative)
value of the difference (N. stock error in Fig. 13) indicates
that the stock obtained with the reference system is above
(below) the stock obtained with the synthetic forecasting sys-
tem. Figure 14 shows the spillage for the synthetic forecast-
ing systems, expressed in terms of percentage of the spillage
observed when using the reference system as inflow to the
reservoir management model.

We can see that the differences in spillage and stock are
negligible for the unbiased system (UnB), although there is
a tendency to have lower stock values than the reference sys-
tem as the spread factor increases. This is explained by the
slight overestimation of inflows that occurs when the spread
factor is applied to this system. The same tendency to pro-
duce lower stock values than the reference system is ob-
served for the synthetic system generated with an overes-
timation bias (OvE). A positive bias in a forecasting sys-
tem leads to an excessive emptying of the reservoir (to make
space for the incoming flows). Since the expected inflows are
overestimated, the production schedule is more intense in or-
der to handle the incoming volumes (i.e., more production
hours, as seen in Fig. 10). When the actual observed flows
do not confirm the forecasts, but are lower, it becomes diffi-
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Figure 13. Normalized differences in stock between the operation
with the reference system (i.e., the “perfect system”, where fore-
casts are equal to observations) and the operation with the synthetic
forecasting systems: unbiased system (UnB), underdispersed sys-
tem (UnD), underestimating system (UnE) and overestimating sys-
tem (OvE). Synthetic systems are based on ensembles generated
with four different spread factors (0.01 %, 1 %, 2.25 % and 4 %).
Boxplots represent the maximum value, percentiles 75, 50 and 25,
and minimum value over the 10 studied catchments.

cult to produce electricity at maximum capacity since there
is a lack of water with regards to the forecasts. The pro-
duction rate is then lowered and we have more production
hours with lower production rates, as indicated in Fig. 11.
Also, as a consequence of the systematic planning of emp-
tying the reservoir, spillage is low and, in the configuration
of our experiment, basically identical to the reference system
(Fig. 14).

Differences in stock (Fig. 13) are negative for the biased
systems that tend to underestimate the inflows overall (UnE)
or the high inflows only (UnD). Underestimation leads to
stock values more frequently higher than those that are ob-
tained using a perfect forecasting system. The reservoir man-
agement model takes into account the systematic low inflow
forecasts throughout the study period, and the production
planning tends to be minimized in order to maintain a stock
in the reservoir in the face of the low inflows that are forecast.
This is why the total production of these synthetic systems is
lower (Fig. 9). However, the actual inflows to the reservoir,
considered during the simulation phase of the management
model, are greater than those from the forecasts used to es-
tablish the management rule during the optimization phase.
The volume of water entering the reservoir is therefore higher
than expected, resulting in an increase in the stock at each

Figure 14. Spilled water from the management based on the syn-
thetic ensemble forecasting systems as a percentage of the total
spillage of the reference system (i.e., the “perfect system”, where
forecasts are equal to observations): unbiased system (UnB, yel-
low), underdispersed system (UnD, green), underestimating system
(UnE, blue) and overestimating system (OvE, red). Synthetic sys-
tems are based on ensembles generated with four different spread
factors (0.01 %, 1 %, 2.25 % and 4 %). (a–d) Boxplots represent the
maximum value, percentiles 75, 50 and 25, and minimum value over
the 10 studied catchments. (e) Median value.

day of the study period, as shown by the negative values
in Fig. 13, notably for the UnE system. To address this, the
number of production hours increases (Fig. 10) but, given the
unexpected higher inflows and the systematic forecast of low
inflows, production can no longer be scheduled at the best
hours and at maximum capacity, resulting in more hours of
production but at low capacity (Figs. 11 and 12 for the UnE
system). In summary, unexpected inflows have to be released
through the turbines (production), but stock in the reservoir
has to be maintained high, due to the low inflow forecasts.
Managing a reservoir while maintaining a high stock carries
the risk of poorly anticipating high flows, especially when
the forecasting system has a recurrent bias towards underes-
timation, as in the case of the UnE system. This also explains
why the systems that tend to underestimate the inflows (UnE)
or the high inflows (UnD) have a higher amount of spilled
water than the reference system (Fig. 14). These systems,
which underestimate high flows, have more difficulty man-
aging flood events since they do not anticipate emptying
the reservoir to create enough storage capacity to store the
high incoming volumes. The management model simulation
phase follows the optimal command resulting from the opti-
mization phase. Since there is no re-optimization of excess
water, the spilled water is not used for economic purposes.
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4 Conclusions

The overall purpose of this study was to better understand the
link between forecast quality and forecast economic value
in the case of the management of hydroelectric reservoirs.
We investigated the impact of different forecast quality at-
tributes of short-term (7 d ahead) hydrological forecasts on
several output variables of a management reservoir model
(revenue, production, production hours, stock values and
spillage). Based on observed inflows, several synthetic fore-
casting systems were generated to mimic unbiased ensemble
forecasts as well as biased forecasting systems of degraded
quality in terms of reliability, sharpness and accuracy. The
synthetic forecast generator was developed and validated. It
was shown that it can generate synthetic reliable ensemble
forecasts as well as ensemble forecasts with biases towards
overestimation, underestimation and underdispersion.

The ensemble mean of the different forecasting systems
was then used as input to a reservoir management model,
which was specifically built for the purposes of this study,
based on a linear programming optimization algorithm. The
optimization with 7 d ahead forecasts and the simulation with
observed flows were carried out at the daily time step over a
4-year period, from 2005 to 2008, at 10 catchment outlets in
France. The management revenues were evaluated for each
forecasting system based on the production and the electric-
ity prices. Management results from the forecasting systems
were compared with the results obtained from a reference
system where forecasts are equal to observed flows.

This study showed that biased forecasts result in man-
agement revenues that are lower than the revenues of the
unbiased forecasts or the reference system. Losses in rev-
enue are stronger for forecasting systems that systematically
overestimate reservoir inflows. In our configuration, positive
bias (overestimation) leads to up to 3 % of median economic
losses evaluated over the 10 studied catchments and the 4-
year period. Forecasting systems suffering from underdisper-
sion and underestimation reach economic losses of about 1 %
and 1.5 %, respectively. Nevertheless, due to the inefficiency
of the management operations, these forecast systems result
in large spillage, which can reach up to about 80 % more than
the spillage of the reference system in some catchments. This
volume of water spilled (and not used for electricity produc-
tion) was not taken into account in the assessment of the man-
agement revenue in this study, but it represents an extra eco-
nomic loss for these systems. Although the percentages of
economic losses obtained in this study are relatively small,
they correspond to millions of euros per year of potential ex-
tra gains, according to the average electricity prices of the
2005–2008 period.

In this study, we used a deterministic optimization model
based on linear programming. It allowed us to set up the
framework for the analysis of different sets of synthetic fore-
casts of different biases over a long time period and several
locations with different climatic conditions. However, deter-

ministic optimization methods also have drawbacks. They do
not allow one to account for inflow uncertainty, which limits
the use of ensemble forecasts at its highest potential value,
and the solution provided may not be optimal, especially un-
der high-flow scenarios (Philbrick and Kitanidis, 1999). In
our study, this can have a particular impact on the more ex-
treme conditions of the synthetic forecast system that overes-
timates the observed flows. With a constant efficiency of the
power plant and no influence of the reservoir head, as consid-
ered in the configuration of our study, overestimations may
misguide the model when it seeks to maximize revenues. Fur-
ther studies using the predictive distribution of the ensemble
forecasts and stochastic optimization models are avenues that
could be explored.

Overall, we can conclude that, given the configurations of
the experiment of this study and the tools used to generate
forecasts of controlled quality and optimize the management
of synthetic conceptual hydroelectric reservoirs located at ac-
tual catchment outlets in France, the quality of hydrologi-
cal forecasts is clearly linked to their economic value in the
hydropower sector. The worst (best) scores in forecast qual-
ity are associated with forecasting systems that display the
lowest (higher) economic value. The analysis of the results
showed that the quality of forecasts has an impact on man-
agement revenues due to several factors:

– Biased forecasting systems may result in more frequent
hydroelectric production (i.e., more production hours)
but the production is less often operated at higher ca-
pacities. Moreover, it occurs more often at lower elec-
tricity prices. Since management revenue is dependent
on production capacity, this leads to lower management
revenues. Optimal reservoir management is clearly in-
efficient in operating production within less hours but at
higher capacity and when prices are higher.

– Forecasting systems that present a positive bias result in
a tendency of operations to keep the storage at lower
levels so that the reservoir can be able to handle the
high volumes expected. This impacts the optimal place-
ment of production at the best hours (i.e., when prices
are higher) and the opportunity to produce electricity at
higher production rates. On the other hand, systems that
suffer from underestimation biases tend to keep a high
level of storage, which also influences the placement of
production hours and the production rate, while also im-
pacting the amount of spilled water (i.e., water lost and
not used for electricity production). The amount and fre-
quency of spillage may increase due to unexpected high
flows incoming when the reservoir level is already too
high and it is not possible to release enough water to
create room to store the incoming high volumes.

– When using biased forecasting systems in hydropower
reservoir management, production is not only planned
during more hours at lower production rates but also at
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hours with lower median prices of electricity. This also
impacts management revenues, since they also depend
on the electricity price at the time of production.

This study showed the importance of the quality of hydro-
logical forecasts in the management of a hydroelectric reser-
voir. Measuring and removing forecast biases in hydrological
forecasts, and more precisely overestimation biases, is there-
fore an important step towards improving reservoir opera-
tions and potentially increasing hydropower revenues. This
study was carried out within a conceptual framework in or-
der to address the challenges of quantitatively measuring the
economic value of hydrometeorological forecasts in the hy-
dropower sector and investigating the links between quality
attributes and economic gains in a controlled modeling envi-
ronment. The modeling approaches adopted are certainly far
from representing all the complexity of hydropower manage-
ment under uncertainties, which may include, for instance,
taking into account the actual sizes of existing reservoirs,
considering successions of over- and underestimation biases
in the forecasts, and taking into account the hydraulic head
and more complex hydraulic management constraints. How-
ever, the level of schematization adopted in the experiments
carried out during this study proved to be adapted to obtain-
ing the first orders of magnitude of the value of the forecast
in elementary situations.

This research work could have some significant conse-
quences. First, the orders of magnitude of the value of un-
biased forecasts, as estimated at a first approximation, are
sufficient to plead for devoted resources to continuously im-
prove operational hydrometeorological forecasting activities
targeting the hydropower sector. Secondly, this first level
of modeling, through the proof-of-concept that it provides,
is a step forward towards refined studies which, following
a more detailed, long-term approach, may address the fu-
ture challenges of the multiuse management of water re-
sources. Multiple uses of water can also benefit from better-
informed hydropower operations. Finally, beyond the ques-
tion of the value of the hydrometeorological forecasts for the
hydropower sector, the modeling approach of this study pro-
vides valuable support to also test and demonstrate the de-
cision process it simulates and how it may be impacted by
forecasts of different quality.
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